IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 2 September 2023, accepted 18 September 2023, date of publication 26 September 2023,
date of current version 6 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3319438

==l RESEARCH ARTICLE

Failure Detection Using Semantic Analysis and
Attention-Based Classifier Model for IT
Infrastructure Log Data

DEEPALI ARUN BHANAGE 12, AMBIKA VISHAL PAWAR', KETAN KOTECHA 34,
AND AJITH ABRAHAM “45, (Senior Member, IEEE)

!Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India

2PCET’s, Pimpri Chinchwad College of Engineering, Pune 411044, India

3Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International University, Pune 412115, India

#School of Computer Science, Engineering and Technology, Bennett University, Greater Noida, Uttar Pradesh 201310, India
3Center for Artificial Intelligence, Innopolis University, 420500 Innopolis, Russia

Corresponding authors: Ambika Vishal Pawar (ambikadshelke @ gmail.com) and Deepali Arun Bhanage
(phdgrad.deepali.bhanage @siu.edu.in)

This work was supported by the Analytical Center for the Government of the Russian Federation under Agreement
70-2021-00143 dd.01.11.2021 and Agreement IGK 000000D730321P5Q0002.

ABSTRACT The improvement in the reliability, availability, and maintenance of the IT infrastructure
components is paramount to ensure uninterrupted services in large-scale IT Infrastructures. The massive
system logs generated by infrastructures have proved to be advantageous to pursue the runtime circumstances
and behavior of the system. Existing literature has log-based failure detection techniques carrying semantic
analysis but on limited log features, reflecting ineffectiveness in anomaly detection for unstable and unseen
log records. We have proposed in this paper a semantic log analysis model with three log features to
apprehend the gist of the log message. BERT pre-trained model is employed to adapt the feature embedding.
The generated numerical vectors are further furnished to train an attention-based OLSTM (Optimized Long
Short-Term Memory Networks) classifier to detect failures in diverse infrastructures. The proposed model is
evaluated on five different infrastructures: Apache from a server application, OpenStack from the Distributed
Systems, Windows from the Operating System, BGL from a Supercomputer, and Android from the Mobile
System. The findings illustrate that the proposed system delivers improved and stable results, considering
the varied IT infrastructures.

INDEX TERMS Log analysis, system log, IT infrastructure, deep learning, BERT.

I. INTRODUCTION

The usage of IT infrastructure has been growing expe-
ditiously over the past few years. Due to unavoidable
shortcomings in operating software and hardware, IT infras-
tructures are prone to failures that result in system outages.
Any minor unavailability of services gives rise to catastrophic
failures and results in financial [1] together with productivity
losses [2]. Large-scale IT infrastructures such as Supercom-
puters, Distributed systems, Cloud Infrastructures, etc., are
tough to control as failures grow with their volume and

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy

complexity. Furthermore, failure mitigation takes more than
billions of dollars of investments; developers consume most
of their hours debugging problems [3]. Prompt and precise
identification of such failures is pivotal for the improved
reliability, stability, and mitigation of casualties in complex
IT Infrastructures [4].

System logs register every detail of the executed opera-
tion and provide a lot of dimensional information about it.
The system logs document the cause of the problem of IT
infrastructure components. The system log is the first place
where the system administrator investigates issues on failure
alerts. Consequently, system logs have been widely used in
anomaly and failure detection or prediction because of their

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

108178

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-6022-4565
https://orcid.org/0000-0003-2653-3780
https://orcid.org/0000-0002-0169-6738
https://orcid.org/0000-0002-2471-6375

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

IEEE Access

directness and usefulness [5], [6], [7], [8]. Complex computer
systems record a massive collection of logs that can make
useful information available; on the other hand, analyzing
colossal data is challenging.

Moreover, system logs present communication between
data, files, services, operations, applications, etc. They are
occupied with analyzing system behavior and resolving the
problems that may emerge [9]. According to a system-
atic literature survey [10], lots of work has been done in
anomaly and failure identification and prediction. The study
retrieves a substantial number of articles focusing on system
logs.

Although ample system logs are available, which are rich
in information to conduct analysis, it imposes significant
challenges. System logs are unstructured, unstable, and in
enormous formats [11]. Thus, designing a generalized tool to
analyze system logs with various formats is tricky. Moreover,
manual evaluation of voluminous log data is error-prone and
infeasible. The log parsing process is introduced to over-
come the stated issues; first of all, unstructured logs are
converted into a structured format. The unstructured log mes-
sages are presented in the constant and variable part against
the parsing operation. The constant part is from the logging
statement (log template), and the variable part is the param-
eters recorded on the execution of the event. In the existing
literature, various log parsing tools are available [12].

In the log-based anomaly or failure detection literature,
Machine Learning [13], [14] and Deep Learning [15], [16],
[17], [18] are popular techniques that are effectively applied
to classify logs. This classification can save time on log
analysis and assist system administrators in concentrating on
doubtful log entries. System logs are a fusion of text, num-
bers, and special symbols. The data are available in natural
language format and cannot be used directly to build Machine
Learning and Deep Learning models. Therefore, it is required
to follow the action of text data conversion into numeri-
cal vectors. In the existing literature, researchers applied
indexed-based methods [19], [20], [21] or semantic-based
methods [22], [23], [24] to extract the features of logs. In the
index-based extraction, log data is converted to log template
indexes, and afterward, sequential or quantitative features
are extracted against the generated indexes. Such indexes
can perform adequately on stable log data but fail to handle
unstable log data [18]. The direct conversion of log entries to
numerical representation does not furnish reliable results due
to the following challenges in log data:

1) System-dependent data formats: Currently, there is no
standard style or template to be followed to write log-
ging statements. Due to this, developers write logging
statements in different forms. Logs are recorded in vari-
ous formats depending on the utility of the components
in different infrastructures.

2) Imbalanced data: IT infrastructures usually run regu-
larly. Hence, anomalous records are lesser than regular
execution logs in the historical data compared to non-
anomalies records. As a result of the imbalanced

VOLUME 11, 2023

dataset, generated models are unable to analyse newly
introduced logs accurately.

3) Use of common words for different purposes: In the
case of system logs, common words represent different
meanings, and frequently occurring words are unnec-
essary. Therefore, word-based vector generation does
not contribute advantageously to the case of recently
developed logging statements.

Semantic-based indexing is the preferred approach
to resolve the abovementioned challenges [25]. Many
researchers have employed Natural Language Processing
(NLP) techniques for semantic-based indexing on log/event
templates [13], [22], [26]. The majority of the researchers
utilized only a log template as a feature in the process of
anomaly or failure detection. Although it accomplished a
better outcome, they ignored the other parameters in the log
records that may contribute significantly to understand the
current behavior of the system. As event templates are the
constant part of the log message, it is standard for similar
types of logging statements.

In contrast, the system’s actual behavior can be tracked
based on the runtime detail of the logging statement. Such
runtime details get recorded under the parameters of the
variable part. Therefore, the variable part (Content of the log
message, parameter list, temporal information, etc.) can be
used as features, which can identify heterogeneous failures
accompanying the unseen log records.

This paper proposed a semantic-based log analysis tech-
nique for failure detection to handle various infrastructures’
diverse nature log records and overcome the limitations of
the existing methods. The various infrastructure logs are stud-
ied to summarize the common log format. Furthermore, the
BERT (Bidirectional Encoder Representations from Trans-
formers) pre-trained [27] model is employed to extract the
semantic embedding of the selected features. Then, extracted
vectors of a combination of log Content, EventTemplate,
and ParameterList are provided as input to the optimized
Long-Short-Term Memory classifier. The proposed system
can spontaneously understand the eminence of different logs
and context-dependent knowledge in the log message. Sub-
sequently, an alert generated on abnormal behavior detection
will be sent to the system admin, along with the list of
probable solutions. This will help the system admin quickly
mitigate the failure to avoid subsequent losses. Five different
IT infrastructure logs are utilized to perform the experiments.
The experimental findings demonstrate that the proposed
system efficiently contributes to different IT infrastructures.
It helps to diminish manual errors significantly by enabling
automated and accurate solutions to failure detection.

The contributions in this paper are summarized in the
following way:

1) We extracted common and essential log features of
various IT infrastructures by studying and analyzing
different structured log entries.

2) We proposed failure detection techniques by taking
advantage of additional log features (log Content,

108179

IEEE Access

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

EventTemplate, and ParameterList) to improve perfor-
mance in unseen log records.

3) We built the semantic-based encoding method to pre-
cisely procure the core meaning of the combined
log features such as log Content, EventTemplate and
ParameterList and generate embedding.

4) We implemented Optimized LSTM classification mod-
els and evaluated on five infrastructure logs from
various categories: Apache from a server application,
OpenStack from the distributed system, Windows from
the operating system, BGL from a supercomputer,
and Android from the mobile system. The analysis
demonstrates improved and persistent performance in
identifying various failures.

The remaining part of the paper is structured in the fol-
lowing way: Section II discusses the background. Section III
provides the details of the designs and methodology used in
the proposed system. Section IV emphasized the experiment
settings and derived results. Section V states brief related
work, and eventually, the concluding remarks and future
directions are expressed in Section VI.

Il. BACKGROUND

A. STUDY OF LOG FEATURES

Software programmers define system logs by virtue of log-
ging statements (e.g., printf(), logger.info()) while developing
software [28]. Consequently, system logs are substantially
diverse in the case of various IT Infrastructures. Table 1
presents the unstructured and structured log formats of
16 systems from 6 different IT Infrastructure categories [29].
Although the systems fall under the same Infrastructure
category, the log format varies. The unstructured logs are
available in the regular text sentence. It is segregated under
specific columns (structured format) with the help of log
parsing. However, observations say all the logs carry standard
features (highlighted in bold). These features symbolize the
log header, which includes the date, time, and timestamp as
temporal information, and the log message, which includes
contents, level, parameters, etc. Log messages are critical in
the case of event details extraction as they record dynamically
at run time. Eventually, six commonly occurring features are
selected as essential parameters to get noteworthy informa-
tion about the system. Where <Lineld>: Sequential record,
<time>: temporal information, <Content>: recorded mes-
sage during event execution, <Eventld>: unique event id
under a specific set of events, <EventTemplate>: static
part of the log message, and <ParameterList>: dynamic
part of the log message. Our research mainly focuses on log
Content, EventTemplate, and ParameterList out of commonly
occurring features.

B. USEFULNESS OF SYSTEM LOGS

System logs originated from free-from-text structure logging
instructions are written by software developers. They are
predominantly designed to monitor and document runtime

108180

system status and critical events. System logs are a rich origin
of evidence and extensively occur in each and every software
system. Moreover, system behavior can be understood after
analyzing the historical logs. Thus, log analysis can furnish
additional dimensional evidence to identify the failure. Due to
forthrightness and efficacy, system logs are the first choice by
the system administrator for troubleshooting problems. As a
result, system logs play a valuable role in maintaining the IT
infrastructure’s health.

Despite the usefulness of the rich system logs, there are
a few challenges, such as 1) unavailability of logs due to
sensitivity, 2) colossal data size, as it records each event
in the system, and 3) imbalanced data due to continuous
smooth operational characteristics. System logs hold details
of each event happening in all IT Infrastructure components.
It carries crucial and confidential data. Due to strict business
rules, logs are not readily available. The constantly operating
infrastructures produce massive logs (around 50GB/hour),
which makes their analysis challenging. Generally, IT ser-
vices work continuously; thus, anomalous records are lesser
than successful events.

Figure 1 presents the elements of the sample Windows log.
Here, the log is initially present in a single sentence in a
natural language format, but it comprises of log header and
log message. The log header comprehends temporal data,
severity level, and event source information. A log message is
a combination of scripted statements and parameters updated
at runtime. The log level plays a crucial role in failure detec-
tion out of these elements. Log4j [30] states that logs carry
six levels: defaults, info, debug, trace, warn, fatal, and error
[11]. The log entry indicates “warn,” “fatal,” and “‘error”
log levels that can be considered anomalous records and
need more attention by the system administrator. Table 2
describes elements of the Windows log. These elements
commonly occurring in almost all types of infrastructure
logs.

C. COMPARISON WITH EXISTING TECHNIQUES

Many researchers recently adapted NLP techniques for vec-
tor generation by using single or multiple log features. The
vector generation was conducted based on word or sentence
embedding techniques. In this section, a comparative anal-
ysis of existing research is carried out based on the applied
embedding techniques and the log features utilized in the
experimentation. Table 3 furnishes the list of state-of-art
anomaly detection tools, vector generation techniques, and
log features.

LogAnomaly [22], Logtransfer [32], LogFlow [34],
Sprelog [17], and LogUAD [13] tools performed word
embedding on LogTemplate for anomaly detection. Word2
Vec, Glove, and Template2 Vec (inspired by Word2 Vec) meth-
ods were employed for word embedding. Word embedding
techniques cannot embed Out-Of-Vocabulary (OOV) words
as they are typically trained on the vocabulary of historical
logs. Although these tools detect abnormal log sequences

VOLUME 11, 2023

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

IEEE Access

TABLE 1. Different IT infrastructure logs and their structured format.

System Unstructured log Structured log format
Distributed System
Hadoop “2015-10-18 18:01:53,447 INFO [main] <Lineld><Date><Time><Level><Process><Component><Cont
org.apache.hadoop.mapreduce.v2.app.rm.RMContainerRequestor: ent><Eventld><EventTemplate><ParameterList>
nodeBlacklistingEnabled:true”
HDFS “081109 203519 147 INFO dfs.DataNode$PacketResponder: <Lineld><Date><Time><Pid><Level><Component><Content<
PacketResponder 0 for block blk _-1608999687919862906 Eventld><EventTemplate><ParameterList>
terminating”
Spark “17/06/09 20:10:54 INFO storage.BlockManager: Found block <Lineld><Date><Time><Level><Component><Content><Eve
rdd 2 1 locally” ntld><EventTemplate><ParameterList>
Open “nova-compute.log.1.2017-05-16_13:55:31 2017-05-16 <Lineld><Logrecord><Date><Time><Pid><Level><Component
Stack 00:01:55.266 2931 INFO nova.compute.manager [-] [instance: ><ADDR><Content><Eventld><EventTemplate><Parameter
b562ef10-ba2d-48ae-bf4a-18666cbadas51] VM Stopped (Lifecycle List>
Event)”
Zookeeper “2015-07-29 19:36:49,735 - INFO <Lineld><Date><Time><Level><Node><Component><Id><Co
[/10.10.34.11:3888:QuorumCnxManagerS$Listener@493] - ntent><Eventld><EventTemplate><ParameterList>
Received connection request /10.10.34.13:33255”
Supercomputer
BGL “KERNSTOR 1118765205 2005.06.14 R15-M1-NF-C:J11-U11 <Lineld><Label><Timestamp><Date><Node><Time><NodeRe
2005-06-14-09.06.45.752792 R15-M1-NF-C:J11-U11 RAS peat><Type><Component><Level><Content><Eventld>
KERNEL FATAL data storage interrupt” EventTemplate><ParameterList>
HPC 2572286 node-17 action start 1074126278 1 bootGenvmunix <Lineld><Logld><Node><Component><State><Time><Flag><
(command 1903)” Content><Eventld><EventTemplate><ParameterList>
Thunderbird “- 1131567060 2005.11.09 tbird-adminl Nov 9 12:11:00 <Lineld><Label><Timestamp><Date><User><Month><Day><
local@tbird-admin] xinetd[1798]: removing echo” Time><Location><Component><PID><Content><Eventld><E
ventTemplate><ParameterList>
Operating System
Windows “2016-09-28 04:30:31, Info CBS Warning: Unrecognised <Lineld><Date><Time><Level><Component><Content><Eve
packageExtended attribute.” ntld><EventTemplate><ParameterList>
Linux “Jun 15 04:06:18 combo su(pam_unix)[21416]: session opened for ~ <Lineld><Month><Date><Time><Level><Component><PID><
user cyrus by (uid=0)” Content><Eventld><EventTemplate><ParameterList>
Mac “Jul 109:02:26 calvisitor-10-105-160-95 kernel[0]: en0: channel <Lineld><Month><Date><Time><User><Component><PID><
changed to 1” Address><Content><Eventld><EventTemplate><ParameterLi
st>
Mobile System
Andriod “03-17 16:13:38.955 2227 2227 I PhoneStatusBar: <Lineld><Date><Time><Pid><Tid><Level><Component><Co
cancel Autohide” ntent><Eventld><EventTemplate><ParameterList>
HealthApp “20171223- <Lineld><Time><Component><Pid><Content><Eventld><Ev
22:15:30:335|Step_LSC|30002312|onExtend: 1514038531000 1 0 entTemplate><ParameterList>
4
Server Application
Apache “[Sun Dec 04 04:54:18 2005] [error] mod_jk child workerEnv in <Lineld><Time><Level><Content><Eventld><EventTemplat
error state 6” e><ParameterList>
OpenSSH “Dec 10 07:28:25 LabSZ sshd[24263]: Received disconnect from <Lineld><Date><Day><Time><Component><Pid><Content><
112.95.230.3: 11: Bye Bye [preauth]” Eventld><EventTemplate><ParameterList>
Standard Software
Proxifier “[10.30 18:03:15] Skype.exe - 91.190.216.125:443 close, 5 bytes <Lineld><Time><Program><Content><Eventld><EventTemp

sent, 0 bytes received, lifetime 00:04”

late><ParameterList>

TABLE 2. Description of elements of windows log.

ELEMENT DESCRIPTION
Time Created The time stamp that identifies when the event
was logged.
Level Contains the severity level of the event.
Component/ Source Identifies the provider that logged the event.
Message It contains the event message that is rendered

for the event.

effectively, they fail to analyze unstable and newly generated
log records. The use of a single feature (LogTemplate) may
result in the loss of information such as IP address, compo-
nent number, error message, etc. Thus, there was a need to add
more log features in the analysis so that valuable information
would not be discarded. Swisslog [31], HitAnomaly [33],
DeepSyslog [26], and BERT-Log [35] performed sentence

VOLUME 11, 2023

embedding with the help of BERT or Re-BERT pre-trained
models. Moreover, these tools put additional features of logs
along with LogTemplate for the analysis. Swisslog combined
LogTemplate and Time features but could not detect event
parameter-based anomalies. HitAnomlay combined LogTem-
plate and Parameter for research but was unprepared to detect
time interval-based anomalies. Our proposed system selected
three essential features concerning the study and observa-
tion. Selected features like: Log Content, EventTemplate, and
ParameterList, which will give details about the structure of
the logging statement, list of resources, and error messages.

1Il. DESIGN OF THE PROPOSED SYSTEM

A. OVERALL FRAMEWORK

The system is proposed to leverage the three features, such
as Log Content, EventTemplate, and ParameterList of logs,

108181

IEEE Access

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

TABLE 3. Comparative analysis of state of art vector generation-based anomaly detection techniques and proposed system.

Technique Year Vectors Generation Log features Used
Word Sentence Template Time Parameter Content Other

LogAnomaly[22] 2019 v v

Swisslog[31] 2020 v v v

Logtransfer[32] 2020 v v

HitAnomaly[33] 2020 v v v

LogFlow[34] 2021 v v

Sprelog[17] 2021 v v

LogUAD [13] 2022 v v

DeepSyslog[26] 2022 v v v'(Event
Metadata

BERT-Log[35] 2022 v v

Proposed System v v v v

]

' 2016-09-28 04:30:31, Info CBS SQM: Failed to start upload with file pattern:
C:\Windows\servicing\sqm* std.sqm, flags: 0x2 [HRESULT = 0x80004005 - E_FAIL]

Date Time Level Component
2016-09-28 4:30:31 Inf CBS SQM: Failed to start upload with file pattern:
0 C:\Windows\servicing\sqm* _std.sqm, flags: Ox2 [HRESULT =
Log Header 0X80004005 - E_FAIL]

Message/ Content

FIGURE 1. Log parsing of sample windows log entry.

to detect log failures in various IT Infrastructures. The his-
torical logs are used for model training, whereas new logs
are used for failure detection. The overall architecture of the
proposed system is depicted in Figure 2 with three major
phases: The first phase is Data Acquisition (Section III-B).
The collected raw logs are converted to a structured format
using the Log Parsing Technique in this stage. The second
phase is Log Semantic Embedding (Section III-C):

In this phase, Log Content, EventTemplate, and Parame-
terList as log features are leveraged to excerpt the semantic
embedding by applying a BERT pre-trained model. To iden-
tify the manifested failures in the extracted log features,
the third phase (Section III-D) is presented. In this phase,
an attention-based classification technique comprised of
LSTM plus other layers has appertained to capture the impor-
tance of log sequences based on the context. Thus, the
significant log sequences will contribute to the detection of
failures.

B. DATA ACQUISITION

Developers’ script, logging statements with the help of the
“print” command while developing software. Furthermore,

108182

<EventTemplate><Content><ParameterList>

.. -
Log Feature
Embedding

pmmm e Ve e Y ———2a,

0573, -0.478, -0.457,

Log Features
0976, 0657, -0.786, -

o e mm mm o oEm Em Em o Em Em Em o Em Em Em Em Em Em oEm Em
Qpmmpp—

<EventTemplate><Content><ParameterList>) | 0324, ... 0127
e e D .
Attention-based
classification
o ~
s \‘
I [L_Z-Score Normalization _|—— Sequence Layer] !
1
! i
i
! [_Fully Connected Layer _J&—— LSTM | !
i B> :

\ | [Softmax and Classification]—— / Prediction | /
N\ Al
S ——————————— - - -y
N -
~ -

FIGURE 2. The overall architecture of the proposed system.

these statements get executed on the occurrence of an event
and result in system logs. There is no defined format present

VOLUME 11, 2023

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

IEEE Access

K Source Data N

Sample BGL log data

1.11179421202005.06.04 R30-MO-N7-C:J08-U01 2005-06-04-20.28.40.767551 R30-
MO-N7-C:J08-U01 RAS KERNEL INFO CE sym 20, at 0x1438f9e0, mask 0x40
2.1117955341 2005.06.05 R25-M0-N7-C:J02-U01 2005-06-05-00.09.01.90337 3 R25-
MO-N7-C:J02-U01 RAS KERNEL INFO generating core.2275

3.1117955392 2005.06.05 R24-M1-N8-C:J09-U11 2005-06-05-00.09.52.516674 R24-
M1-N8-C:J09-U11 RAS KERNEL INFO geneating core.862

4.11179569802005.06.05 R24-M1-NB-C:J15-U11 2005-06-05-00.26.20.945796 R24-
M1-NB-C:J15-U11 RAS KERNEL INFO generating core.728
5.11179570452005.06.05 R20-M1-N8-C:J04-U01 2005-06-05-00.37.25.01268 1 R20-
M1-N8-C:J04-U01 RAS KERNEL INFO generating core.775

' Log Parsing

I

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

: Line |Labe(Time Date Nod [Time(Nod [Type/Com |Leve[Content |Even|EventTempl Para
f Id |l stam| e eRe pon || tid |ate met
1] peat ent erLis’
. it
1
1 1 |APP |1.12|2005/R17-|2005|R17-[RAS |APP |FAT [ciod: failed|150bciod: failed |['172
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

REA [E+09|.06.0|M1- |-06- [M1- IAL [toread 1306(to read
D 4 NC- [04- |NC- message message
1:)18(00.2 [I:)18 prefix on prefix on
-U11(5.24.-U11] control control
6767 stream stream
41 (CioStream (CioStream
socket to socket to
172.16.96. <*>

116:33880

5 |APP |1.12|2005|R16-|2005|R16- |RAS |APP |FAT [ciod: failed|150b|ciod: failed ||

REA [E+09|.06.0|MO- [-06- [MO- IAL [toread 1306(to read
D 4 N8- (04- |N8- message message
1:)18(00.2 |I:J)18 prefix on prefix on 3
-U11]5.24.]-U11 control control 1381
80853] stream stream
15 (CioStream (CioStream
' socket to socket to
\ 172.16.96. <*> "'
* 116:34138 ’

FIGURE 3. lllustration of parsing BGL logs data from unstructured to
structured logs.

for writing logging statements. Thus, developers follow their
style while scripting. In addition, various types of logging
statements are present due to the increase in the use of
open-source software [19]. The logs generated through such
logging statements are in a raw or unstructured format that
needs to be converted to a structured format, with the help
of log parsing, before they are used in log analysis. Figure 3
represents the conversion of the BGL raw log into a structured
log.

Log statements are disunited during parsing into the label,
timestamp, date, level, Content, EventTemplate, and param-
eter list, as commonly used features.

The system logs are composed of constant and dynamic
parts. The constant part is scripted in the logging statements,
whereas the dynamic part updates on the execution of the
logging statement. The primary task of the parser is to iden-
tify the header (timestamp, level, component, etc.) part and
process the content part to extract the EventTemplate and
ParameterList. Miscellaneous log parsers [36], [37], [38],
[39] have been developed by many researchers in the existing
literature. Accuracy and efficiency are vital parameters in
the selection of log parsers. According to the comparative

VOLUME 11, 2023

analysis conducted in our research [10], the Drain [40] parser
achieves the optimum performance.

Drain [41] parser is adopted in this research. Drain works
on the concept of the steady-depth tree structure. In the tree
structure, the leaf nodes in the tree preserve log clusters;
likewise, the in-between nodes of the tree implant various
Heuristic rules. Log records are present in the structured
format on parsing, as demonstrated in Figure 3. However,
the parsing procedure may inject certain noise because of the
variations in the log format. The proposed system handles the
noise by performing a semantic analysis of 3 log features.

C. LOG SEMANTIC EMBEDDING

The research mainly aims to identify the failures in the vari-
ous IT infrastructures. We focused on analyzing 3 log features
in the log semantic embedding. As stated in Section III-B,
system logs are diverse in nature, and noise gets imported
during the parsing process. However, the original meaning
of the log statement remains intact. Therefore, semantic
embedding is the appropriate solution to produce vectors.
This research uses the BERT pre-trained model to withdraw
semantic vectors of logs.

In the recent past, ample researchers applied NLP tech-
niques to analyse system Logs, considering that logs are
present in the natural language. In the literature, TF-IDF [14],
Word2Vec [42], [43], and Glove [32] techniques were used
to conduct log analysis, but these techniques failed to han-
dle homophones, homonyms, and out-of-vocabulary words.
Due to these limitations, these techniques are unsuitable for
unstable and newly generated log records. The cutting-edge
approaches are considered for the study to tackle the lim-
itations of stated NLP techniques. In the experimentation
process comprises of, pre-trained word embedding models
are applied for vector representation of Log Content, Event-
Template, and ParameterList and to strengthen the prediction
of unobserved log entries. The BERT model is pre-trained on
massive datasets like Wikipedia and proposed by Google to
be fine-tuned on a particular dataset. Moreover, BERT sup-
ports domain-specific semantic information and can address
Out-Of-Vocabulary (OOV) words in novel kinds of logs dur-
ing runtime [23].

Algorithm 1 BERT-Based Features Extraction
Input
Input_Dataset: Pre-processed log features
Output
F: Numerical feature vectors for each input log entry
Start
md = pretrained BERT Model
hiddenunits = 128
T(i) = tokenization (md, Input_Dataset (i))
B(i) = encoding (md, T(i), hiddenunits)
F(i) = doc2sequence(B (i))
Return (F)
Stop

PN R W=

108183

IEEE Access

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

Let us consider the dataset D, which contains m a number
of log parameters and n a number of total recorded logs.
Each i € n log contains various parameters like lineid,
date, Time, Level (labels), Content, Eventld, EventTemplate,
ParameterList, etc. Each IT Infrastructure log dataset has
these standard vital parameters and a few corresponding ones.
The research performs pre-processing to extract the essential
parameters from each log, which is responsible for reasonably
predicting failures. We have extracted and combined three
fields (Content, EventTemplate, and ParameterList) from
each log during the pre-processing phase.

The pre-processing steps are:

d1 = D(i) - Content €))]
d2 = D(i) - EventTemplate 2)
d3 = D(i) - ParameterList 3)

As given below, the combined feature vector is built, and
all three parameters in string format are joined.

d(i)=1{dl1,d 2,d3} @)
Input_Dataset (i) = strjoin(d(i)) 5)

After pre-processing, we performed the BERT-based fea-
tures extraction with the help of the pre-trained BERT model
of tiny size. The steps of the BERT model are given mathe-
matically in Algorithm 1. The process of semantic embedding
is depicted diagrammatically in Figure 4.

D. CLASSIFICATION MODEL

After the sentence embedding step, each combination
[d(i) = {d1, d2, d3}] of log content (d1), EventTemplate (d2),
and ParameterList (d3) is converted into log feature embed-
ding ‘B’ as well as individual log sequence is consequently
denoted as ‘F(i) = doc2sequence(B(i))’. The generated log
embedding sequence is supplied to the proposed Optimized
LSTM to detect failures, as shown in Figure 5.

The LSTM network is an Artificial Neural Network
designed to find and excerpt long-range correlation in sequen-
tial data [44] that can capture The contextual information of
the sequence. Several existing researchers [14], [22], [32],
[34], [45] exercised LSTM and exhibited its productiveness in
log-based failure identification. However, the existing LSTM
model for the text classification problem domain suffers
from serious challenges: 1) longer training time, 2) more
memory for model training, 3) Dropout is harder to imple-
ment, and 4) LSTMs are sensitive to different random weight
initializations.

The first two problems are mainly caused due to the use of
the word embedding layer in LSTM. A word embedding layer
maps a sequence of word indices to embedding vectors and
learns the word embedding during training. This causes other
subsequent problems, such as it is hard to apply the dropout
layer in existing LSTMs. Due to the lack of a dropout layer,
it is accessible to overfitting.

108184

The Optimized LSTM (OLSTM) model is proposed to
perform an accurate prediction with minimum computational
requirements. The dropout layer replaces the existing LSTM
model word embedding layer. The Fully Connected Layer
(FCL) is introduced after the LSTM layer proposition to
mitigate the overfitting problem. The removal of the word
embedding layer accelerates a reduction in training time and
memory requirements. Furthermore, the Z-score normaliza-
tion layer is introduced as the first layer of the OLSTM model,
where a feature vector of size 1 x 128 of each i’ log is
normalized to the particular standard pattern. This results in
a reduction in error rates and an improvement in accuracy.

The sequential layer reads the sequential features for each
log. The LSTM layer is applied, which is followed by the
Sequential layer. The LSTM layer comprises the input, hid-
den neurons, and output layers. The remaining layers in the
OLSTM are the Dropout layer, FCL layer, and Softmax and
Classification Layer (SCL). The OLSTM consists of 6 layers
to train the input dataset. After training, the classification is
performed to predict the failure in the selected IT infrastruc-
tures.

The design of the OLSTM layers is further explained math-
ematically.

In the z-score normalization layer, each log feature vec-
tor is normalized using the z-score. The formula stated in
Equation 6 is as follows:

NG) = ((F(i) - M)))

o

where, F (i) is the i log feature vector, 1 is the mean set to 0,
and o is the standard deviation set to 1 by default. The output
of the normalized feature vector for each log of size 1 x 128 is
stored in V.

The LSTM input layer accommodates N at the current time
interval . The LSTM layer comprises an input gate i, output
gate o, forget gate f, and a memory cell c. For every time
t LSTM computes its gate’s activations {i;, f;} and updates
its memory cell from ¢, to ¢, it then computes the output
gate activation o; and outputs a hidden representation 4;. The
hidden representation from the previous time step is /;_1.

The following equations are applied in LSTM for update
functions:

ir =0 (N - Wyi + h—1Whi + c;—1Wei + bi) @)
fi=0 (N - Wy +h_1 Wiy +c;—1 Wer + by) (8)
0p =0 (N -Wyo+h_1Wpo +c1-1Weo + by) ©)]
¢t =froci—1 + iy o tanhtanh (N - Wye + hi—1 Whe + be)
(10)
hy = o; ¢ tanh (c;) (11D

where N represents the input sequential features vector,
ir, f, 01, ct, hy represents input gate, forget gate, output gate,
current cell state, and output of LSTM layer, respectively,
at the current sequential step 7.

Wi, Wi, Wy, Represents the weights among the input-
input gate, input-forget gate, and input-output gate.

VOLUME 11, 2023

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

IEEE Access

; Feature Extraction g

Content

ciod: failed to read message
prefix on control stream
(CioStream socket to
172.16.96.116:33880

ciod: failed to read message

Sentence Vectors

0.753,-0.452,-0.247,
0..662, 0.157,-0.436, -

prefix on control stream
(CioStream socket to
172.16.96.116:34138

ciod: failed to read message
prefix on control stream
(CioStream socket to <*>

ciod: failed to read message
prefix on control stream
(CioStream socket to <*>

Parameter List

['172.16.96.116:33880].

Log Template

N [172.16.96.116:34138] ’ .

Optimized LSTM

Z-Score Normalization

-

Sequential Layer

.

LSTM Layer

v

'
'
'
'
'
1
'
I
'
'
'
'
I
'
'
'
'
'
'
'
|
'
I
'
'
i
v‘ Dropout |
'
'
I
'
'
'
'
I
'
'
'
'
'
'
'
|
'
I
'
'
'
'
'
'
'
|

| Softmax & Classification Layer '
— e?
Softmax o (2)i = c——
=
Prediction

FIGURE 5. The design of attention-based optimized LSTM classifier for
failure detection.

Whi, Wir, Who Represents the weights among hidden
recurrent layer-input gate, hidden recurrent layer-forget gate,
and hidden recurrent layer-output gate, respectively.

VOLUME 11, 2023

E[SEP]

E'l

@« ' -

[SEP]

TOK 2 TOK 1 TOK 2 1

Wei, Wer, Weo Represents weights among the cell state-
input gate, cell state-forget gate, and cell state-output gate,
respectively.

bi, by, b,, b Represents the additive bias functions for the
input gate, forget gate, output gate, and cell state, respectively.

The attention technique is commenced to handle the
impact of unimportant logs. A Fully Connected (FC) layer
is included as an attention mechanism at OLSTM. The dif-
ferent weights are assigned to the distinct log statements to
justify the individual’s significance. A Fully Connected (FC)
layer affirms hidden state h; as input and outputs the weight
of attention « that indicates the relevance of the log mes-
sage. The activation function is calculated using Equation 12,
which is the weight matrix of the attention layer at time t, and
tanh (-) is an activation function «.

o; = tanh (W‘tx . ht) (12)

Finally, the softmax and classification layer are added to
provide the final classification result ‘pred’ calculated using
Equation 13. Where W denotes the softmax layer weight,
T represents the total length of the log embedding sequence
and ZzT=0 a; - h; Is the sum of the results that all hidden states
h; multiply corresponding attention weights ot

T
Pred = Softmax(W' - (tho a - hy) (13)
IV. EXPERIMENT
Section IV describes the experiment settings in IV A, includ-
ing dataset description, evaluation metrics, baselines, and
implementation. Section IV-B presents experimental results

108185

IEEE Access

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

TABLE 4. Dataset descriptions.

Dataset Size of Data No. of logs Anomalies
Apache 490 MB 56,481 38,081
OpenStack 5.4 MB 207,820 3,314
Windows 267.465 MB 611,103 16,372
BGL 708.76 MB 4,747,963 348,460
Android 25.7MB 1,555,005 159,254

on five different Infrastructure logs. The performance analy-
sis is exhibited with the help of ROC curves.

A. EXPERIMENT SETTINGS

1) DATASET

The system is proposed as a generalized solution for the dif-
ferent types of IT Infrastructures. Thus, to assess the proposed
system, we have performed experiments on logs from various
IT Infrastructures, such as Apache from a server application,
OpenStack from the distributed system, Windows from the
operating system, BGL from a supercomputer, and Android
from the mobile system. Table 4 lists the statistics summary
for log datasets.

a: APACHE

Apache HTTP Server [46] is one of the most famous
web servers. The Apache dataset provides an access log
(56,481 Number of records) and an error log (38,081 Number
of records). This dataset was composed out of a Linux system
running an Apache Web server, which consisted of the Public
Security Log Sharing Site project [47] for the research on
anomaly detection.

b: WINDOWS

The Windows dataset was collected by aggregating several
logs from a lab computer running Windows 7. The original
logs were located at C:/Windows/Logs/CBS. CBS (Compo-
nent Based Servicing) is a componentization architecture in
Windows that works at the package/update level [29]. There
are 2.6% anomalous log entries out of collected Windows
logs.

¢: OPENSTACK

OpenStack [48] is a cloud operating system that leads to enor-
mous pools of computing, storage, and networking resources
around a data center. This dataset was generated on Cloud-
Lab [49], a flexible, scientific infrastructure for research on
cloud computing. There are 3,314 anomalous records in the
collection, which are injected manually to generate a dataset
for anomaly detection research.

d: BGL

The BGL dataset collected from BGL is an open logs
dataset gathered from a BlueGene/L supercomputer system
at Lawrence Livermore National Labs (LLNL) in Livermore,

108186

California, Comprising 131,072 processors and 32,768 GB
memory [50]. This dataset contains 4,747,963 log records;
out of these, 348,460 are labelled as anomalous entries. The
label information is convenient for system administrators to
distinguish abnormal conditions and accomplish remedial
measures.

e: ANDROID

Many smart mobiles work with the Android operating sys-
tem. Google has developed this operating system, which is
becoming very popular [51]. As mobile data carries personal
details in the logs, Android logs are not freely available.
The Android log used in this paper is generated during the
testing of Android smartphones and is released for research
purposes.

We leveraged different rations of training and testing data
for experimentation. Moreover, these datasets are collected
from the existing Repositories. Thus, we take release data as
the ground truth in favor of the assessment. All the models are
trained individually for each dataset as the log formats differ.

2) EVALUATION METRICS

To determine the efficacy of the proposed system in log clas-
sification, we leverage extensively utilized Precision, Recall,
F1-Score, and Accuracy as metrics. To calculate these met-
rics, a confusion matrix is created using True Positive (TP),
the number of logs classified accurately by Machine and
Deep Learning models. False Positive (FP) refers to a number
of logs categorized under the wrong class level. True Negative
(TN) represents the number of log records with the different
levels categorized under other classes. False Negative (FN)
stands for a number of Log records that are not correctly
classified.

A true positive (TP) occurs when log entries with identical
combinations of Content, EventTemplate, and ParameterList
are correctly classified into the same category by manual
categorization. True negatives (TN) are log entries with the
same mix of Content, EventTemplate, and ParameterList but
manually categorized into separate groups. In the context
of log entries, a false positive (FP) occurs when log entries
with identical combinations of Content, EventTemplate, and
ParameterList are manually classified into distinct groups.
False negatives (FNs) occur when log entries with the same
combination of Content, EventTemplate, and ParameterList
are manually classified into the same groups.

.. TP
Precision = —— (14)
TP + FP

Precision gives the number of correct classified results
divided by the number of classifieds derived from the
classifier:

TP
Recall = —— (15)
TP+ FN

VOLUME 11, 2023

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

IEEE Access

Recall provides the number of correct classified results
divided by the number of all application instances:
2Recall * Precision

F1Score = — (16)
Recall + Precision

F1-Score calculates the harmonic mean by combining the
precision and recall values:
TP + FN
Accuracy = (17)
TP + FN + 1IN + FP
Accuracy shows the percentage of accurately classified
logs.

3) BASELINE

Researchers make Machine or Deep learning classifiers a
popular choice for automatic data analysis, collecting valu-
able insights, and simplifying processes. Machine Learning
(ML) and Deep Learning (DL) classifiers are advantageous
for automating the prior manual work. Classifiers learn the
pattern from the provided dataset and then classify the new
records into several classes. This research utilizes various
classifiers to organize log entries concerning levels speci-
fied in the log entry. The output of the classification is a
class or group but not any specific value such as “error,”
“info,” ‘“fatal,” “warning,” etc. It is tough to select a sin-
gle classifier that would constantly and effectively operate.
Thus, multiple models were tested to record the classification
accuracy. This study includes k-Nearest Neighbors, Linear
Regression, Support Vector Machines, Naive Bayes, Gradient
Boosting Decision Trees, Random Forests, LSTM, and modi-
fied LSTM as OLSTM (Optimized LSTM). We compared the
achievement of the proposed OLSTM with the other seven
models.

K-Nearest Neighbor (KNN) is a machine-learning tech-
nique that detects outliers in log records based on their
distance [52]. It estimates the similarity between log entries
and adds a new log to the most similar category. Logistic
Regression classifies records using a sigmoid curve [53],
while Support Vector Machines (SVM) classify data and
train models using super finite degrees of polarity [54].
Naive Bayes classifies unstructured data using a posterior
probability, but this assumption may not be accurate [55].
Gradient Boosting Decision Trees (GBDT) is a classifier
that builds decision trees in succession to enhance per-
formance [56]. Random Forest is a popular classifier due
to its ensemble of multiple decision trees, which reduces
variance and is suitable for classifying unseen log records
[57]. LSTM is a Recurrent Neural Network (RNN) modi-
fication that has gained popularity for sequential learning.
It addresses vanishing gradient and gradient explosion issues
during long sequence training, improving performance in
longer sequences. LSTM uses an individual memory cell to
memorize long-term dependencies, possibly refreshed based
on input. System logs are a chronological order of log
entries, and abnormal behaviors can be tracked based on

VOLUME 11, 2023

generated log sequences. LSTM is particularly useful for
representing intricate sequential dependencies in various logs
and capturing prospective non-linear and high-dimensional
dependencies among keywords similar to log records during
model training [16].

4) IMPLEMENTATION

All models are implemented in Python and executed on the
server of Symbiosis Institute of Technology (Pune, India),
which is configured with NVIDIA DGX Station with 251GiB
System memory, Intel(R) Xeon(R) CPU E5-2698 v4 @
2.20GHz, 64bit, and 4 GPUs: Tesla V100-DGXS-32GB. Var-
ious datasets such as Apache, OpenStack, Windows, BGL,
and Android were utilized to conduct the experimentation.
Table 4 states that these datasets carry a vast number of log
messages ranging from around Fifty-six thousand to Eleven
million. The excellent server configuration made possible
the execution of the BERT feature extraction technique and
classifiers on a massive data size.

Few substantial hyperparameters are selected to make
model training efficacious as concerns both time and fit. The
proposed method has been implemented using the following
hyperparameters for BERT Pre-trained and OLSTM Models.
To improve the computational speed of the BERT model, the
values of the hyperparameters are referred to as suggested in
[58]. Where max_seq_len is considered 25, pooling_layer is
equal to -12, priority_batch_size is set as 16, and prefetc_size
is 10. In addition, in the OLSTM model, the hyperparameters
were utilized as follows. The number of epochs for model
training is 50 with a minimum batch size of 32, and the
number of hidden layers is fixed at 20. Experimentation was
conducted on the different splits of all datasets to check the
model’s performance. In the first iteration of model training,
the split ratio was considered 50%-50%, and then the training
dataset proportion increased to 60%, 70%, and 80%. At the
same time, the testing dataset proportion decreases to 40%,
30%, and 20%, respectively. Further specifications regarding
the dense layer, dropout layer, and Activation function are
discussed in section III-D.

B. RESULTS AND ANALYSIS

The effectiveness of the proposed system is evaluated on dif-
ferent I'T infrastructure logs by applying eight classifiers. The
comparative analysis of baseline models and the proposed
system is demonstrated as follows:

1) EXPERIMENTS ON APACHE DATASET

Table 5 demonstrates the proposed system’s precision, Recall,
Fl1-score, and accuracy compared to seven other classifiers
founded on the Apache dataset. The proposed system has
achieved the highest performance across implemented meth-
ods, with 98.99% precision, 98.19% recall, 98.58% F1-Score,
and 98.09% accuracy. Machine Learning-based classifiers
performed failure detection with F1-Score from 90% to 92%,

108187

IEEE Access

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

TABLE 5. Experimental results of the apache dataset.

TABLE 6. Experimental results of the openstack dataset.

Model Precision Recall F1-Score Accuracy Model Precision Recall F1-Score Accuracy
KNN 94.51 87.25 90.74 86.95 KNN 91.03 86.11 88.50 85.17
Linear Regression 95.00 89.83 93.13 90.01 Lineaf 93.01 88.33 90.65 88.02

Regression : ' ’ !

SVM 95.88 90.53 93.13 90.22 SVM 93.43 88.31 90.80 88.14
Naive Bayes o178 89.89 o131 89.46 Naive Bayes 92.79 88.57 92.10 87.94
GBDT 95.78 89.09 92.31 89.13 GBDT 93.69 88.64 91.10 87.81
Random Forest 93.79 89.82 9271 89.65 Random Forest 95.13 89.31 92.13 89.34
LSTM 97.98 95.56 96.75 95.78 LSTM 96.98 94.09 95.51 94.13
OLSTM 98.99 98.19 98.58 98.09 OLSTM 98.02 97.12 97.57 97.02

such as KNN, Linear Regression, SVM, Naive Bayes, BDT,
and Random Forest. In comparison to above stated mod-
els, Neural Network-based classifiers detect failures with
improved F1-scores from 96% to 98%, such as LSTM and
OLSTM. The results suggest that LSTM and OLSTM clas-
sification on semantic analysis conducted using the BERT
pre-trained model are superior for acquiring the semantic
information of log features and improved recall, the correct
percentage of failure detection from all the present failure
records. After failure detection, notifications are needed to
be sent to the system admin to take corrective actions.

Moreover, it is essential to identify an accurate failure
without a false alarm. The proposed system records a Recall
of 98.19%, which is significantly better than other methods.
It proves that the precise meaning of log messages is extracted
with the help of semantic embedding, carried out by the
BERT pre-trained model. The authors train all the models and
record the results on randomly selected training and testing
records.

2) EXPERIMENTS ON OPENSTACK DATASET

Table 6 demonstrates the Precision, Recall, F1-score, and
accuracy of the proposed system compared to seven other
classifiers founded on the OpenStack dataset. The proposed
system has achieved the highest performance across imple-
mented methods, with 98.02% precision, 97.12% recall,
97.57% F1-Score, and 97.02% accuracy. Machine Learning-
based classifiers performed failure detection with F1-Score
from 88% to 92%, such as KNN, Linear Regression, SVM,
Naive Bayes, BDT, and Random Forest. In comparison to
above stated models, Neural Network-based classifiers detect
failures with improved Fl-scores from 95% to 97%, such
as LSTM and OLSTM. The results suggest that LSTM and
OLSTM Classification conducted on the semantic analysis,
using the BERT pre-trained model, are superior for acquiring
the semantic information of log feature. Also, it delivers
improved recall of the correct percentage of failure detection
from all the present failure records. After failure detection,
notifications are needed to be sent to the system admin to take
corrective actions.

108188

Moreover, it is essential to identify an accurate failure
without a false alarm. The proposed system records a Recall
of 97.12%, which is significantly better than the other meth-
ods. It proves that the precise meaning of log messages is
extracted with the help of semantic embedding, which the
BERT pre-trained model carries out. The authors train all
the models, and results are recorded on randomly selected
training and testing records.

3) EXPERIMENTS ON WINDOWS DATASET

Table 7 demonstrates the precision of the proposed system,
Recall, F1-score, and accuracy compared to seven other clas-
sifiers founded on the Windows dataset. The proposed system
has achieved the highest performance across implemented
methods, with 98.23% precision, 97.23% recall, 97.73%
F1-Score, and 97.89% accuracy. Machine Learning-based
classifiers performed failure detection with F1-Score from
84% to 86%, such as KNN, Linear Regression, SVM, Naive
Bayes, BDT, and Random Forest. In comparison to above
stated models, Neural Network-based classifiers detect fail-
ures with improved Fl-scores from 96% to 98%, such as
LSTM and OLSTM. The results suggest that LSTM and
OLSTM classification conducted on semantic analysis using
a BERT pre-trained model are superior for acquiring the
semantic information of log features. After failure detection,
notifications are needed to be sent to the system admin to take
corrective actions.

Moreover, it is essential to identify an accurate failure
without a false alarm. The proposed system records that a
Recall of 97.23% is significantly better than other methods.
It proves that the precise meaning of log messages is extracted
with the help of semantic embedding, which is carried out by
the BERT pre-trained model. The authors train all the models,
and the results are recorded on randomly selected training and
testing records.

4) EXPERIMENTS ON BGL DATASET

Table 8 demonstrates the precision, Recall, Fl-score, and
accuracy of the proposed system compared to seven other
classifiers founded on the BGL dataset. The proposed system

VOLUME 11, 2023

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

IEEE Access

TABLE 7. Experimental results of windows dataset.

TABLE 9. Experimental results of the android dataset.

Model Precision Recall F1-Score Accuracy Model Precision Recall F1-Score Accuracy
KNN 85.67 83.78 84.71 83.35 KNN 80.23 86.46 83.23 83.67
Linear Regression 88.45 87.23 87.84 86.77 Linear Regression 84.05 87.56 85.77 85.79
SVM 88.45 87.23 87.84 86.77 SVM 84.05 87.56 85.77 85.79
Naive Bayes 85.53 83.99 84.07 85.23 Naive Bayes 80.03 86.98 82.15 84.72
GBDT 85.53 83.89 84.68 85.73 GBDT 82.83 86.98 82.15 84.72
Random Forest 87.85 85.82 86.82 85.39 Random Forest 84.33 89.27 86.73 87.56
LSTM 96.98 95.34 96.15 95.23 LSTM 93.49 96.68 95.06 94.99
OLSTM 98.23 97.23 97.73 97.89 OLSTM 94.06 98.47 96.21 96.19
TABLE 8. Experimental results of the BGL dataset.
5) EXPERIMENTS ON ANDROID DATASET
Model Precision Recall F1-Score Accuracy Table 9 demonstrates the precision, recall, and El:score of the
proposed system compared to seven other classifiers founded
KN 8471 81.89 83.28 82.98 on the Android dataset. The proposed system has achieved
Linear Regression 87.22 84.82 86.00 85.79 the highest performance across the implemented methods,
SVM 87.22 84.82 86.00 85.79 with 94.06% precision, 98.47% recall, and 96.21% F1-Score.
Naive Bayes 85.00 80.00 81.36 85.74 Machine Learning-based classifiers performed failure detec-
GBDT 84.59 79.49 81.96 85.01 tion with F1-Score from 83% to 86%, such as KNN, Linear
Random Forest 37,57 85.02 36.28 36.89 Regression, SVM, Naive Bayes, BDT, and Random Forest.
LSTM 94.89 04.89 95.05 03.23 In com.parison to abpve statgd models, Neural Network-based
OLSTM 96.07 96.07 96.59 96.02 classifiers detect failures with improved F1-scores from 95%

has achieved the highest performance across the implemented
methods, with 96.07% precision, 96.07% recall, 96.59%
F1-Score, and 96.02% accuracy. Machine Learning-based
classifiers performed failure detection with F1-Score from
83% to 86%, such as KNN, Linear Regression, SVM,
Naive Bayes, BDT, and Random Forest. In comparison to
above stated models, Neural Network-based classifiers detect
failures with improved Fl-scores from 95% to 97%, such
as LSTM and OLSTM. The results suggest that LSTM and
OLSTM classification conducted on semantic analysis using
a BERT pre-trained model are superior for acquiring the
semantic information of log features. After failure detection,
notifications are needed to be sent to the system admin to take
corrective actions.

Moreover, it is essential to identify an accurate failure
without a false alarm. The proposed system records Recall of
96.07% 1is significantly better than other methods. It proves
that the precise meaning of log messages is extracted with
the help of semantic embedding carried out by the BERT
pre-trained model. The authors train the models, and the out-
comes are documented based on random training and testing
data selection. The utilization of the Randomization approach
is contingent upon the dataset reaching a sufficient size and
containing relevant log entries. Therefore, a random train-test
split can yield a decent approximation of the performance of
a model.

VOLUME 11, 2023

to 97%, such as LSTM and OLSTM. The results suggest
that LSTM and OLSTM classification conducted on semantic
analysis using a BERT pre-trained model are superior for
acquiring the semantic information of log features. After
failure detection, notifications are needed to be sent to the
system admin to take corrective actions.

Moreover, it is essential to identify an accurate failure
without a false alarm. The proposed system, which records
recall of 98.47%, is significantly better than other methods.
It proves that the precise meaning of log messages is extracted
with the help of semantic embedding, which is carried out by
the BERT pre-trained model. The authors train all the models,
and the results are recorded on randomly selected training and
testing records.

After thoroughly analyzing the results of various classifiers
for the Apache, OpenStack, Windows, BGL, and Android
datasets, the authors have claimed that the results are con-
sistent for all IT infrastructure log records. Although the
number of log records, the proportion of log templates, and
the format of the logging statement vary, the results are
unfluctuating. This proves that semantic analysis using the
BERT pre-trained model delivers the literal meaning of log
messages. Thus, it brings out the meticulous outcomes for
different classifiers.

6) ACCURACY EVALUATION
Figure 6 presents the accuracy evaluation of seven classifiers

in different IT infrastructures: Apache, OpenStack, Windows,
BGL, and Android datasets. The proposed classifier OLSTM

108189

IEEE Access

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

100

96.02
T 96.19

Q
=)
<
=)

95 B

~1 93.23
mss |

90

%

85

80

7

Apache OpenStack Windows

IT Infrastructure

FIGURE 6. Accuracy evaluation and comparative analysis of different
classifiers.

delivers the highest accuracy in all the types of IT infras-
tructures. The accuracy of all the infrastructures does not
fluctuate considerably. Thus, it confirms that BERT pre-
trained model-based semantic analysis is the most suitable
for all types of IT infrastructure log records. Although there is
not much divergence in the accuracy of LSTM and OLSTM,
a significant reduction in the execution time is observed
during experimentation. In the case of the OLSTM model,
training time declined due to the introduction of new layers
(as shown in Figure 5) along with the LSTM layer.

The recorded model training time for both LSTM and
OLSTM has been documented across all five datasets per-
taining to IT Infrastructures. In the context of an Apache
server infrastructure containing 56,481 logs, the OLSTM
model demonstrated a 2.93% reduction in execution time
compared to the LSTM model. The OpenStack Infrastructure,
which falls under the distributed system category, comprises
a total of 207,820 log records. In terms of training time,
the OLSTM model demonstrates a reduction of 6.83% com-
pared to the LSTM model. A total of 6,11,103 logs from the
Windows operating system were trained within a duration
of 2009.3 seconds using the OLSTM model, exhibiting a
decrease of 5.35% compared to the LSTM model. The dataset
used for training consisted of 15,55,005 logs in the Android
domain. The training process took a total of 2317.1 seconds.
The results obtained from this training indicate an improve-
ment of 8.94% compared to the performance achieved by the
LSTM model. The BGL supercomputer, which consisted of
47,47,963 logs, was utilized for training the OLSTM model,
resulting in a training time of 3108.89 seconds, making it
the most substantial dataset among the options considered.
Based on the provided information, it can be noted that there
is an improvement in the training time difference between the
LSTM and OLSTM models as the dataset size grows.

7) COMPARATIVE PERFORMANCE ANALYSIS WITH
STATE-OF-ART TOOLS FOR BGL INFRASTRUCTURE
The proposed system’s performance is compared with
other state-of-the-art techniques such as PCA, DeepLog,

108190

TABLE 10. Comparative analysis of the proposed system with State-of-art
techniques using BGL dataset.

Model Precision Recall F1-Score Accuracy
PCA 9.07 68.12 14.60 20.24
DeepLog 84.55 87.83 81.22 87.66
LogAnamaly 95.00 67.09 78.64 97.05
LogBERT 87.68 90.45 87.83 91.26
OLSTM 96.07 96.07 96.59 96.02

LogAnomaly, and LogBert. The optimal parameters are con-
sidered to get the result of all the techniques on the BGL
dataset. The implementation of PCA can be found at loglizer
[59]. For DeepLog, the code is open source at GitHub [60].
The LogAnomaly code was taken from open source [61], and
Guo et al. [62] released code for LogBert to use as a baseline
for other researchers.

PCA [19]: Principal Component Analysis anomaly detec-
tion is a technique used to identify outliers or anomalies
in high-dimensional datasets. It transforms the data into a
lower-dimensional space while preserving the most signif-
icant variance. Anomalies are detected by measuring the
Euclidean distance between data points and their projections
onto the lower-dimensional subspace.

DeepLog [45]: DeepLog is a research framework for
anomaly detection in system logs, developed to identify
unusual patterns in log data. It utilizes deep learning
techniques, specifically recurrent neural networks (RNNs),
to model sequential dependencies in logs and flag anoma-
lies. By capturing the temporal relationships in log entries,
DeepLog can effectively distinguish between normal and
anomalous behavior in complex IT systems, making it a
valuable tool for cybersecurity and system monitoring.

LogAnomaly [22]: LogAnomaly is a research approach
for anomaly detection in system logs designed explicitly
for complex IT environments. It employs a combination of
techniques, including sequence-to-sequence modelling and
attention mechanisms, to capture the intricate relationships
in log data and identify unusual patterns or deviations.
LogAnomaly can effectively distinguish between normal and
anomalous log entries by focusing on contextual information
and temporal dependencies, enhancing system monitoring
capabilities.

LogBERT [15]: LogBERT is a novel research approach for
anomaly detection in system logs, leveraging the power of the
BERT (Bidirectional Encoder Representations from Trans-
formers) language model. It fine-tunes BERT on log data to
capture the semantic meaning and contextual information in
log messages. This enables LogBERT to effectively identify
anomalies by recognizing log entries that deviate from the
expected linguistic patterns, improving log-based anomaly
detection in IT systems.

The statistical data of evaluation parameters is shown
in Table 10. The models’ most exceptional outcomes are

VOLUME 11, 2023

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

IEEE Access

o
©

o
o

o
=

o
@

True positive rate
o o o o
N w B [5)]

o

[=]

02 03 04 05 06
False positive rate

(@)

o
e

07 08 09 1

0.8} #_,_4——

07!
0.6

0.5 |

0.4 -

True positive rate

0.3 -

0.2 -

0.1 -

0 . . .

0 0.1 0.2 0.3 0.4 0.5 0.6
False positive rate

(©)

True positive rate

07 08 0.9 1

True positive rate

o o o
~N » w©

o
o
-

o
i

LSTM
QLSTM

True positive rate
(=]
w

o
w

o
S

o

(=}

=}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

(b)

097 1

0.7 1

0.6 [1

0.4

0.3 - 1

0.2 - 1

0.1 - 1

0
0 0.1 02 03 04 05 06 07 08 09 1

False positive rate

(d)

08r

0.7 r

06

0.5

0.4

03 -

0.2 -

0.1 -

LSTM
OLSTM

0 . . .

0 0.1 02 03

0.5 0.6 0.7 0.8 0.9 1

False positive rate

(e)

FIGURE 7. a. ROC curve comparison with apache (56,481 logs). b. ROC curve comparison with openstack (2, 07,820 logs). c. ROC curve comparison
with windows (6, 11,103 logs). d. ROC curve comparison with bgl (15, 55,005 logs). e. ROC curve comparison with android (47, 47,963 logs).

highlighted in Table 10. The empirical findings provide com-
pelling evidence that the sentence embedding performance

VOLUME 11, 2023

of the proposed system using BERT and the attention-based
OLSTM model outperformed the state-of-the-art approaches.

108191

IEEE Access

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

Caze| Lahel Content EventTemplate ParameterList Level
Normal Nl:;‘:]::?;f“u:am 2 A e (T S B 2 e 2 NtpClient suecaads in rasolving manual peer <¥> <¥> after 2 pravious failura. ['time.windowsz.com,0x9] | Information
1 thC L.lent 2 mabl.a e S.El .l njt_z.nul peer {0 use B2 tu’pa ,n!.n:a.baf:zu? o DNS NtpClient was vnabla to sat 2 manual paer to use 25 2 time sovres becanse of DNS
. |resolution error on "time windows.com, 0x% . NtpClient will try again in 15 minutes K X P .. , . -
5| d double tha A s T s T e e P ra;all:,tux-l error on <¥> %> NipCliznt will try again in 1:.1 minutes and doubls the ['time.windows.com,0x9'][Warninz
(0x300724F9) reattempt interval thereafter. The error was: No such host is known. ((=80072AF%)
svehost (4636 D,0) 3RUlzt: A request to write to the file . [(4636,D.0),
" WINDOWS system3 2 SRUSRUtmp log™ at offset 0 (0x0000000000000000) | =¥eost <*> 5}{'fJ:: 4 e “,’,‘hle e <32 at offaet ::i’ :” ‘*’.‘: A WINDOWS system3
Normal |for 65536 (0x00010000) byts succsedsd, but took an abnormally lons time (44 "”‘*ﬂ; o m::? A h _‘;]‘:ihm ;1::“) tobe o | 2/SRUISRUtmp1og™, 0 | Wasning
seconds) to be servicad by the 8. This problem is likely due to faulty hardwars. by - Hus provlem 15 ety cus to fauity harawars, Hlezse contact your Rarovar | (0 040000000000000),
Plasss contact your hardware vendor for further asistance diasnosing the problem et e i emman it e, 65536 (0x00010000Y.
SOy e
o svchost (4084.D,25) S8RUTst: The databaze page read from the file E}E:isi?a::ﬂﬂg[l‘iﬁng
"I WINDOWS system3 2 SRITSRUDB dat"" at offset 8417280 avchost <*= SRUJet: The database paze read from the file <*= at offset <*> <= for B et 13417280
(0=0000000000307000) (database page 2034 (0x806)) for 4096 (0=00001000) <#> <¥> bytes failed verification due to 2 persisted lost flush detection timestamp (CxDéCCCG:CCDDéCTCCC*
lous | bytes failed verification dus to a persisted lost flush detection timestamp mi 1 h. The r=ad operation will fail with error <3 <*>, This problem is likely due to (database page 1654 : Error
The read operation will fail with error -1119 (0 2]). This problemis likely | faulty hardware. Please contact your hardware vendor for further assistance diaenosing the (GxSGE‘-‘ ’;896
due to faulty hardware. Pleass contact your hardware vendor for further assistanes problem. L
dizznosing the problem. (GX?&?E}EEE] -1]1 e
g::;‘i::p:i’::;ii:ﬁzﬁi?ﬂ:ﬁ ;E‘mﬁ;m;m The description for Event ID <*= from source =*> cannot be found, Either the |['1',zoogledrivafs3753 Tss
b A e e L e e e s cu;mpunant o the local component that raizes this event iz not installed on your local or the uing a clean mount
1F the event i on another i installation iz corrupted. You can install or repair the component on the local manager delete for
Normal had to be saved with the event. The followins information was m(:-lud.ed. with the . If the event d on another computer, the dizplay information device Information
T e T d.alet;fm o had to be saved with the event. The following information was included with the | """ Daviez Volume{094625b
""'Davioe'."ul:ﬂl.a{ﬂgfl-ﬁaibi-fia_l 3049.5aBf.060c193 The messaze resoures is event: <¥> iz cis gin gin gin gd» gd» 28 The messapge resource iz prezent but | 5-£522-3040-b20f-060e193
- esent but the messaze was oot found in the messase tzble the mezzage waz not found in the mezzage table 1
Wi e D o e o S P AT e b e The dezcription for Event ID) <*> from source =*> cannot be found. Either the
Either the component that raises this event is not installed on your local computer component that raises this event iz not installed on your local comp or the
e i e L W e £ G s - on the local i llation iz eorrupted. You ean install or repair the component on the loeal |[2zoogledrivafz3525 The
il S Vi O ane A re e T i o e e B . If the avent origi d on another computer, the dizplay information (driver verzion of the dizk| Esor
had to be saved with the event. The followiag information was i.ﬂe-lwaé R had ta be zaved with the event. The following information was included with the doe: not mateh.]
avent: The message resoures is prasent but the message was not found in the message event; <¥= <tz <f> <ks <he ks <¥o <22 2> The meszage resource is present but
table the meszage waz not found in the meszage table

FIGURE 8. Sample log records from windows system logs.

8) CLASSIFICATION EFFECT EVALUATION

The classification quality is analyzed with the help of the
generating of the Receiver Operating Characteristic (ROC)
curve, which provides the relation between False Positive
Rate (FPR) at the X-axis and True Positive Rate (TPR) at
the Y-axis for varying thresholds. The area under the ROC
curve (AUC) measures the area within the ROC curve and the
X-axis. AUC is always present between TPR as one and FPR
as 0. The curve nearer to (0, 1) implies a better classification
impact. Figure 7a to Figure 7e demonstrates the ROC curve
of LSTM and OLSTM models on five datasets. Figure 7a
to e shows that the OLTM classifier achieves enhanced AUC
values than the LSTM model. It indicates that the proposed
classifier OLSTM has an improved classification result than
the traditional LSTM model. The addition of new layers in
the LSTM model enhanced the performed in the case of
classification as well as a reduction in training time.

9) METICULOUS ANALYSIS OF PROPOSED SYSTEM

As a part of the results, meticulous analysis is exercised to
endorse the proposed system’s originality regarding the list
of benefits and limitations. Table 11 briefly discusses the
proposed system’s benefits and limitations. Five key bene-
fits are summarized based on the vital contribution of the
research work, resulting in improved results. However, three
limitations of the proposed system are mentioned in Table 11.
The accommodation of the identified limitations will possibly
enhance the system in the future. This summarized study
will be valuable for aspirants working in the domain of IT
Infrastructure monitoring.

108192

C. CASE STUDY

The sample normal and anomalous log records are presented
in figure 8 to evidence the competence of the proposed
system in case of detection of different types of failures in
IT infrastructures. The Windows system logs are collected
from the personal computer, and a few records are shortlisted
to defend the results. Three distinct cases are considered
according to the similarity or the differences in the log fea-
tures. In the log records, a similar part is highlighted in
bold, whereas the decision-making contents are highlighted
in green. On semantic analysis of the combination of three log
features (Content, EventTemplate, and ParameterList) using
BERT and Classification with attention-based OLSTM, log
records are labeled as either “Normal” or ‘“Anomalous.”

Case I: In case I, both log entries are from the identical
event source; they carry the common ParameterList, whereas
EventTemplates are different. Thus, they are classified con-
sidering the Level of Information as “Normal” and Warning
as “Anomalous.” Records retention dissimilar EventTem-
plate is a relatively ordinary circumstance. Any state-of-art
tools that utilize EventTemplate for analysis can perform such
operations.

Case II: In case II, EventTemplates are approximately
alike, although they are from different event sources. But, the
allocated level to the log record is different. Due to common
parts in the EventTemplate, analysis tools are influenced to
release false alarms. To upgrade the failure detection accuracy
and reduce false detection, we have added more log features
along with EvenTemplate. In log records I and II under case
II, decision-making particulars are highlighted in green under
the content log feature.

VOLUME 11, 2023

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

IEEE Access

Case III: In case III, EventTemplates are identical, although
log records are from different event sources. Here, the addi-
tional log feature ParameterList assists in classifying and
labeling abnormal log entries. The decision-making partic-
ulars are in the ParameterList feature and highlighted in
green.

Based on the case studies discussed, there are variations
in the log entries in terms of Event Source, EventTemplate,
Log Message, ParameterList, etc. Thus, making use of mul-
tiple features for analysis is significant. Moreover, these
selected features are analyzed based on the context and the
occurrence of the words using BERT; thus, the challenges
in handling homophones and homonyms are addressed. Fur-
thermore, semantic vectors provide attention-based OLSTM
to classify log entries in view of the belonging level. The
OLSTM is modified LSTM algorithm that shows improved
classification results in terms of accuracy, precision, recall,
and F1Score, and computational time (Stated in B. Result and
Analysis point under Section IV).

V. RELATED WORK

Some companies have developed a monitoring system to
collect the runtime operation properties of each component
in order to prevent failure in IT infrastructure. It helps to
speculate on the health of the system [57]. The system
logs are extraordinarily informative and are automatically
generated on every computer system. The system logs are
primarily intended to note system status and valuable events
happening inside the system components. Network admin-
istrators can inspect the system log data to comprehend the
system status, analyze system functioning, and conduct root
cause analysis. Thus, system logs have become an immensely
desirable resource for monitoring System operations and
a pivotal part of maintaining system health. According to
Wang et al. [42], system downtime is controllable and can
be reduced after the identification of the reason for fail-
ure. Consequently, anomaly and failure detection, prediction,
and root cause analysis have become vital research areas.
Though the automated log analysis is an emerging research
domain, yet administrators manually evaluate the system logs
to investigate defects by tracking simple words like “kill,”
“exception,” “dead,” “fail,” etc.

Furthermore, automated log analysis is intricate due to the
low quality and the massive data size of logs. As a matter
of fact, complex IT infrastructure components daily generate
terabytes of logs and millions of metrics. Thus, electing valu-
able features to train and test detection or prediction models
is crucial.

During figuring out the unavailability, reliability, and per-
formance challenges confronted in IT infrastructure, it is
essential to study machines as artefacts and understand what
they do instead of what we expect them to do [63]. Log
analysis, rule-based, method-based, and classification-based
approaches have been proposed owing to numerous solutions
to the automated system. Machine Learning [64], [65] and

VOLUME 11, 2023

TABLE 11. Discussion on benefits and limitations of the proposed system.

Key Point Description
Benefits
Use of e The majority of the researchers utilized only a log

Multiple
Features

template. They ignored the other parameters in the log
records that contribute significantly to understanding the
system's current behavior. The system's actual behavior
can be tracked based on the runtime detail of the
logging statement. Such runtime details get recorded
under the parameters of the variable part. Therefore, the
variable part (Content of the log message, parameter
list, temporal information, etc.) can be used as features.
Sometimes, the log parsing process may inject
inevitable noise because of the variations in the log
format. Using a single feature (LogTemplate) may result
in losing information such as IP address, component
number, error message, etc. Thus, there was a need to
add more log features in the analysis so that valuable
information would not be discarded.
Also, the selection of all the features results in
unnecessary computational time. Thus, we have selected
the most relevant log features based on the study
conducted in "Study of log features" (section IL.A).
Our proposed system selected three essential features:
Log Content, EventTemplate, and ParameterList, which
will give details about the structure of the logging
statement, list of resources, and error messages.
Efficientin e System logs records on the execution of the logging
analyzing statements on the occurrence of the specific event. Thus,
unseen or new log records can be introduced at runtime depending
new on the utilization of the IT infrastructure components.
records o System logs are comprised of many commonly used
words and similar structures.
Simple embedding techniques failed to handle
homophones, homonyms, and out-of-vocabulary words.
Due to these limitations, these techniques are unsuitable
for unstable and newly generated log records.
The accurate analysis of unseen or new log records is
possible with the help of context-based analysis using
the BERT pre-trained model.
Sentence- In the case of system logs, common words represent
based different meanings, and frequently occurring words are

semantic unnecessary. Therefore, word-based vector generation
vector does not contribute advantageously.

generation e System logs are diverse in nature, and noise gets
imported during the parsing process. However, the
original meaning of the log statement remains intact.
Therefore, semantic embedding is the appropriate
solution to produce vectors.

Generalize e The crucial challenge in the analysis of system logs is

d solution System-dependent data formats. Currently, there is no

standard style or template to be followed to write
logging statements. Due to this, developers write
logging statements in different forms. System logs are
substantially diverse in the case of various IT
Infrastructures.
System logs are unstructured, unstable, and present in
enormous formats. Therefore, the development of a
common analysis model is tricky.
The proposed model is evaluated on five different
infrastructures: Apache from a server application,
OpenStack from the Distributed Systems, Windows
from the Operating System, BGL from a
Supercomputer, and Android from the Mobile System.
Thus, this is treated as a generalized solution for
different types of IT Infrastructure.
Declined e Conducting semantic embedding on a vast number of
training log messages and training classification models on
time generated vectors is labour-intensive.
This difficulty was fingered out by adjusting the

108193

IEEE Access

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

TABLE 11. (Continued.) Discussion on benefits and limitations of the
proposed system.

essential hyperparameters as stated in the
"Implementation” point under section I'V.
Also, the proposed OLSTM algorithm is the principal
element in the decrease in the training time. The
OLSTM is developed with the help of making a few
changes in the existing LSTM. The dropout layer
replaces the current LSTM model word embedding
layer. The Fully Connected Layer (FCL) is introduced
after the LSTM layer proposition to mitigate the
overfitting problem. Removing the word embedding
layer accelerates a reduction in training time and
memory requirements. Furthermore, the Z-score
normalization layer is introduced as the first layer of the
OLSTM model, where a feature vector of size 1x128 of
each. i the log is normalized to the particular standard
pattern. This results in a reduction in error rates and an
improvement in the accuracy.

Limitations

Challengin e System logs hold details of each event happening in all
g to collect IT Infrastructure components. It carries crucial and
real-time confidential data. Due to strict business rules, real-time

data logs are not readily available.

High- e Due to the increase in the complexity, utilization, and
configurati execution of IT Infrastructure components, huge log
on machine records are created. Utilization of massive volume data

required for experimentation is challenging.

e The datasets used for experimentation in this research
are many log messages ranging from around Fifty-six
thousand to Eleven million. The execution of the BERT
feature extraction technique and classifiers on massive
data size is required excellent machine configuration.

Semi- e The proposed system is capable of identifying the
Automated anomalous log record and notifying the failure condition

System to the system administrator. At present, the action of

mitigation is manual. Human intervention is required to
handle failure conditions. Thus, failure detection and
prediction are automatic, but the system admin
manually manages failure.

Deep Learning [66] techniques are popularly employed for
anomaly or failure identification, prediction, and root cause
analysis. Applying supervised and unsupervised learning
techniques to massive, unstructured system logs has attracted
plenty of attention over recent years and has an outstanding
research corpus of similar work.

The sentiment and semantic analysis-based approaches in
the literature have been initiated to leverage the intrinsic
meaning behind the logs for failure detection in complex
systems [65], [67]. The authors [42] applied word2vec to
perform word embedding of log contents and then found
the log sequence using TF-IDF. The researchers applied
unsupervised anomaly detection on extracted features, which
offers a 67.25% improved F1 score over LogCluster [38].
Research has been done [14] to calculate polarity scores and
identify the erroneous behaviors in the HPC system with a
96% F-score. The researchers [15] developed a system using
the BERT pre-trained model as a transformer encoder to
design log sequences. Deep Learning models are trained to
identify the typical log sequence pattern. At the same time,
the authors [34] have developed an automatic tool to identify
correlations between logs. The authors employed a Drain log

108194

parser to retrieve structured logs, further word2vec embed-
ding for feature extraction, and an LSTM plus temporal
attention-based model to find a correlation in the experimen-
tation.

The present automated system logs analysis techniques
are mainly considered log templates for analysis. Moreover,
in recent research, few authors examined multiple log param-
eters or features to understand the meaning of the log record.
A combination of Log Template, Content, and parameter
list was not used by them. The log template is the general-
ized (static part) format, and the Content and Parameter List
updates at runtime (dynamic part). We can understand the
current state of the infrastructure component, taking the listed
three features into consideration. Thus, we proposed a system
that will consider three log features for semantic analysis
and an optimized LSTM model to improve the classification
result and reduce execution time on unseen log records.

VI. CONCLUSION
System logs are a vital information source for mitigating IT
infrastructure failure. In the existing literature, the numerous
existing methods used only log templates for the analysis out
of various log features. Although these tools detect abnormal
log sequences effectively, they fail to analyse unstable and
newly generated log records. We designed a semantic encoder
on three log features to procure their numerical vectors and
also trained an attention-based classifier to detect a poten-
tial failure in different IT infrastructures. We evaluated our
proposed model on five IT infrastructures from different cate-
gories: Apache from a server application, OpenStack from the
distributed system, Windows from the operating system, BGL
from a supercomputer, and Android from the mobile system.
Our experimental results indicated that semantic analysis of
multiple log features applying the BERT pre-trained model
delivers the literal meaning of log messages. Therefore,
it produced precise results for different classifiers. Moreover,
model training time is decreased in the case of OLSTM due
to the introduction of new layers along with the LSTM layer.
In the future, we will gather more real-time log records
of different IT infrastructures comprising a balanced dataset
to assess the proposed model. In the current system,
we have provided probable solutions and failure notifications.
At present, the action of mitigation is manual. In the future,
we will try to construct a system that can automatically select
an appropriate solution and can handle anomalous conditions.
This will help to reduce the human mediation in the automatic
failure detection and handling of failure conditions for IT
infrastructure monitoring.

GLOSSARY
e AUC - Area Under the Curve
e BERT - Bidirectional Encoder Representations from
Transformers
e BGL - Blue Gene/L
e Bi-LSTM - Bidirectional Long Short-Term Memory
e CNN - Convolutional Neural Network

VOLUME 11, 2023

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

IEEE Access

DL - Deep Learning

FCL - Fully Connected Layer

FN - False Negative

FP - False Positive

FPR - False Alarm Rate

GB - gigabyte

GBDT - Gradient Boosting Decision Tree
Glove - Global Vectors for Word Representation
GPU - Graphics Processing Unit

HDFC - Hadoop Distributed File System

HPC - High-Performance Cluster

IT - Information Technology

KNN - k-Nearest Neighbor

LSTM - Long Short-Term Memory

ML - Machine Learning

NLP - Natural Language Processing

NN - Neural network

OLSTM - Optimized Long Short-Term Memory Net-
works

RNN - Recurrent Neural Network

ROC - Receiver Operating Characteristic

SVM - Support Vector Machine

TF-IDF - Term Frequency-Inverse Document Fre-
quency

TN - True Negative

TP - True Positive

TPR - True Positive Rate

UI - User Interface

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

The Cost of Downtime—Andrew Lerner. Accessed: Apr. 30, 2020.
[Online]. Available: https://blogs.gartner.com/andrew-lerner/2014/07/16/
the-cost-of-downtime/

D. A. Bhanage and A. V. Pawar, “Bibliometric survey of IT infrastructure
management to avoid failure conditions,” Inf. Discovery Del., vol. 49,
no. 1, pp. 45-56, Feb. 2021.

Y. Zhang, K. Rodrigues, Y. Luo, M. Stumm, and D. Yuan, “The inflection
point hypothesis: A principled debugging approach for locating the root
cause of a failure,” in Proc. 27th ACM Symp. Oper. Syst. Princ., Oct. 2019,
pp. 131-146.

S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, Z. Zang, X. Jing, and
M. Feng, “FUNNEL: Assessing software changes in web-based services,”
IEEE Trans. Services Comput., vol. 11, no. 1, pp. 34—48, Jan. 2018.

S. Khatuya, N. Ganguly, J. Basak, M. Bharde, and B. Mitra, “ADELE:
Anomaly detection from event log empiricism,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2018, pp. 2114-2122.

W. Meng, Y. Liu, S. Zhang, D. Pei, H. Dong, L. Song, and X. Luo,
“Device-agnostic log anomaly classification with partial labels,” in Proc.
IEEE/ACM 26th Int. Symp. Quality Service (IWQoS), Jun. 2018, pp. 1-6.

S. Zhang, “PreFix: Switch failure prediction in datacenter networks,”
in Proc. ACM Meas. Anal. Comput. Syst., USA, Jun. 2018, doi:
10.1145/3219617.3219643.

S. Satpathi, S. Deb, R. Srikant, and H. Yan, “Learning latent events
from network message logs,” IEEE/ACM Trans. Netw., vol. 27, no. 4,
pp. 1728-1741, Aug. 2019.

S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao, “Self-
attentive classification-based anomaly detection in unstructured logs,” in
Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2020, pp. 1196-1201.
D. A. Bhanage, A. V. Pawar, and K. Kotecha, “IT infrastructure anomaly
detection and failure handling: A systematic literature review focusing
on datasets, log preprocessing, machine & deep learning approaches and
automated tool,” IEEE Access, vol. 9, pp. 156392-156421, 2021.

VOLUME 11, 2023

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

D. A. Bhanage, “DigitalCommons @ University of Nebraska—Lincoln
review and analysis of failure detection and prevention techniques in IT
infrastructure monitoring,” Library Philosophy Pract., Apr. 2021.

S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, and Z. Luan,
“Paddy: An event log parsing approach using dynamic dictionary,” in
Proc. IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS), Apr. 2020, pp. 1-8.
J. Wang, C. Zhao, S. He, Y. Gu, O. Alfarraj, and A. Abugabah, “LogUAD:
Log unsupervised anomaly detection based on Word2Vec,” Comput. Syst.
Sci. Eng., vol. 41, no. 3, pp. 1207-1222, 2022.

K. A. Alharthi, A. Jhumka, S. Di, F. Cappello, and E. Chuah, ““Sentiment
analysis based error detection for large-scale systems,” in Proc. 51st Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), no. 1, Jun. 2021,
pp. 237-249.

H. Guo, S. Yuan, and X. Wu, “LogBERT: Log anomaly detection via
BERT,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2021, pp. 1-8.
Y. Xie, K. Yang, and P. Luo, “LogM: Log analysis for multiple components
of Hadoop platform,” IEEE Access, vol. 9, pp. 73522-73532, 2021.

H. Yang, X. Zhao, D. Sun, Y. Wang, and W. Huang, “Sprelog: Log-based
anomaly detection with self-matching networks and pre-trained models,”
Service-Oriented Computing, vol. 2. Cham, Switzerland: Springer, 2021.
X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,
F. Shen, and D. Zhang, “Robust log-based anomaly detection on unstable
log data,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., Aug. 2019, pp. 807-817.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-
scale system problems by mining console logs,” in Proc. 27th Int. Conf.
Mach. Learn. (ICML), 2010, pp. 37-44.

J. Lou, “Mining invariants from console logs for system problem detec-
tion,” in Proc. USENIX Conf. USENIX Annu. Tech. Conf., Jun. 2010.

E. Chuah, A. Jhumka, S. Alt, T. Damoulas, N. Gurumdimma,
M.-C. Sawley, W. L. Barth, T. Minyard, and J. C. Browne, ‘“Enabling
dependability-driven resource use and message log-analysis for cluster
system diagnosis,” in Proc. IEEE 24th Int. Conf. High Perform. Comput.
(HiPC), Dec. 2017, pp. 317-327.

W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “LogAnomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs,” in Proc. 28th
Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 4739-4745.

W. Meng, Y. Liu, Y. Huang, S. Zhang, F. Zaiter, B. Chen, and D. Pei,
“A semantic-aware representation framework for online log analysis,”
in Proc. 29th Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2020,
pp. 1-7.

D. A. Bhanage and A. V. Pawar, “Robust analysis of IT infrastructure’s log
data with BERT language model,” Int. J. Adv. Comput. Sci. Appl., vol. 14,
no. 6, pp. 705-714, 2023.

P.He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural language
descriptions in software logging statements,” in Proc. 33rd IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Sep. 2018, pp. 178-189.

J.Zhou, Y. Qian, Q. Zou, P. Liu, and J. Xiang, “DeepSyslog: Deep anomaly
detection on syslog using sentence embedding and metadata,” /EEE Trans.
Inf. Forensics Security, vol. 17, pp. 3051-3061, 2022.

BERT Explained: A Complete Guide with Theory and Tutorial—Towards
Machine Learning. Accessed: Jul. 21, 2021. [Online]. Available: https://
towardsml.com/2019/09/17/bert-explained-a-complete-guide-with-
theory-and-tutorial/

Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and
T. Xie, “Where do developers log? An empirical study on logging
practices in industry,” in Proc. 36th Int. Conf. Softw. Eng., May 2014,
pp. 24-33.

S. He, J. Zhu, P. He, J. Liu, and M. R. Lyu, “Loghub: A large collection
of system log datasets towards automated log analytics,” Aug. 2020,
arXiv:2008.06448.

Log4j—Apache Log4jTM 2. Accessed: Mar. 24, 2023. [Online]. Available:
https://logging.apache.org/log4j/2.x/

X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “SwissLog: Robust and unified
deep learning based log anomaly detection for diverse faults,” in Proc.
IEEE 31st Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2020, pp. 92-103.

R. Chen, S. Zhang, D. Li, Y. Zhang, F. Guo, W. Meng, D. Pei, Y. Zhang,
X. Chen, and Y. Liu, “LogTransfer: Cross-system log anomaly detection
for software systems with transfer learning,” in Proc. IEEE 31st Int. Symp.
Softw. Rel. Eng. (ISSRE), Oct. 2020, pp. 37-47.

108195

http://dx.doi.org/10.1145/3219617.3219643

IEEE Access

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]
[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, and Z. Luan,
“HitAnomaly: Hierarchical transformers for anomaly detection in system
log,” IEEE Trans. Netw. Service Manage., vol. 17, no. 4, pp. 2064-2076,
Dec. 2020.

M. Platini, T. Ropars, B. Pelletier, and N. De Palma, “LogFlow: Simplified
log analysis for large scale systems,” in Proc. 22nd Int. Conf. Distrib.
Comput. Netw., Jan. 2021, pp. 116-125.

S. Chen and H. Liao, “BERT-log: Anomaly detection for system logs
based on pre-trained language model,” Appl. Artif. Intell., vol. 36, no. 1,
pp. €2145642-1-2145642-23, Dec. 2022.

M. Du and F. Li, “Spell: Streaming parsing of system event logs,”” in Proc.
IEEE 16th Int. Conf. Data Mining (ICDM), Dec. 2016, pp. 859-864.

A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A lightweight
algorithm for message type extraction in system application logs,” IEEE
Trans. Knowl. Data Eng., vol. 24, no. 11, pp. 1921-1936, Nov. 2012.

R. Vaarandi and M. Pihelgas, “LogCluster—A data clustering and pattern
mining algorithm for event logs,” in Proc. 11th Int. Conf. Netw. Service
Manage. (CNSM), Nov. 2015, pp. 1-7.

S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas,
“A search-based approach for accurate identification of log message for-
mats,” in Proc. Int. Conf. Softw. Eng., 2018, pp. 167-177.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in Proc. IEEE Int. Conf. Web Services
(ICWS), Jun. 2017, pp. 33-40.

P. He, J. Zhu, P. Xu, Z. Zheng, and M. R. Lyu, “A directed acyclic graph
approach to online log parsing,” 2018, pp. 1-14, arXiv:1806.04356.

J. Wang, C. Zhao, S. He, Y. Gu, O. Alfarraj, and A. Abugabah, “LogUAD:
Log unsupervised anomaly detection based on Word2Vec,” Comput. Syst.
Sci. Eng., vol. 41, no. 3, pp. 1207-1222, 2022.

D. A. Bhanage and A. V. Pawar, “Improving classification-based log anal-
ysis using vectorization techniques,” in Proc. 3rd Int. Conf. Adv. Comput.
Eng. Commun. Syst., 2023, pp. 271-282.

B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering—
A systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1,
pp. 7-15, 2009.

M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 1285-1298.
Welcome!—The Apache HTTP Server Project. Accessed: Mar. 13, 2023.
[Online]. Available: https://httpd.apache.org/

Public Security Log Sharing. Accessed: Mar. 13,2023. [Online]. Available:
https://log-sharing.dreamhosters.com/

Open Source Cloud Computing Infrastructure—OpenStack.
Accessed: Mar. 13, 2023. [Online]. Available: https://www.openstack.org/
CloudLab. Accessed: Mar. 13, 2023. [Online]. Available: https:/
cloudlab.us/

Y. Liang and Y. Zhang, “Filtering failure logs for a BlueGene/L proto-
type,” in Proc. Int. Conf. Dependable Syst. Netw. (DSN), 2005.

Android | The Platform Pushing What’s Possible. Accessed: Mar. 13,2023.
[Online]. Available: https://www.android.com/

C.-Y.-]J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to logistic
regression analysis and reporting,” J. Educ. Res., vol. 96, no. 1, pp. 3-14,
Sep. 2002.

J. Cervantes, F. Garcia-Lamont, L. Rodriguez-Mazahua, and A. Lopez,
“A comprehensive survey on support vector machine classification: Appli-
cations, challenges and trends,” Neurocomputing, vol. 408, pp. 189-215,
Sep. 2020.

H. Chen, S. Hu, R. Hua, and X. Zhao, “Improved naive Bayes classification
algorithm for traffic risk management,” EURASIP J. Adv. Signal Process.,
vol. 2021, no. 1, pp. 1-12, Dec. 2021.

H. Seto, A. Oyama, S. Kitora, H. Toki, R. Yamamoto, J. Kotoku, A. Haga,
M. Shinzawa, M. Yamakawa, S. Fukui, and T. Moriyama, ‘“‘Gradient
boosting decision tree becomes more reliable than logistic regression in
predicting probability for diabetes with big data,” Sci. Rep., vol. 12, no. 1,
pp. 1-10, Oct. 2022.

L. E. O. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5-32,
Oct. 2001.

X. Wang, F. Liu, Y. Feng, and J. Zhao, ““A two-layer architecture for failure
prediction based on high-dimension monitoring sequences,” Complexity,
vol. 2021, pp. 1-9, Mar. 2021.

108196

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Benchmark—Bert-As-Service 1.6.1 Documentation. Accessed: Jun. 22,
2022. [Online]. Available: https://bert-as-service.readthedocs.io/en/latest/
section/benchmark.html#speed-wrt-max-batch-size
GitHub—Logpai/Loglizer: A Machine Learning Toolkit for Log-Based
Anomaly Detection. Accessed: Sep. 2, 2023. [Online]. Available: https:/
github.com/logpai/loglizer

GitHub—Nailo2c/Deeplog: PyTorch Implements DeepLog: Anomaly
Detection and Diagnosis From System Logs Through Deep Learning.
Accessed: Sep. 2, 2023. [Online]. Available: https://github.com/nailo2c/
deeplog

GitHub—Donglee-Afar/Logdeep: Log Anomaly Detection Toolkit Includ-
ing DeepLog. Accessed: Sep. 2, 2023. [Online]. Available: https://github.
com/donglee-afar/logdeep
GitHub—HelenGuohx/Logbert:
Accessed: Sep. 2, 2023. [Online].
HelenGuohx/logbert

A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Proc. 37th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. (DSN), Jun. 2007, pp. 575-584.

Y. Li, Z. M. Jiang, H. Li, A. E. Hassan, C. He, R. Huang, Z. Zeng,
M. Wang, and P. Chen, ‘Predicting node failures in an ultra-large-scale
cloud computing platform,” ACM Trans. Softw. Eng. Methodol., vol. 29,
no. 2, pp. 1-24, Apr. 2020.

J. Wang, Y. Tang, S. He, C. Zhao, P. K. Sharma, O. Alfarraj, and A. Tolba,
“LogEvent2vec: LogEvent-to-vector based anomaly detection for large-
scale logs in Internet of Things,” Sensors, vol. 20, no. 9, pp. 1-19, 2020.
R. Ren, J. Cheng, Y. Yin, J. Zhan, L. Wang, J. Li, and C. Luo, “Deep
convolutional neural networks for log event classification on distributed
cluster systems,” in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2018,
pp. 1639-1646.

H. Ott, J. Bogatinovski, A. Acker, S. Nedelkoski, and O. Kao, “Robust and
transferable anomaly detection in log data using pre-trained language mod-
els,” in Proc. IEEE/ACM Int. Workshop Cloud Intell. (CloudlIntelligence),
May 2021, pp. 1-6.

Log Anomaly Detection Via BERT.
Available: https://github.com/

DEEPALI ARUN BHANAGE received the mas-
ter’s degree in computer engineering from the
Sinhgad Institute of Technology, University of
Pune. She is currently pursuing the Ph.D. degree
with the Symbiosis Institute of Technology, Sym-
biosis International (Deemed University), Pune.
She is currently an Assistant Professor with the
Pimpri Chinchwad College of Engineering, PCET,
Pune. Her current research interests include IT
infrastructure monitoring, machine learning, deep

learning, and natural language processing.

AMBIKA VISHAL PAWAR received the Ph.D.
degree from Symbiosis International (Deemed
University), Pune, India. She is currently a senior
manager of learning and development. She is
also heading the Higher Education and University
Tie-Up, Persistent University, Persistent Systems,
Pune. She is associated with Symbiosis Interna-
tional (Deemed) University as a Ph.D. Supervisor.
She has more than 20 years of experience as
an academician and more than 11 years as a

researcher. She has published 50 research paper publications in international
journals/conferences and one book published by Taylor and Francis and
CRC Press. According to Google Scholar, her articles have 140 citations,
with an H-index of Six and an I10-index of four. Her current research inter-
ests include security and privacy solutions using blockchain and AIMLDL
Technologies.

VOLUME 11, 2023

D. A. Bhanage et al.: Failure Detection Using Semantic Analysis and Attention-Based Classifier Model

IEEE Access

KETAN KOTECHA was an Administrator with
Parul University and Nirma University and has
several achievements in these roles to his credit.
He currently heads the Symbiosis Centre for
Applied Artificial Intelligence (SCAAI). He is
considered a foremost expert in Al and aligned
technologies. He has vast and varied experience
in administrative roles. He has expertise and expe-
rience in cutting-edge research and AI and deep
learning projects for more than the last 25 years.
He has published widely in several excellent peer-reviewed journals on var-
ious topics ranging from education policies and teaching-learning practices
and Al for all. He also has pioneered education technology. He is a Team
Member for the nationwide initiative on Al and deep learning skilling and
research named Leadingindia.ai initiative sponsored by the Royal Academy
of Engineering, U.K., under the Newton Bhabha Fund.

VOLUME 11, 2023

AJITH ABRAHAM (Senior Member, IEEE)
received the B.Tech. degree in electrical and elec-
tronic engineering from the University of Calicut
in1990, the M.S. degree from Nanyang Techno-
logical University, Singapore, in 1998, and the
Ph.D. degree in computer science from Monash
University, Melbourne, Australia, in 2001. He is
currently the Pro-Vice Chancellor of Bennett Uni-
versity, India. Prior to this, he was the Dean of the
Faculty of Computing and Mathematical Sciences,
FLAME Umversny, Pune, and the Founding Director of the Machine Intel-
ligence Research Laboratories (MIR Labs), USA, a Not-for-Profit Scientific
Network for Innovation and Research Excellence, connecting industry and
academia. During the last three years, he also held two University Profes-
sorial appointments, including a Professor of Artificial Intelligence with
Innopolis University, Russia, and the Yayasan Tun Ismail Mohamed Ali
Professorial Chair of Artificial Intelligence, UCSI, Malaysia. He works in
a multi-disciplinary environment and has authored/coauthored more than
1,400+ research publications. He has more than 54,000 academic cita-
tions (H-index is more than 110 as per Google Scholar). He has given
more than 200 plenary lectures and conference tutorials (in more than 20
countries). He was the Chair of the IEEE Systems, Man and Cybernetics
Society Technical Committee on Soft Computing (which has over more than
200 members), from 2008 to 2021. He served as a Distinguished Lecturer
for the IEEE Computer Society Representing Europe, from 2011 to 2013. He
was the Editor-in-Chief of Engineering Applications of Artificial Intelligence
(EAAI), from 2016 to 2021. He serves/served on the editorial board for over
15 international journals indexed by Thomson ISI.

108197

