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ABSTRACT Pulmonary Embolism (PE) occurs when blood clots travel to the lungs from different parts of
the body. It is amongst the most lethal cardio-respiratory diseases after stroke and heart attack. It occurs due
to injury or inactivity due to Deep Vein Thrombosis (DVT). Over the last decade, the PE mortality rate has
increased by 23%.Moreover, Vein Thromboembolism has been one of the leading causes of mortality among
hospitalized COVID-19 patients. As a result, the necessity for early pulmonary embolism identification
has immense significance in saving human lives. Computed Tomography Pulmonary Angiograms (CTPA)
are the optimal medical imaging technique for diagnosing pulmonary embolism because of their superior
sensitivity and specificity. The ability to distinguish between malignant and benign lungs using CTPA is
critical for the early identification of the disease. The field of medical imaging analysis has significantly
advanced due to the use of Machine Learning (ML) and Deep Learning (DL) techniques, notably Con-
volutional Neural Networks (CNN), for automated disease detection. These Computer-Aided Diagnosis
(CAD) systems assist healthcare workers in rapid and knowledgeable decision-making, improving patient
outcomes globally. This review paper offers a systematic study of current improvements in identifying PE
by medical image processing, motivated by an extensive overview. This study attempts to bridge the gap
between research and practice by providing a broad framework that covers both baseline and state-of-the-art
approaches. It is a valuable resource for researchers and medical practitioners by providing insights into the
effective utilization of advanced techniques at each stage of medical image analysis.

INDEX TERMS Pulmonary embolism, CNN, ensemble learning, COVID-19.

I. INTRODUCTION
Pulmonary Embolism (PE) is caused by blood clots that
travel from other human body areas to the lungs, blocking a
pulmonary artery [1]. It is part of a more significant condition
known as Deep Vein Thrombosis (DVT), which causes blood
clots in the veins. DVT is a blood clot commonly occurring
in the legs, arms, or other veins. Patients who have just had
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approving it for publication was Chuan Li.

surgery are recommended to stay in bed. Blood clots might
form during this time due to damage or inactivity of body
parts. These clots break off the vein walls, releasing dimers
or fragments [2]. These dimers go through the veins to the
lungs, obstructing part or all of the blood supply, resulting in
Pulmonary Embolism.

Approximately 50% of DVTs can result in silent PEs.
PE and DVT impact nearly 3 to 6 lakh people in the United
States annually [3]. Within three months of being diagnosed,
15% to 30% die. DVT has a high mortality rate of up to 25%;
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treatment drops to 2 to 11% [4]. According to a necroscopy
review, PE is responsible for 5% to 10% of hospitalized
patients’ fatalities [1]. Among COVID-19 patients hospital-
ized, venous thromboembolism has been one of the primary
reasons for death [5]. PE has become a frequent occurrence
in individuals diagnosed with COVID-19, with documented
prevalence rates of 16.5% overall and escalating to 24.7%
among severe cases admitted to the Intensive Care Unit (ICU)
as per reports [109]. COVID-19 patients, particularly those
in critical condition requiring ICU admission, exhibit an
increased risk of developing PE, affecting up to one-third
of cases [110]. CTPA serves as a diagnostic modality for
confirming clinical suspicions of PE, including cases related
to COVID-19. 43.3% of ICU patients are likely to get diag-
nosed with DVT [6]. Acute PE can cause a life-threatening
condition like pulmonary hypertension and right ventricular
dysfunction or failure [7]. As a reaction to PE before cardiac
failure, there is typically an increase in breathing and pulse
rate. Being one of the arterial system problems, PE is a
complex disease to diagnose; early detection and treatment
can save lives. It is a preventable cause of death if diagnosed
early, although delays in identification and treatment increase
the chance of death.

A. PRIOR RESEARCH RELATED TO THIS WORK
There are just a few reviews available to identify pulmonary
embolism. Paper [8] is one of the most recent reviews. The
authors thoroughly reviewed existing literature that uses deep
learning approaches to detect PE in this work. However, [8]
focuses solely on retrospective studies with a limited assess-
ment of pooled performance due to heterogeneity across
studies, a high risk of bias in certain studies, and the absence
of real-world applications. Our research aims to provide
a comprehensive analysis of recent advancements in the
field, considering the developments beyond the scope of [8].
Additionally, we aim to perform a thorough performance
comparison of recent and benchmark studies in this domain.
Our review article aims to expand the body of research by
addressing the highlighted gaps and expanding the scope of
analysis.

Research [4] provides information on pulmonary embolism,
pulmonary nodule disorders, pneumonia, and other lung dis-
orders. The current state of deep neural networks in medical
imagery is described in this paper. It contains a complete
study of the models that produced positive outcomes, laying
a crucial research foundation for researchers interested in this
field.

The survey [9] looks at recent U-Net architecture trends.
It covers a wide range of deep learning developments.
It also covers the many imaging modalities and appli-
cation areas that U-Net has improved. The study [10]
examined the whole pipeline of medical imaging and anal-
ysis procedures concerned with COVID-19. It focuses on
X-ray and CT modalities commonly employed in frontline
hospitals. Review [11] demonstrates how using Artificial

Intelligence (AI) in the management of COVID-19 infection
might assist in optimizing resources and boost efficiency.

Table 1 presents the existing review papers available in this
domain.

The research gap identified in these papers is as follows:
• Unsupervised learning methods need to be investigated
to reduce the time-consuming task of human label cate-
gorization in supervised learning algorithms.

• There must be a significant gap in assessing the clinical
impact of automated PE detection on patient care. Stud-
ies should focus on examining the usefulness of these
systems in a realistic context.

• The lack of labelled data available for training affects the
effectiveness of DL models. Other approaches to over-
come this include using adversarial models to generate
image samples and supplement the current training data.

• Manual labelling of imaging data is costly and time-
consuming. Hence, self-supervised and transfer learning
systems should be explored.

Limitations of the review papers are as follows:
• None provide theoretical knowledge on various cate-
gories in which PE can be classified. The focus is only
on the diagnosis of PE and not on classification.

• Most of the PE papers reviewed implemented baseline
models for the diagnosis of PE.

• For PE diagnosis, datasets are not extensively reviewed.
• Advanced research directions are not mentioned in the
case of PE disease.

The authors intend to overcome these limitations in this
review, and the highlights are summarized as follows:

• It includes papers that provide theoretical knowledge
regarding the various types of PEs. This knowledge can
be used to develop systems focusing on classifying PE.

• It provides a detailed analysis of available datasets.
• It comprises a generalized framework that involves base-
line and advanced technologies for each stage of medical
image analysis.

• AI-powered algorithms for diagnosing COVID-19 are
considered to provide advanced research directions for
PE diagnosis and classification.

This paper is organized as follows: Section II reviews
the current works available for PE and COVID-19 using
CTPA/CTmodality. The generalized framework ismentioned
in Section III; each stage is discussed in detail. Detailed
reviews of all the models are presented in the Performance
analysis subsection III-G. Section IV discusses the insights
derived from this extensive study. Finally, Conclusions and
Future Directions are presented in Section V.

II. EXISTING WORKS
This section is divided into five sections. Section A provides
knowledge about PE and possible categories for classifying
PE. Section B includes papers that focus on the automatic
detection of PE. Artificial Intelligence (AI) techniques used
for diagnosingCOVID-19 arementioned in Section C. Papers
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TABLE 1. Comparison of review papers.

that enhanced the baseline models using AI algorithms are
referred to in Section D. Section E briefs on papers that
proposed Deep CNNs and Ensemble learning as diagnostic
strategies for PE and COVID-19 diseases.

A. PULMONARY EMBOLISM AND CLASSIFICATION OF
PULMONARY EMBOLISM
PE refers to the situation caused by blood clots that travel
to the lungs and block the pulmonary arteries. PE can be
classified based on clot location (Saddle/ Lobar/ Segmental/
Subsegmental), temporality (Acute/ Chronic) and hemody-
namic compromise (Massive/ Submassive/ Low-risk). Mas-
sive PE is indicated by pulmonary hypotension or distress;
the arterial pressure is less than 90 mm Hg. Submassive
PE is hemodynamically stable. The dysfunction in the right
ventricle with an end-diastolic diameter greater than one can
be taken as a feature to be observed in CTPA. Low Risks PE
is acute PE without clinical signs that define massive and
submassive PE [1]. The impact of embolism and unsteady
flow in acute PE, the diameter of the enlarged pulmonary
artery can be noticed. The vessel is distal to the occlusion and
is decreased in Chronic PE. CTPA contains a distal wedge
flaw with an oblique angle with the vessel wall [12].

B. AUTOMATIC DETECTION OF PULMONARY EMBOLISM
The primary method for PE diagnosis is CTPA, which
involves a technician painstakingly tracing each stem of the
pulmonary vein for any possible PEs. CTPA assessment is
time-taking activity, and its precision is influenced by human
errors, such as the ability to focus and sensitivity to PE visual
elements. CAD can improve PE diagnosis and reduce the time
to read CTPA datasets [13].

For the automatic detection of PE, a two-stage CNNmodel
was developed. Stage one employs a unique 3D fully CNN for
a candidate proposal that searches the entire CTPA volume
for a set of cubes containing suspected PEs. In stage two,
each proposal cube is adjusted to align it with the vessel’s
position, and the adjusted cubes are sent into a 2D classifier
to eliminate false positives. The system’s performance on
CTPA with tiny PEs in sub-segmental arteries is yet to be
investigated [14].
Reference [15] proposed a More Accurate Faster R-CNN

(MA Faster R-CNN), which combines a Multi-scale Fusion
Feature PyramidNetwork (MF-FPN) andResidual Prediction
Module (RPM) for the detection of PE. Finetuned SE-
ResNet-50 + MF-FPN is also included. The feature map
generated by MF-FPN uses an RPN network to generate
region proposals which help improve detection accuracy
and reliability [15]. Reference [16] proposed a two-stage
algorithm. The first stage is a 3D DCNN, a region proposal
stage. The second stage is a false positive reduction stage.
It uses a loss function called Sample Weighted Categorical
Cross-Entropy (SWCCE) tominimize the false positives [16].
Reference [17] introduced Iodine maps from Dual-energy

CT angiograms [18], [19]. 11 out of 1144 CTPAs, i.e.
1.0% CTPAs, had a new diagnosis of PE after using iodine
maps [17]. A pre-trained AlexNet with appropriate finetuning
CNN and an AlexNet built from scratch detected PE auto-
matically. The findings revealed that a finetuned pre-trained
CNN surpassed a CNN trained anew and that CNNs that
were finetuning were more robust to variations in training set
size. Based on the amount of data provided, the layer-wise
finetuning scheme offered can assist in achieving optimal
performance [13].
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C. AI TECHNIQUES USED FOR AUTOMATIC DETECTION OF
COVID-19
Intelligent platforms for COVID-19 imaging are men-
tioned in [10]. Segmentation, Diagnosis, and Prognosis
using Machine Learning (ML) techniques are discussed.
U-Net, UNet++, V-Net, VB-Net. ResNet-50, CNN, and
RF-based classification models were reviewed for diagno-
sis of COVID-19. According to the research, ML-based
technique and multidisciplinary integration could motivate
COVID-19 experiments to be followed [10].

D. AI TECHNIQUES WERE USED TO ENHANCE THE
BASELINE MODELS
A previous study proposed a network architecture incorpo-
rating a feature-wise attention layer and CNNs [21]. The
results demonstrated the superior performance of the sug-
gested feature-wise attention layer compared to the stacked
attention architecture. COVID-SegNet is a deep neural net-
work model designed for segmenting COVID-19 infection
regions from chest CT scans. It contains the Feature Variation
(FV) block and Progressive Atrous Spatial Pyramid Pooling
(PASPP). The network showed increased COVID-19 pneu-
monia segmentation performance, resolving the difficulty of
recognizing COVID-19 pneumonia [22].
In a separate work, [23] proposed the UNet++ model,

enhancing segmentation quality. Mask R-CNN++ is an
enhanced version that combinesMask R-CNNwith UNet++

for effective instance segmentation [23]. The architec-
ture [24] comprises two main modules; the first module
includes the data augmentation phase, which uses classi-
cal data augmentation methods and Conditional Generative
Adversarial Nets (CGAN), and the secondmodule is theDeep
Transfer Learning (DTL) model. Different data augmenta-
tion methods, such as rotation, shifting, flipping, etc., were
applied to the original dataset. CGANs involve generator
and discriminator networks, which helps in subduing the
overfitting problem caused by the limited data. Cascaded
SE-ResUNet is a primary segmentation network based on the
structure of U-Net. A residual network induces finer gradi-
ent movement to provide better feature representation, while
squeeze-and-excitation (SE) blocks are used as an attention
mechanism [25].
Fuse-TSD is an algorithm for distinguishing healthy from

deadly lung nodules. The three types of features calculated
are the GLCM and Fourier shape descriptors, and the last
was obtained from an eight-layer DCNN. BPNN [26], [27]
and AdaBoost [28], [29] based ensemble classifiers were
developed for each feature type. The three classifiers’ deci-
sions are combined using a weighted sum of probability.
The algorithm effectively differentiated between normal and
malignant lumps [30].

E. CNNs AND ENSEMBLE LEARNING
Reference [31] has built a model with ensemble learners
by fusing eight deep CNN learners. Networks like AlexNet,

GoogleNet, ResNet, etc., are fused by majority voting
(VOT), averaging (AVE), or machine learning algorithms.
SVM, MLP, GBRT, and RF achieved the most satisfac-
tory results. VOT and AVE yield higher recall than the
ML algorithms [31]. A stacked ensemble model was devel-
oped considering the following pre-trained models: VGG-19,
ResNet-101, and DenseNet-169. A metric was devised to
choose three base classifiers. The stacked ensemble achieved
higher recall and accuracy than the baseline and existing
models [32].

As mentioned above, a major part of the study is focused
on the automatic identification of PE, and the findings have
been promising. In all methods proposed in the literature, the
specificity and sensitivity attained are greater than 75%. The
limitations: lack of dataset in a paper focusing on COVID-19,
system not being efficient enough to detect PE in subsegmen-
tal arteries, artefacts, and fractures, causing false predictions.
More importantly, it is observed that there are very few
papers on the classification of PE. Various segmentation and
diagnosis techniques were designed for COVID-19 detection.
AI techniques, Deep CNNs, and Ensemble Learning were
used to enhance the performance of those models. So, these
models can be used to design a standard model for classify-
ing PE.

III. THE GENERALIZED FRAMEWORK
Figure 1 depicts a generalized framework consisting of
six stages: Data Collection, Data Processing, Data Aug-
mentation, Data Segmentation, Feature Extraction, CNN
Classifiers, and Performance Analysis. In this section, each
of these stages is discussed in detail.

A. DATA COLLECTION
Table 2 lists the available datasets that provide CTPAs to
research PE disease.

1) RSNA-STR Pulmonary Embolism CT (RSPECT)
Dataset - To increase the use of ML in PE diagnostics,
the RSNA® has partnered with the STR. In the training
set, there are 7279 studies. The images are organized
into study and series directories. They are in Digital
Imaging and Communications in Medicine (DICOM)
format and include additional metadata [34]. Figure 2
shows an example of a DICOM image.

2) FUMPE Dataset - FUMPE is a public dataset that
contains CT angiograms for PE of 35 different sub-
jects. Using a semi-automated image-processing soft-
ware tool, two radiologist professionals contributed the
ground truth for each benchmark image [35].

3) CAD-PE Dataset - 91 computed tomography pulmonary
angiograms positive for pulmonary embolism in this
dataset. At least one experienced radiologist has seg-
mented all clots in each image. The dataset was created
for the CAD-PE ISBI challenge [33].

4) CTPA Pulmonary Embolism - The dataset utilized
in [15] was created by expert radiologists at the
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FIGURE 1. The generalized framework for PE classification.

TABLE 2. Datasets available for PE diagnosis using CTPAs.

China-Japan Friendship Hospital and is unavailable to
the public. A sequence of DICOM format images in the
collection represents each patient. For this study, 7771
CTPA slice images with pulmonary embolism were
chosen. The training dataset contains 3736 images, the
validation dataset 1737 images, and the testing dataset
2298 images [15].

5) PE129Dataset - The PE129CTPAdataset was randomly
divided into a training set of 100 scans and a test set of
29 scans [14].

6) CTPA Dataset - CTPAs (n=1465) conducted at the
University of Basel, Petersgraben, are included in this
dataset [16]. These CTPAs were manually labelled as
positive (n = 232) or negative (n = 1233). The location
of the embolus was also determined (central, segmental,
peripheral).

CTPA Data - [36] includes APE and non-APE patients.
A total of 590 cases were gathered retrospectively.
460 patients with APE and 130 patients without APE took
part. The dataset was randomly split into a training dataset
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FIGURE 2. DICOM image.

(80%) and a tuning dataset (20%) to obtain effective segmen-
tation results.

B. DATA PREPROCESSING
Data preprocessing on CT scans [37] is done by completing
the below steps:
1) Image Conversion - The retrieved datasets are in Dicom

format. The conversion is done to improve the clarity
and cleanliness of the images. Aside from that, the
Dicom image’s information can be eliminated, leaving
only the objects visible.

2) Cropping - The next step is to crop the data. Cropping
is used to draw attention to the current CT image lung
item by leaving a dark background.

3) Scaling - Because the cropping procedure produces
varying image dimensions, scaling is utilized to uni-
formize the image dimensions.

4) Grayscale - Grayscale ensures that the image’s grayscale
is consistent. Because the radiography image value will
only have pixel values ranging from 0-255, a grayscale
techniquewill be employed in the image scaling process,
with black as 0 (lowest) and white as 1 (highest) [38].

C. DATA AUGMENTATION
CNNs require a vast volume of data to be trained, so small
datasets demand data augmentation techniques [21], [39].
Data augmentation aims to generate more data of similar
patterns to increase the number of training images [20], [38],
[40], [41]. The following are the types of data augmentations
techniques:
1) Spatial Augmentation: Mirroring, Elastic Deformations,

Rotations, Scaling, Flip (Horizontal and Vertical), Shift
(Horizontal and Vertical), Zoom [42].

2) Color Augmentation: Brightness, Contrast, Gamma
alterations [42].

3) Noise Augmentation: Adding Gaussian noise [38].
The Mixup Data Augmentation approach enhanced the net-
works’ generalization capability. Compared to traditional
methods, the experimental results shown in the study [21]
proved that the mixup methodology performed better.

CGAN and classical data augmentation approaches helped
generate more images and resolve the overfitting problem
caused by the limited data [24], [43].

D. DATA SEGMENTATION
In image processing and analysis, segmentation is a crucial
stage. It delineates the regions of interest (ROIs) in the chest
CT images [10]. Recent literature on nodule segmentation
reports better nodule segmentation using deep learning [44],
[45], [46], [47]. This subsection summarizes a list of segmen-
tation works as well as their applications.
C-SE-ResUNet is a classic encoder-decoder model. Con-

volution blocks and max-pooling procedures are utilized
in its encoder to retrieve important semantic data. Fine-
grained data is obtained from Skip connections. The decoder
merges this data for precise localization and segmenta-
tion [25]. COVID-SegNet [22] combines FV and PASPP to
improve feature representation and address COVID-19 infec-
tion’s challenging shape variations. The designed network
improved segmentation capabilities while also delivering
excellent performance results.
U-Net is a technique for segmenting images [48], [49],

[50]. In this network, skip connections are utilized to connect
downsampling and upsampling layers, allowing downsam-
pling layers to transfer features straight to upsampling layers.
This method enables the U-net to assess the image’s entire
context, resulting in an end-to-end segmentation map [51].
Many studies have applied the U-net structure for medical
image segmentation and created enhancements based on it
[4], [52], [53], [54].
Reference [9] reviews U-Net and its variants for medical

image segmentation. UNet++ [23], [55], [56], [57] is a
neural design for semantic and instance segmentation. It is
an ensemble of U-Nets of different depth that partly shares
an encoder and co-learn. It redesigns skip connections at
the decoder sub-networks to combine features of differing
semantic scales and devises a pruning scheme to achieve
significant speedup. The neural network architecture and
hyperparameters account for the most crucial constituent of a
medical image segmentation procedure.
Reference [20] employed a typical 3D U-Net model with

no specific modifications to reduce extraneous parameters.
The authors constructed an exact and efficient segmenta-
tion model using k-fold cross-validation on 20 CT scans of
COVID-19 without overfitting on a small dataset. The 3D
U-Net framework [58], [59], [60], [61] extends the standard
U-Net architecture to allow 3D volumetric segmentation.
With only a few annotated samples, this network can segment
images. 3D samples have many recurring patterns and forms,
allowing for quicker training, although sparsely annotated
data [9].
The residual blocks are used as the fundamental con-

volutional block in V-Net [62], [63], [64]. During the
training process, the network optimization is performed using
the Dice coefficient, which enables the network to handle
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imbalanced situations where the foreground and background
voxels differ significantly in number [65]. The segmentation
network called VB-Net [66], [67], [68], based on deep learn-
ing, was specifically developed to automatically segment
and quantify COVID-19-infected regions in CT scans. The
automatic infection region delineation was found to have a
high degree of accuracy in a quantitative evaluation [68].

E. FEATURE EXTRACTION
This subsection is divided into features, Feature Extrac-
tion Techniques, and Deep Learning Techniques for feature
extraction.

1) FEATURES
One of the most significant steps is feature extraction,
which incorporates techniques and algorithms for identifying
replica forms. The Segmentation output is used to extract
features [69]. Features that were taken into consideration
during extracting features are Correlation, Contrast, Homo-
geneity, SD (Standard Deviation), Root Mean Square (RMS),
Variance, Skewness, Kurtosis, IDM (Image Difference Mea-
sure), Dissimilarity, ASM (Angular SecondaryMoment), etc.
Although these features are not new, they can provide new
insights into the progression of classification in PE [70].

2) FEATURE EXTRACTION TECHNIQUES
Table 3 mentions the list of features and feature extraction
techniques. GLCM is a method for extracting features [71],
[72], [73]. It is used to extract the images’ second-degree
statistical information. It comprises the relationships between
distinct angles in an image’s pixels [74], [75]. This approach
was applied in [30] to distinguish the heterogeneity of lung
nodule voxel values. Calculated the energy, contrast, entropy,

TABLE 3. Feature extraction techniques and the list of features extracted.

and inverse difference to measure the spatial dependence
of voxel values, which proved beneficial for image clas-
sification. At 0◦, 45◦, 90◦, and 135◦, four GLCMs were
recorded for each image patch; it yielded a 16-D GLCM tex-
ture descriptor [30]. Reference [70] used GLCM for images
of segmented lung regions. Contrast, Correlation, Energy,
and Homogeneity were the features used [70], [75]. Other
GLCM-extracted features [76] are listed in Table 3. Kirsch
compass kernels are used in the LDP method to integrate the
directional elements. The LDP approach generates an output
matrix with the exact dimensions as the input image. For
classifier input, this matrix is turned into a vector. GLRLM
extracts high-level texture characteristics [72], [73], [76].
It generates a feature vector that can be used to input a
classifier. The GLSZM algorithm [73] is an upgraded version
of the GLRLM algorithm. Small/Long zone emphasis, grey-
level variation, size zone variance, and so on are all extracted
[74], [76]. To describe the heterogeneity of the nodule struc-
ture, [30] computed the Fourier descriptor. The computation
included locating the gravity centre on the input, graphing
the length between the point and the gravity centre against
the length traversed by this point along the nodule boundary,
and then applying the Fourier transform. 52 low-frequency
coefficients were selected as the Fourier descriptors [30].
The SURF algorithm is implemented in [69]. It is a fast and
reliable approach for representing and comparing images in
a local, similarity-invariant manner. The SURF technique’s
fundamental attraction is its potential to swiftly compute
operators using box filters and enabling real-time applica-
tions [77]. DWT [74], [78], [79] divides the image into
frequency subbands and uses an h low-pass and a g high-pass
filter to extract the features listed in Table 3.

3) DEEP LEARNING TECHNIQUES FOR FEATURE
EXTRACTION
a) AlexNet: - Five Convolutional Layers (CL) with three

pooling, a softmax layer, and two fully connected layers
are included in this network. The first layer inputs a 227×

227 × 3 image and comprises 96 11 × 11 × 3 kernels.
Overlappingmax-pooling layers follow the twoCL layers.
The Rectified Linear Unit (ReLu) is used as the activation
function [80], [81]. The study [82], 1000 characteristics
are extracted from the final layer.

b) ResNet – Various versions are determined by the num-
ber of layers, such as ResNet 18, 50, and 101. It learns
from the residual features during training [83], [84], [85].
Reference [82] employed the ResNet-50 architecture to
generate 1000 features.

c) VGG19 - It’s a visual geometry group’s 19-layer deep
CNN, similar to AlexNet. VGG19 consists of 16 con-
volutional layers, three entirely connected, five MaxPool
layers, and one SoftMax layer, with input dimensions
224×224×3 [21, s, t]. Reference [82] collected 1000 fea-
tures from the last layer.

d) DenseNet - DenseNets are organized into dense blocks,
with the number of filters varying but the feature map
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size remaining constant inside each block [81], [82]. Ref-
erences [32], In a work, [85] used DenseNet-169 with
169 layers as a part of their model architecture.

e) Inception V3 – It is a deep CNNwith 48 layers. Themodel
uses parallelized operations, quantized convolutions,
and dimension reduction to guarantee efficiency [82],
[83], [85].

f) Eight-layer D-CNN - Three convolutional layers were
used in this DCNN model, each with 32, 32, and 64 ker-
nels of size 5 × 5. A 2-stride 3 × 3 average-pooling layer
follows each convolutional layer. The final two layers are
fully connected. Convolutional and fully connected layers
use ReLU to perform a nonlinear conversion from input to
output [30].

g) MobileNet - It is a CNN for mobile vision applica-
tions because of its lightweight architecture, including
only 30 layers. MobileNet employs depth-wise separable
convolution, which indicates it performs convolution on
each colour channel separately instead of merging and
flattening them. As a result, MobileNet training is more
efficient [84], [85], [86].

F. CLASSIFICATION
This subsection includesMachine Learning classifiers imple-
mented by the reviewed papers. A summary of the classifica-
tion techniques used is provided in Table 4.

TABLE 4. Classification techniques used in the reviewed papers.

1) Naïve Bayes (NB) classifier - This rule-based predictive
model assumes substantial interdependence between
features when provided a target class. The resulting
model is simple to fit and performs excellently [87],
[88], [89].

2) Multilayer Perceptron (MLP) classifier - A feed-forward
neural network is what the multilayer perceptron is
called. A multilayer perceptron’s architecture varies, but
typically, it comprises multiple layers of interconnected
neurons. Each node in a multilayer perceptron is inter-
connected with every other node in the preceding and
succeeding layers [79], [89], [90].

3) Radial Basis Function Network (RBFN) classifier - An
RBF network [91] is a feed-forward neural network con-
taining the input layer, the hidden layer, and the output
layer. As an activation function, it employs radial basis
functions [89], [92].

4) K Nearest Neighbor (KNN) classifier - KNN classifier
is an instance-based model that uses a distance function
to relate unknown groups. It determines a class based on
its neighbours. Identifying the neighbours and deciding
which class they belong to are the two stages of a KNN
classification [89], [93], [94].

5) RandomForest (RF) classifier - RF trainswith numerous
decision trees and outputs themost frequent class. It con-
structs a classification tree using randomly selected
features at each node [88], [95], [96].

6) Decision Table (DT) Classifier - DT resembles a hier-
archical table. Every entry from a higher level is
fragmented in this table, which is created using the
values of two extra features [96], [97].

7) Extra Trees (ET) Classifier - ET [98] is a machine
learning technique widely used to address classification
and regression problems as part of an ensemble. The
different tree classifier creates many unprunedDTs from
the training dataset. To produce predictions, the majority
voting technique is employed. Each decision tree casts a
vote, and the prediction with the most votes is regarded
as the final classification result.

8) Support Vector Machine (SVM) Classifier - The general
concept of SVM is to use a nonlinear approach to create
a high-dimensional space from feature vectors and then
employ linear classifiers. The second method is to use a
high-margin hyperplane to separate the data. This is the
optimum plane for separating data to the greatest extent
possible [88], [89], [94], [98], [99], [100].

G. PERFORMANCE ANALYSIS
This subsection comprises three subsubsections dedicated to
the discussion of deployed metrics for performance anal-
ysis of several models, along with their comprehensive
comparison.

1) Quantitative Analysis Metrics
The total of positive samples identified as positive, neg-
ative samples identified as positive, negative samples
identified as negative, and the total of positive samples
identified as negative are all symbolized by True Posi-
tive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN), respectively. Table 5 presents the
confusion matrix.

TABLE 5. Confusion matrix.

To evaluate the classification techniques, we use the five
widely used instances, which are:
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a) Accuracy: The accuracy metric calculates the ratio
of correctly predicted samples to total samples.

Accuracy =

(
TP+ TN

TP+ TN + FP+ FN

)
(1)

b) Precision: The precision metric quantifies the ratio
of correctly predicted positive samples to all the
positive predictions.

Precision = (TP)
/
(TP+ FP) (2)

c) Recall/Sensitivity: The sensitivity metric accurately
assesses the correct identification of positive sam-
ples among all the positive samples.

Recall/Sensitivity = (TP)
/
(TP+ FN ) (3)

d) Specificity: The metric specificity measures rightly
predicted negative samples against all negative
ones.

Specificity = (TN )
/
(TN + FP) (4)

e) F1-Score: The F1 Score measures the overall per-
formance. It is the harmonic mean of precision and
recall.

F1 − Score = 2 ×

(
Precision× Recall
Precision+ Recall

)
(5)

2) Performance Comparison of recent works on deep
learning techniques for pulmonary embolism detection
using CTPAs
Reference [14] developed a two-stage CNN model for
automatic PE diagnosis. The first stage uses a 3D FCN
for a candidate proposal that extracts 3D feature hierar-
chies from the CTPA volume to create a set of suspected
PE cubes. The second stage involves transforming each
proposal cube to orient it with the affected vessel’s
direction. Three cross-sections of the modified candi-
date cube are retrieved for false-positive elimination to
generate a three-channel input to the ResNet-18-based
2D classification network. The numerous small emboli
in the PE129 dataset were the reason for more sig-
nificant improvements. The authors extensively tested
this system on the available datasets to improve the
performance [14].
Reference [16] created a cloud-based PE detection pro-
totype system for a two-stage R-CNN. The first stage
uses 3D DCNN, which comprises a ResNet architecture
trained on segmented scans and generates a 3D segmen-
tation map. Region proposals are generated from the
segmentation map and input into the algorithm’s second
stage. The second stage is a false positive reduction
stage. It uses SWCCE, a loss function, to minimize the
false positives. The loss function is crucial in machine
learning because it defines how precisely an algorithm
works on particular data. Contrast agents, pulmonary
veins, and lymph nodes caused the bulk of false-positive

observations. This approach offered excellent diagnostic
performance for PE [16].
MA Faster R-CNN [15] is a pulmonary embolism detec-
tion method. It is composed of MF-FPN and RPM. The
Finetuned SE-ResNet-50 + MF-FPN has been added
to improve the network’s feature extraction capability.
It could correct many neglected detections and even
detect the smaller emboli accurately. Mapping the pri-
mary feature layer of the neighbouring output layer to
the output layer achieved stability between semantic and
location data. RPM improved the accuracy of classifica-
tion. The developed model has a greater identification
accuracy than the original Faster R-CNN and effectively
overcomes the wrong and skipped detection of PE.
Reference [101] developed the PE-Net, a 3-D convo-
lutional model for diagnosing PE on CT scans. It is
a realistic model that accepts volumetric CTPA exams
without time-consuming and computationally intensive
preparation and shows long-term performance. The
model can automatically generate an explainable predic-
tion value, allowing for unbiased analysis of PE positive
risk and the development of appropriate limits for med-
ical applications in detection procedures.
Reference [36] used multiple probability thresholds to
assess U-Net’s performance for clot identification, and
sensitivity, specificity, and area under the curve (AUC)
were chosen as evaluation measures. They also exam-
ined the relationship between the clot burden derived
from this model. It exhibits a high AUC for detecting
pulmonary emboli and can quantify the clot burden in
Acute Pulmonary Embolism (APE) patients.
A performance Comparison of recent works on deep
learning techniques for pulmonary embolism detection
using CTPAs is presented in Table 6.

3) Performance comparison of advanced techniques used
for diagnosis of COVID-19 using CTs

Table 7 provides the performance comparison of advanced
techniques used to diagnose COVID-19 using CTs.

A hybrid method is proposed in [102]. The image is
segmented into discrete high/low-frequency Intrinsic Mode
Functions (IMFs) using two-dimensional Empirical Mode
Decomposition (2DEMD) after the raw CT-scan image
is transformed into a single grayscale image. Next, the
decomposition residue is eliminated, and all the IMFs are
combined to create a refined CT-scan image. This enhance-
ment gives the image more scope for visual analysis and
extracts the image’s frequency texture profiles. The mod-
ified image is then trained using VGG16 and VGG19.
Regarding accuracy and F1 score, models trained using
modified CT-scan images outperformed models trained with
raw images. This work provides a new perspective for
researchers to employ 2DEMD’s feature extraction power
as a performance-enhancing criterion for CT-scan image
classification [102].
A prior work [21] introduced a specialized network that

leverages a feature-wise attention layer to enhance the
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TABLE 6. Performance comparison of recent works on deep learning techniques for pulmonary embolism detection using CTPAs.

representation of features obtained by CNNs. Furthermore,
the mixup data augmentation method has increased the net-
work’s initial performance. The proposed attention-based
models (ResNet50, ResNet101, ResNext50 32 × 4d,
DenseNet201, VGG19) are compared to stacking attention
networks (AttentionNet-56, AttentionNet-92), as well as
traditional versus mixup data augmentation methodologies
in this research. While outperforming the stacked atten-
tion variations, feature-wise attention extension and mixup
data augmentation yield significant improvements over the
baseline CNN. The ResNet50 model, which integrated a
feature-wise attention layer and was trained on mixup aug-
mented data, achieved an accuracy of 95.57% and exhibited
the best performance [21].

COVID-SegNet [22] was developed for segmenting
COVID-19 infection areas and the entire lung from chest

CT scans. An FV block is suggested to resolve the under-
lying issue in identifying COVID-19-affected zones, hence
alleviating the difficulty in differentiating COVID-19 pneu-
monia from the lungs. It improves contrast and changes the
strength of the features in a variety of images automatically
and adaptively. It obtains the global parameter by using
channel attention to generate new features. By pooling these
features, feature representation for COVID-19 segmentation
can be considerably improved. As a result, the network
uses PASPP, which combines data from atrous convolutional
layers over time, effectively combining input from several
scales. COVID-19 pneumonia segmentation performance is
improved by obtaining more useful contextual features.

Cascaded SE-ResUNet is proposed in the study [25]. The
system is cascaded because it uses six SE-ResUNet networks:
a wide segmentation network to detect ROIs and a good
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TABLE 7. Performance comparison of advanced techniques used for diagnosis of COVID-19 using CTs.

segmentation network to get enhanced segmentation accu-
racy organically. Dice Loss (F1 score) and an adjustive CT
window are utilized to improve the robustness of the seg-
mentation of small organs. The StructSeg 2019 Challenge
awarded this framework first prize [25].
In the case of COVID-19, lowering the number of

FNs is critical for controlling the virus’s transmission.
To detect COVID-19, [32] presented a stacked ensemble
model with pre-trained and fully connected layers. A sys-
tematic approach and a diversity metric were used to
create the stacked ensemble of VGG-19, DenseNet169, and
ResNet-101 models. Generation, selection, and aggregation
were the three stages of the systematic approach. During
the generation phase, pre-trained models were employed to
construct a pool of basic classifiers containing models with
varied topologies. During the selection step, the stacked
ensemble’s base classifiers were picked from a group of
base classifiers. The diversity and accuracy measurements
are often used to identify the ensemble’s base classifiers.
The weighted average of base classifiers’ outputs is fed

into the meta-classifier during aggregation. The stacked
ensemble model beat the baseline and current models on
three chest CT scan datasets, obtaining good accuracy and
recall [32].

The classification of coronaviruses in the paper [74] is
done in two steps. The classification method was applied
to four different subsets during the first step. SVM was
used to classify the subgroups once they were trans-
formed into vectors. In the second stage, features were
extracted using five distinct methods, including GLCM, LDP,
GLRLM, GLSZM, and DWT, and then classified using
SVM.Cross-validationmethods of 2-fold, 5-fold, and 10-fold
were applied during the classification procedure. During
10-fold cross-validation, the classification accuracy of the
GLCM, GLSZM, and DWT techniques was always greater
than 90%.

IV. DISCUSSION
In this review paper, we have thoroughly examined the body
of research on automatic PE detection. Our study offers
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insights and practical ramifications by carefully analyzing
various research papers.

• Significantly, CNNs have shown encouraging outcomes,
highlighting their potential to increase diagnostic accu-
racy in the field.

• In recent research, there has been a notable inclination
towards utilizing the U-Net architecture for diagnos-
ing PE.

• Additionally, multitask or multistage strategies are also
being adopted in the diagnostic process. These meth-
ods involve extracting relevant features or masks from
medical scans and proceeding to the image segmentation
phase. This process aims to enhance the overall function-
ality of the models.

• Creating a sizable enough annotated training set is
time-consuming and expensive, and smaller datasets
can lead to overfitting. This highlights the need for
more studies to examine self-supervised or unsupervised
approaches.

• Although CAD systems have made huge advances in
PE detection, their incorporation into clinical practice
still needs to be improved. Studies often need to pay
more attention to the clinical implications of their work,
needing thorough research.

For COVID-19 identification in chest CT scan pictures,
classic data augmentation approaches are combined with
CGAN based on a DTL model. Limited COVID-19 chest
CT scans are classified using DTL models. In combination
with CGAN, the traditional data augmentations produced
more images and helped overcome the overfitting prob-
lem. This study used five deep CNN-based models to
detect Coronavirus-infected patients using chest CT radio-
graphs (AlexNet, VGGNet16, VGGNet19, GoogleNet, and
ResNet50). The end-to-end structure of DTL models elimi-
nates the need for standard feature extraction and selection
methods. In all deep transfer models tested, traditional data
augmentations combined with CGAN improve classification
performance [24].

All the models mentioned in Table 7 provide great results
except for the model which included LDP and SVM, along
with 2-fold cross-validation.

V. CONCLUSION AND FUTURE RECOMMENDATIONS
Computer-aided diagnostics can effectively solve the pul-
monary Embolism problem. This work presents and discusses
a review of recent pulmonary embolism-related work using
AI techniques. Many studies focused on automatic PE detec-
tion using CTPAs, and the results have been promising. In all
methods mentioned in the literature, the specificity and sen-
sitivity attained are greater than 75%. It has been noted that
there are very few articles on the classification of PE based
on clot location and hemodynamic compromise. So, to pro-
vide a novel method for PE classification, the authors have
reviewed various segmentation and diagnosis techniques used
for COVID-19 disease. The shortcomings include a need for

more training data in the research focusing on COVID-19
and the system’s incorrect predictions caused by artefacts and
fractures. Various AI approaches were included to improve
the models’ performance. So, these models can be finetuned
to design a standard model for the classification of PE.
Though several AI-based ongoing kinds of research exist to
solve this problem, PE would be an interesting domain.

Future work in this area could concentrate on resolving
one of the following research gaps observed in the PE-related
papers:

1) Classification strategy- Models which can classify
CTPAs into all possible categories still need to be
developed.

2) Analysis of factors-The potential relationship between
clot burden and patient risk categorization still needs to
be analyzed.

3) Accurate clinical models- More studies on reducing the
FN rate are needed. Models’ performance in a prospec-
tive clinical setting has yet to be determined.

4) Technical Advancements- Performance of advanced
technologies for diagnosing and classifying PE is yet to
be explored.

5) Improvement in CNN-based models-To achieve proper
convergence, training a deep CNN network is problem-
atic since it requires a considerable quantity of annotated
training samples and a high skill level. Using a large
set of labelled images to finetune a CNN is a viable
alternative. So, we intend to finetune models used for
COVID-19 diagnosis and develop a standardized model
specific to PE.

All these are identified future research directions, and their
solutions would assist the clinicians in focusing on specific
types of PE and developing a treatment plan for each. This
will aid in the early detection and treatment of PE patients,
lowering their fatality rate worldwide and will help humanity
in the long run.
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