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ABSTRACT This paper introduces a novel application of the recently developed meta-heuristic algorithm
called Geometric Mean Optimization (GMO). The algorithm combines the unique properties of the geomet-
ric mean operator inmathematics with the power loss sensitivity index (PLSI) to address various optimization
problems in distribution networks. Specifically, the paper focuses on the problems of optimal network
reconfiguration (NR), optimal distributed generation (DG) unit allocation with optimal power factor (OPF)
and unity power factor (UPF), as well as simultaneous optimal NR and DG unit allocation while considering
UPF and OPF. The proposed technique considers operational constraints and three loading levels (0.5 p.u
loading - light load level, 1.0 p.u loading - nominal load level, and 1.6 p.u loading - heavy load level) to
solve single and multi-objective functions such as maximizing voltage stability index (VSI) and minimizing
total active power loss (TAPL) and voltage deviation (VD) in the distribution network (DN). To evaluate the
effectiveness of the proposed technique, experiments were conducted on IEEE 33 bus and 69-bus networks.
The results of simultaneous optimal NR and DG unit allocation with OPF showed significant improvements
in terms of VSI, TAPL, and VD compared to other scenarios, including optimal simultaneous NR and DG
unit allocation with UPF, only DG unit allocation with UPF and OPF, and only NR and base case. Moreover,
when consideringmultiple objectives, the simultaneous allocation of NR andDG units with OPF consistently
yielded better results for all load conditions. Furthermore, the proposed technique was compared to existing
algorithms in the literature, specifically for the objective of TAPL at the nominal load level. The comparison
demonstrated that the combined technique outperformed other methods in terms of TAPL for all cases,
highlighting its efficacy. The proposed technique exhibited high accuracy and convergence speed, making it
a favorable choice for simultaneous optimal NR and DG unit allocation with UPF and OPF across different
load conditions.

INDEX TERMS Distributed generation, distribution network, geometric mean optimization, network
reconfiguration, power loss sensitivity index.

I. INTRODUCTION
The power distribution network (DN) serves as the crucial
link connecting the power system to numerous consumers,

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Chen .

and its significance and function cannot be substituted. While
they are often designed in a meshed configuration, they com-
monly function in a radial arrangement due to various factors,
including cost savings, current control for power manage-
ment, limited coordination of protection systems, reduced
failure rates, and voltage mode control [1].
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Due to the ongoing increase in power consumption across
different sectors, radial distribution networks (DN) often
operate near their voltage stability limits [2]. This results
in higher financial losses and reduced system efficiency.
To address this issue, several approaches have been proposed
to mitigate total active power loss (TAPL), voltage deviation
(VD), and improve the voltage stability index (VSI) in radial
DN. These approaches include the allocation of distributed
generation (DG) units based on renewable energy sources
(RES), capacitor installation, network reconfiguration (NR),
and voltage regulation [3].
In recent years, there has been significant interest in the

combined implementation of distributed generation (DG)
allocation and network reconfiguration (NR) solutions, con-
sidering their close relationship with implementation costs
and the development context of power sources. With the
rapid growth in electricity demand, increasing environmen-
tal concerns, and government policies promoting renewable
energy technologies, the first solution has gained prominence.
By carefully selecting the optimal location and size of DGs
and designing an efficient radial structure, significant reduc-
tions in power loss and improvements in technical indicators
can be achieved.

On the other hand, the second technique involves alter-
ing the radial structure of the distribution network (DN) by
changing the status of network switches. This approach takes
advantage of the inherent annular structure of the DN, which
can be operated in a radial configuration without the need for
additional equipment investments. However, implementing
each technique separately on a DN may lead to suboptimal
results, as the optimal solutions of one technique may no
longer be valid or effective after implementing the other
technique on the same DN [4].

The available literature can be broadly categorized into
three groups, depending on the approaches employed for
addressing the challenge of integrating Distributed Gener-
ators (DGs) and Non-Revenue (NR) considerations. These
categories are as follows:
✓ Heuristic and metaheuristic strategies, documented in ref-

erences [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], and [23].

✓ Analytical techniques, discussed in references [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], and [40].

✓ Hybrid techniques, explored in references [41], [42], [43],
[44], [45], [46], [47], [48], and [49].
Figure 1 illustrates the various methodologies utilized

to address the integration of DGs and NR considerations,
whether approached separately or concurrently.

A diverse range of heuristic and metaheuristic methods has
been employed in the literature. In [5], an innovative approach
known as the Mayfly Algorithm (MA) was introduced to
optimize Non-Revenue (NR) aspects with the aim of mini-
mizing power losses. In [6], the Salp SwarmAlgorithm (SSA)
was highlighted as an effective and contemporary optimiza-
tion technique for efficiently addressing radial distribution

FIGURE 1. Classification of used methods.

NR problems, ultimately reducing Total Annual Power Loss
(TAPL). In [7], switch exchanges were executed based on an
estimate of the sensitivity of active power loss, focusing on
power loss minimization.

In [8], a knowledge-based network was developed to
identify pairs of switching statuses that ensure the radial
topology of the network. However, it is worth noting that
while knowledge-based heuristic techniques are considered
natural and straightforward, they may not consistently yield
optimal results for highly intricate systems [9].

To tackle these complex issues, various metaheuristic
methods have been applied. These include the Modified
Flower PollinationAlgorithm (MFPA) [10], Evolution Strate-
gies (ES) [11], and Differential Evolution (DE) [12]. More-
over, the literature has explored the utilization of the Harris
HawksOptimizer (HHO) [13], a Hybrid Approach (HA) [14],
the Harmony Search Algorithm (HSA) [15], the Ant Colony
Search Algorithm (ACSA) [16], the Backtracking Search
Optimization Algorithm (BSOA) [17], the Grey Wolf Opti-
mizer (GWO) [18], the Henry Gas Solubility Optimization
(HGSO) method, and the Artificial Ecosystem-Based Opti-
mization (AEO) algorithms tominimize power losses through
optimal allocation of Distributed Generation (DG) units [19].
In [20], an efficient algorithm (EA) was proposed specif-

ically for minimizing power losses in Distribution Networks
(DN). The Particle Swarm Optimization (PSO) method was
explored in [21], while the Electrostatic Discharge Opti-
mization Algorithm (ESDOA) was introduced to enhance
Voltage Stability Index (VSI) and reduce power losses [22].
Additionally, in [23], researchers introduced the Tree Growth
Algorithm (TGA) to address the DG allocation problem in
Distribution Networks (DNs) with the objective of minimiz-
ing power losses.

Numerous mathematical techniques have been extensively
utilized for addressing NR (Network Reconfiguration) and
DG (Distributed Generation) allocation problems, each offer-
ing various levels of precision and effectiveness. These
methods encompass mixed-integer linear programming
(MILP) [24], second-order mixed-integer cone programming
(MISOCP) [25], nonlinear programming (NLP) [26], fuzzy
adaptation of evolutionary programming (FAEP) [27], linear
programming [28], [29], hybrid MILP [30], [31], nonlinear
solving programming [32], [33], quadratic solving program-
ming [34], [35], Kalman’s filter algorithm [36], dynamic
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programming (DP) [37], improved MILP [38], improved
analytical approach [39], multi-period optimal power flow
(MP-OPF) [40], and more.

It is evident that the formulation of NR and DG allo-
cation problems becomes intricate due to the constraints
linked to nonlinear optimization, nonlinear constraints, and
discrete variables encountered when employing these tech-
niques. Consequently, applying these methods to NR and DG
allocation problems remains a challenging endeavor.

To tackle these complexities, a hybrid optimization
approach has emerged, combining various algorithms to
enhance the efficiency of solving DG allocation problems
while minimizing power losses in the distribution network
(DN). For instance, the hybrid salp swarm algorithm (HSSA)
is employed to minimize power losses in DN [41]. In another
approach, the NRmethod is leveraged to minimize line power
loss costs in DN [42], while a genetic algorithm-enabled
particle swarm optimization (PSOGA) is utilized for NR
with the same objective [43]. In pursuit of Transmission and
Distribution System Analysis for Power Losses (TAPL) min-
imization, a hybrid chaotic golden flower algorithm (CGFA)
is presented [44]. Additionally, a hybrid Fuzzy-flower pol-
lination algorithm (FFPA) is developed to offer a versatile
solution [45].

Authors have also explored the fusion of multiple algo-
rithms to enhance performance. For instance, a hybrid
algorithm incorporating both PSO and ant colony opti-
mization (ACO) outperforms individual algorithms in [46].
Performance evaluations have been conducted on PSO and
genetic algorithms (GA), revealing PSO’s superiority and its
capacity to mitigate some of the drawbacks of the individual
algorithms [47]. Furthermore, a hybrid chaotic grasshop-
per optimization algorithm (CGOA) is suggested for DG
allocation [48], and the combination of PSO with gravita-
tional search (GS) algorithm is proposed and evaluated for
efficiency [49].

Several studies have addressed the concurrent optimiza-
tion of Distributed Generation (DG) allocation and Network
Reconfiguration (NR) problems, employing a range of meta-
heuristic algorithms. These include the Fireworks algorithm
(FWA) [50], the Intersect mutation differential evolution
(IMDE) algorithm [51], the adaptive modified whale opti-
mization algorithm (A-MWOA) [52], the Refined genetic
algorithm (RGA) [53], the Improved sine-cosine algorithm
(ISCA) [54], and the Efficient harmony search algorithm
(EHSA) [55].
In a different study [56], researchers introduced the adap-

tive cuckoo search (ACSA) algorithm to minimize power
losses in distribution networks (DNs) by simultaneously
reconfiguring the network and allocating DG resources.
In [57], an enhanced Elitist-Jaya (IEJAYA) algorithm was
proposed for DG integration and network restructuring.
Another study [58] implemented a modified rainfall opti-
mization (MRO) algorithm to address the simultaneous
optimization of NR and DG placement in radial DNs. In [59],

the arithmetic optimization algorithm (AOA) was introduced
to minimize Transmission and Distribution System Analy-
sis for Power Losses (TAPL) and voltage deviation (VD)
while improving voltage stability index (VSI) in radial DNs.
Furthermore, an Artificial Bee Colony algorithm (ABCA)
was presented in [60] to minimize power loss through NR and
DG allocation in DNs. In [4], the coyote algorithm (COA)
was introduced to minimize TAPL in DNs. Additionally,
a novel chaotic search group algorithm (CSGA) [61] aimed
to minimize TAPL in DNs, while a three-dimensional group
search optimizer (3D-GSO) technique [62] was proposed for
the concurrent planning of DG units andNR. Amixed-integer
linear programming (MILP) model [63] was developed for
the simultaneous planning of DG units and NR with the goal
of minimizing TAPL and VD in DNs.

Selecting appropriate algorithms is a critical consideration
when employingmetaheuristic-based approaches because the
effectiveness of these algorithms can vary depending on the
problem at hand. While metaheuristic techniques can excel in
certain scenarios, they may yield suboptimal results in others.
Hence, it is essential to identify the most suitable algorithm
when employing metaheuristic-based approaches to address
specific problems.

This study seeks to address the simultaneous NR and DG
allocation problem with optimal power factor (OPF) and
unity power factor (UPF) operation of DG units under varying
load conditions. It introduces a novel Geometric Mean Opti-
mization (GMO) algorithm in conjunction with a Power Loss
Sensitivity Index (PLSI) to achieve this goal. Notably, this
researchmarks the first implementation of GMOwith PLSI to
simultaneously optimize DG allocation and NR while reduc-
ing TAPL and VD and improving VSI, all while adhering
to practical constraints like power balance, voltage, current
limits, and DG sizing. The proposed approach, combining
GMO and PLSI, was evaluated on the standard IEEE 33 and
69 bus networks for solving NR, DG allocation with UPF
and OPF, and the simultaneous NR and DG allocation with
UPF and OPF, considering both multi-objective and single-
objective optimization objectives. Thanks to its accuracy and
rapid convergence, this method consistently achieves near-
optimal solutions.

The main contributions of this paper can be summarized as
follows:
✓ The paper introduces a novel approach that combines

the GMO algorithm with PLSI to address the simul-
taneous optimization problem of distributed generation
(DG) allocation and network reconfiguration (NR). The
approach considers multiple objectives, specifically the
minimization of total active power loss (TAPL) and volt-
age deviation (VD), as well as the improvement of voltage
stability index (VSI).

✓ The proposed combined technique is successfully applied
and tested on small and medium-sized 33 and 69-bus
networks. The objective is to optimize the simultaneous
allocation of DG units and NRwhile considering both unit
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power factor (UPF) and optimal power flow (OPF) under
different load levels.

✓ A comparative analysis is performed among various sce-
narios, including NR alone, DG allocation with UPF and
OPF, simultaneous DG allocation with UPF, and simul-
taneous DG allocation with OPF and NR. The results
demonstrate that the simultaneous DG allocation with
OPF and NR is highly efficient in terms of achieving
the goals of TAPL and VD minimization, as well as VSI
improvement.

✓ Furthermore, the proposed technique is compared with
existing techniques from the literature, specifically for
the goal of TAPL at the nominal load level. The com-
parison reveals that the proposed technique outperforms
other modern techniques in terms of delivering the most
accurate results for the tested networks.

The paper is organized as follows: Section II introduces
the PLSI method. In Section III, the problem formulation of
the study is presented. The proposed technique and its solu-
tion process are described in Section IV. Section V presents
the numerical results and discussions. Finally, Section VI
presents the conclusions of the paper.

II. POWER LOSS SENSITIVITY INDEX (PLSI)
In this paper, PLSI is employed to identify suitable bus can-
didates for integrating DG units into the distribution network
(DN). This approach is adopted to streamline the search pro-
cess, thereby expediting the solution time. Figure 2 provides a
depiction of a simplified two-bus grid-connected DN, serving
as an illustrative example to demonstrate the implementation
of PLSI for this purpose.

FIGURE 2. The equivalent single line diagram of two bus of DN that are
connected to the grid and DG unit.

where, Pl and Pn are two active power flows of the
buses l and n, Ql and Qn are two reactive power flows of
the buses l and n, Vl and Vn are the magnitudes of voltage
of buses l and n.Rln andXln are the resistance and reactance of
the line between buses l and n.PDG,n andQDG,n are generated
active reactive power output of DG unit, Pload,n and Qload,n
are active and reactive power loads at bus n.
To calculate power loss on line ln following equation is

used:

Pln−loss =
(P2n + Q2

n)∗Rln
(Vn)2

(1)

To calculate the PLSI, we use (2)

∂Pln−loss

∂Qn
=

2Qn∗Rln
(Vn)2

(2)

Figures 3 and 4 illustrate the PLSI results for the 33-bus
and 69-bus test networks. Following the calculation of PLSI
values for the buses, a descending sorting process is applied.
Buses with higher PLSI values are identified as more favor-
able locations for DG integration. This selection process
considers up to 50% of the network buses, as detailed in prior
studies [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[60], [64].

FIGURE 3. A 33-bus test network’s PLSI values.

FIGURE 4. A 69-bus test network’s PLSI values.

III. PROBLEM FORMULATION
Minimizing total active power loss (TAPL) (F1), reducing
voltage deviation (VD) (F2), and enhancing voltage stability
index (VSI) (F3) within a distribution network (DN) can be
accomplished through the optimal placement of distributed
generation (DG) units, while taking into account operational
constraints.
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The TAPL, which can be mathematically expressed as
follows [65]:

F1 = TAPL =

NL∑
m=1

Pln−loss(m) (3)

where, NL is the total line number in the test network.
The voltage deviation (VD) of a network can be expressed

in the following formula [59]:

F2 = 1VD =

Nbus∑
n

(Vsluck − Vn)2 (4)

where, Vsluck represents substation bus voltage and in this
study it equal to 1.0 p.u. To eliminate the possibility of a
negative VD value, a square indicator is added to the formula.

The bus VD is the refers to the quality of voltage across the
network buses. In order to achieve a regulated voltage profile
across the network, bus voltage regulation is an essential duty
of utilities.

The voltage stability index (VSI) is also calculated to show
the impact of the allocation of DG units and NR simultane-
ously on network stability. The network is considered more
stable if the VSI value is closer to one. VSI is calculated at
bus n as follows [66]:

F3 = VSI (n) = |Vl |4 − 4 ∗ (Pn ∗ Xln − Qn ∗ Rln)2

− 4 ∗ (Pn ∗ Rln + Qn ∗ Xln) ∗ |Vl |2 (5)

A. OBJECTIVE FUNCTION
A weighted sum approach (WSA) is used in this study to
integrate all the objective functions simultaneously into a
single objective. An objective function for the problem can
be represented as follows:

OF = Min(w1 ∗ F1 + w2 ∗ F2 + w3 ∗ 1/F3) (6)

where, w1, w2, and w3 are the weighting factors. All of the
objectives’ functions are assumed to have equal weights in
this paper. A weight factors should be equal to one when its
total absolute value is added up, as shown in the equation
displayed below [59], [60]:

|w1| + |w2| + |w3| = 1 (7)

B. EQUALITY RESTRICTIONS
The power balance must be met the following constraints [5],
[6]:

Psub +

MDG∑
l=1

PDG(l) =

L∑
l=1

Pln−loss(l) +

M∑
l=1

Pload (l) (8.1.)

Qsub +

MDG∑
l=1

QDG(l) =

L∑
l=1

Qln−loss(l) +

M∑
l=1

Qload (l) (8.2.)

where, Psub and Qsub are displays the substation’s reactive
and active power.MDG is the total installed DG number, M is
representing the total line number.

C. INEQUALITY RESTRICTIONS
1) VOLTAGE LIMITS
The bus voltages must be in its minimum and maximum
limits.

Vmin ≤ |Vn| ≤ Vmax (9)

2) THE INTEGRATED DG UNITS POWER OUTPUT
CONSTRAINTS AS FOLLOWS [9]

Pmin
DG ≤ PDG(n) ≤ Pmax

DG (10.1.)

Qmin
DG ≤ QDG(n) ≤ Qmax

DG (10.2.)

where, Pmin
DG ,Pmax

DG and Qmin
DG ,Qmax

DG , are power limits for DG
units in terms of their active and reactive power at lower and
upper levels, respectively.

3) THE DG UNITS POWER FACTOR CONSTRAINTS AS
FOLLOWS

PFDG,min ≤ PFDG,n ≤ PFDG,max (11)

where, PFDG,min and PFDG,max are minimum and maximum
limits of power factor.

4) LINE CAPACITY CONSTRAINTS
The line must meet the following capacity limits:

Sln ≤ Sln(rated) (12)

5) RADIAL TOPOLOGY CONSTRAINTS
There must be no isolated buses within the DN topology, and
its topology must be radial [5], [6].

det[A] = 1or−1 for radial toplogy

det[A] = 0 for nonradial toplogy (13)

IV. THE GEOMETRIC MEAN OPTIMIZATION (GMO)
ALGORITHM
The Geometric Mean Optimization (GMO) algorithm is
a recently created meta-heuristic optimization technique
inspired by the distinctive characteristics of the geometric
mean operator in mathematics [67]. By employing this oper-
ator, it becomes feasible to assess the suitability and diversity
of search agents simultaneously. GMO calculates the weight
of each agent by considering the geometric mean of the
scaled objective values (OV) of its counterparts, signifying
that the agent is aptly positioned to direct other agents in
the optimization problem-solving process. This guidance is
based on the geometric mean of their scaled OV.
To implement the GMO algorithm, the following steps

should be adhered to:

A. INITIALLY, SEARCH AGENTS’ VELOCITY AND
POSITIONS ARE GENERATED RANDOMLY

V 0
i U (Vmin,Vmax)

X0
i U (Xmin,Xmax) (14)
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where, Xmin, Vmin and Xmax,Vmax are the lower and upper
limits of the optimization dimension.

B. THEN, THE FITNESS FUNCTION VALUES ARE
CALCULATED FOR ALL SEARCH AGENTS TO FIND THE
PERSONAL BEST POSITION OF ALL SEARCH AGENTS

fit(Xi) (15)

C. IN THIS STEP, THE FUZZY MEMBERSHIP FUNCTION
(MF) IS CALCULATED FOR ALL OPPOSITE AGENTS OF A
SPECIFIC AGENT BY MULTIPLYING THE OV

MF tj =
1

1 + exp
[
−

4
σ t

√
e ∗ (X tbest,j − µt

] ; j = 1, 2, . . .N

(16)

where X tbest,j is the personal best agent’s OV at the tth iter-
ation; σ t and µt are the all personal best search agents’
standard deviation (SD) and mean values of the fitness func-
tion, MF tj is the MF value of the jth personal best agent, e is
Napier’s constant, and N is the total number of search agents.

D. IN THIS STEP, THE DUAL-FITNESS INDEX (DFI) IS
EXPRESSED FOR SEARCH AGENTS

DFI ti = MF t1 ∗ . . . ∗MF ti−1 ∗MF ti+1 ∗ . . . ∗MF tN =

N∏
j=1
j̸=i

MF tj

(17)

E. DFI INDEXES IS SORTED IN DESCENDING ORDER TO
CHOOSE THE FIRST NBEST ELITE AGENTS
F. IN THIS STEP, THE GUIDE AGENTS CALCULATE AS
FOLLOWS

Y ti =

∑
j∈Nbest,j̸=i

DFI tj ∗ Xbestj∑
j∈Nbest

DFI tj + ε
(18)

where Y ti is unique global guide agent position at iteration t
for the agent i, Xbestj is the personal best position of the jth
search agent, and ε is a tiny positive number it added to avoid
the singularity.

G. IN THIS STEP, THE GUIDE AGENTS Y t
i ARE MUTATED

IN A GMO PROCESS. FOR THIS MUTATION GAUSSIAN
MUTATIONS ARE CONSIDERED. THE FOLLOWING
EQUATION IS USED TO FOR THIS TYPE OF MUTATION TO
BE IMPOSED ON THE GUIDE AGENTS

Y ti,mut = Y ti + w ∗ randn ∗ (sd tmax − sd t ) (19)

where randn is normally distributed random number, sd t is
the SD for the personal best agents at the tth iteration, sd tmax
is maximum SD values of the personal best agents.w is muta-
tion step size. Based on the lapse of iterations, the mutation

step size is calculated using the following formula:

w = 1 −
t

Tmax
(20)

where, t and Tmax are current and maximum iteration
numbers.

H. FINALLY, THE SEARCH AGENTS’ VELOCITY AND
POSITIONS UPDATE USING THE FOLLOWING EQUATION

V t+1
i = w ∗ V t

i + ϕ ∗ (Y ti,mut − X ti );

ϕ = 1 + (2 ∗ rand − 1) ∗ w (21)

X t+1
i = X ti + V t+1

i (22)

where, V t
i is ith velocity of search agent’s at the tth iteration,

V t+1
i is the velocity at (t + 1)th iteration, Y ti,mut is global guide

position for the agent i and X ti is a position of the ith agent’s,
ϕ is a scaling parameter, and rand is a random number within
(0, 1).

The overall procedure of the proposed technique used in
this study in order to solve the optimization problem is shown
in Fig. 5. Used parameters and operational constraints of
the proposed technique and objective functions are tabled in
Table 1.

TABLE 1. Operational constraints and used parameters.

V. RESULTS AND DISCUSSION
The proposed technique is assessed by conducting an evalua-
tion using the standard IEEE 33 and 69 bus test networks. The
simulation is carried out using MATLAB R2021b software.
To showcase the effectiveness of the proposed approach,
various scenarios are considered:
✓ Scenario 1: In this scenario, the system operates at a light

load level of 0.5 p.u.
✓ Scenario 2: This scenario represents the nominal load

level with a loading of 1.0 p.u.
✓ Scenario 3: The system is subjected to a heavy load level

of 1.6 p.u. in this scenario.
To thoroughly evaluate the proposed approach, the

following cases are examined:
✓ First Case: This is the base case.
✓ Second Case: Only NR (Newton-Raphson) is applied.
✓ Third Case: Three distributed generators (DGs) are

allocated with Unity Power Factor (UPF).
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FIGURE 5. The overall process flowchart of solving the optimization
problem using the proposed algorithm.

✓ Fourth Case: Three DGs are allocated with Optimal Power
Flow (OPF) considerations.

✓ Fifth Case: DG allocation is performed simultaneously
with UPF and NR.

✓ Sixth Case: DG allocation is carried out simultaneously
with OPF and NR.
Figures 6 and 7 provide single-line diagrams of the test

networks, which operate at a base voltage (kV) of 12.66 kV
and a base apparent power (MVA) of 100 MVA for both the
33 and 69 bus distribution networks.

The initial test network is an IEEE 33-bus configuration
featuring five open switches identified as s33, s34, s35, s36,

FIGURE 6. The line diagram of the 33-bus network.

FIGURE 7. The line diagram of the 69-bus network.

and s37. For three distinct load levels, the active and reac-
tive power demands of this initial network are as follows:
1857.5 kW and 1150.0 kVAr, 3715.0 kW and 2300.0 kVAr,
and 5944.0 kW and 3680.0 kVAr.

At these three load levels, the initial active power losses in
the network are recorded as 48.7898 kW, 210.9983 kW, and
603.4557 kW, respectively. The lowest voltage levels within
the network are 0.95395 p.u, 0.90371 p.u, and 0.83581 p.u,
corresponding to the three load levels. Additionally, the low-
est Voltage Stability Index (VSI) values for the test network
are 0.82815 p.u, 0.66697 p.u, and 0.488002 p.u across the
same load levels. The Voltage Deviation (VD) within the
network is observed to be 0.03076 p.u, 0.13388 p.u, and
0.3863506 p.u, respectively, for the three different load levels.

For more detailed information about this test network,
please refer to [68].

The second test network consists of a standard
IEEE 69-bus configuration, featuring five open switches
labeled as s69, s70, s71, s72, and s73. For this network, the
active and reactive power loads vary across three different
load levels, with values of 1901 kW and 2329.9 kVAr,
1347 kW and 3801.5 kVAr, as well as 6084 kW and
4311 kVAr, respectively.

Additionally, the initial active power losses at these
load levels are measured at 51.6063 kW, 225.0014 kW,
and 652.5322 kW. The lowest voltage levels observed in
this test network are 0.95664 per unit (p.u), 0.909 p.u,
and 0.84397 p.u, corresponding to the three load levels,
respectively.
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FIGURE 8. Effect of NR, DG allocation with UPF, DG allocation with OPF,
simultaneous NR+DG with UPF, and simultaneous NR+DG with OPF on
voltage profile of 33-bus DN.

Furthermore, the lowest Voltage Stability Index (VSI)
values for the test network are 0.8375036 p.u, 0.68274785 p.u,
and 0.5073609 p.u, again for the three different load levels,
respectively. Lastly, the Voltage Deviation (VD) for this

FIGURE 9. Effect of NR, DG allocation with UPF, DG allocation with OPF,
simultaneous NR+DG with UPF, and simultaneous NR+DG with OPF on
line power loss of 33-bus DN.

network is reported as 0.02291670 p.u, 0.09964988 p.u, and
0.2876265 p.u, corresponding to the same three distinct load
levels. For additional details about this test network, please
refer to [69].
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FIGURE 10. Effect of NR, DG allocation with UPF, DG allocation with OPF,
simultaneous NR+DG with UPF, and simultaneous NR+DG with OPF on
VSI of 33-bus DN.

A. THE IEEE 33-BUS NETWORK
1) SIMULTANEOUS OPTIMIZATION OF TAPL, VD, AND VSI
Table 2 presents the outcomes achieved using the proposed
method across various scenarios encompassing diverse load

FIGURE 11. Convergence curve of 33-bus DN on NR, DG allocation with
UPF, DG allocation with OPF, simultaneous NR+DG with UPF, and
simultaneous NR+DG with OPF.

conditions. These scenarios include the base case, NR,
allocation of three DG units with UPF, allocation of three
DG units with OPF, as well as the simultaneous alloca-
tion of DG units with UPF and NR, and the simultaneous
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TABLE 2. Obtained simulation results of the 33-bus network under different loading levels considering simultaneous optimization of TAPL, VD and VSI.

allocation of DG units with OPF and NR in the 33-bus net-
work. The proposed approach demonstrates its effectiveness
by delivering superior results in the realm of multi-objective
optimization for distribution networks, achieved through
the optimal allocation of DG units using OPF and NR
techniques.

The test network’s total active power loss (TAPL) for
different load levels is decreased to 33.269 kW,139.5513 kW
and 381.2399 kW. The test network’s voltage deviation (VD)
is decreased to 0.01160 p.u, 0.048825 p.u, and 0.1206579 p.u,
and the test network’s lowest voltage stability index (VSI)
is enhanced to 0.88445p.u, 0.773405p.u, and 0.6640491 p.u,
respectively, when NR is executed.

After performing only three DG allocation with UPF in
the test network for different load levels, TAPL is decreased
to 17.6351 kW, 72.7911 kW and 193.8922 kW. The VD of
the test network is decreased to 0.00375p.u, 0.0156513 p.u,

and 0.04171801 p.u, respectively. The lowest VSI of the
test network is enhanced to 0.93881 p.u, 0.87797 p.u, and
0.80620823 p.u, respectively.

TAPL is decreased to 2.9203 kW, 11.7411 kW and
30.2407 kW. The VD of the test network is decreased to
0.0001580 p.u, 0.00062228 p.u, and 0.0015439 p.u, respec-
tively. The lowest VSI of the test network is enhanced to
0.98435 p.u, 0.969026 p.u, and 0.951273 p.u, respectively,
after performing only three DG allocation with OPF in the
test network for different load levels.

When optimal three DG units with UPF and NR simulta-
neously is optimally executed in the test network, TAPL is
decreased to 13.4861 kW, 54.4039 kW and 147.2994 kW.
The VD of the test network is decreased to 0.001946 p.u,
0.0071379 p.u, and 0.0143 p.u, respectively. The lowest VSI
of the test network is enhanced to 0.95195 p.u, 0.912250 p.u,
and 0.8613626 p.u, respectively.
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TABLE 3. A comparison of obtained results of the 33-bus network at nominal load level for TAPL.
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FIGURE 12. Effect of NR, DG allocation with UPF, DG allocation with OPF,
simultaneous NR+DG with UPF, and simultaneous NR+DG with OPF on
voltage profile of 69-bus DN.

TAPL is decreased to 2.9185 kW, 10.6414 kW and
11.774 kW. The VD of the test network is decreased
to 0.00018605 p.u, 0.0005755 p.u, and 0.0053006 p.u,

FIGURE 13. Effect of NR, DG allocation with UPF, DG allocation with OPF,
simultaneous NR+DG with UPF, and simultaneous NR+DG with OPF on
line power loss of 69-bus DN.

respectively. The lowest VSI of the test network is enhanced
to 0.984593 p.u, 0.9675944 p.u, and 0.9186783 p.u, respec-
tively, after performing simultaneously optimal three DG
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FIGURE 14. Effect of NR, DG allocation with UPF, DG allocation with OPF,
simultaneous NR+DG with UPF, and simultaneous NR+DG with OPF on
VSI of 69-bus DN.

units allocation with OPF and NR is optimally executed in
the test network for different load levels.

The results clearly demonstrate that the concurrent allo-
cation of DG with OPF and network reconfiguration in a

FIGURE 15. Convergence curve of 69-bus DN on NR, DG allocation with
UPF, DG allocation with OPF, simultaneous NR+DG with UPF, and
simultaneous NR+DG with OPF.

distribution network (DN) yields superior efficiency in multi-
objective optimization. Furthermore, Figures 8-11 illustrate
the influence of NR, the optimal integration of DG with
UPF and OPF, the simultaneous allocation of DG with
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TABLE 4. Obtained simulation results of the 69-bus network under different loading levels considering simultaneous optimization of TAPL, VD and VSI.

UPF and OPF, and NR in DN on various aspects such as
voltage profile, branch power losses, voltage stability index
(VSI), and the convergence curves of the objective function
for three different load levels.

2) MINIMIZATION TAPL AT NOMINAL LOAD LEVEL FOR
COMPARISON OBTAINED RESULTS WITH OTHER EXISTING
ALGORITHMS IN THE LITERATURE
The proposed method excels in minimizing total active power
loss (TAPL) within distribution networks (DN) by employing
optimal NR, integrating optimal DG with UPF and OPF,
and simultaneously allocating DG in conjunction with UPF
and OPF along NR. Table 3 presents a comparative analysis
between the results achieved through our proposed approach
and those obtained from various existing algorithms in the
literature under nominal load conditions.

When solely utilizing NR, our approach enables the
attainment of a minimum TAPL of 139.5513 kW, repre-
senting a remarkable 33.86% reduction in power losses
compared to NR alone [42], as well as surpassing the perfor-
mance of HSA [15], FWA [50], ACSA [16], and FAEP [27]
methods.

After performing only three DG allocation with UPF in
the test network, the proposed technique gives a minimum
TAPL is 72.7869 kW with a power loss reduction 65.51 % as
compared to BSOA [17], GWO [18], HHO [13], HGSO [19],
and AEO [19], respectively.
In the case of only three DG allocation with OPF in

the test network for nominal load level obtained, TAPL is
11.740 kW with a power loss reduction 94.44% as compared
to BSOA [17], HSSA [41], HHO [13], HGSO [19], and
AEO [19], respectively.
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TABLE 5. A comparison of obtained results of the 69-bus network at nominal load level for TAPL.
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When optimal three DG units with UPF and NR is
optimally implemented in the test network, the proposed
approach allows a minimum TAPL is 54.4039 kW with a
power loss reduction 74.22% as compared to AOA [59],
ISCA [54], and EHSA [55], respectively.
After performing optimal three DG unit allocation with

OPF and NR is optimally implemented in the test network for
nominal load level, the proposed technique gives a minimum
TAPL is 10.6411 kW with a power loss reduction 94.96 % as
compared to AOA [59], respectively.

The proposed method yields superior outcomes for reduc-
ing TAPL, demonstrating a substantial reduction in power
loss while maintaining acceptable voltage magnitudes com-
pared to compression techniques. Notably, when applying
OPF to DG with NR, it results in the lowest TAPL among all
scenarios. Moreover, DG coupled with OPF offers improved
performance over DG coupled with UPF by reducing TAPL
and enhancing the voltage profile, primarily due to its active
power loss reduction capabilities and reactive power support.

B. THE IEEE 69-BUS NETWORK
1) SIMULTANEOUS OPTIMIZATION OF TAPL, VD, AND VSI
The obtained results of the proposed technique for different
cases with different load level conditions, namely base case,
NR, three DG allocation with UPF, three DG allocation with
OPF, simultaneous DG allocation with UPF along NR, and
simultaneous DG allocation with OPF alongNR in the 69-bus
network are listed in Table 4. As a result of the proposed
approach, superior results are obtained in multi-objective
optimization in DN by optimally allocating DG units with
OPF and NR.

The test network’s TAPL for different load levels is
decreased to 23.6548 kW, 98.598 kW and 267.0943 kW.
The VD of the test network is decreased to 0.00569859 p.u,
0.02110687 p.u, and 0.0565237 p.u, and the VSI of the
test network is enhanced to 0.904963 p.u, 0.8125526 p.u,
and 0.7051437 p.u, respectively, when there is NR is
implemented.

After performing only three DG allocation with UPF in the
test network for different load levels, TAPL is decreased to
17.0434 kW, 69.4263 kW and 181.7813 kW. The VD of the
test network is decreased to 0.00136100 p.u, 0.00555632 p.u,
and 0.01444562 p.u, respectively. The lowest VSI of the test
network is enhanced to 0.95747027 p.u, 0.91493232 p.u, and
0.8645491 p.u, respectively.

TAPL is decreased to 1.1475 kW, 6.2191 kW and
11.8455 kW. The VD of the test network is decreased to
0.000036151 p.u, 0.000815867 p.u, and 0.00036674 p.u,
respectively. The lowest VSI of the test network is enhanced
to 0.988617 p.u, 0.97727662 p.u, and 0.9636189 p.u, respec-
tively, after performing only three DG allocation with OPF in
the test network for different load levels.

When optimal three DG units with UPF and NR simulta-
neously is optimally implemented in the test network, TAPL
is decreased to 9.0447 kW, 36.7738 kW and 98.97 kW.

The VD of the test network is decreased to 0.001038341 p.u,
0.003852307 p.u, and 0.009296974 p.u, respectively. The
lowest VSI of test network is enhanced to 0.96329746 p.u,
0.92759046 p.u, and 0.8841887 p.u, respectively.

TAPL is decreased to 0.94946 kW, 4.6782 kW and
10.9769 kW. The VD of the test network is decreased
to 0.0000854713 p.u, 0.0002877 p.u, and 0.00041595 p.u,
respectively. The lowest VSI of the test network is enhanced
to 0.9897713 p.u, 0.97935849 p.u, and 0.969852 p.u, respec-
tively, after performing optimal three DG units allocation
with OPF and NR simultaneously implemented in the test
network for different load levels.

It can be seen from obtained results that the simultaneous
DG allocation with OPF and NR in DN is more effective in
multi-objective optimization. In addition, the impact of the
NR, optimal DG integration with UPF andOPF, simultaneous
DG allocation with UPF and OPF and NR in DN for three
load levels on voltage profile, branch power losses, VSI, and
objective function’s convergence curves for each case are
shown in Figs. 12-15.

2) MINIMIZATION TAPL AT NOMINAL LOAD LEVEL FOR
COMPARISON OBTAINED RESULTS WITH OTHER EXISTING
ALGORITHMS IN THE LITERATURE
The proposed technique achieves the best results regarding
total active power loss (TAPL) minimization in DN by the
optimal NR, optimal DG integration with UPF and OPF,
and simultaneous DG allocation with UPF and OPF along
NR. As shown in Table 5, a comparison is provided between
the results acquired from the proposed technique and those
obtained from other existing algorithms in the literature for
the case of nominal load level.

When only NR is implemented, the proposed approach
allows a minimum TAPL is 98.598 kW with a power loss
reduction 56.18 % as compared to ABC [60], RGA [53] and
EHSA [55] methods.

After performing only three DG allocation with UPF in
the test network, the proposed technique gives a minimum
TAPL is 69.42553 kW with a power loss reduction 69.14 %
as compared to HSSA [41], PSO [21], HHO [13], HGSO [19]
and EA [20], respectively.

In the case of only three DG allocation with OPF in
the test network for nominal load level obtained, TAPL is
4.21 kW with power loss reduction 98.13 % as compared to
HSSA [41], PSO [21], HHO [13], HGSO [19] and EA [20],
respectively.

When optimal three DG units with UPF and NR is
optimally implemented in the test network, the proposed
approach allows aminimumTAPL is 36.7738 kWwith power
loss reduction 83.66 % as compared to ABC [60], RGA [53],
EHAS [55] and CSA [56], respectively.
After performing optimal three DG unit allocation with

OPF and NR is optimally implemented in the test network for
nominal load level, the proposed technique gives minimum
TAPL is 4.6782 kW with power loss reduction 97.92 % as
compared to AOA [59], respectively.
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From this compression, the proposed technique provides
better results in minimization of TAPL with a higher reduc-
tion of power loss and an acceptable voltage magnitude.
In contrast to the other cases, the OPF operation of DG with
NR ensures the lowest value of TAPL. In addition, DG with
OPF gives better performance than DG with UPF in terms of
decreased TAPL and enhancement of voltage profile due to
its reactive power support.

VI. CONCLUSION
This paper has introduced a novel approach that combines
a GMO algorithm with the PLSI method to address various
optimization problems related to network reconfiguration
(NR) and allocation of distributed generation (DG) units.
Specifically, the approach considers three DG units and incor-
porates both unit power factor (UPF) and optimal power
flow (OPF), while taking into account operational con-
straints and three loading levels (light load, nominal load, and
heavy load). The objective is to maximize voltage stability
index (VSI) and minimize total active power loss (TAPL)
and voltage deviation (VD) of distribution networks (DNs).
To evaluate the effectiveness of the proposed method, stan-
dard IEEE 33 and 69-bus networks are used as test cases.
The results demonstrate significant improvements in terms of
VSI enhancement and TAPL and VD reduction when simul-
taneously optimizing NR and DG unit allocation with OPF,
compared to the scenarios of simultaneous optimization with
UPF only, as well as DG unit allocation with UPF and OPF,
and NR optimization alone. The multi-objective nature of the
problem is considered throughout the analysis. Furthermore,
the proposed technique has been compared with other exist-
ing algorithms from the literature, specifically for the objec-
tive of TAPL at the nominal load level. The results show that
the combined technique outperforms the existing techniques
in terms of TAPL reduction for all the considered cases. The
proposed technique exhibits good accuracy and convergence
speed, making it a favorable choice for simultaneous optimal
NR and DG unit allocation with UPF and OPF, regardless
of the load conditions. Future work can focus on incorpo-
rating renewable energy sources, integrating energy storage
systems, addressing uncertainties, assessing scalability, and
applying the proposed technique to real-world distribution
systems for validation. These directions aim to enhance the
efficiency, reliability, and sustainability of optimal network
reconfiguration and distributed generation unit allocation.
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