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ABSTRACT With the increasing amount of textual information in the Internet, smart semantic
comprehension is a practical demand. Among, automatic annotation for semantic roles remains the
fundamental part for effective semantic comprehension. Although machine learning-based methods had
received much attention in recent years, they mostly divided each sentences into separable parts for
calculation. To deal with such challenge, this paper introduces multilabel learning to propose a novel
automatic annotation method for semantic roles in English text. In the semantic representation of words,
the method uses convolutional neural networks to extract local feature information of words from the
character level. Such design can alleviate the problem of inconspicuous semantic features caused by random
initialization of unregistered words. Secondly, in the process of implication recognition, by combining
the interactive attention mechanism to construct a capsule for each implication relation separately, the
recognition of the final implication relation is completed in the way of categorical learning. At last, some
experiments are conducted on real-world data to verify the proposed method with being compared with
several typical relevant methods. The obtained results show that the proposal achieves better Macro-F1
results on eight datasets compared to seven algorithms. Besides, the proposal also performs better than others
in the sensitivity testing, as its performance can remain stable with the increase of noise input. In summary,
the proposal can achieve good results and show strong capability in semantic role labeling tasks.

INDEX TERMS Multi-label learning, semantic comprehension, automatic annotation, deep neural networks.

I. INTRODUCTION
In the era of big data, with the continuous improvement
of science, the data collected has grown exponentially in
terms of dimensionality and quantity [1]. The development
of the Internet, the Internet of Things, mobile networks,
and various social networks are surfacing, and the scale of
data is exploding while the complexity and multiplicity of
data are also increasing dramatically [2]. In many fields
such as computer vision, bioinformatics, natural language
processing, and information security, how to effectively
mine valuable information from high-dimensional multi-
sense data to help decision-makers make scientific decisions
and achieve accurate management has become an important
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problem to be solved [3]. Textual implication recognition,
also known as natural language inference, is a fundamental
yet challenging task in the field of natural language
processing [4]. The goal of this task is to determine the
directed semantic relationship between two consecutive texts,
where the embodied antecedent is noted as the text T and the
embodied consequent is noted as hypothesis H [5].

A text T is said to imply hypothesis H if the semantics
of hypothesis H can be inferred from the semantics of text
T when interpreted in the context of text T placed in the
context of text T, notated as T => H . The implication
relation between texts is directed and can be classified as
forward inference, reverse inference, bidirectional inference,
contradiction, and neutrality according to the implication
relation between two texts [6]. The growing set of candidate
tags for multi-label data poses a challenge to accurately label
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multi-label data. For example, the website MULAN, which
provides multi-label datasets, includes 26 datasets, half of
which have a candidate tag set size higher than 100, up to
3993. Therefore, verifying whether the candidate tags are
relevant to the current sample one by one is time-consuming
and laborious.

Textual implication relations, as a kind of directed
semantic relations, are widely distributed in natural language
texts [7]. When the semantics of texts and the implication
relations between texts are obtained, these texts can be linked
to form an interrelated semantic network, which enables
computers to further understand and apply the semantic
information of texts [8]. Text implication recognition aims
to promote the semantic study of text and improve the
computer’s understanding of natural language [9]. And it
can assist other natural language processing tasks with rich
application scenarios [10]. From a tagging perspective, the
semantics of things are increasingly diverse and granular [11].

English text proofreading tasks include many components,
such as grammatical error correction, spelling correction,
sentence simplification, fact-checking, sentence compres-
sion, and sentence paraphrasing. Among the many tasks of
English text proofreading, grammatical error proofreading
and fact-checking are two of the most important tasks to
ensure the grammatical and semantic correctness of texts,
and therefore have received much attention from academics.
The grammatical error proofreading task aims at making
grammatical corrections to ensure that the text conforms
to the grammatical rules and that the text is fluent. For
factual verification, it is more about verifying the semantic
information of the text and determining whether it satisfies
the established factual knowledge.

The data consists of a small number of fully labeled sam-
ples and a large number of unlabeled samples, also known as
‘‘small sample’’ data. For this scenario, the semi-supervised
learning model can effectively learn and utilize unlabeled
samples [12]. Semi-supervised learning means that the
learner can independently and automatically utilize unlabeled
data to improve learning performance without relying on
external interactions. Therefore, combining semi-supervised
learning with multi-label feature selection has become a
hot research topic in recent years. The label space of the
data is incomplete, i.e., only partial labels are given for
each sample. When there are few missing labels, supervised
multi-label feature selection methods can achieve some
recognition performance of selected features by ignoring
the processing of missing labels; when label information
is severely missing, supervised multi-label feature selection
methods will fail [13].

Therefore, to select the optimal feature subset in weak label
learning scenarios, the combination strategy of label missing
learning and multi-label feature selection becomes open
research. In addition to grammatical relations in English, the
lexical properties of words also contain information, which
defines the usage and function of words. Machine learning
models can extract information from many aspects, but if

a word has been labeled with lexicality, it can not only
disambiguate and strengthen word-based features, making it
more accurate as features for models, but also effectively
remove deactivated words. Therefore, lexical annotation is
also widely used in tasks such as text classification, machine
translation, and text summarization.

II. RELATED WORK
As the field of machine learning has expanded with other
disciplines, a large number of new ideas and theories have
emerged to support the further development of classification
tasks and multi-label learning has been widely discussed and
studied as a result. In particular, with the growing interest in
deep learning algorithms, this learning paradigm also brings
a lot of opportunities and challenges for classification tasks.
Some progress has also been made in classification tasks
based on the collision of traditional ideas with deep learning
networks, and this progress facilitates the extraction of feature
representations from large amounts of data to fit predicted
dataset distributions [14]. Both the problem transformation
method and algorithmic adaptive method are the core ideas
of multi-label learning.

While multi-label learning is based on the idea of
problem transformation, this method generally converts the
multi-label problem into multiple single-label problems,
which are then solved by traditional classification algorithms.
This method is mainly applicable to the simple computational
principle, faster operation speed, and is more suitable for
online learning, but at the same time, with the increase
of the number of labels, the time complexity is large,
and the problem of slow convergence speed does exist.
In contrast, the algorithmic adaptive method is an extension
of the traditional multi-class algorithm to a multi-label
algorithm without the need for problem transformation, but
the computational complexity may be higher than that of the
problem transformation method.

He et al. [15] introduces the multi-label learning algorithm
for sample association relations (ML-K-Nearest Neighbor,
MLKNN), i.e., the k-nearest neighbor method is used to
measure the degree of similarity of samples to reason about
their multi-label sets. Ameer et al. [16] analyzed two types of
label dependencies using contextual information in a multi-
label dataset. The literature [14] investigated a multi-label
conditional random field model, which is implemented by
directly parameterizing the labels. Decision trees are also
a class of methods based on algorithmic adaptive solutions
for multi-label learning, and Zhang et al. [17] modifies the
entropy formula in decision trees to allow multiple labels
to be included in the leaf nodes. In addition, methods such
as deep learning can also be used to handle multi-label
learning tasks, and Xiong et al. [18] gives an efficient means
of feature extraction for multi-label learning algorithms
based on deep self-encoder and label projection methods
(Canonical Correlated Autoencoder, C2AE).

The literature [19] analyzes the label dependency and
partial multi-label dependency problems based on extracting
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sample relations from input features based on positive and
negative labels respectively and obtaining label information
from the output space, which provides a broad idea for
the introduction of multi-label association relations. There
are also many approaches to introduce sample relations and
label correlations in multi-label learning. The literature [20]
proposed Glove (Global Vectors for Word Representation),
which combines the advantages of two mainstream models,
global matrix decomposition and local context window, and
the model only trains the non-zero elements in the word
co-occurrence matrix instead of the whole sparse matrix or
the context window in a large corpus, making full use of the
global statistical information of the corpus while improving
the training speed of word vectors on large corpora.

With the increasing application of word representation
learning in the field of natural language processing, repre-
sentation learning methods for sentences have also attracted
the attention of many researchers, and Yu et al. [21] proposes
skip-thought vectors, which adopt the idea of word2vec to
encode sentences and obtain the semantic representation of
sentences, and experiments have proved that it has achieved
good results in many tasks. Experimentally, it has been shown
to achieve good results in many tasks. In the literature [22],
each word is represented as a dense low-dimensional real
vector by training the language model, and these vectors
form a word vector space, and each vector can be regarded
as a point in this space, on which the similarity between
words can be calculated using distance or angle, which
effectively preserves the semantic relevance between words.
The existing grammar correction models tend to consider
the grammar correction task as a low-resource translation
task, and different methods have been proposed for corpus
augmentation to improve the effectiveness of the grammar
correction model.

The literature [23] further integrates various grammar
correction data augmentation strategies such as random sub-
stitution and reverse translation to improve the pre-training
effect of the grammar correction model. The literature [24]
uses BERT to encode input sentences and fuses the
BERT-encoded word vector representation into the grammar
reformation model to enhance the grammar reformation
model. However, some of the latest pre-trained language
models for natural language generation tasks, e.g., GPT2 as
well as T5, whose model effects have not been evaluated on
grammar correction tasks.

III. METHODOLOGY
A. MULTI-LABEL LEARNING ALGORITHM BASED ON
CLASS ATTRIBUTES
Natural language processing is one of the core research areas
of artificial intelligence, which plays an important role in
processing natural language using computer technology and
has given rise to numerous applications, such as machine
translation, information retrieval, automatic question and
answer, automatic text proofreading, and so on. With
the development of deep neural networks and pre-trained

language models, the ability of natural language processing
techniques to understand text andmodel language models has
been further improved. Automatic text proofreading methods
aim to help people implement automatic text proofreading
systems, which consist of two parts, grammatical error
proofreading and fact verification, to ensure the correctness
and authenticity of the text.

Themulti-label learning algorithm based on class attributes
is the first method to construct unique attributes for class
labels. Instead of using the same feature space when
constructing classification models for different labels, it uses
clustering techniques to construct its attribute features for
the labels. The algorithm is divided into two main parts:
constructing class attributes and training the classification
model. First, the training samples are divided into two
sets, and cluster analysis is performed on these two sets to
generate cluster centers, and the cluster centers are used to
construct class attributes; then, the generated class attributes
and the binary learning algorithm are used to construct a
classification model for each label. For the test samples,
the label relevance is predicted using the classifier, and the
relevant labels are combined to obtain the relevant label set
of the samples.

First, the training set can be divided into two sets, namely
the positive sample set and the negative sample set, based on
the correlation between the samples and the labels. For the
label ln ∈ φ, its positive sample set Pn and negative sample
set Mn can be expressed as follows:

Pn = {xi | (xi, Yi) ∈ C, ln ∈ Yi} (1)

Mn = {xi | (xi, Yi) ∈ C, ln /∈ Yi} (2)

LIFT uses clustering techniques that can explore the underly-
ing properties of the data to generate discriminative attributes
that can capture the characteristics specific to each label.
Specifically, clustering analysis is performed on the two
generated sets separately, and LIFT employs a simple and
efficient kmeans algorithm that uses clustering techniques
to partition the set M into m+ clusters and the set P into
n− clusters. To alleviate the category imbalance problem,
LIFT sets the number of clusters in both sets to be equal, i.e.,
m+

= n−
= mk , which also allows the information obtained

from both sets to be treated equally. The number of clusters
in the sets is set as follows:

mk = p · min (|Pk | , |mk |) (3)

Instead of using the same feature space for all labels, LIFT
uses clustering techniques to construct feature spaces for
different labels that match their semantic information, which
is different from many algorithms. In addition, LIFT ignores
the correlation between labels and is an algorithm that uses
a first-order strategy. Two shortcomings of the algorithm can
be found. First, because the randomness of clustering may
lead to unstable clustering results, the class attributes of class
labels may not reflect the structural information of the feature
space well if the clustering process is executed only once
and constructed based on the generated results; second, LIFT
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adopts a first-order strategy, which means it does not consider
the correlation between labels [25]. The multilabel learning
algorithm based on the integration of clusters for class
attributes is improved to address the above two shortcomings.
In the process of constructing class attributes, LIFTACE
adopts the cluster integration technique, i.e., it performs
another clustering on top of the original clustering process
and merges the two processes, which not only makes the
clustering results more stable but also takes into account
the correlation between labels, thus compensating for the
shortcomings of LIFT.

Based on the correlation between samples and class labels,
LIFTACE divides the training set into a positive sample set
and a negative sample set. it is assumed in LIFTACE that
if two labels are similar, then their corresponding clustering
results should also be similar. That is, the instance similarity
matrices corresponding to similar labels should be similar
to each other. Therefore, the clustering results of a specific
label can be updated by combining the clustering results of all
labels, and the label correlation is considered in the process
of combination. According to the above assumptions, for the
label lk ∈ Y , its instance similarity matrix can be updated
by combining the instance similarity matrices of other labels.
The updated instance similarity matrix W1 is as follows:

Wl = ϕ
∑
y∈γ

∑
x∈χ

[
p(x, y)
ln p(x, y)

− Ax − Cy
]

(4)

The iterative label propagation process needs to reduce the
confidence of irrelevant labels in the candidate label set on
the one hand and increase the confidence of relevant labels in
the non-candidate labels on the other hand. Therefore, C2LP-
IML adopts an untruncated label propagation approach,
which considers both the positive influence of the relevant
labels of the nearest neighboring samples on the label
confidence and the negative influence of the irrelevant labels
of the nearest neighboring samples on the label confidence.
The tenth iteration label propagation process is expressed as:

F(t) =

(
m+ γ

n

)
·

∑ (
xm − tm−1

)
f (t) (5)

where γ ∈ (0, 1) is a coordination parameter in the
propagation process to control the weight of the dependence
of the value of the confidence matrix W↓ on the results of the
previous iteration ? At the end of the iterative propagation,
to avoid the scale imbalance problem, the confidence matrix
W1 is normalized to obtain the final confidence matrix Wl

∗,
and the normalization equation is expressed as:

W ∗
l =

∫∫
g(t)dt =

(
1 + γ

n

)
·

∑
(x − 1)f (t) (6)

After obtaining the final label confidence matrix *P,
to avoid the phenomenon of overfitting in the training set
due to unbalanced data division, the similarity between
the test sample and its k nearest neighbors in the training
sample space is considered as the confidence weight from

the perspective of matrix complementation, and the weighted
label confidence matrixWfinal is obtained as follows:

Wfinal = PgW ∗
l (7)

p =

 1 −
tj ∗

∑n
i=1 xij∑m

j=1 Tj
, xij ∈ T

0
(8)

After obtaining theweighted label confidencematrixw*P, the
label confidence levels in the original candidate label set and
the non-candidate label set are determined separately. First,
by setting the confidence threshold of the candidate label set,
when the value of the label confidence exceeds the threshold,
it will be identified as a trusted label. The selection of trusted
labels in the candidate label set can be expressed as:

w =
kx + δ

g2(x)
+ C(9) (9)

The final replacement set of trusted tags consists of
two parts, the one hand from the tags exceeding the
threshold in the original candidate tag set, and the other
hand from the tags exceeding the threshold in the original
non-candidate tag set. Thus, the purpose of filtering noisy
tags in the candidate tag set while recovering reliable
tags in the non-candidate tag set is achieved [26]. The
previous grammar error quality assessment models as well
as grammar error checking models ignore the evidence of
high-quality grammar corrections among multiple grammar
correction results provided by grammar error checking
models, thus limiting the effectiveness of grammar error
checking models as well as grammar error quality assessment
models. Therefore, we hope to make full use of the multiple
correction results provided by the grammar error checking
model to suggest possible grammatical errors and correction
results to further improve the effectiveness of grammar error
checking and grammar correction quality assessment, and
to improve the effectiveness of grammar error checking by
reordering the column search results.

To improve the coverage of the pre-trained word vector
table in the vectorization process of the short textbook, the
improved similarity is used to find possible spelling errors
in the short textbook and thus more accurately match the
corresponding words in the corpus. Immediately afterward,
to address the problem of limited semantic information that
can be provided by the short text, an external knowledge
base is introduced to conceptualize the short text and its
related words, which extends the semantics of the short text.
Convolutional neural networks also have obvious drawbacks
in the feature extraction process. Themechanism that requires
setting the convolutional window size makes it impossible
to mine the information of long-distance text data and
ignores the dependency between contexts in long-sequence
text data. Recurrent neural networks add self-connection
and interconnection operations in the hidden layer to better
preserve and remember textual information.

However, the RNN model still suffers from impor-
tant information loss and gradient disappearance as the
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FIGURE 1. Flow chart of text feature extraction algorithm based on multi-label learning.

information weight decreases in information transmission.
Starting from improving the feature extraction model,
an LSTM combined with the CNN network algorithm
based on the ECA attention mechanism is proposed for the
feature extraction of text data. The algorithm uses LSTM
networks to capture long-range features while alleviating
the gradient disappearance problem in RNN networks; in
addition, the ECA attention mechanism is introduced to
emphasize the regions of interest in the utterance and suppress
irrelevant background regions by dynamic weighting; then
the second feature extraction is performed by convolutional
neural networks to obtain the required text feature vectors,
and finally, the K-means clustering with RWMD distance
similarity The feasibility of the proposed algorithm is verified
by combining the K-means clustering algorithm with the
RWMD distance similarity function. The flow framework
of the LSTM-CNN text feature extraction algorithm based
on the attention mechanism is shown in Figure 1.
The attention mechanism is a core technique commonly

applied to image detection, natural language processing,
and other fields proposed by research scholars during the
development of deep learning based on human attention
characteristics. The core idea draws on the fact that when
capturing relevant and important information in the visual
field, humans tend to pay more attention to those regions
that match the features to focus on thought processing,
while selectively ignoring those regions that do not match
the feature expression. The introduction of the attention
mechanism in deep learning enables giving higher weights
to the significant influential features in the process of feature
extraction to obtain more information and set lower weights

to discard the irrelevant information to avoid being influenced
by them. Finally, the purpose of rational allocation of limited
resources is achieved. The attention mechanism can be
divided into two modules: the hard attention mechanism and
the soft attention mechanism [27].

The hard-attention mechanism restricts and selects the
regions of interest as input to the model by filtering them
according to the extended attention present in each point
of the image or text. The hard attention mechanism is a
stochastic prediction process that emphasizes the importance
of dynamic changes. Although it can achieve good results
in machine learning algorithms, its non-differentiable nature
makes it difficult to implement and less widespread in the
training process. In contrast, the soft attention mechanism is
deterministic attention, which utilizes the weights obtained
from neural network training to combine with the input
features in the channel or space to generate the corresponding
weighted input features, ultimately achieving the purpose of
focusing on the channel and space regions. Most specifically,
soft attention is everywhere microscopic, which allows the
neural network to obtain the weights of attention based on the
gradient algorithm for bi-directional propagation. Therefore,
soft attention is increasingly practical and concise in the
learning and implementation process.

B. AUTOMATIC ANNOTATION METHOD FOR ENGLISH
TEXT ROLES BASED ON ATTENTION MECHANISM
In the SE-NET attention mechanism, two main types
of channel attention modules, SE-Var2 and SE-Var3, are
used, both of which learn the weights of each channel

106224 VOLUME 11, 2023



L. Lei, H. Wang: Multilabel Learning-Based Automatic Annotation Method

FIGURE 2. Schematic diagram of the model structure of the ECA channel attention mechanism.

independently through a fully connected network to establish
a direct mapping between channels and their weights.
Moreover, since the weights of SE-Var2 are a symmetric
matrix and the weights of SE-Var3 are a full matrix, they
can be considered as deeply separable convolution and fully
connected layers with grouped convolution, respectively,
allowing the attention mechanism to capture the interaction
between channels by dividing the feature map into multiple
groups while performing independent linear transformations
in each group. However, SE-NET has obvious drawbacks,
as the fully-connected dimensionality reduction approach not
only leads to inefficient capturing of dependencies between
channels but also causes the problem of losing dependencies
within different groups. In contrast, a more advanced ECA
attentional decimal combined with the LSTM network is
proposed in this section.

This method uses a one-dimensional sparse convolution
operation to optimize the fully connected operations involved
in the SE module and thus compares the hidden node states
with the input feature vector corresponding to the hidden
node states to obtain the attention assignment probability
distribution values, i.e., attention weights. After adding the
attention weights to the output of the LSTM network, the
extracted contextual information relations are weighted one
by one. Such an operation allows the information at any
position in the text to obtain different degrees of attention
while effectively avoiding the negative effects of dimen-
sionality reduction and the independence problem between
groups on the neural network. In addition to maintaining the
model performance, the cross-channel interactionmechanism

reduces the complexity of the model using the feature of
shared learning parameters and improves the risk of feature
loss caused during the training process. The model structure
of the ECA channel attention mechanism is schematically
shown in Figure 2.

After the text feature vector is globally averaged and
pooled by the GAP layer without dimensionality reduction,
a one-dimensional sparse convolution of size k in the ECA
attention mechanism is used instead of the fully-connected
layer in the traditional attention module to learn the
interactions across channels. where the size of k indicates
the size of the convolution kernel, i.e., the range of action
covered by the channel interactions, i.e., how many nearest
neighboring channels are involved in the attention prediction
of a channel [28]. Moreover, the choice of k value still
varies for different channel dimensions C and different
neural network structures. After determining the added
attention mechanism, the text feature vectors from the LSTM
network-based feature extraction model are fused and spliced
with the ECA attention mechanism, and the representative
feature vectors are further mined from the many text feature
vectors. The original text data is converted into continuous
real word vectors by the Word2vec model after the steps of
word separation, deactivation, and stem, and the input word
vector matrix is formed by combining.

After feature extraction by the LSTMnetworkmodel based
on the ECA attention mechanism, although the dependen-
cies existing between the distance context information are
effectively captured, the single neural network model is still
inadequate in solving the text feature extraction problem.
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FIGURE 3. Inaccurately labeled multi-label learning problem and other related limited supervised information.

Therefore, this section proposes to use the feature vectors
output from the above model as the input of the convolutional
neural network for secondary feature extraction [29]. This
process makes up for the neglect of the attention to the
importance of local features of text during the training process
of LSTM networks by mining the semantic relationships
between adjacent words, and finally, outputs feature vectors
that combine both contextual feature information and local
features and are relevant to the current text topic. The
traditional distance function calculates the similarity of word
vectors, which sometimes only correlates with words but
ignores the correlation with sentences or even the whole text,
thus leading to poor clustering results.

To address this problem, RWMD distance similarity is
used to improve the accuracy and efficiency of semantic
similarity calculation between texts, which is based on
the WMD distance similarity algorithm by restricting the
correlation conditions and reducing the complexity of the
algorithm. The function measures similarity by convert-
ing the similarity problem between data variables into a
cost-minimization problem between everyday transportation
items. When applied to text research, the minimum sum
of the transformations of all feature vectors in a given text
into the corresponding feature vectors of another text is

used as the evaluation criterion [30]. When the sum of the
transformations is smaller, the more similar the two texts are.
RWMD distance mainly uses the Euclidean distance between
word vectors and weights to measure the similarity between
texts. The formula for calculating the Euclidean distance
between word vectors is defined by the following equation:

D(x) =

J∑
j=1

I∑
i=1

(
bij − cij

)
xijαjβj (10)

Then, the RWMD distance is used to calculate the
similarity between text d and d’, if each feature word vector in
text d can be converted into the corresponding feature word
vector in text d’ by adding weight coefficients through the
Euclidean distance, the RWMD distance calculation formula
is defined as:

RWMD(x) =

K∑
k=1

I∑
i=1

xkj (t) −

J∑
j=1

xkij(t)

 dij (11)

In the calculation of the reward function, we use the
grammar correction model to rank the column search results
obtained from the baseline grammar correction model, and
the first ranked grammar correction result is used to calculate
the corresponding grammar correction evaluation index Ft ,
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to obtain the score Ft for the grammar correction model
corresponding to the current moment t, which is used to
introduce the grammar correction evaluation index Ft into the
training of the model, and according to tt − 1 and t as the
reward function at the current moment:

Rt = Iti=1F − Iti=1Ui + c (12)

There are many ways to generate bugs in adversarial
attacks, but since we require the generated adversarial
sentences to be visually and semantically similar to the
original human understanding, we want the changes to the
original words to be as small as possible. Therefore, we con-
sider two kinds of perturbations, namely character-level
perturbations and word-level perturbations. For character-
level perturbation, a key observation is that words are
composed of alphabetic symbols, and deep learning-based
text classification systems usually use dictionaries to rep-
resent a limited set of possible words. And the size of a
typical word dictionary is much smaller than the possible
combinations of characters of similar length. In the deep
learning model, all unknown words are mapped uniformly
to an ‘‘unknown’’ word embedding vector [29]. Our results
show that this simple strategy can effectively force the
text classification model to make incorrect decisions. For
word-level perturbation, we expect to trick the classifier by
performing a nearest-neighbor search in the word embedding
space to find some approximate words to replace the
significant words in the original text without changing their
original meaning.

It is assume that the number of samples for multi-label data
is n, the total number of features is d, and the number of
labels in the set of labels is q. The time complexity of mutual
information and conditional mutual information is O(n) since
all samples need to be visited for probability estimation:

O(n) =
δd
δt

(
n!

r !(n− r)!
dγ

+ q
)

(13)

The redundant information is not obtained from any candidate
features for both labels, i.e., it does not provide new
information for multi-label classification. Therefore, this part
of redundant information should not be added to influence
the judgment when measuring the amount of information
provided by features for the labels. Therefore, when the
labels are interdependent, it is inaccurate to measure feature
relevance using the sum of candidate features and the mutual
information of each label. When the data labels are both
incomplete and contain noise, it can be seen as a scenario
where both missing labels and biased labeling problems exist.
For example, some social media ask users to select several
contents of interest when they sign up for the first time. It is
likely that new users will not select all the contents of interest
among many categories, and may select some contents that
they do not know much about but are not interested in.

Figure 3 depicts the multi-label learning problem with
inaccurate labeling and other related limited supervised
information problem examples. In general, argument recog-
nition and labeling are treated as classification problems.

FIGURE 4. Performance comparison of sparsity learning methods.

The recognition stage is regarded as a binary classification
problem, and the real argument is identified from the
candidate terms after pruning. The labeling phase is regarded
as a multi-valued classification problem, whose class set is
all the semantic role labels. At first, people build a rule
knowledge base based on the rule knowledge summarized by
experts, and then use these rules for annotation. However, this
approach not only requires a lot of expert knowledge, but also
conflicts between rules. Later, people began to use statistical
learning methods to establish effective conflict resolution
mechanisms with statistical knowledge. At the same time,
it is only necessary for people with certain professional
knowledge to label according to the task objectives and
construct corresponding statistical models for the training
data.

Inaccurate labeling data is often easy to obtain and
relatively inexpensive to acquire. However, few studies have
addressed the challenges posed by inaccurate labeling. Exist-
ing multi-label learning methods for inaccurate labels usually
require a small set of accurately labeled training samples,
or supervised information from multiple perspectives. The
additional supervised information in most inter-application
scenarios requires experts or significant labor costs, which
is difficult to apply to practical tasks. As mentioned in the
previous section, the label confidence reflects the correlation
between the label and the corresponding sample, so how to
remove the noise while enriching the missing labels to restore
a more accurate label confidence matrix is a core research
problem in this task, and the probability P of the grammar
correction quality assessment label y is:

P
(
y | ωk

p

)
= L(O) · H (n) (14)

We averaged the scores (i.e., probability
(
y = 1 | wp

))
of

the number of English grammar proofs incorporating multi-
ple grammar correction evidence to obtain the input sentence
and the correction result sentence pair ⟨s.c⟩ of grammatical
correction quality assessment scores we further evaluate the
quality of all words in the grammatical correction results in
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the k th node SF as:

Sf =
n!

∑n
i=1H (i)

(n− r)!
(15)

We further train our VERNet model under word-level
labels. Here we use both the word-level training labels for
the input sentences and the correction results as supervised
signals to guide the learning of the model in the sense
of labeling the grammatical errors of the input sentences
and the accuracy of the grammatical correction results,
respectively [30]. The assumption of spatial sparsity affects
the robustness of the algorithm. Semi-supervised learning
has been widely used in many practical tasks due to the
weakened dependence on the amount of data. However, even
for labeling a small number of samples, it is difficult to
obtain completely accurate true labels for datawith large label
space and complex data relationships. That is, among these
obtained supervised information, there may still be several
supervised information limitations mentioned above, which
in turn make the multi-label learning task more complex and
difficult. For example, when the amount of acquired data is
too large, it is difficult to label all training samples even based
on crowdsourcing techniques, and the labeled data may have
biased labeling problems.

C. ILLUSTRATION DEMO
To make readers easier to understand operation points of the
proposal, we give an illustration example for clarification.
We use the Word2Vec toolkit to train the word vector and
preprocess the input data. Among them, the word vector
training is obtained by using all the original English texts
as corpus and pre-processing, using the Skip-Gram model
provided by Word2Vec. Experimental corpus is a text with
marked information, which must be vectorized in order to
enable the computer to process it. We regard each sentence
as a sequence input by the network layer, and each word
in the sentence as the input data at every moment. The
corpus used in this paper is labeled data. Therefore, the back
propagation algorithm is used in the training of the model,
and the connection weights of the network layer are changed
according to the difference between the output value of the
model and the target label until the model converges to obtain
the optimal solution of the model.

In themodel training stage, the training text is preprocessed
first, and the obtained vector is used as the input of the
LSTM network layer. After calculation, the output value is
sent to the Softmax layer for transformation, and after post-
processing, the semantic role label of each word is obtained.
The loss function value is then calculated from the original
label. Finally, BP algorithm is used to update the connection
weights of each layer until the model is trained. LSTM can
make full use of the information of the whole text sequence,
and can mine the information of the relationship between
words and words, and apply the information to the processing
of each word feature expression.

The training of the network starts after all the data is
processed in the first sequence. First, the original label is
compared with the output results of the network layer to
calculate the value of the loss function, and then the gradient
learning is carried out according to the decline direction of the
loss function to update the connection weight between each
layer and each gate. After the input data is processed by the
LSTM network layer, the semantic role feature vector related
to each word is obtained, and the input data at each moment
can be used to the input information at all previous moments.
Then, the obtained feature vector is sent to the Softmax layer
for normalization processing.

IV. EXPERIMENTAL ANALYSIS AND CONCLUSION
A. EXPERIMENTAL DATA SET AND SETUP
To build the training, development, and test sets for training
VERNet, we use ERRANT, an automated grammar error
information annotation tool, to annotate the input sentences
and the grammar correction result sentences generated by
the grammar correction model with the grammar correction
results given by the human annotator, and to annotate the
areas that need to be modified. ERRANT, the automated
grammar correction information annotation toolkit, performs
various editing operations on the given sentence, such as
deletion, insertion, and replacement, to further obtain the
desired grammar correction result. Therefore, we label the
input sentence and the grammar correction results generated
by the grammar correction model with the manual annotation
results using ERRANT to obtain sequential annotation
labels, which indicate the grammatical correctness of the
input sentence words and the accuracy of the grammar
correction results provided by the grammar correction model,
respectively. Each of these words is marked as correct (i.e.,
marker label is 1) or incorrect (i.e., marker label is 0).

In our experiments, we use the large-scale generic fact-
validation dataset FEVER, the division of which remains the
same as that of the FEVER shared task. The annotation of
FEVER data is divided into two phases, the generation of the
text to be validated and the fact labeling. In the first stage,
the annotator rewrites randomly selected sentences from
Wikipedia to form the text to be verified. The second phase
is the annotation of the text to be verified, which requires
the annotator to label each sentence as either supported,
rejected, or insufficient information. The experiments use
three publicly available multi-label datasets with a high
number of labels or average labels CAL500, rcv1(subset1),
and corel16k. The data sets rcv1(subset1) and corel16k
will be abbreviated as rcv1 and corel16k in this section.
to generate data that match the problem set, a certain
percentage of true labels are first randomly removed for each
training sample, while an equal percentage of irrelevant labels
are added, where the percentage varies in the range of 10%,
20%, and 50%.

To fully review the performance of the C2LP-IML
algorithm, further statistical tests were conducted to check
its statistical significance at the Friedman level of 95%
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FIGURE 5. Effect of different parameters on the learning performance of the MFSJMI algorithm.

FIGURE 6. Classification results on the Macro-F1 indicator.

significance, as Figure 4 shows. Specific observations and
analyses are as follows: the MFSJMI algorithm outperforms
the comparison method in most learning scenarios, which
indicates that label correlation based on reliable and accurate
positive and negative label extraction is beneficial to improve
the recognition ability and classification performance of
the selected feature subset. As the size of missing labels
grows, the selection performance of the MFSJMI algorithm
gradually decreases as the information of reasonable labels
decreases, further weakening the ability to guide feature
selection. Sparse feature selection methods (i.e., FSNM
algorithm and SFUS algorithm) perform relatively poorly,
especially when the proportion of missing labels is relatively
high, because these methods are less capable of handling
missing labels that interfere with the feature selection
process, and the limitation based on a single sparse regu-
larization has a higher probability of missing features that
discriminate sparse labels, which suggests that selective
sparse mechanisms for feature selection tasks oriented to
weakly labeled data are extremely important for feature
selection tasks for weakly labeled data. At the same time,
it also points out that it is very meaningful to properly identify
and utilize missing labels to guide feature selection.

The impact of different sparsity learning mechanisms on
feature selection is evaluated by comparing the MFSJMI
algorithm using the spike-and-slab prior with the MFSJMI
algorithm using the Laplace prior (i.e., l1 regularization,
with the regularization parameters determined using cross-
validation). This section uses the Emotions dataset as a
benchmark and sets the percentage of missing labels to 20%.

FIGURE 7. Test results of feature selection algorithm under different
noise levels.

As the selection of features grows from 18 to 127 (the
number of original features), Figure 5 shows the classification
performance of selecting a subset of features using two
different priors of the MFSJMI algorithm. The specific
observations and analysis are as follows: in the learning
scenarios of this section, the classification performance
of the MFSJMI algorithm using the spike-and-slab before
selecting a subset of features is generally better than that
of the MFSJMI algorithm using the Laplace prior, because
the selective decay mechanism helps to select informative
features, especially those discriminated from sparsely labeled
features. Also using a single l1 regularization may lose some
relevant features because it attenuates the weights equally for
all features. The classification performance of the MFSJMI
algorithm using the spike-and-slab before selecting features
is improved when the size of the selected feature subset is
extended from 12 to 36, due to more relevant features being
selected, and the classification performance peaks when the
selected feature subset is 36.

B. FEATURE RELEVANCE VALIDATION BASED ON JOINT
MUTUAL INFORMATION AND INTERACTION WEIGHTS
Marco-F1 averages the precision and recall of all classes,
and then calculates the F1 value as macro-F1. marco-F1 does
not take into account the amount of data, so it treats each
category equally. Because precision and recall of each class
are between 0 and 1, they will be relatively affected by the
high precision and high recall classes. Thus, we utilize the
macro-F1 and accuracy as evaluation metrics.
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The MIFS algorithm obtains the best Macro-F1 perfor-
mance on the Science data set. In addition, the proposed
algorithm MFSJMI obtains the best average Macro-F1
performance from the statistics in the ‘‘Average’’ row.
In Fig. 6, the proposed algorithm MFSJMI achieves better
Macro-F1 performance on 8 datasets compared to 7 multi-
label feature selection algorithms, while MIFS and D2F
algorithms obtain the best Macro-F1 results on computer and
Social datasets, respectively. The results in the table show
that the MFSJMI algorithm has the best average Macro-F1
performance, followed by the GMM, D2F, MIFS, MUCO,
FSSL, SCLS, and PMU algorithms, respectively. Figure 6
shows the Macro-F1 performance results of the proposed
algorithm MFSJMI and 7 comparative multi-label feature
selection algorithms. As observed from the results in the
figure, MFSJMI obtains better Macro-F1 performance on
four multi-label datasets. In particular, MFSJMI significantly
outperforms the other comparative algorithms when the
number of selected features on these datasets is greater than
30% of the total number of features.

The experimental results of the Macro-F1 performance
show that the Macro-F1 performance of the MFSJMI
algorithm outperforms the other comparative algorithms
as the number of selected features increases. The results
indicate that the MFSJMI algorithm has better Hamming
Loss performance on these data sets. Overall, the quality of
features extracted by the MFSJMI algorithm is better than
the other seven feature selection algorithms. From Figure 7,
it can be seen that the overall trend decreases as the noise level
increases, and the MFSJMI algorithm outperforms the other
algorithms in terms of noise resistance. With the increase
of noise level, MFSJMI outperforms than others. it can be
seen from Figure 7 that MFSJMI is not as effective as others
when the noise level is 80%, but its anti-noise ability is still
better than other algorithms when the noise level is 0-70%.
Meanwhile, it can be found that the slope of the curve of
MFSJMI is smaller, which indicates that the overall anti-noise
ability of MFSJMI is better than other algorithms.

However, in general, the anti-noise ability of multi-
label learning based on the hybrid processing of the two
algorithms has better performance than that of the single
algorithm, but the computational complexity is high, and
at the same time, because the algorithm itself has a high
dependence on the label, so when the noise level has
reached a certain level, about 30% of the noisy label, the
trend of the algorithm’s prediction performance decreases
obviously. In order to verify the stability of the MFSJMI
algorithm and the comparison algorithm under the same
index, radar plots were used, and the stability differences
existing between each algorithm were reflected visually
by the graphs. The experimental results of each algorithm
under different evaluation indexes as well as data sets differ
significantly from each other, and if stability analysis is done
on the original values, some prominent values affect the
overall analysis results. So in order to deal with the possible
bias caused by the data, the original experimental results need
to be normalized.

FIGURE 8. Sample analysis of factual verification results.

Figure 8 shows the sample analysis of factual verification
results. When ρ = 30, the experimental results of the
algorithm in this chapter are optimal, so the data at ρ = 30 are
mapped onto the interval [0,1], and the normalized values are
used to represent the stability index values of the algorithm.
The effectiveness of the corresponding model is further
enhanced with the inclusion of the domain-oriented pre-
trained language model, thus demonstrating the importance
of the enhanced language model for the semantic understand-
ing of the domain terms in the domain-oriented fact-checking
task. Compared to the RP model, the mask-based language
model continues to be trained in a way that benefits from its
corpus size to more significantly improve the effectiveness of
the language model for specialized domain textual reasoning,
thus further enhancing the performance of the model for fact-
checking tasks.

V. CONCLUSION
As the Internet continues to grow and the number of online
texts increases, it is a very important task to be able to
automate text proofreading. Automated text proofreading
methods are designed to help people implement automated
text proofreading systems, which consist of two parts, gram-
matical error proofreading and factual verification, to ensure
the correctness and authenticity of the text. To identify
grammatical and factual errors in text, we can integrate rich
information such as linguistic knowledge, world knowledge,
and domain knowledge to proofread text, and rely on the
language modeling and reasoning capabilities of pre-trained
language models to further realize an efficient automatic text
proofreading tool. In this paper, we propose a fine-grained
joint inference algorithm for the automatic annotation of
semantic roles of English texts incorporating multi-label
learning. Since the relevant factual evidence retrieval is done
by information retrieval models during the fact verification
process, additional noise is inevitably introduced. Moreover,
only a fraction of the retrieved sentences is useful for
verifying the semantic truth as well as the integrity of the
current text. Therefore, this work hopes to further enhance
the inference capability of the model at the fact-verification
level by using multiple fact-verification evidence for fine-
grained joint inference. The method outperforms other
baseline models on the fact-verification generic dataset,
proving its good inference ability and fact-verification
effectiveness.
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In this paper, the proposed method for automatic annota-
tion of English semantic text involves a large number of word
vector distance calculations when acquiring the related words
of the text, and thus the time consumption needs to be further
studied and improved. In the next study, the time complexity
of the algorithm will be taken into account and the method
of acquiring text-related words will be optimized in order to
improve the classification efficiency of short texts.
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