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ABSTRACT Obstructive Sleep Apnea (OSA) is the cessation in breathing that must be identified as early
as possible to save the patient’s life. Apart from physical diagnosis, a deep learning model can serve the
purpose of detecting the apnea swiftly. The detection largely depends upon biological signals such as ECG,
EEG, EMG, etc. Because of the high dimensionality nature of the bio signals, feature extraction is very
critical in detecting sleep apnea. Many such feature extraction models were fragile to resolve the complexity
issue and failed to reduce the non-robustness nature. To surmount all these issues, a novel adaptive deep
learning-based model is designed for detecting the sleep apnea. Here two feature sets have been extracted
from the ECG signals: Spectral features through Short Term Fourier Transform (STFT) and QRS analysis
followed by an auto encoder to extract the deep temporal features. The novel Artificial Hummingbird
Pity Beetle Algorithm (AHPBA) is proposed to choose the optimal features and weight parameters, which
assists in concatenation of the two feature sets. Then these fused features were given into Multi Cascaded
Atrous based Deep Learning Schemes (MCA-DLS) for classification purpose, then it is further optimized by
AHPBA by maximizing the variance. MCA-DLS have performed well compared to classifying the signals
individually using One Dimensional Convolutional Neural Networks (1DCNN), Long Short-Term Memory
(LSTM) and Deep Neural Networks (DNN) as the average accuracy of MCA-DLS is 94.51% whereas the
other three provides an average accuracy of 90.83%, 91.98%, and 93.25% respectively for the considered
datasets. By using AHPBA the average accuracy of MCA-DLS was enhanced to 96.4%, which is higher than
the conventional optimization techniques which are discussed in the result section.

INDEX TERMS Artificial hummingbird pity beetle algorithm, atrous based deep learning schemes, ECG,
feature concatenation, feature extraction, STFT, QRS analysis, obstructive sleep apnea.
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I. INTRODUCTION
Safe sleep is required to ensure the survival of every indi-
vidual to maintain better mental and health stability [1],
[2], [3]. Some sleep disorders can affect daily activities and
routine life. In a human’s life, sleep is an essential part to
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lead the happy and healthy life. Yet, sleeping disorders have
become one of the notable ailments affecting people’s lives.
One who cannot sleep properly can feel the degradation in
the metabolism activities of the body [4], [5], [6]. The most
common disorder is sleep apnea, it is a kind of disease where
irregular breathing will take place, breathing frequently starts
and stops owing the obstruction [7]. Over a full night of
sleep, the apnea occurs in the duration of 10 to 30 sec repeat-
edly up to hundred times. Complete obstruction (Apnea) or
partial (Hypopnea) obstruction are the two common types
of apneas arise during upper airways [8]. Obstructive sleep
apnea (OSA) is a new illness that affects humans more than
the other forms of apnea [9]. But failure to detect the apnea
disorder tends to create an impact in insomnia and even
sometimes it may be fatal. Meanwhile, OSA also causes an
exaggerated stage of drowsiness. Further, it endswith increas-
ing stress level, mood swings, lack of memory, car crash,
sleep deprivation, heart ailments, etc. [10]. Apnea can be
detected using bio signals such as ElectroCardioGram (ECG),
ElectroOculoGram (EOG), ElectroMyoGram (EMG), and
ElectroEncephaloGram (EEG), which aremeasuredwhile the
patient is sleeping. Polysomnography (PSG) is a kind of study
where all these signals are recorded at the same time during
the sleep.

With the help of PSG records of one night sleep, the
sleep related disorder can be detected. In general, a single
record entails 12 numbers of different signals and becomes
very expensive to employ [11]. Over the past years, differ-
ent approaches have been developed to diagnose the apnea
disorder with the help of bio signals such as ECG, SpO2
(oxygen saturation), EEG, and air flow activity in the nasal
[12], [13], [14]. In contrast with other signals, ECG is widely
used to analyze the respiratory activities of humans [15], [16],
[17], [18]. Further, [8] and [19] exhibits how an automated
model detects the apnea events and identifies its impact on the
cardiovascular system by considering Heart Rate Variability
(HRV). Nevertheless, the forecasting of OSA by respective
signals is a challenging one. Hence, designing an effective
computer aided model to screen the sleep disorder [20] is
the need of the hour. To achieve this goal, various strate-
gies such as feature engineered machine learning, and deep
learning techniques are deployed for detecting the apnea.
In feature engineering models, some discriminative features
are extracted to perform the detection job [21]. In [15],
the models like deep neural network and Hidden Markov
Model (HMM) and ECG are employed to do the detection
process. Some experts deployed the auto encoder to retrieve
the features [22]. Moreover, some more intelligent models
are designed with CNN using ECG signals [23], [24], [25].
Recently, researchers have concentrated on utilizing LSTM
network to provide the higher results that helps clinicians to
diagnose the disease significantly [26], [27]. Using anthro-
pometrics as a valid tool even a GUI was built to detect
apnea [28], but it predicts whether a person is having apnea or
not only based on body characteristics which is not the most
credible data to detect apnea.

The sleep apnea event is identified from an ECG signal by
implementing feature extraction methods before subjecting
it to detection. Though, the conventional methods use hand
crafted features, it still lacks with imprecise results of detec-
tion. Different classifiers are used to identify the OSA, yet the
required high performance is not obtained due to complexi-
ties. Consequently, developing an efficient computer-based
model with feature engineering becomes challenging. Deep
learning technology can resolve and exploit more detection
accuracy to deal with such constraints. The prime intention of
deep learning model is to acquire better results by processing
signal. In general, the detection system is constructed with
preprocessing, feature extraction and classification. Several
methods or processes are there to detect sleep apnea, still it
faces some challenging issues for further enhancement [29],
[30], [31]. Hence, it provokes a need to design a novel deep
learning method for diagnosing the sleep disorder.

The core offerings of the developed apnea detection model
are summarized below.

Implementation of a novel detection model using optimal
feature selection process with multiscale approach of deep
learning for diagnosing the sleep disorder accurately and
also it helps the practitioner in hospitals to treat the patient’s
effectively and swiftly.

Development and implementation of a hybridized heuristic
algorithm, named as AHPBA, where the traditional Artifi-
cial Hummingbird Algorithm (AHA) is superimposed with
another algorithm named as Pity Beetle Algorithm (PBA) for
tuning the required weights in feature selection and tuning
some other parameters such as Hidden Neuron Count, Learn-
ing Rate, etc. in classifiers. Thus, it provides an objective of
maximizing the accuracy.

Two different feature sets extraction: First set of features
(Feature set1) are mainly spectral features and the second
one (Feature set2) is temporal, which is extracted after a
QRS analysis followed by an autoencoder. The final temporal
features extracted from the autoencoder consists of the most
noteworthy features of data which is free of noise. These
two are then further integrated with each other and with the
help of optimal weights. This integration and upgradation
of optimal weights is done by Artificial Hummingbird Pity
Beetle Algorithm (AHPBA).

An adaptive classifier model, termed as MCA-DLS,
in which the classification is subjected to cascaded 1DCNN,
LSTM and DNN. Here, the parameters like learning rate,
epochs, batch size and hidden neuron count are tuned opti-
mally by AHPBA algorithm, to reach the expected detection
results with less complexity.

Analyzation of the experimental results using divergent
factors with a few recent conventional optimization algo-
rithms and classifiers.

II. LITERATURE REVIEW
A. RELATED WORKS
In 2022, Zarei et al. [15] have illustrated the novel detec-
tion model using a hybrid deep learning model. Initially,
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the source signals were gathered and had been subjected to
preprocessing. In CNN network model, the fully connected
layers were used to diagnose the disorder. Further, Apnea
Hypopnea Index (AHI) was considered to distinguish the
apnea events from signal. The simulated results were val-
idated by extracting the signals from UCDDB (University
College Dublin Data Base) and ECG datasets. The per-
formance was measured with divergent parameters and its
respective results were compared with other existing algo-
rithms. Though it provides good results the complexity in size
is the big issue to deal with.

In 2021, Álvarez et al. [32] have designed the new approach
of using deep learning for detecting sleep disorders. Here
the oxygen level of every individual was taken into account
for detection purpose. For experimentation, 3196 counts of
SpO2 signals were fetched. At first, the acquired signals were
trained in CNN using 859 subjects that detected the apnea
events during sleep. To get the optimal values, the parameters
in CNN were optimally chosen by Bayesian optimization.
Though technically the system may be good but with only
SPO2 we can’t predict OSA as SPO2 values varies with
different illness as well.

In 2021, Liu et al. [33] demonstrated the Weighted Loss
Time Dependent (WLTD) and multiple scale dilation atten-
tion 1-D CNN for OSA identification. The dilation-based
convolution operation was mostly used to balance the param-
eters and performance. Subsequently, weighted features were
chosen and applied in attention mechanism to increase the
detection efficiency. Further, the classificationwas performed
with weighted cross entropy loss function and HMM to con-
quer the class imbalance issue, which has paved the way
for further enhancement. Finally, distinct metrics were con-
sidered to compute the significant performance analysis that
detected the apnea events.

In 2021, Rabbi et al. [34] have utilized ECG signal to
identify the OSA using scalogram assisted SCNN. In order to
get the scalograms of signal, the Continuous Wavelet Trans-
form (CWT) was applied for transformation. Subsequently,
an EmpiricalModeDecomposition (EMD)was emergedwith
finding the correlation in Intrinsic Mode Functions (IMFs),
in which the CWT was included to acquire the hybrid scalo-
grams. With the help of features, the training and testing
were performed by CNN. The validation was done based
on heterogeneous parameters and compared with traditional
models, but the SCNN based OSA detectionmodels has a low
generalization capability.

In 2022, Gupta et al. [16] have framed the novel approach
of Smoothed Gabor Spectrogram (SGS) by ECG to iden-
tify the sleep apnea. The spectrogram features of input
signal were given as input to priorly trained model such
as ResNet50, SqueezeNet and also to their deep learning
model termed as OSACN-Net. The proposed model has
analyzed the performance by varying the 10-fold cross val-
idation. In contrast with ResNet50 and SqueezeNet, the
suggested OSACN-Net has exhibited greater results that
have resolved the computation complexity. Compared with

former approaches, this model has attained the high expected
accuracy value, but in this method false acceptance rate
is also high. In 2022, Wang et al. [35] have designed the
automated model of Bi-directional LSTM (Bi-LSTM) for
detecting sleep disorder using EEG recordings with the aid
of SAS equipment. Here, 42 different subjects were taken
for training purposes with PSG recordings. Tenfold cross and
Adam optimizer was used to optimally enhance the perfor-
mance Hence, the outcome has revealed that it has maximized
the performance regarding accuracy and precision. The time
complexity is too high since different bio signals were taken
into account apart from ECG.

In 2021, Pedram et al. [10] have implemented an innovative
method for identifying the apnea activities. This method was
composed of feature extraction and selection, followed by
classification. The ten different time domain features were
extracted, which were mitigated to five numbers of features.
To achieve this, two techniques, such as Discriminant Linear
Analysis (LDA) and Principal Component Analysis (PCA)
were adopted. Here, Random Forest (RF) classifier, Decision
Tree (DT) and SVM were considered to classify the signals
into normal or abnormal. Here the basic classifiers alone were
used to classify the signal. No deep learning techniques were
justified.

In 2021, Bozkurt et al. [36] have framed the novel
hybridized model of machine learning techniques by using
ECG signals for sleep wake stages. Among 10 apnea affected
patients, HRV was taken to evaluate the performance. Using
filtering model, the QRS wave component was determined
with ECG signal source. For experimentation, they have
considered 9 signals, in which 25 distinct features were
obtained, thus it has resulted with 225 features. Further to
reduce the dimension of features, principal component analy-
sis and fisher feature selectionwere used. Consequently, these
reduced features were fed into KNN, SVM, DT and ensemble
models. Therefore, the performancewas computedwith accu-
racy, sensitivity and specificity measures. After analyzing the
model, it was proved that it has improved the desired level of
detection rate to diagnose the disease. Here the limitation is
the model does not take much care on the noise that affects
the ECG signal and the high training cost.

B. PROBLEM SPECIFICATION
The detection of OSA using ECG is non-invasive and it
requires wearable mobile device and the cost required for the
implementation is high. However, it is difficult to analyze
the non-stationary sympathetic nerve signals from the ECG
signal, and also the heart rate variability from the patients.
Therefore, to analyze the large dimensional data with reduced
cost, many deep learning based approaches were developed
and the features & challenges of those approaches are dis-
cussed below. CNN and LSTM [37], [38], [39] reduce the
computation overload and it increases the robustness of the
apnea detection system and it effectively handles the large
dimensional data. But it has high intrusiveness and limited
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availability. In addition, it does not fulfil the generalization
capability. CNN [40], [41] dynamically enhanced the diag-
nostic ability of the oximetry signal and also it includes the
capability of the screening in the OSA detection system. Nev-
ertheless, it only considered the SpO2 parameter alone, other
parameters like API and central apnea index are not focused
in the OSA detection system. Furthermore, the reliability of
the system is very poor. 1D-CNN [42], [43] decreases the time
complexity and the computation cost. In addition, it can iden-
tify the complex patterns in the original data. Yet, it requires a
large training dataset for the detection of OSA. But it has high
variability in the scoring of PSG. SCNN [34] provides very
high stability of the system.Moreover, it effectively improves
the imbalance problem and classification performance with
reduced computation complexity. Consequently, it is highly
sensitive to errors and therefore, the generalization capa-
bility is low in the SCNN-based OSA detection approach.
OSACN [16] automatically and very effectively extracts the
network features for increasing the adaptability. Even though
the false acceptance rate is excessively high, it also minimizes
the loss that occurs in the OSA detection system. But it
needs more space for recording the health patterns in the
OSA detection system. Bi-LSTM [35] has low load, high
recognition rate, and high-efficiency in the OSA detection.
Therefore, it gives high sensitivity, selectivity and f-measure.
However, it does not ensure the security and authenticity of
the health information. Nonetheless, it is very difficult to
implement, and it is a time-consuming process. PCA [36]
effectively decreases the dimensionality for improving the
classification accuracy. Further, the abnormal events of the
patients are accurately detected. But the ECG signal is
highly affected with white Gaussian noise and the salt &
pepper noise; Therefore, it requires further improvement in
the system adaptability. These challenges in the existing
OSA detection approaches are required to be resolved by
the newly suggested deep learning based OSA detection
approach. Therefore, the newOSA detection approach should
enhance the performance of the model by extracting the
meaningful features while reducing the noise in the features,
enhance the accuracy and to be robust to different ECG
data.

III. DESCRIPTION OF PROPOSED ARCHITECTURE AND
EXPERIMENTED DATASET
A. DATASET DETAILS OF SLEEP APNEA DETECTION
Here two different datasets with ECG signals were con-
sidered. Mostly for medical related illness MRI or CT
images [26], [27] will be considered for detecting the disease.
But in some, even the microscopic images were also consid-
ered [28], but those can’t be used in detecting apnea, as apnea
tends to occur for several minutes to several hours and it may
repeat several times within a night of sleep. Hence here two
distinct data sources related to ECG are considered and the
same are described as follows.
Dataset 1: The Apnea-ECG database can be acces-

sed through the below link https://www.kaggle.com/datasets/

ecerulm/apneaecg; (https://physionet.org/content/apnea-ecg/
1.0.0/) Accessed Date: 2022-10-29. It includes around
70 ECG signals related

to sleeping stage. The signals are in nature of
16 bits/sample, where each pair entails 100 samples/second.
It contains both training (35) and testing data (35) to find out
whether the apnea is present or not. For each training file,
an annotation file was also there which had been annotated
by human experts regarding whether apnea was there or not
for each minute of recording.
Dataset 2: The second dataset can be accessed through

the following link https://www.physionet.org/content/slpdb/
1.0.0/: It is also termed as MIT-BIH Polysomnographic
Database. It is the congregation of physiological sleep sig-
nals. Totally, this database constitutes 18 signal records along
with four files.

The original signals were fetched from the above two links
and it is denoted by Sa, where a = 1, 2, . . . ,A; in turn A
annotates the total number of collected sleep signals. Figure 1
depicts the sample sleep signals for both datasets.

B. ARCHITECTURE DETAILS OF SLEEP APNEA DETECTION
SYSTEM
All the conventional processes have been using the PSG
recordings for detecting the sleeping disorder. Despite
promising results, it still requires more development to get
an effective result. To overcome some issues like time con-
sumption, cost expenses, reliability, etc., learning methods
occupy the frontline position to forecast the disease. In the
first hand, machine learning approaches have been utilized to
achieve greater results. But it exists with performance degra-
dation as PSG or ECG signal contains some noisy features
and slow in process. This becomes difficult for practitioners
to diagnose the disease in a significant way. Also, various
sensors are used to receive the signal, but it is vulnerable
if such unwanted noises intrude the ECG signal. To help
with further enhancement, deep learning models have been
deployed for apnea detection. Sometimes, the manual calcu-
lation of signal recordings can mislead the detection process.
Deep learning techniques such as CNN, ANN are commonly
used; however, it stumbles to maximize the accuracy value by
considering the large dimensional feature sets. By addressing
such issues, a novel adaptive based deep learning model with
hybrid heuristic approach for sleep apnea detection has been
designed, which is elucidated in Figure 2.

The proposed model possesses distinct stages as (a) Signal

v =

(
wtFt − btFt

btFt

)
(1)

collection, (b) Feature extraction (c) Weighted features and
(d) Detection. In the first stage, the input raw signals are
fetched from two different data sets for subsequent sections.
On the second stage, the extraction is carried out by two
ways. (i) The gathered signal is fed into de-composition
by using STFT, which is then further used to retrieve the
spectral features of decomposed signal, these features are

VOLUME 11, 2023 113117



S. Aswath et al.: Adaptive Sleep Apnea Detection Model Using MCA-DLS With Hybrid AHPBA

FIGURE 1. Sample signals of normal and apnea signals.

FIGURE 2. Schematic representation of proposed sleep apnea detection
using adaptive deep learning model with hybrid algorithm.

called as first feature set. (ii) The input signal is given to
QRS analysis that is followed by autoencoder to extract the
deep features which is used to determine the relevant features
than noisy signal features to enhance the performance and it
is termed as second feature set. Subsequently, these resultant
features are fused together with the help of selecting optimal

features and weight factor. It is achieved by using the
proposed Artificial Hummingbird Pity Beetle Algorithm
(AHPBA) to reduce the dimensional issue and to increase
the variance among the signals. Finally, the weighted features
are given into Multicascaded Atrous based Deep Learning
Scheme (MCA-DLS). It is a proposed novel ensemble classi-
fier, that comprises of 1DCNN, LSTM and DNN, where the
final outcome is computed by averaging method. In order to
attain the optimal values of such parameters, the proposed
AHPBA is employed for tuning the hyper parameters such
as hidden layers, epochs, etc. that evades performance degra-
dation. Due to this parameter optimization, it mitigates the
complexity and further maximizes the accuracy rate. Hence,
a comparative performance is evaluated across divergent
parameters and ensures that it provides the appropriate results
for diagnosing the sleep disorder (OSA) of humans.

IV. SIGNAL FEATURE EXTRACTION AND OPTIMAL
FEATURE SELECTION WITH META-HEURISTIC
ALGORITHM FOR SLEEP APNEA DETECTION
A. PROPOSED AHPBA
The proposed AHPBA is primarily used for tuning the
parameters that are required for obtaining the features and
classifying the signals. It is developed as a hybrid manner
by incorporating two algorithms as AHA and PBA. The
advantages of using these two algorithms are: these two
algorithms containing less computation complexities, high
convergence rate, handles the single objective model, etc.
The proposed algorithm is mainly used for two purposes:
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1. In feature fusion, during the weighted feature selection
phase, the weights are tuned using the AHPBA and subse-
quently the features optimally selected. 2. In the proposed
classification model MCA-DLS, various parameters such as
the hidden neurons of 1DCNN and LSTM, learning rate of
both 1DCNN and DNN, epochs in LSTM and batch size of
DNN are optimally determined by using AHPBA to get the
effective classification results.

In the proposed algorithm, the vector in traditional AHA is
considered to determine the ability of hummingbird to get the
prey. Since it represents the arbitrary value, it does not support
all the scenarios. Hence, the vector can be newly modelled by
using Equation (1).

It defines the condition with worst fitness and best fitness
as wtFt and best fitness as btFt, if v < 0.5 then the best
solution is accomplished by AHA, otherwise, it is done by
using PBA. The vice versa condition was also tried and from
experimenting it is concluded that to follow AHA if v < 0.5,
else to follow PBA. The following figure justifies the condi-
tion set for the proposed model.

In Figure 3.a and 3.b it is clearly visible that the cost
function arrived using AHPBA is pretty low compared to
that of all heuristic algorithms and also it is low compared to

FIGURE 3. Convergence of cost function of the different heuristic
algorithms for both the datasets.

the proposed algorithm been executed in vice versa condition
(i.e the best solution is accomplished by AHA if v > 0.5,
otherwise, it is done by using PBA, which is mentioned as
PBAAH. The two algorithms: artificial hummingbird and pity
beetle are explained as follows.

AHA [47]: The AHA does the optimization by the
natural behaviour of hummingbirds. It mainly includes
three elements such as food sources, population (No. of
hummingbirds) and visit table. When coming to the
foraging state, it again includes with three different
strategies as guided foraging, territorial foraging, and
migrating foraging. The mathematical formulation is given
below.
Step 1: Initialization: - Consider h numbers of birds and

prey for optimization. It is randomly initialized and repre-
sented in Equation 2.

fj = LB + n · (UB − LB) , j = 1, 2, . . . , h (2)

Term, UB and LB refers the upper and lower boundary values,
n is the random number contains the range as [1, 0]. The
visit table is defined here as the visit level of every food
for corresponding birds. Simply, it depicts how much time
it gets visited by bird. More visit level gives more priority.
Henceforth, every bird attacks the food with the help of the
visit table.

The food sources are initialized in visit table is given in
Equation (3).

stj,k =

{
0 if j ̸= k
null j = k

, j, k = 1, 2, . . . , h (3)

Here, null means the food is taken by hummingbird, then the
value 0 represents that k th food is visited by jth bird.
Step 2: Guided searching: - This behaviour is mimicked

by considering the more visit level of food sources. Once
the food is targeted, the hummingbirds fly to feed it. The
flight or flying nature depends on three directions such as
omni-directional, diagonal, and axial flights. These three pat-
terns are modelled using the Equation (4), Equation (5) and
Equation (6).

Gjaf =

{
1 if j = rdj ([1, z])
0 otherwise

j = 1, . . . , z (4)

Gjdf =


1 if j = D (k) , k ∈ [1, i] ,

D = rdp (i) ,

0 i ∈ [2, (n1 · (z− 2)) + 1]
otherwise

j = 1, . . . , z (5)

Gjof = 1 j = 1, . . . , z (6)

In the aforementioned equations, the arbitrary generation
of random integers and permutation integers are indicated
by rdj ([1, z]) and rdp (i), respectively. Further, the random
values are considered from 0 to 1 using the variable n1. With
the help of these flights, a candidate food source is acquired.
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Based on this, prey can be updated from older position to
another position. It is evaluated using Equation (7).

gj (b+ 1) = fj,tg (b) + α · G ·
(
fj (b) − fj,tg (b)

)
(7)

Here, the position of prey and targeted prey is declared by
fj (b) and fj,tg (b), respectively. Then, the guided factor as
α ∼ R (0, 1) signifies the normal distribution function with
mean as 0 and standard deviation as 1. Finally, the position of
food source is upgraded with fitness value FT (·). It is shown
in Equation (8).

fj (b+ 1) =

{
fj (b) FT

(
fj (b)

)
≤ FT

(
gj (b+ 1)

)
gj (b+ 1) FT

(
fj (b)

)
> FT

(
gj (b+ 1)

)
(8)

Step 3: Territorial searching: - Once after the target prey is
visited that has been eaten already. Then, the hummingbird is
likely to visit new or another food source in their own terri-
tory. Based on territorial region, the new position is generated
using Equation (9).

gj (b+ 1) = fj (b) + β · G · fj (b) (9)

Term, β specifies the territorial factor derives by
β ∼ R (0, 1).
Step 4: Migration searching: - The frequent visiting lacks

the food sources in respective region. A migration coefficient
is taken to consider the worst nectar-refilling rate. With this
rate, it migrates into a new prey. Hence, it again presumes
the arbitrary generation of food source with worst nectar. It is
derived by Equation (10).

fwrst = LB + n · (UB − LB) (10)

Thus, the optimal solution is obtained from AHA that used
for optimizing the parameters.

PBA [48]: The bark beetles are considered as the popula-
tion for optimizing the solution. It inspires by the process of
reproduction. It mainly comprises three steps as initialization,
new hyper-volume selection pattern and update population
position, which are explained as below.
Step 1: Initialization: - Arbitrarily, the population are

initialized with the generation of Random Sampling Tech-
nique (RST) otherwise called as random position technique
(RPT). Here, the male beetles are named as pioneer which
are otherwise also known as pioneer particles. Each par-
ticle is defined with lower bound, upper bound, dimen-
sional vector and also total populations. It is given in
Equation. (11).

y(0)x = rpt [Lb,Up,V ,P] (11)

where,Lb = [Lb1, . . . ,LbV ],Ub = [Ub1, . . . ,UbV ]
x = 1, 2, . . . ,P
Here, the lower and upper bound value is noted by Lb

and Ub, respectively and also determines the total pop-
ulation and dimensional vector is denoted as P and V ,
correspondingly.

Step 2: Selection pattern of new hyper-volume: - To select
the new values, a search space is created with respect to
particles. Therefore, based on each pattern, new particles of
pioneer are randomly positioned using Equation (12).

y(n)x = rpt
[
lb(n), up(n),V ,P

]
(12)

where,
[
lb(n)

k , up(n)
k

]
∈

[
y(n)bt,k ·

(
1 − pf

)
, y(n)bt,k ·

(
1 + pf

)]
Term, y(n)bt,k refers the birth position vector, pattern factor as

pf and n defines the generation.
Neighbouring search hyper-volume: Assume the neigh-

bouring factor nbf , it determines the parameter area. It lies
in the range of 0.01 and 0.20. It is formulated using
Equation. (13).

y(n+1)
bt =

{
y(n)bt , if F

(
y(n)bt

)
< F

(
y(n)x,z

)
,

y(n)x,z, else
(13)

In the above Equation, the birth position and new position is
indicated by y(n)bt and y(n)x,z, respectively. Here, the term z varies
from 1 to total number of broods.
Mid-scale search hyper-volume: The mid-scale factor msf

is taken for creating the best solution. It has the value
of 0.1 and 1.
Large-scale search hyper-volume: The large-scale factor

lsf contains the value of 1 and 100 used for updating the
position.
Global-scale search hyper-volume: It assumes unsuccess-

ful function evaluations as feu and total function evaluations
as fetot. It contains the value of 0.05 and 0.25.
Memory search hyper-volume: It is used to select the

memory (Me) to enhance the robustness of model. Here,
it presumes the tuning factor tuf that is more equal to value of
0.005 and 0.05.
Step 3: Population updating: - The position of mating

males and females are updated. While updating, the existing
broods are expired, and new position is generated with birth
places. Hence, it is modelled using Equation (14).

y(n)x,z

=



rpt
[
y(n)bt,k ·

(
1 − nbf

)
, y(n)bt,k ·

(
1 + nbf

)
,V ,P

]
, if z = 1

else

rpt [Lb,Up,V ,P] , if fe > feu
else

rpt
[
y(n)bt,k ·

(
1 − msf

)
, y(n)bt,k ·

(
1 + msf

)
,V ,P

]
if f

(
y(n)x,z−1

)
< f

(
y(n)bt

)
else

rpt
[
y(n)bt,k ·

(
1 − lsf

)
, y(n)bt,k ·

(
1 + lsf

)
,V ,P

]
,

if t < s

Me, otherwise

(14)

The detail of PBA is exhaustively covered in [48].
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FIGURE 4. Flow chart of the proposed optimization model (AHPBA).

The pseudo code of novel AHPBA is given below.

Algorithm 1 Suggested AHPBA
Assume the total population and maximum iteration count
Determine the fitness function.
Define the condition with vector v using Equation (1)
Perform while condition

Check if v < 0.5
Then the solution is generated by AHA

Using Equation (2), initialization is processed.
Execute guided searching with Equation (8)
Execute territorial searching with Equation (9)
Execute migration searching with Equation (10)

Else
The solution is generated by PBA.

Initialization is done by Equation (11).
New hyper-volume is generated.
Using Eq. (14), the population is updated.
Terminate if
Returns the finest solution

Terminate while
Acquires the optimal rate and values.

B. TWO LEVEL FEATURE EXTRACTION
Once the required signals are collected, they are subjected to
a two-stage feature extraction. It is briefly described in the
following sub sections.

1) FIRST LEVEL EXTRACTION PROCESS
The extraction is accomplished by decomposing the signal
with STFT and then the decomposed signal is used for
extracting the spectral features.

STFT [49]: Short term Fourier Transform (STFT) is used
to decompose the signal. Here, the input signal Sa is given
to STFT. Compared to other transforms STFT is simpler

to implement and it is more advantageous when rendering
powers. By using this transform the spectral centroids can
be easily find and these centroids can be used to extract
the meaningful features of the given signal. As the input is
in the form of signal, the foremost step is to determine the
trade-off level between frequency and time domain traits.
Hence, the input signal is decomposed into its respective
frequency component via Equation (15).

D (ω) =

∫
∞

−∞

Sa (n) p−iωndn (15)

Simultaneously, the time characteristic of signal is defined by
Discrete Fourier Transform (DFT) in Equation (16).

T (m) =

∑K−1

k=0
Sa (k)LkmK (16)

Here, the discrete time and frequency index is indicated
by k and m, and also the total number of samples is given
byK . Further, LkmK defines the transformation kernel function,
expressed in Equation (17).

LkmK = e

(
−i

(
2πkm/K

))
(17)

Hence, the STFT based signal is attained and denoted by Sdeca .
From this signal the spectral features are extracted. Spec-
tral features: The decomposed signal Sdeca is fed as input to
spectral feature extraction process. The spectral feature is
mainly useful for determining the most sensitivity features of
both power and frequency of decomposed signal. Here, the
spectral feature is calculated by spectral centroid. Other than
the other spectral moments, the centroid moment acquires the
resultant noise-resistive features which changes with time.
It will indicate the frequency at which the energy of a spec-
trum is centred upon. The spectrum elements decomposed
from the signal are evaluated by using the Eq. (18).

SF =

∑
cM (c) y (c)∑

cM (c)
(18)

Term, M (c) and y (c) annotates the spectral magnitude and
frequency of signal. Further, the term c is the total num-
ber of samples in STFT signal. Therefore, the first feature
set is obtained and noted as Fe1. A total of 10500000 and
45978273 features are extracted as spectral features from
dataset1 and dataset2 respectively.

2) SECOND LEVEL EXTRACTION PROCESS
The second feature set is acquired by processing the signal
through QRS analysis and deep features extraction through
autoencoder.

QRS analysis: From the input signal Sa, it analyses the Q-
wave, R-wave and S-wave. Over the signal, the first negative
wave is designated as the Q-wave. Then, R-wave represents
the positive waves in signal and finally, S-wave represents
the negative wave right after the occurrence of positive wave.
In this QRS analysis the peaks have been found out for the
entire signal. Based on this analysis, the QRS signal peaks
have been found out and denoted as SQRSa .
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Autoencoder [50]: It infers from neural network model
that performs with both encoder and decoder. The prime
intention of this model is to determine the deep features of
QRS based signals (SQRSa ), which are free from noise. As the
name implies, it poses two blocks to estimate the relevant
features. The key point of using autoencoder is to acquire
the features in denoised manner. It will reduce the number
of peak values as some of it might be fake one or noisy one.
The process of autoencoder is done by three major layers like
input, output, and hidden layers.

In the first hand, the encoder block integrates the latent
characteristic features of QRS signal SQRSa that process with
hidden layer. It is represented using Equation (19).

AEH = γ
(
ℑ

(
SQRSa

))
(19)

After performing the hidden function, the decoder will
decode the information as per the Equation (20).

AEO = γ (ℑ (AEH)) (20)

Finally, to estimate the deep features, it requires computing
the loss function among the layers of input and output, which
is given in Equation (21).

ls = ∥AEO − AEH∥2 (21)

Therefore, the extracted deep feature is also known as second
feature set that is marked as Fe(2). A total of 2100000 and
1019700 R-peaks are extracted using QRS analysis followed
by autoencoder from dataset1 and dataset2.

C. OPTIMAL FEATURE SELECTION
Since both the feature set contains the beneficial traits and
different lengths, it needs to be combined with each other.
Initially, the optimal features are selected from two sets
separately, because of this selection the dimensional issue
can be resolved which helps in reducing the computational
complexity. The selection of optimal features is helpful to
mitigate the occurrence of falsely chosen features and evade
from the performance degradation. Thus, the optimal features
are determined by influencing the proposed AHPBA. Hence,
the optimal selected features for both set is noted by Fe1opt
and Fe(2)opt. Subsequently, these two features are fused together
by taking the weight factors. As the features are in optimal
representation, the weight is also required to determine opti-
mally to prevent the degradation. Again, the optimal weights
can be estimated by using novel AHPBA. The mathematical
expression of optimal feature selection and fusion is shown
in Equation (22).

FCwtf =

(
W1 ∗ Fe1opt

)
+

(
W2 ∗ Fe(2)opt

)
(22)

By optimal selection, it aids to increase the variance
among the signals that is illustrated as objective function in
Equation (23).

OF(1) = argmax
{W1,W2Fe

(1)
opt,Fe

(2)
opt}

[Var] (23)

Here, the two weightsW1 andW2 lies in the range of [0.01 to
0.99]. Similarly, the optimal features, Fe(1)opt and Fe

(2)
opt that

varies from 1 to 10 for each set. Further, the term Var refers
the variance, which is defined by a measure of how data
points differ from the mean value. It is computed using
Equation (24).

Var = A
[
(Y − µ)2

]
(24)

Here, the given signal and mean is denoted by Y and µ,
accordingly. Figure 5 depicts the optimal feature selection for
concatenating the features using AHPBA. Finally, a feature
size of 856700 and 948732 was obtained as the optimal
weighted features for the dataset 1 and dataset 2 respectively.

FIGURE 5. Process of obtaining optimal weighted features using AHPBA
approach.

V. INTELLIGENT SLEEP APNEA DETECTION SYSTEM
USING MULTI-CASCADED ATROUS-BASED DEEP
LEARNING SCHEMES
A. 1D-CNN
The 1DCNN [33] model is employed here for classification
purpose. Since the source is in signal format, one dimensional
based learning model is more than enough for classifica-
tion task. Thus, 1DCNN is utilized for accomplishing the
objectives. The structure of 1DCNN is composed of many
layers such as convolutional layer, fully connectedMultilayer
Perceptron (MLP) consisting of hidden layer, softmax output
layer and max pooling layer. Here, the input is taken as
weighted features FCwt

f , which is fed into 1DCNNmodel, the
input layer passes the features to single convolutional layer.
In this layer, the convolution operation is done by using the
series of filters. Further, this filter (kernel) helps to make the
feature map by convolving the signal features to acquire
the appropriate results. Therefore, the convolution operation
and kernel function is expressed using Equation (25).

Cns = Af
[∑S

s=1
FCwt

s (l) ∗ k (l) + b (l)
]

(25)

Here, S defines the total number of samples, l refers the
convolution layer and b refers the weight. Meanwhile,
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Af (·) signifies the activation function. The resultant output
from the above layer is given as input the next MLP layer to
classify the features further. In this, the hidden layer is mainly
computed with Rectified Linear Unit (ReLU) function. It per-
forms on the basis of non-linear function and it is derived via
Equation (26).

Af (Cns) = max (0,Cns) (26)

Finally, the output layer provides the classified signal results.
The diagrammatic representation of 1DCNN method is
depicted using Figure 6.

FIGURE 6. General structure of 1DCNN model.

B. LSTM
To process the LSTM [15] model, the optimal weighted
feature FCwt

f is taken as input. The major objective of LSTM
model is to counteract the confined matters of time depen-
dency of signal. Thus, the LSTM is an advantageous variant
of RNN network. In contrast with other networks, it has
the potential to rectify the gradient vanishing problem. The
weighted features of signal are classified by determining the
signal variations to obtain the results as normal or apnea
signal. It builds with three major gates such as forget gate fg,
input gate ig, and output gate og. The mathematical function-
alities of LSTM are given by below equations.

fga = λfg
(
ufg · FCwt

f + vfg · hna−1 + bifg
)

(27)

iga = λig
(
uig · FCwt

f + vig · hna−1 + biig
)

(28)

oga = λog
(
uog · FCwt

f + vog · hna−1 + biog
)

(29)

sa = fga · sa−1 + iga · λc
(
us · FCwt

f + vs · hna−1 + bis
)
(30)

hna = oga·λh (sa) (31)

Term, λ specifies the hyperbolic tangential function of
LSTM, the weight factor is represented by u and v, respec-
tively. The previous hidden state is noted by hna−1 and the
bias term as bi. The general architecture of LSTM is demon-
strated in Figure 7.

C. DNN
The DNN [51] is most essential learning approach in signal
processing. It is used here to classify the features into affected
and non-affected signals of sleep apnea. Like other models,

FIGURE 7. LSTM network architecture.

FIGURE 8. DNN structure.

it constitutes three layers as input, output and hidden layer,
where it constructs many hidden layers with myriads hidden
units. The weighted feature FCwt

f is fed into the first layer
of input layer in DNN. It is followed by hidden layer that
comprises with weight and bias term to process the signal
features. Also, some activation functions are also entailed
in training and testing process to acquire the appropriate
results. The main benefit of DNN is that it can also learn the
features of unlabelled, unstructured signals. Thus, from the
output layer, the classified outcome is obtained for detection.
Figure 8 elucidates the DNN structure.

D. MULTI-CASCADED ATROUS-BASED DEEP LEARNING
SCHEMES
TheMCA-DLS is newly proposed to attain the final classified
results. Since the optimal features are given in large-scale
manner, the single convolution layer does not support to
acquire the expected classified value. It also tends to miti-
gate the performance enhancement and robustness of system.
To overcome such issues, atrous (dilated) convolution layers
are included in the 1DCNN. Thus, the convolution operation
is done on dilated format to get the required result. The given
atrous based 1DCNN is implemented in multiple cascaded
type. It means, the weight feature is given to the model by
three times in parallel manner.
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FIGURE 9. Block diagram of proposed MCA-DLS using parameter
optimization of AHPBA.

Hence, the atrous based multi cascaded model processes
the rich signal features to give the result for diagnosing
purposes. During cascaded operation, the three scores are
determined that is used for taking the average value of final
result. Figure 9 elucidates the MCA-DLS for detecting the
sleep apnea disorder. In the same way, the outcome of atrous
based IDCNN, LSTM and DNN is used to compute the final
expected result based on the high-ranking values. Though,
it yields promising results, the parameters in these models
may cause overfitting problem that mislead the detection
process to provide the imprecise results, that is why multiple
dropout layers are used in the classifiers. Further to improve
the performance of this ENSEMBLE method, the hyperpa-
rameters are optimally determined by using AHPBA.

Hence, the objective function of AHPBAMCA-DLS is
formulated using Equation (32).

OF(2)

= argmax
{Hn1DCNN,HnLSTM,Lr1DCNN,LrDNN,EpLSTM,BsDNN}

[
ay + prn

]
(32)

Term, Hn1DCNN and HnLSTM annotates the hidden neuron
of 1DCNN and LSTM that lies in the range of (20 – 160).
Then, the learning rate of 1DCNN and DNN is indicated by
Lr1DCNN and LrDNN , which contains the value of 0.1 to 0.9.
Further, the epoch in LSTM is defined by EpLSTM varies
from 50 to 220. Finally, the batch size of DNN is declared
as BsDNN poses the value as 1 to 350.

Further, the term ay indicates the accuracy defined as the
state or quality of representing the appropriate or precise
value. It is calculated by Equation (33).

ay =
TPo + TNe

TPo + TNe + FPo + FNe
(33)

Similarly, the precision prn computes the closeness rate of
sleep apnea signals. It is expressed using Equation (34).

prn =
TPo

TPo + FPo
(34)

In above two equations, the true positive and true neg-
ative is represented by TPo and TNe. Simultaneously, the
false positive and negative rate is noted by FPo and FNe,
respectively.

VI. DISCUSSION
A. EXPERIMENTAL SETUP
Two distinct ECG datasets were employed for the experimen-
tal process: 1. Apnea- Ecg Database, 2. MIT BIH database.
Both these datasets have ECG signals of Apnea and Non
apnea subjects. All the signals that are used for training are
annotated by the physicians for minute by minute. Moreover,
most of the signals are recorded for more than 5 hours of
duration. The first dataset comprises of 100 Hz sampled
signal whereas the second is of 250 Hz. Therefore the signals
from the second dataset is decimated to 100 HZ for the unan-
imous usage. The complete model setup was implemented
in python on a 16 GB intel Core i7-1360P supported with
NVIDIA GeForce RTX 4090 GPU. For training 35 records
from dataset1 and 12 records from dataset2 have been used.
The remaining records were used for testing. The results
reported here are the results of model with test set. The
proposed algorithm has taken the total population size as10
and total iteration as 25. Both these values have been taken
as trial-and-error method only. The parameters of the MCA
DLS are as follows:

Multi cascaded Atrous based 1DCNN has three 1DCNN
blocks which are connected to one another. The kernel size
and the activation function are 5, Relu respectively for all
the three blocks. The dilation rate was set as 2 and all the
convolution layer is followed by a 1d Max Pool layer with a
pooling size of 2. The number of filters in the three blocks
were 32,64,128. After the three blocks 2 dense layers of
32 and 64 neurons were implemented serially with a softmax
layer for calculating the probabilities.

LSTM has 128 Units with a dropout factor of 0.8 and a
dense layer of 30 units with relu activation function with
a dropout factor of 0.8 and three units of softmax layer to
predict the class.

For deep neural networks, two hidden layers were used.
The first one had 10 neurons. The second one was added to
force the feature extraction by the network itself. This hidden
layer reduces a 10 input to 5, therefore it has 5 neurons and
the output layer had one neuron to classify the result. relu was
used as the activation function here.
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FIGURE 10. Performance analysis of suggested sleep apnea detection model compared over classical heuristic algorithms for dataset 1 regarding
(a) Accuracy, (b) FNR, (c) FPR and (d) Precision.

Most of the parameters considered in the MCADLS
classifiers are taken from literature and a subtle change
has been made from experimentation to reduce the time
consumption.

Diverse parameters like Accuracy, Sensitivity, Specificity,
Precision, Negative Predictive Value (NPV), F1Score and
Mathews Correlation Coefficient (MCC), False Positive
Rate (FPR), False Negative Rate (FNR) and False Dis-
covery Rate (FDR) for evaluating the performance. The
algorithmic comparison was made with (Harris Hawks Opti-
mization) HHO-MCA-DLS [52], (Elephant Herding Opti-
mization) EHO-MCA-DLS [53], AHA-MCA-DLS [47] and
PBA-MCA-DLS [48]. Meanwhile, the various deep learning
models were taken as 1DCNN [33], LSTM [15], DNN [51]
and Ensemble [54]. The proposed method’s statistical power
was calculated by testing the trained model with ten runs
and the results were tabulated in table 4. The hyper param-
eters such as Hidden Neuron count is defined in the range
of 20 – 160 for both 1DCNN and LSTM, Learning Rate
ranges from 0.1-1 with a 0.1 incremental step size for both
1DCNN and DNN, Epoch size ranges from 50-220 for LSTM
and the Batch size ranges from 1-350. The Ranges for all
the hyper parameters have been taken based on literature
and experimentation. The values of these parameters directly
influence the rate of convergence of cost function as well as
the quality of the solution. That is why these hyperparameters
are chosen for optimization.

B. DIVERSE METRICS
Inmost of theworks’ accuracywas considered as a significant
metric to evaluate amodel’s performance [55], but somemore
metrics are also to be considered as vital/supportive mea-
sures to evaluate the performance of a model [56]. Different
measures considered in this work apart from accuracy and
precision for evaluating the effectiveness of the model are
described as follows.

FPR and FNR: The false positive rate provides the error
value, in which the results are obtained incorrectly presence
of signals. On the second hand, the false negative is used to
determine the absence of apnea signal samples incorrectly
actually when the signal is present.

FPR =
FPo

FPo + TNe
(35)

FNR =
FNe

FNe + TPo
(36)

Sensitivity and Specificity: Sensitivity is referred as the prob-
ability of actual positive rate and specificity is computed via
possibility of negative rate.

Sensitivity =
TPo

TPo + FNe
(37)

Specificity =
TNe

TNe + FPo
(38)
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FIGURE 11. Performance analysis of suggested sleep apnea detection model compared over classical heuristic algorithms for dataset 1
regarding (a) Accuracy, (b) FNR, (c) FPR and (d) Precision.

FIGURE 12. Performance analysis of suggested sleep apnea detection model compared over classical heuristic algorithms for dataset 2 regarding
(a) Accuracy, (b) FNR, (c) FPR and (d) Precision.
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TABLE 1. Overall comparison of novel sleep apnea detection model using
different optimization algorithms for two datasets.

F1-Score: It calculates the harmonic mean value of precision
and recall.

F1Score = 2∗
prn ∗ re
prn + re

(39)

FDR: It is defined as the ratio between false positive and total
number of both true and false positive.

FDR =
FPo

TPo + FPo
(40)

NPV: The negative predictive rate is estimated by the
ratio of true negative to the total value of true and false
negative.

NPV =
TNe

TNe + FNe
(41)

MCC: It is evaluated by the difference between the classified
value and actual value.

MCC

=
TPo × TNe − FPo × FNe

√
(TPo + FPo) (TPo + FNe) (TNe + FPo) (TNe + FNe)

(42)

TABLE 2. Overall comparison of novel sleep apnea detection model using
various deep classification techniques for two datasets.

C. PERFORMANCE ANALYSIS ON SUGGESTED APNEA
DETECTION FOR DATASET 1
While using dataset 1, Figure 10 shows the performance
evaluation of sleep apnea detection over other heuristic
approaches. Similarly, Figure 11 illustrates the evaluation for
novel detection model using classical deep learning tech-
niques with respect to four measures. The FNR analysis of
recommendedmodel is shown in Figure 10 (b) compared over
classical algorithms. When the learning percentage is 55, the
FNR value is yielded as 58.8%, 45%, 35.3% and 17.6% of
HHO-MCA-DLS, EHO-MCA-DLS, AHA-MCA-DLS and
PBA-MCA-DLS, correspondingly, which is greater than pro-
posed AHPBA-MCA-DLS. Hence, the less false rate proves
that it renders effective results for detecting the sleep apnea.

D. PERFORMANCE ANALYSIS ON SUGGESTED APNEA
DETECTION FOR DATASET 2
Figure 12 & 13 represent the comparative analysis of
enhanced apnea detection model compared with vari-
ous heuristic and deep learning models using dataset 2.
Figure 13 (c) shows the FPR analysis of novel method with
respect to learning rate. At 65th learning percentage, the FPR
of proposed model is acquired as 1.4% less than 1DCNN,
1.25% less than LSTM, 0.825% less than DNN and 0.475%
less than Ensemble model, respectively. Thus, the method
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FIGURE 13. Performance analysis of suggested sleep apnea detection model compared over traditional deep learning model for
dataset 2 with respect to (a) Accuracy, (b) FNR, (c) FPR and (d) Precision.

FIGURE 14. Accuracy of the MCADLS model with and without optimal
feature selection.

attains fewer flaw rates to achieve more detection accuracy
value.

E. OVERALL COMPARISON OF NOVEL DETECTION
MODEL USING CLASSICAL ALGORITHMS
The overall estimation of proposed model with other algo-
rithms is given in Table 1. The sensitivity value of proposed
AHPBA-MCA-DLS is obtained as 5.15% higher than HHO-
MCA-DLS, 4% more than EHO-MCA-DLS, 2.63% more
than AHA-MCA-DLS and 1.31% higher than PBA-MCA-
DLS, accordingly using dataset 1. Thus, the maximum true
rate ensures that the model exhibits efficient performance.

F. OVERALL COMPARISON OF NOVEL DETECTION
MODEL USING CLASSICAL LEARNING MODELS
Table 2 computes the overall value of proposed model and
compares over distinct learning approaches. In dataset 2, the
specificity value is obtained as 5.74% of 1DCNN, 4.64%

TABLE 3. Comparison of the proposed classifier with existing methods
from literature with respect to dataset1.

of LSTM, 3.26% of DNN and 1.9% of Ensemble, which is
inferior to suggested AHPBA-MCA-DLS. Hence, the results
declared here proves that AHPBA enhances the detection
accuracy value.

Table 3 and 4 shows the comparative reports of test-
ing accuracy with number of features and time taken. The
reported value for the literature works and the proposed
model are acquired after implementing the same in our hard-
ware using the signals in dataset1, as it is the most utilized
dataset by many literatures for the detection of sleep apnea.
The time reported in table 3 is the testing time taken to classify
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FIGURE 15. Chosen hyperparameters vs accuracy for dataset1.

the subject for a complete signal. Furthermore, the suggested
cascaded classifier has excellent accuracy but also consumes
significant processing time.

When it is further optimized, accuracy continues to rise,
but testing times get longer. Therefore, there is a trade-off
between accuracy and computational time. Compared to
other optimization algorithm our proposed algorithm pro-
vides high accuracy with reasonable computation time.

This is the inevitable limitation of this work. To verify the
reliability of this proposed model, the trained model on the
first dataset is set to test the signals in the test set 10 times
and the values of the most important metrics are given
below.

From the above table it is evident that accuracy is
96.42051±0.505 for dataset1, similarly the same pro-
cess was tried for dataset2, and the accuracy achieved
is 96.4009±0.644 which is far better than the accuracies
obtained from other models.

G. ANALYSIS OF FEATURES SELECTION PROCESS FOR
TWO DATASETS
The accuracy obtained from MCADLS by giving inputs with
and without weight optimization in feature selection is shown
in Figure 14. From the graphical results, it is evident that the
accuracy value gets increased by using the optimal selection
of features and weights for both the datasets. Therefore,
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FIGURE 16. Chosen hyperparameters vs accuracy for dataset2.

feature selection with the help of this AHPBA optimization
provides best results.

H. CLASSIFIER’S HYPER PARAMETER OPTIMIZATION
The optimizer optimizes the hidden neurons of 1DCNN and
LSTM, learning rate of both 1DCNN and DNN, epochs in
LSTM and batch size of DNN are optimally determined
by using AHPBA to get the effective classification results.
Figure 15 represents the relationship between various hyper-
parameters with respect to accuracy for dataset1. Using
AHPBA all those hyperparameters are tuned and utilized
for detecting OSA. Figure 15a represents the relationship
between hidden neuron count and accuracy. The AHPBA

optimizes the hidden neuron count to get the maximum accu-
racy. Here it is around 40. Whereas for the second dataset
it varies. It can be visualized in the figure 16a. Figure15b
represents the relation between accuracy and the learning rate
of 1DCNN. The accuracy is maximumwhen the learning rate
is 0.5. Similarly Figure 15 c & d represents the relationship
between batch size and learning rate of Deep Neural Network
with respect to accuracy respectively.

The AHPBA helps to find the optimum value of both
the hyper parameters to get the maximum accuracy. e & f
of Figure15 represents the relationship between epoch and
hidden neuron count with respect to accuracy for LSTM.
The optimizer helps to find the optimal value of the above
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TABLE 4. Comparison of the proposed optimized classifier with other
existing optimization techniques with respect to dataset1.

TABLE 5. Results of 10 runs on all 35-test data in dataset1.

mentioned hyperparameters which eventually improves the
performance of classifiers in detecting the OSA. Figure 16
represents the relationship between various hyperparameters
with respect to accuracy for dataset2. From the above figures
it is very clear that optimization has played a very important
role in improving the classifier’s performance.

VII. CONCLUSION
This work has presented the adaptive detection model for
diagnosing the sleep apnea. The proposed AHPBA-MCA-
DLS provides better results compared to the recent existing
optimization technique-based classifiers. While detecting
OSA from the ECG signals in dataset1, AHPBA-MCA-DLS
provides an accuracy of 96.4% which is 5.49% higher than
HHO-MCA-DLS, 4.034% higher than EHO-MCA-DLS,
2.72% higher than AHA-MCA-DLS, 1.32% higher than
PBA-MCA-DLS. Whereas AHPBA-MCA-DLS provides an
accuracy of 96.4% while using ECG signals in dataset2 for
OSA detection, which is 5.29% higher than HHO-MCA-
DLS, 4.09% higher than EHO-MCA-DLS, 2.57% higher
than AHA-MCA-DLS, 1.39% higher than PBA-MCA-
DLS. Thus, on an average AHPBA-MCA-DLS provides
an accuracy which is 5.39%, 4.06%, 2.65%, 1.35% greater
than HHO-MCA-DLS, EHO-MCA-DLS, AHA-MCA-DLS,
PBA-MCA-DLS respectively. To reduce the number of fea-
tures from QRS analysis by denoising it, an auto encoder
has been used. The usage of autoencoder has solved the
dimensionality complexity to a major extent. In future work
instead of autoencoder some more dimensionality reduction

algorithms can be used to enhance the feature selection
process. Moreover, the fitness function of the AHPBA can
be changed if needed for getting maximum accuracy and
precision values. Without the optimization, the proposed
MCADLS provides an accuracy of 94.49% & 94.53% for
dataset1 and dataset2 respectively, which is slightly better
than conventional classifiers. Here the spectral features are
fused with the temporal features, that paves the way for
utilising most of the meaningful features of the ECG signal
in detection process, which only a very few has addressed.
But those literatures didn’t employ optimization for enhanc-
ing the result. Three best classifiers in business have been
ensembled in this work, which are further optimized to get
the solution very quickly and correctly. To prove the model’s
robustness, it has been tested with another dataset (mit-bih-
polysonography) apart from ‘‘The APNEA_ECG dataset’’
and the results prove that this proposed model can be a robust
one for different datasets. We have shown the reliability of
the proposed model by testing it multiple times over two
different datasets and the results have been tabulated in table
5. The inevitable limitation of this model is, at the cost of
computational time the accuracy can be increased. Though
the proposed model works efficiently well in classifying the
apnea from non apnea in ECG signals, the computational
time taken for cascaded approach is quite higher than the
traditional individual one. It can be reduced in future by fine
tuning the search space of the optimization algorithm.
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