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ABSTRACT In real life, only partial information of samples is available everywhere, this makes Incomplete
multi-view clustering (IMVC) becomes a significant research topic to handle data loss situations. Recently,
several methods leverage the anchor strategy by selecting fixed anchors to handle the challenging large-
scale IMVC. However, all of them ignore the guidance of prior information hidden in the bipartite graph.
Therefore, we propose a novel Anchor Pseudo-supervise Large-scale Incomplete Multi-view Clustering
(AP-LIMC) method by introducing a prior indicator matrix as a pseudo-supervise anchor learning paradigm.
Specifically, the prior indicator matrix is first introduced to control the distribution of anchors in each cluster.
Then, an anchor pseudo-supervise learning framework is designed to generate high-quality anchors and a
unified bipartite graph with prior indicator supervision. In addition, we design an optimized process with
linear computational and extensive experiments on multiple public datasets with recent advances to validate
the effectiveness, superiority, and efficiency. For example, on the Stl10 dataset, the performance of the
proposed AP-LIMC improved by 23.95%,15.71%,27.39%, and 18.24% in terms of four evaluation metrics,
respectively.

INDEX TERMS Incomplete multi-view clustering, anchor learning, tensor, bipartite graph.

I. INTRODUCTION
In recent years, multi-view clustering (MVC) has garnered
considerable scholarly and practical attention, driven by the
increasing presentation of information in diverse applications
[1], [2], [3]. MVC aims to utilize heterogeneous and
homogeneous information to partition unlabeled multi-view
data into different clusters. While many MVC methods
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17] have been developed to capture the paired
similarity between samples and views, these approaches
assume that all views are complete. However, the practical
applications often present a contrasting scenario, wherein
certain view information may be missing, thereby giving rise
to instances of incomplete multi-view data. For example,
in social network analysis [18], [19], individuals may only be
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registered on certain social networks, leading to incomplete
sample information across different networks. This scenario
is known as incomplete multi-view clustering (IMVC), and
it poses a significant challenge due to the loss of view
information and destruction of paired similarity caused by
missing data [20].

In the past few years, researchers have developed
effective solutions to address missing data, which can
be broadly categorized into three groups. The first group
[21], [22], [23], [24], [25] involves using matrix factor-
ization to generate a consensus representation that com-
bines information from multiple incomplete views. This
allows data from different views to be aggregated into a
single representation, making it possible to describe the
information from multiple incomplete views. The resulting
consensus representation can then be used as input for
clustering algorithms such as k-means to obtain clustering
results.
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For the second group, instead of sharing a consensus
representation, kernel-based IMVC methods [26], [27], [28],
[29], [30] aim to learn a consensus kernel or consensus
partition from incomplete views. This is achieved by
uncovering the nonlinear information present in incomplete
views. In the third group, some researchers use different
graph learning techniques to generate a consensus graph
across multiple incomplete views [28], [31], [32], [33],
rather than learning a consensus representation or consensus
kernel. For instance, in studies such as [33] and [34], self-
representation subspace learning or adaptive neighborhood
graph learning is used to generate a shared similarity graph
for spectral clustering. These methods fuse the observed
data of multiple incomplete views into a consensus graph
that reflects the intact graph structure of all incomplete
views. In this way, they are able to capture graph structure
information among incomplete views. Overall, the common
idea behind these IMVC methods is to learn a consensus rep-
resentation, consensus kernel, or consensus graph by exploit-
ing the complementary information present in incomplete
views.

Methods that integrate diverse perspectives of information
exhibit the capability to address the challenges of IMVC.
Nevertheless, their computational intricacy and memory req-
uisites impose limitations on their applicability to substantial
tasks, particularly within the domain of graph-based learning
methodologies. To address this issue, some methods attempt
to use bipartite graphs to achieve highly efficient clustering
[31], [35]. For example, one method [35] selects samples
with complete views as anchor points, which can connect
all instances of each view to construct a bipartite graph for
subsequent clustering tasks. However, this idea only works
when each cluster contains enough samples with complete
views, which is impractical. Other methods use k-means or
sampling strategies to choose anchors from observed data, but
the fixed selection of anchors from original incomplete data
limits the flexibility and quality of anchors.

To address the aforementioned limitations, we propose
a novel Anchor Pseudo-supervise Large-scale Incom-
plete Multi-view Clustering (AP-LIMC) for high-quality
anchor learning and high-efficient IMVC. Specifically,
AP-LIMCfirst proposes a pseudo-supervised anchor learning
framework as mentioned in Fig. 1, which aims to learn
multiple view-independent anchors according to the proposed
prior indicator matrix. Simultaneously, the prior matrix
has the capacity to regulate the distribution of anchors
within each cluster, thereby providing guidance for the
construction of a unified bipartite graph. In this way,
the superior view-independent anchors and a consensus
bipartite graph can be obtained simultaneously in a mutually
reinforcing manner, such that the complementary among
view-independent anchors and underlying consistency struc-
ture of among views can be together explored. Afterward, the
optimal bipartite graph can be learned to perform k-means for
obtaining results. In summary, AP-LIMC enjoys three-fold
contributions:

• AP-LIMC proposes a new anchor learning strategy
to generate the ideal anchors with priori indicator
supervision.

• With the help of dexterously designing anchor learn-
ing strategy, AP-LIMC further proposes a novel and
effective framework for large-scale IMVC.

• An efficient and effective solver with linear com-
putational and memory complexity is designed to
perform extensive experiments on scalable datasets to
demonstrate the superiority of AP-LIMC.

TABLE 1. Detailed information of notations.

II. RELATED WORK
In this section, we provide an overview of the notations used
in our proposed method, as well as the related research in the
field. This includes a discussion of typical graph-based IMVC
methods and bipartite graph clustering. Additionally, Table 1
presents the relevant definitions used in this paper.

A. GRAPH BASED IMVC
IMVC has gained attention due to the incomplete nature
of multimodal data in real-world applications. For example,
individuals may not be registered on all social networking
platforms, leading to incomplete information on some
platforms. As a result, clustering with multi-view partial data
is a challenging and valuable issue. Graph learning offers
powerful representation ability and can capture relevant
information between data, making it an effective method for
performing IMVC.Given incomplete multi-view data {Xp ∈

Rdp×n}Vp=1, graph-based IMVC framework can be written as

min
Hp

V∑
p=1

9(Xp,Hp) + β8
(
Hp

)
,

s.t. Hp ≥ 0,H⊺
p 1 = 1, (1)

where Hp ∈ Rnp×np , np and β are the subgraph,
number of observed data, and hyper-parameter in the p-th
view, respectively. 9(·) and 8(·) represent different graph
regularization terms. The subgraphs {Hp}

V
p=1 can be sketched

into n × n complete graphs, which are then fused into a
consistent graph for spectral clustering. Many methods [24],
[25] have been developed to boost the performance of IMVC
via different regularizations on graphs. Some deep methods
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FIGURE 1. Overview of the anchor pseudo-supervise learning of proposed AP-LIMC method. Two views are employed for ease of
understanding. From Fig. 1, we develop a prior indicator matrix Q artificially to enforce the learned bipartite graph to enjoy the
desired k block diagonal structure (this structure of graph plays a vital role in clustering), where k is the cluster number. That is,
we set Q as the k block diagonal structure, then the prior Q could directly make the product of bipartite graph SS⊺ be also k
diagonal blocks. Further, k block diagonal structure SS⊺ could indirectly make the learned anchors uniform distribution to enhance
the representation ability of anchors. The main contributions are that: (1) to obtain the k block diagonal bipartite graph, we design
a prior indicator matrix Q to directly protect the block diagonal structure of the graph, and indirectly enhance the representation
ability of anchors; and (2) we employ the designed Q to develop a prior matrix pseudo-supervise bipartite graph learning model
for large-scale incomplete multi-view clustering.

[36], [37] employ deep networks to enhance the quality of
the graph, which can better handle complex data and are
more robust to noise compared to shallowmethods. However,
existing shallow methods suffer from O(n3) computational
complexity and O(n2) memory complexity, while deep
methods are time-consuming and require lots of samples for
deep network training.

B. BIPARTITE GRAPH CLUSTERING
Bipartite graphs are frequently employed for managing
extensive datasets through the selection of a limited set of
representative anchors that establish connections with the
original samples. This approach proves notably efficacious
in practice. Without loss of general, bipartite graph clustering
framework can be mathematically expressed as

min
Sp,S

V∑
p=1

∥∥Yp − PpSp
∥∥2
F + β�(Sp)

s.t. Sp ≥ 0,S⊺
p 1 = 1 (2)

where Yp ∈ Rdi×n and Pp ∈ Rdi×m represent complete data
and its m selected or sampled landmarks corresponding to
p-th view. �(·, ·) represents certain regularization terms [38],
[39]. By reducing the size of the traditional n× n similarity
graph to a m× n bipartite graph Sp. Eq. (3) can effectively
reduce both computational and memory complexity while
achieving comparable clustering performance. However, this
equation is not suitable for the IMVC method due to the poor
quality of learned anchors caused by the random absence
of samples from different views. To elaborate, varying

perspectives might opt for distinct anchor quantities within
the identical cluster, or they might even exclude all anchors
from a particular cluster. This discrepancy arises owing to
the influence of missing samples. To address this issue,
[35] proposes selecting data points with complete views as
anchors, but this method requires all clusters to have enough
anchors with complete views to be selected, which is not
always feasible in real-world applications.

III. THE INNOVATION FORMULA
A. PRIOR INDICATOR GUIDED ANCHOR LEARNING
In order to ensure that the anchor points can be selected
uniformly anchors from different missing samples to better
represent individual samples, this paper first proposes to
introduce the predefined indication matrix Q ∈ Rm×m to
guide the learning of individual anchors. The predefined Q
pseudo-supervises thosem anchors that are uniformly learned
from each cluster, rather than selecting data points with
complete views as anchors. Thus, in this paper, we claim
this learning process as an anchor pseudo-supervised learning
scheme. By integrating Eq. (2), this idea is mathematically
fulfilled as

min
θ ,{Pp}vp=1,S

v∑
p=1

θ2p

∥∥XpEp − PpSpEp
∥∥2
F − βTr(SpS⊺

pQ)

s.t. Sp ≥ 0,S⊺
p 1 = 1,P⊺

pPp = I (3)

where θ is the weight vector, and Ep denotes the index matrix
for np observed samples corresponding to p-th view. Ep is
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defined as

Ep,i,j=

{
1, if the entry ep,i,j= i, ∀j=1, 2, . . . , np
0, otherwise.

(4)

where ep is the indicator vector of np observed samples to
report the sorted index, p, i, j denotes i-th column and j-th low
of p-th view. {XpEp ∈ Rdp×np}Vp=1 are defined as complete
data matrices, and XpEp is sorted observed samples of Xp.
Note that the prior indication matrix Q can be set as follows:
(1) The number of diagonal blocks ofQ is equal to the number
of sample clusters; and (2) Each block is a mi ∗ mi square
matrix, where mi is the number of samples in i-th cluster.
Specifically, Q is defined as follows

Qi,j=

{
1, if ith and jth anchors in the same cluster
0, otherwise.

(5)

To enhance the equilibrium of the learned anchors, we strive
for an equal number of anchors for each cluster, which,
in turn, bolsters the representation capacity of the anchors.
Generally, the prior indicator matrix Q takes the form of
a block diagonal matrix with k blocks, where all entries
within each block are set to 1, while the non-diagonal entries
remain 0. In essence, the specification ofQ governs the count
of anchor points chosen within each cluster. Through the
execution of Eq. (4), the selection count of anchors in each
view becomes consistent, ensuring uniformity across clusters.

B. SEUDO-SUPERVISE UNIFIED BIPARTITE GRAPH
LEARNING
Additionally, drawing inspiration from the intrinsic subspace
structure often shared among multi-view data, we capitalize
on the anchors to jointly and directly acquire a consensus
bipartite graph S as follows:

min
θ ,{Pp}

v
p=1,S

v∑
p=1

θ2p

∥∥XpEp − PpSEp
∥∥2
F − βTr(SS⊺Q),

s.t. S ≥ 0,S⊺1 = 1,P⊺
pPp = I (6)

With the help of indicator matrices Ep ∈ Rn×np , even
if i-th sample of p-th view is missing, the affinity values
between anchors and i-th sample are not still affected (i.e.,
xp,i,: = 0 → zi = 0). Thus, zi should be learned by
borrowing the affinities from the other complete view. This
idea can be illustrated by collaborative learning as shown in
Fig. 2. Intuitively, x(1)7 = θ22x

(2)
7 + θ23x

(3)
7 , where (·)(v)i and (·)vi

denotes the i-th sample of v-th view in Fig. 2 for convenience.
In this way, a complete subspace structure matrix S can
be collaboratively learned from the incomplete multi-view
data. More importantly, the prior indication matrix Q can
encourage individual anchors in different views to evenly
distribute in each cluster. That is, the prior matrix can
make individual bipartite graphs to better achieve semantic
consistency due to this guidance of even distribution of
anchors for each view. This can maximumly help incomplete

multi-view data to exploit the underlying subspace structure
of bipartite graph S.

C. OPTIMIZATION
According to the augmented Lagrange multiplier method
[18], [40], we first introduce an auxiliary variable D to make
Eq. (6) separable, and then rewrite Eq. (6) as the following

min
θ ,{Pp}

v
p=1,S

v∑
p=1

θ2p

∥∥XpEp − PpSEp
∥∥2
F − βTr(SD⊺Q)

+
µ

2
∥S − D +

J
µ

∥
2
F

s.t. S ≥ 0,S⊺1 = 1,D ≥ 0,D⊺1 = 1,P⊺
pPp = I (7)

which can be solved according to the following steps:
Step-1 update S: With fixed the irrelevant variables of S,

Eq. (7) becomes

min
S

V∑
p=1

θ2pTr(S
⊤S(EpE⊤

p +
µ

2θ2p
In) − 2X⊤

p PpSEpE
⊤
p )

− βTr(D⊺Q + µ(D −
J
µ
))S

s.t. S ≥ 0,S⊺1 = 1 (8)

where XpEpEp⊺ = Xp ⊗ Gp, where Gp = 1dpep and ep =[
ep,1, . . . , ep,n

]⊺ with ep,j =
∑np

l=1 Ep,j,l .
ConsideringXpEpE⊤

p = Xp⊗Gp, we can solve Eq. (8) via
the following vector form

min
zi

∥zi − bi∥2F , s.t. z⊺
i 1 = 1, zij ≥ 0 (9)

where b⊺
i =

Gp,1,jX
⊺
p,:,iPp+βM:,j∑V

p=1 θ2pGp,1,j+
µ
2
, andM1 = βD⊺Q⊺

+µ(D⊺
−

J⊺

µ
). Then, Theorem 1 can be used to solve this subproblem

with O(nmd) time complexity.
Theorem 1: Given r vectors {b}

r
j=1, its closed-form

solution z∗
j can be solved by

z∗
= arg min

z
∥z − b∥

2
F , s.t. z⊺1 = 1, z ≥ 0 (10)

which can be proved by Theorem 2 of [9].
Step-2 update D: Fixing S, P, J, and θ , the D-subproblem

changes to

min
D

−βTr(SD⊺Q⊺) +
µ

2
∥S − D +

J
µ

∥
2
F

s.t. D ≥ 0,D⊺1 = 1 (11)

Similar to the optimization of S-subproblem, Eq. (11) can
be effectively solved via Theorem 1 with O(nmd) time
complexity.

Step-3 update P: Fixing the irrelevant variables with P,
and then optimizing P becomes to

Tr(P⊺
pTp),P

⊺
pPp = Im, (12)

where Tp = (Xp ⊗ Gp)S⊺. The optimal solution of
optimizing P can be effectively obtained via singular value

VOLUME 11, 2023 107815



S. Zhu et al.: Anchor Pseudo-Supervise Large-Scale IMVC

FIGURE 2. Illustration of collaborative filling for incomplete affinities. The dashed lines denote the missing affinities, which require to be filled by
the combination of weights for other views.

decomposition (SVD) on Tp with complexityW is O(dm2
+

nmd), where d =
∑V

p=1 dp.
Step-4 update θ: Optimizing γ with the irrelevant

variables fixed is equivalent to the following optimization
problem

min
θp

V∑
p=1

θp
2δp, s.t. θ⊺1 = 1, θ ≥ 0 (13)

in which δp = ∥XpEp−PpSEp∥2F. By using Cauchy-Schwarz
inequality, the weight vector θ is obtained via

θ =
ε∑V
p=1 εp

(14)

where ε = [ε1, ε2, . . . , εV ] and εp =
1
δp
. Then, we can

optimize γ with O(nmd) complexity.
Step-5 ADMM variables: Fixing the irrelevant variables,

and updating J can be written as

J = J + µ(S − D)

µ = min(ρµ, µmax) (15)

where the involved two ADMM variables µ and µmax are
respectively set as 1e−4 and 1010. Algorithm 1 reports
the optimization procedure of our AP-LIMC model. The

Algorithm 1 AP-LIMC Algorithm

Input: V incomplete data {Xp}
V
p=1, parameter α, number of

clusters k and anchor number m.
1: Initialize θ = 1/

√
V , Pp = I, others matrices as 0. µ =

1e−4, µmax = 1010, ρ = 2.
Output: Consensus bipartite graph S.
2: repeat
3: Update S via Eq. (8);
4: Update D via Eq. (11);
5: Update Pp via (12);
6: Update θ via Eq. (13);
7: Update ADMM variables via Eq. (14);
8: until Satisfy (obj(t) − obj(t−1))/obj(t) ≤ 1 e− 4.
9: Perform k-means on S.

objective function value objt of Algorithm 1 is also reported
to control the convergence criterion in the t-th iteration.

D. COMPUTATIONAL COMPLEXITY
The main computational complexity of Algorithm 1 is
involved from Step-1 to Step-4, i.e., 2O(nmd) + O(nm) +

O(dm2
+ nmd) + O(nmd) at each iteration, where n

and m denote number of complete samples and anchors,
respectively. After obtaining S, it costsO(nm2) complexity to
perform k-means. Consequently, Algorithm 1 involves linear
computation complexity to n. Table 2 reports the detailed
computational and memory complexity of all compared
methods.

E. MEMORY COMPLEXITY
Memory complexity of Algorithm 1 mainly involves four
matrices Gp ∈ Rdp×n, Pp ∈ Rdp×m, and Sp ∈ Rm×n.
Therefore, memory complexity of AP-LIMC is (n+k)(d+m),
which can be further approximated as n when dealing with
large-scale data, i.e., k ≪ n, m ≪ n, and d ≪ n.

IV. EXPERIMENTS
A. EXPERIMENT SETTINGS
1) FUNDAMENTAL DATASETS
Six commonly used datasets are leveraged to evaluate the
proposed method, including: Cifar10, Cifar100,1 STL10,2

WebKB,3 Caltech101-7,4 and NGs.5 Detailed information of
these datasets is provided in Table 3. Concretely, Cifar100,
Cifar10, STL10, and Caltech101-7 are the image datasets.
NGs and WebKB are the web page and document datasets,
respectively. Note that the number of samples in these
datasets ranges from 500 to 50,000. This span is already
relatively large in existing IMVC.

Following [41], for each view of all datasets mentioned
above, we randomly remove parts of instances to construct
the incomplete multi-view datasets for performing the

1http://www.cs.toronto.edu/ kriz/cifar.html
2https://cs.stanford.edu/ acoates/stl10/
3http://www.cs.umd.edu/ sen/lbc-proj/LBC.html
4http://www.vision.caltech.edu/Image Datasets/Caltech101/
5https://lig-membres.imag.fr/grimal/data.html

107816 VOLUME 11, 2023



S. Zhu et al.: Anchor Pseudo-Supervise Large-Scale IMVC

TABLE 2. Detailed information of the used datasets.

incomplete multi-view clustering. But these incomplete data
should satisfy the principle that each sample requires to be
presented at least one view, where incomplete multi-view
datasets are generated by denoting the missing ratio as
[0.1, 0.9] in intervals of 0.1 [33], [41].

2) EVALUATION METRIC AND COMPARISON METHOD
We compare our method with nine competitors on four
common metrics [29], including ACC, NMI, PUR, and
Fscore. Specifically, ACC is a measure of how many
instances are correctly classified. It is calculated by dividing
the number of correctly classified instances by the total
number of instances and multiplying by 100%. NMI is a
measure of the similarity between two sets of classifications.
It is calculated by comparing the joint probability distribution
of the two sets of classifications with the product of their
individual probability distributions. NMI ranges from 0 to 1,
where 0 indicates no overlap between the two sets and
1 indicates perfect overlap. PUR is a measure that combines
precision and recall into a single metric. Precision measures
the proportion of correctly classified instances among all
instances classified as positive, while recall measures the
proportion of correctly classified instances among all actual
positive instances. PUR is calculated by plotting precision
against the recall and calculating the area under the curve.
A perfect score is 1, indicating perfect precision and recall,
while a score of 0 indicates random performance. These
comparisons include:

• BSV [43] applies individual spectral clustering to
each view, imputing mean in incomplete segments and
presenting optimal single-view results.

• MIC [21] acquires latent representations from indi-
vidual views and optimizes a shared clustering
representation.

• IMKKM-IK [28] is an incomplete multi-kernel
approach that addresses missing components, applying
kernel k-means.

• DAIMC introduces view-specific weight matrices,
tackling missing views and aligning basis matrices.

• APMC [35] suggests using samples across views
as anchors and performing spectral clustering for a
conclusive outcome.

• UEAF [25] simultaneously recovers absent views and
learns a unified clustering representation.

• EEIMVC [29] generates reduced-dimensional base
feature matrices, imputes, and optimizes a consensus
matrix within a unified framework.

• FLSD [24] learns distinct latent representations per
view, aiming for shared clustering based on semantic
consistency.

• IMVC-CBG [41] presents a scalable anchor graph
framework to address IMC for the first time.

3) EXPERIMENTAL CONDITIONS AND SETTINGS
All codes of competitors are collected from their public
home page or Git Hub, and the implementation of their
experiments is according to their settings in the corresponding
papers. We repeat 20 times for each experiment, and then the
average results and their standard deviations are all reported,
where the best results marked in bold. i9 CPU and 32GB
RAM are employed to construct the computing platform
of 2016 Matlab.

B. NUMERICAL EXPERIMENT RESULTS
Table 4 reports the averaged clustering results among
all missing ratios on the three less than 10,000 samples
of benchmark datasets, where the bold values represent
the best-averaged results. Meanwhile, Fig. 3 demonstrates
the variation of ACC and NMI on the three more than
10,000 samples of datasets compared with two competitors.
To further demonstrate the ability to handle large-scale
IMVC, Table 5 and Fig. 4 also report the averaged clustering
performance across all missing ratios and standard deviations
on the three more than 10,000 samples of datasets. Note
that only three methods, i.e., DAIMC, IMVC-CBG, and our
AP-LIMC can be used to estimate the performance onCifar10
and Cifar100 datasets. The other comparisons fail due to their
high memory and time complexity caused by too large a
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FIGURE 3. The averaged ACC and NMI on the three evaluated datasets, and their size is less than 10,000 samples.

FIGURE 4. The averaged ACC and NMI on the three evaluated datasets, and their size is more than 10,000 samples.

TABLE 3. Details of the evaluated datasets. Sample, Classes, Views, and Dimensionality mean the sample number n, class number k , view number V , and
dimensionality d of each dataset, respectively.

FIGURE 5. ACC and NMI w.r.t. m and β on the NGs datasets (missing ratio=0.2).

number of samples as shown in Table 2. From these tables
and figures, we can observe that:

• Most incomplete multi-view methods are better than
single-view methods with mean filling. However,
some of the IMVC methods are even lower than

the single-view method in some cases. As shown in
Table 4, our method not only consistently and largely
outperforms the single-view incomplete clustering, but
outperforms the existing multi-view methods. Taking
the WebKB dataset as an example, many IMVC
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FIGURE 6. Objection value over the Cifar10 and WebKB datasets (missing ratio=0.2).

FIGURE 7. Illustrations of the clustering result of IMVC-CBG and our AP-LIMC with T-SNE method on the NGs dataset
(missing ratio=0.2).

methods, such as matrix-factory based MIC, kernel
based IMKKM-IK, and graph based FLSD only achieve
several NMI. While AP-LIMC can enjoy the average
91.07% NMI stably. This demonstrates the superiority
of AP-LIMC.

• In most circumstances, AP-LIMC is superior to the
most recent methods by a large margin, especially
in handling more than 10,000 samples of incomplete
datasets in Table 5, AP-LIMC consistently outper-
forms DAIMC and IMVC-CBG. This indicates that
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TABLE 4. Average clustering results for various of missing ratios on three datasets of less than 10,000 samples. The best performance is marked in bold.
‘-’ means out of the CPU memory. Supplementary materials report the more detailed results.

TABLE 5. Average clustering results for various of missing ratios on three datasets of more than 10,000 samples. Meanwhile, time complexity is also
reported. The best performance is marked in bold.

AP-LIMC has a strong capacity to handle large-scale
IMVC.

• Compared to APMC, which selects anchors by using the
sample points with complete views, both IMVC-CBG
and AP-LIMC can learn the anchors instead of the
fixed anchors to significantly improve performance for
APMC across all missing ratios. The results of Table 4,
Table 5, and Fig. 4 demonstrate that IMVC-CBG and
AP-LIMC have better clustering performance. This
proves the advantages of learning anchors dynamically.

• Compared to the second best method IMVC-CBG,
although both IMVC-CBG and AP-LIMC can learn
anchors from incomplete data, IMVC-CBG aims to
explore the view-consistence relationship between
multi-view data. Moreover, it lacks guidance from a pr
indicator matrix. While AP-LIMC learns view-specific
anchors with the guidance of the prior matrix, which
greatly improves the quality of anchors and simulta-
neously better explores the complementary information
between different views. As mentioned in Table 4,
Table 5, and Fig. 4, AP-LIMC outperforms IMVC-CBG
w.r.t. all evaluated metrics and missing ratios in

most cases. Furthermore, AP-LIMC shows substantially
shorter running over the large-scale datasets, i.e.,
Cifar10 and Cifar100. All the above analyses indicate
the effectiveness and the efficiency of AP-LIMC to
cluster large-scale IMVC.

• For large-scale datasets (such as Stl10, Cifar10,
and Cifar100), our method achieves satisfactory
results. For example, on the Stl10 dataset, the per-
formance of the proposed AP-LIMC improved by
23.95%,15.71%,27.39%, and 18.24% in terms of four
evaluation metrics, respectively. On the one hand, many
methods are difficult to adapt to large-scale data due to
their high computational complexity. On the other hand,
large-scale data can learn more semantic information,
thus improving the performance of our method.

C. PARAMETER ANALYSIS
Two parameters, i.e., anchor number m and parameter β

are analyzed for Algorithm 1. Specifically, we vary m in
[k, 2k, 3k, 5k, 7k] and tune β in [10−2, 10−1, 1, 101, 102].
As shown in Fig. 5, by performing a grid search on the
NGs dataset, our AP-LIMC can obtain satisfying clustering
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results in a wide scope for m and β. It can be seen that
we only require a few anchors to get encouraging clustering
performance.

D. EFFICIENCY AND CONVERGENCE
Table 5 reports average clustering results for various of
missing ratios on three datasets of more than 10,000
samples. Meanwhile, it also displays the average times
of DAIMC, IMVC-CBG, and the proposed method across
more than 10,000 samples of benchmark datasets. As can
be seen, compared to both DAIMC and IMVC-CBG, our
method consistently outperforms them on three datasets
of more than 10,000 samples, i.e., enjoying the opti-
mal clustering performance while having minimum time
consumption.

In addition, Fig. 6 reports the convergence of IMVC-CBG
[41], FLSD [32], EEIMVC [29], and our method on the
two datasets, i.e., Cifar10 and WebKB in the missing ratio
of 0.2. To be specific, Fig. 6 gives the objective value of
four Algorithms with iterations. It can be seen that our
objective value of Algorithm 1 decreases monotonically
with iteration, indicating the favorable convergence of the
proposed AP-LIMC. In addition, our AP-LIMC can achieve
faster convergence than the three competitors on the two
evaluated datasets. This indicates the effectiveness of our
AP-LIMC in the convergence.

E. VISUALIZATION RESULTS
The learned ultimate bipartite graphs of IMVC-CBG [41],
FLSD [32], EEIMVC [29], and our method on the NGs
dataset are plotted in Fig. 7. In Fig. 7, each point of different
colors represents a cluster of the NGs dataset, with the same
color indicating the same clusters of samples. Obviously, our
AP-LIMC enjoys clearer cluster discrimination and a more
compact cluster structure. More importantly, it can be seen
that our AP-LIMC is able to learn a higher-quality bipartite
graph than the three state-of-the-art competitors.

V. CONCLUSION
In this paper, we first propose an anchor pseudo-supervise
learning technique to guide the learning of anchor matrix.
By employing the anchor pseudo-supervise learning tech-
nique, a novel incomplete multi-view clustering method,
named AP-LIMC, is proposed to simultaneously perform
dynamic anchor learning and IMVC. Different from selecting
sample points with complete views as the anchors, AP-LIMC
learns anchors dynamically from incomplete views with
the guidance of the prior indicator matrix. Meanwhile,
AP-LIMC has linear memory and time complexity, demon-
strating its potential to deal with large-scale tasks. Extensive
experiments on six commonly used datasets with four
metrics indicate the effectiveness and efficiency of our AP-
LIMC. For AP-LIMC, the prior indication matrix is fixed,
which may limit the flexibility of anchors to some extent.
In the future, we will explore dynamic optimization of the

indication matrix to further improve the representation of
anchors.
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