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ABSTRACT With the proliferation of digital images over open networks, secure and efficient encryption
schemes are imperative for safeguarding image privacy. This paper proposes a novel 5-stage image
encryption algorithm adhering to Shannon’s confusion and diffusion paradigm. In the first stage, Langton’s
Ant is employed to induce chaos and perturb the pixel distribution of the original image. The second and
fourth stages apply Mersenne Twister generated keys to confuse the image via XOR operations. An S-box
substitution is utilized in the third stage to disrupt pixel statistical properties. Finally, Arnold’s Cat map
further scrambles and diffuses the pixel positions over the image. Extensive security analyses reveal the
algorithm’s robustness against various attacks such as visual, entropy, brute-force, statistical and differential
attacks. Additionally, it successfully passes the NIST SP 800-22 test suite. Performance results demonstrate
the proposed algorithm’s efficacy for real-time secure image transmissionwith low computational overheads.
The algorithm’s security level combined with high-speed performance makes it well-suited for practical
image encryption applications.

INDEX TERMS Arnold’s cat map, chaos theory, image cryptosystem, image encryption, Langton’s Ant,
Mersenne Twister.

I. INTRODUCTION
With the exponential growth of visual data transmission
through digital networks, image encryption has become
crucial for protecting confidential images against unau-
thorized access [19]. Traditional text encryption methods
often prove inadequate for scrambling meaningful visual
data. Thus, there is a pressing need to develop specialized
image encryption algorithms that can provide robust security
for sensitive images [16], [18]. Novel techniques like
chaos-based encryption show promise for highly secure
real-time image scrambling [20]. Rapid image encryption
is essential for various entities, including medical systems
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transmitting patient scans, video conferencing services, and
military operations sending reconnaissance photos [35].
The military in particular requires strong encryption to
secure classified visual data during transmission. This
article provides a comprehensive survey of recent image
encryption techniques, with analysis of their cryptographic
strength. Moreover, it highlights the most secure and efficient
algorithms to advance the field and enable widespread
adoption of secure image communication across military,
commercial, and healthcare systems. Next, it identifies a
gap in those algorithms and proceeds to propose a novel
image cryptosystem that satisfies high security, efficiency,
resistivity to attacks, and robustness against noise.

Recent literature on image cryptosystems describes the
utilization of a plethora of mathematical constructs to
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generate pseudo-random numbers, as encryption keys, and
to construct substitution boxes (S-boxes), among other
image transformations [4], [55]. Such constructs include
ideas pooling from chaos theory, number theory, linear
algebra, information theory, graph theory, group theory,
combinatorics, as well as optimization theory. In fact, the
literature mostly describes algorithms that make use of a
combination of these constructs. However, the next few
paragraphs attempt to briefly describe each, presenting some
example implementations.

Chaos theory is an important mathematical concept that
has found applications in various fields, including image
encryption. Chaos theory deals with the behavior of physical
and dynamical systems that are highly sensitive to initial
conditions, which makes their behavior unpredictable [27].
In image encryption, chaos theory has been used to generate
random sequences of numbers that are used to encrypt the
image data. These random sequences are generated by chaotic
maps or systems, which are mathematical functions that
exhibit chaotic behavior [4], [5], [7]. The use of chaotic maps
or systems in image encryption provides a high degree of
randomness and makes the encryption process more secure.
Furthermore, the sensitivity of chaotic maps or systems to ini-
tial conditions makes it difficult for an attacker to reconstruct
the original image from the encrypted data. Therefore, chaos
theory is an important tool in image encryption that provides
a high degree of security and robustness. Recent works on
image cryptosystems have increasingly attempted to utilize
hyperchaotic systems of differential equations, as a means
to easily and vastly increase the key space. For example,
the authors of [4] employ the fractional-order numerical
solutions of the Chen hyperchaotic system in conjunction
with a number of cryptographically secure PRNGs to present
an efficient image cryptosystem. The same idea of utilizing
the Chen system is carried out in the work in [7], where
the authors combine its use with a hybrid form of DNA
coding, and a simple sine chaotic map for increasing security,
while maintaining code efficiency. The authors of [38]
propose a 3-stage image encryption algorithm, where chaos is
introduced through the movement of a single Langton’s Ant
over the plain image for a very large number of iterations,
as well as the use of deterministic noise formulae and a
jigsaw transform. Another 3-stage image cryptosystem is
proposed in [5], where in every stage an encryption key
is XORed with the image data, and an S-box is applied.
The encryption keys and the S-boxes are produced from the
numerical solutions of 2 hyperchaotic systems, as well as the
single neuron model (SNM). The choice of the hyperchaotic
systems leads to expansion of the key space, while the simple
SNM allows for a reduced algorithm complexity. The authors
of [25] propose the utilization of the Henon map, the
Circle map, and the Duffing map, in a confusion-diffusion
algorithm that exhibits excellent performance. The most
efficient image cryptosystem encountered in this literature
review is that proposed in [34], where the authors carry out

an FPGA realization of a fractional-order memristive chaotic
system. Their work also incorporates the use of Arnold’s
cat map, and achieves an encryption rate of 0.396 Gbps.
The authors of [37] propose a novel encryption algorithm
for medical images that combines chaotic-hash scrambling,
combined hash functions, block-based substitution, and
dynamic bit shifting based on Josephus sequences. Their
proposed technique complements the chaotic system, which
alone only scrambles the pixel position, with additional
operations to improve security against statistical attacks.
Adequate testing is carried to showcase the resistivity of the
algorithm to statistical and differential attacks, in addition
to the possession of a sufficient key space to withstand
brute force attacks. The method provided in [10] involves
4 chaos methods: the logistic map, the Lorenz system, the
Henon map, and the Arnold transform, blended with hash
operations to augment key space and sensitivity. Symmetric
key generation is proposed to include diffused plain images
to enhance sensitivity. Additionally, a novel combination
model of confusion on row and column pixels, and image
bits, is developed. The algorithm utilizes a two-step diffusion
technique, executed before and after the confusion process.
This combination of techniques is designed to improve
encryption quality and resistance to various attacks, including
brute force, statistical, and differential attacks. The authors
of [46] propose a multi-interleaved encryption technique
utilizing Zigzag, Hilbert, and Morton patterns to enhance
the complexity of the confusion-diffusion process. The
symmetric key for the encryption process is generated from
an improved logistic map and a 6D hyperchaotic map, which
are chosen for their sensitivity to initial conditions and
control parameters, leading to highly random and nonlinear
key-streams that are difficult to predict. The encryption
process is carried out in four phases, alternating between
diffusion and confusion, with SHA-512 used to increase
the key space and sensitivity. The proposed technique has
shown resilience against various attacks, including statistical,
differential, brute force, NIST randomness tests, and data loss
and noise attacks.

Number theory is the study of integers and their properties.
It has been used in image encryption schemes for techniques
such as modular arithmetic and prime numbers. Modular
arithmetic involves performing arithmetic operations on
remainders obtained after dividing numbers by a fixed
integer. Prime numbers are used in some image encryption
algorithms for their inherent difficulty in factorization,
which makes them useful in ensuring secure encryption.
For example, the author of [29] attempts to provide a more
efficient implementation of the public-key cryptography
algorithm RSA, which depends on prime numbers, for the
secure transmission of image data over unsecured networks.
Another work that involves the use of prime numbers is
[36], which combines the use of DNA coding and a chaotic
Chebyshev map, such that the initial conditions are chosen to
be prime numbers. Multiple levels of encryption are applied
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in [36], such that bit XORing is carried out, as well as row and
column pixel permutation are applied, for improved induced
randomness. The authors of [21] apply the use of modular
arithmetic in 3D scale-invariant chaotic maps, as well as
a diffusion step that utilizes the Hill map. These steps are
applied at least twice, which ensures the expansion of the key
space and the attainment of randomness in the final encrypted
output image.

Linear algebra is a field of study that involves linear equa-
tions and their properties. In image encryption, concepts from
linear algebra such as matrices and vector spaces have often
been used in the literature on image encryption. Matrices
can be used to represent image data and transformations,
while vector spaces can be used to represent the image space.
For example, the work presented in [52] utilizes the Sarrus
model, as borrowed from linear algebra, to carry out pixel
position scrambling. Next, a Fibonacci matrix is extended to
3D and utilized to further diffuse the image pixels, resulting
in a highly encrypted output image. The work in [52] is
shown to be efficient and secure, exhibiting a large key space
and sensitivity to small changes in encryption keys. The
authors of [14] apply the simple idea of matrix multiplication
and inverse matrix multiplication, in conjunction with a
number of simple chaotic maps, to carry out effective image
encryption. The authors of [7] introduce a novelmatrix, called
the KAA map, and employ it alongside a number of chaotic
maps for multiple symmetric key generation. The first key
utilized in [7] is generated from the 2D Logistic sine map in
conjunction with the Linear Congruential Generator (LCG),
while the second key is generated from the use of both of
the Tent and the Bernoulli chaotic maps. The authors of this
work [7] carry out a plethora of tests that reflect the security
and robustness of their proposed algorithm.

Information theory is the study of the quantification, stor-
age, and communication of information. In image encryption,
principles from information theory such as entropy have
been utilized. Entropy is a measure of randomness and is
used in some image encryption schemes to ensure that the
encrypted image has a high degree of randomness. While the
literature is rich with information theory-based encryption
algorithms, such as the RSA and AES [9], [13], [43], [48],
[54], as well as their improved implementations [22], such
algorithms are usually not the best-suited for encrypting
image data. First of all, because images have high correlation
among their adjacent pixels, resulting in high redundancy,
as well as the large size of image data, which effectively
increases the computational complexity required to carry out
the encryption [4]. Second, RSA and AES were not initially
developed for the encryption of images [31]. This becomes
very clear when comparing their efficiency at encrypting
image data with other algorithms that are custom-developed
for image encryption [4].
Graph theory is the study of graphs and their properties.

In image encryption, graph theory concepts such as random
walks and graph coloring have been used. Random walks

involve traversing a graph randomly, while graph coloring
involves assigning colors to the vertices of a graph in a way
that neighboring vertices have different colors. For example,
the authors of [2] present an algorithm relies on audio files
as a foundation for generating a set of keys to encode color
images. To create the key generation system, the audio signal
is passed through multiple stages based on graph theory.
In [51], the authors borrow the idea of Hamiltonian paths
from graph theory, where a Hamiltonian path refers to the
path that visits each vertex exactly once. In their proposed
algorithm, a random Hamiltonian path is generated within
plain images, as an equivalent to pixel permutation in image
encryption. Moreover, the authors of [51] combine this idea
with an application of an adjusted Bernoulli map for the
logical XORing of the image pixels. The authors of [44]
employ 3-partite graphs as a means to exchange plain image
pixels. Chen’s chaotic system is utilized to generate the
vertices of the 3-partite directed graph, such that paths are
established between each pair of vertices. The work proposed
in [44] is effectively secure against plain-text attacks, as it
uses the seeds of the chaotic Chen system to modulate the
hash value of the plain images to be encrypted.

Group theory is a branch of mathematics that provides
the Abelian Groups which are used to describe symmetries
in geometry, particle physics, molecular physics, as well as
DNA symmetries [49]. Such a definition allows researchers to
include DNA coding schemes for image encryption [7], [36]
underneath the umbrella of Group theory. For example, the
authors of [45]make use of a 6D discrete hyperchaotic system
as basis for the production of unique encryption keys. Next,
they construct DNA matrices from the color components
of plain RGB images. These matrices are then scrambled,
producing 3 new matrices that are applied to each of the
color channels. The combination of applying chaos theory
alongside DNA coding is shown to exhibit good performance
in [45]. The authors of [49] combine the utilization of both
discrete and continuous chaotic systems with a novel inverse
left almost semi-group. The conducted security analysis in
[49] showcases excellent performance.

Combinatorics is the study of discrete structures and their
properties. In image encryption, combinatorial techniques
such as Latin squares and error-correcting codes have been
used [56]. Latin squares are used to permute the image
data, while error-correcting codes are used to ensure that
the encrypted image can be recovered even if some errors
occur during transmission [24], [26]. For example, in [41], the
authors propose the introduction of time delay to non-linear
systems as a means for improving their performance. More
specifically, they utilize a time-delayed non-linear com-
binatorial hyperchaotic map (TD-NCHM). Their proposed
algorithm carries out a simultaneous row-column shuffling-
diffusion in addition to the use of encryption keys. The work
in [41] is shown to be both highly secure as well as efficient.
The work in [40] proposes the usage of cryptographic key
providing encryption based on combinatorial structures that

VOLUME 11, 2023 106251



W. Alexan et al.: AntEater: When Arnold’s Cat Meets Langton’s Ant to Encrypt Images

offer non-crossing as well as non-nesting matching. The
authors describe their work in a general sense, suitable for
IoT applications, including image encryption. The authors
of [24] realize that earlier implementations of Latin squares
in image encryption algorithms were particularly inefficient.
To increase efficiency, they introduce the utilization of
orthogonal Latin square, in conjunction with a 2D chaotic
system.

Optimization theory is the study of finding the best solution
to a problem. In image encryption, optimization techniques
such as linear programming have been used. Linear program-
ming involves finding the best solution to a linear objective
function subject to linear constraints. For example, the work
in [11] aims to construct a deterministic and highly non-
linear S-box through the use of a generator that is based
on an integer linear programming (ILP) formulation. This
S-box is then utilized in an image cryptosystem jointly with
PRNG that is based on elliptic curves. The authors of [11]
showcase the security of their proposed confusion-diffusion
cryptosystem and its high sensitivity to changes in keys. The
authors of [12] attempt to combine a hybrid multi-objective
particle swarm optimization (HMPSO) with block com-
pressed sensing (BCS) and a Hessenberg decomposition
(HD), for efficient image encryption. Furthermore, their
implementation results in meaningful encrypted images, with
secret keys generated from the Henon chaotic map.

Table 1 provides a classification of the reviewed recent
literature as it relates to each of the constructs. It is clear
that there is focus of researchers on the application of chaos
theory, as seen in Table 1. This is justified in terms of the
greatly expanded key spaces that could be achieved through
the utilization of hyperchaotic systems. This is especially
true whenever such hyperchaotic systems are numerically
solved at the fractional-order, which immediately adds more
variables to the key space of any image cryptosystem
[4], [7]. Other works have specifically targeted improved
efficiency, either in terms of software [7] or hardware
[34] implementations. A third group of research works
focused on increasing an image cryptosystem’s resistivity
and robustness against specific attacks, such as occlusion
attacks [4], various noise attacks, chosen plain-text attacks
[4], [44], and chosen cipher-text attacks [4]. However, it is
rather hard to find a research work that attempts to cover all
3 aspects, namely security, efficiency and robustness. This
research work attempts to cover this gap.

In this research work, the contributions of the proposed
image cryptosystem are as follows:

1) A five-stage image cryptosystem is designed and
software implemented, making use of ideas pooling
fromChaos theory (in terms of utilizing Langton’s ant),
Mersenne Twister PRNGs and linear algebra (in terms
of utilizing Arnold’s cat map).

2) Highly resistive to brute-force attacks, with an achieved
demonstrative key space of 214244.

3) Highly efficient, encrypting images at an average rate
of 3.7 Mbps..

FIGURE 1. The original Langton’s Ant configuration after 11000 steps,
with one ant originally travelling up initially, turning left on black tiles,
and right on white tiles; oscillation is clear after about 10000 steps, in the
stepladder section at the bottom of the central mass.

4) Successfully passes all NIST SP 800-22 analysis tests,
proving the randomness of its output encrypted images.

The remainder of this article is organized as follows.
Section II provides the preliminary mathematical constructs
employed in the proposed image encryption algorithm.
Section III outlines the sequence of steps carried out in the
proposed image encryption algorithm. Section IV reports and
discusses different performance evaluation metrics, as well
as compares them to the state-of-the-art. Finally, Section V
draws the conclusions and mentions future research direc-
tions that could be further pursued. Appendix is an image
repository.

II. PRELIMINARY OF THE PROPOSED IMAGE
ENCRYPTION ALGORITHM
A. LANGTON’s ANT VARIANT PRNG
Langton’s Ant is the name generally attributed to a class of
simple cellular automata originally proposed by Christopher
Langton in [28]. Originally proposed in research on studying
artificial life and the behavior of biomolecules, Langton’s
Ant shows how emergent behavior derived from simple rules
can in fact be chaotic. The original form of Langton’s Ant
defines a large array of squares that can either be black or
white, with an ant starting in the center. Each iteration of the
system makes the ant step forward and, based on the color of
the tile it is stepped on, turn left or right. The result is that
after a certain number of iterations, patterns may emerge. For
the default rule-set and configuration, Langton’s Ant behaves
somewhat unpredictably for nearly 10000 steps, after which
it begins to oscillate in a predictable fashion. Figure 1 shows
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TABLE 1. Classification of reviewed recent literature. Under the Goal column, the following acronyms are utilized: KS, E and RRA, signifying key space,
efficiency, and robustness and resistivity to attacks.

the behavior of Langton’s Ant after 11000 steps exactly,
showing seemingly chaotic behavior of the ant near the
starting location, at the center of the grid, and the predictable
‘‘tail’’ formed later in the life-cycle, where the ant oscillates
in the same pattern indefinitely.

While the original Langton’s Ant only generates arrays
of 2 unique colors, the rule-sets and configurations can be
changed to produce greatly altered results. Variations of the
produced Ant Field (AF) can be generated by altering the
starting position of the ant on the field, the number of different
colors that can be instigated by an ant contacting a tile,
increasing the number of ants on the field, adding additional
behavior when ants come into contact with each other, and
different rules to account for situations when ants collide
with the edge of the field. The actual rule-set obeyed by
each ant has the greatest effect on the ant’s behavior, which
makes choosing effective rule-sets of great importance. Ant
Field rule-sets will hereon be referred to by number. Since
the rule-set effectively needs to define whether the ant turns
left or right for each color, a rule can be represented as
a list of bits of the same length as the number of colors,
where each bit indicates whether to turn left or right on
contacting that specific color. This can be represented in

shorthand as a decimal number, with the highest possible
usable number being 2c, where c is the number of unique
colors.

Figure 2 shows an example of a more complex AF.
By relying on 4 unique colors instead of 2, a larger number of
possible rule-sets can be employed, possibly generating fields
that are more chaotic than previously possible using only 2.

With the generated fields becoming more and more vari-
able, the generated fields gain some usability as encryption
keys for image color channels. In theory, by increasing
the number of colors to 256 some combination of the
above factors should produce a field suitably chaotic to
encrypt image color channels with. However, the expansion
of the available color space also introduces a number of
complications, such as the common appearance of non-
chaotic rule-sets and the tendency of fields to produce
somewhat homogeneous blobs near the ant’s starting point.

The applied solution for generating a suitable AF for
encryption relies on a combination of the above factors,
as well as a few additional ones. The full size field is
generated by constructing an array of smaller AFs. Each AF
can be generated from multiple ants, each of which with
predefined starting positions and velocities. Rule-sets for
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FIGURE 2. An example of a 100 × 100 ant field with 4 unique colors,
using rule 7 (0,1,1,1). The ant, even after 11000 steps continues to
oscillate in the center, leaving the rest of the field untouched.

each ant are also predefined. Ant collisions are also accounted
for by having ants move like knights from chess, forward
2 steps then left once upon colliding with another ant in
their field. Boundary crossing is resolved by looping the ant
over to the opposite edge where the initial boundary collision
occurred.

The issue that remains is that increasing the number of
colors, and thus the number of possible rules, also increases
the number of unreliable rules. Actual implementation of
this system for encryption would involve using only rules
known to generate Ant Fields that completely fill their
space. Without accounting for those rules, ants may oscillate
permanently in the center of their fields, like in Fig. 2
or Fig. 3a. Figures 3a, 3b, and 3c all show the effect of
increasing the number of iterations in this system, which ends
up filling some of the sub-fields while leaving others still
blank. Figure 3d shows the successful result of curating the
selected rules applied to each ant in every field.

B. MERSENNE TWISTER PRNG AND S-BOX
The Mersenne Twister (MT) is a pseudo-random number
generator (PRNG) that produces a sequence of numbers
with a very long period and high order of equidistribution.
Its advantages include fast generation speed [39], a huge
period length of 219937 − 1 [32], and good statistical
properties. Due to these qualities, the Mersenne Twister
is well-suited for use in image encryption algorithms [1],
[4], [15], where it can generate random-looking keys or
initialization vectors to encrypt image pixels in a secure
and efficient manner. Compared to other PRNGs, it has
a longer period, better equidistribution, and faster speed,

making the Mersenne Twister a gold standard for stochastic
simulation and encryption tasks like image scrambling [42].
Moreover, the MT is easily implementable over a wide range
of programming languages (e.g. Wolfram Mathematica®,
Mathworks Matlab®, and MS Excel®), allowing it acces-
sibility to many developers [33]. For illustrative purposes,
an array plot of 100 × 50 random pixels is generated using
the MT with a seed of 0123 and shown in Fig. 4.

C. ARNOLD’s CAT MAP
Arnold’s Cat Map is a chaotic map that effectively serves as a
source of permutation in an image encryption algorithm. The
discrete form of the map, which is useful for application in
encryption systems, is a 2D chaotic map that is defined as
follows: [

xn+1
yn+1

]
=

[
1 1
1 2

] [
xn
yn

]
(modN ), (1)

where x and y represent a pixel’s coordinates in an image,
and N represents the full size of the image. In essence, the
map stretches the original image beyond the boundaries of
the image’s frame, and then reconstructs the image within
those boundaries using the modulus operator. This process
is repeated as many times as necessary to ensure a sufficient
shuffling of the image’s pixels is reached. The map can be
further generalized to be defined as follows:[

xn+1
yn+1

]
=

[
1 a
b 1 + ab

] [
xn
yn

]
(modN ), (2)

where a and b are input variables that affect the transforma-
tion. Since the matrix used is a square matrix, its inverse can
be computed, given a and b to revert the mapping. Figure 5
shows a sample image and the effect of various iterations of
the Cat Map on it.

It should be noted that the Cat Map is a periodic
transformation. For specific values of a and b, repeatedly
applying the Cat Map to an input image may return it to its
original form, making additional applications of it redundant.

III. METHODOLOGY OF THE PROPOSED COLOR IMAGE
CRYPTOSYSTEM
This section describes in detail the process which the
proposed scheme uses to encrypt and decrypt images. Sub-
section III-A describes the generation of the various keys
used in a batch of encryptions, while the other sub-sections,
III-B and III-C, discuss the actual encryption and decryption
processes.

The complete encryption process utilizes 5 different stages,
each of which requires different components that must be
provided, or generated in the key generation stage prior to
encryption. The stages are as follows:

1) Encryption of individual image color channels (red,
green, and blue) using composite AFs of compatible
sizes named AFr , AFg, and AFb.

2) Permutation of image contents using the pre-generated
S-Box, SBoxMT .
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FIGURE 3. Four examples of a 256 × 256 Composite Ant Field (CAF) with 64 sub-fields, 8 unique colors, 1 ant per sub-field, random start locations,
random start velocities, and random rule-sets. Figures 3a, 3b, 3c have no rule-set revision, and 3d does. Each CAF is generated with N steps.

3) Bit-wise XORing of the image contents with an
encryption key K1.

4) Cat Map Application.
5) Second Bit-wise XORing, using encryption key K2.

A. THE KEY GENERATION PROCESS
1) Ant Field Generation:

a) Three Ant Fields of the same size as the input
image are generated as described in section II-A.
This requires the input of the following variables
for every field:

i) The number of sub-fields
ii) The number of ants per sub-field
iii) The starting positions of each ant in every

field
iv) The starting directions of each ant in every

field
v) The number of unique colors each cell in the

field can have
vi) The rules followed by every ant in every field
vii) The number of steps that each ant in every

field can take
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FIGURE 4. A 0123 seeded-MT array plot of dimensions 100 × 50.

b) The generated composite AFsmust be of the same
size as the input image.

c) The generated composite AFs are referred to
henceforth as Antr , Antg, and Antb.

2) Encryption Key Generation:
a) Two keys are generated using the Mersenne

Twister pseudo-random number generator. The
keys are each a number of bytes equivalent to the
length of the image data.

b) Each key requires is its own seed value for the
Mersenne Twister PRNG.

c) The generated keys are henceforth referred to as
K1 and K2.

3) S-Box Construction:
a) An S-box is generated using Algorithm 1
b) The S-box is referred to as SBox

Algorithm 1 S-Box Construction Algorithm
1) Use a seed value to initialize the Mersenne-Twister

PRNG.
2) Generate enough values in the range 1−256 to generate

10 S-boxes.
3) Test each of the S-boxes using the metrics in Section

IV.
4) Choose the S-box with the best results.

B. THE ENCRYPTION PROCESS
1) Stage 1: Ant Application.

a) The image byte data is separated into 3 color
channels, named Ir , Ig, and Ib.

b) Channels Ir , Ig, and Ib are mixed on the bit-level
with the contents of Antr , Antg, and Antb respec-
tively, as follows:

I ′r = Ir ⊕ Antr ,

I ′g = Ig ⊕ Antg,

I ′b = Ib ⊕ Antb. (3)

c) The 3 encrypted color channels are then recom-
bined to form the image IAnt .

2) Stage 2: S-Box Application.
a) The selected S-Box, SBox, is here used to permute

the byte contents of the image IAnt
b) The byte data is permuted across columns, rows,

and different pixels.
c) The produced image is referred to as IAnt,SBox

3) Stage 3: Key 1 Application.
a) Similar to with the first stage, the key K1 is

XORed bit-wise with the contents of IAnt,SBox as
follows:

IAnt,SBox,K1 = IAnt,SBox ⊕ K1. (4)

4) Stage 4: Cat Map Application.
a) The Cat Map effectively applies a permutation to

the indicated image, shuffling the pixel contents
in the image space deterministically.

b) The CatMap requires 3 variables to determine the
exact output of its transformation:
i) The number of iterations of the Cat Map

transformation applied to the input image.
ii) The a and b values of the matrix.

c) With the above variables in hand, the Cat Map is
applied as many times as required with the correct
matrix to transform the contents of IAnt,SBox,K1

into IAnt,SBox,K1,Cat .
5) Stage 5: Second Key Application.

a) To ensure the security of the encryption, the final
image contents are XORed once more, this time
with K2, as follows:

IAnt,SBox,K1,Cat,K2 = IAnt,SBox,K1,Cat ⊕ K2. (5)

With the encryption process complete, the image data is
recombined to form the encrypted image I ′. The complete
encryption is shown in Fig. 6 as a flow chart.

C. THE DECRYPTION PROCESS
Decryption, being the inverse process of encryption, involves
the dismantlement of the layers applied in encryption to
reveal the original source image. This can only be done with
the required keys, or the input variables used to generate
those keys, having been securely transmitted to the intended
recipient of the encrypted image. Some of the encryption
layers may also require inverted keys or constructs to be
generated and applied in turn. The complete decryption
process is as follows, beginning with the encrypted image
referred to as I ′:
1) Stage 5: Key 2 Application.

a) Since the XOR operation is invertible, decrypting
the final layer in the encryption is simply a matter
of XORing the encrypted image with K2 directly,
as follows:

I ′K2
= I ′ ⊕ K2. (6)

2) Stage 4: Cat Map Application.
a) There are 2 possible techniques for removing

the Cat Map layer from the original encryption.
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FIGURE 5. The House image upon application of different numbers of iterations of the Cat Map, with a = 1 and b = 1.

As described in Section II-C, the discrete form
of the Cat Map is a transformation derived from
an invertible matrix. Thus, the decryption may
be performed by inverting the used matrix (as
generated from the input variables a and b) and
iterating the process as many times as needed.

b) It may be possible for the decryption to be
completed faster in certain cases where a and
b form a well-known matrix. The Cat Map
iterated operation can allow for some matrices to
display periodicity upon repetition. If the period
of the matrix is known, iterating forward with the

original matrix until an integer multiple of the
original period is reachedmay possibly be a faster
operation.

c) In either case, inverting the matrix and iterating
as many times as originally done is reliable and
always produces I ′K2,Cat

3) Stage 3: Key 1 Application.
a) Similar to with the first stage, the key K1 is

XORed bitwise with the contents of I ′K2,Cat
as

follows:

I ′K2,Cat,K1
= I ′K2,Cat ⊕ K1. (7)
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FIGURE 6. Flow chart of the proposed encryption process.

FIGURE 7. Flow chart of the proposed decryption process.

4) Stage 2: S-Box Application.
a) Just as with the original encryption, the S-Box

is applied at this stage to permute the pixel byte
values of the original image.

b) The original S-Box SBox must be inverted to
form SBox ′, which can provide the inverse of the
original permutation during the encryption.

c) Upon applying SBox ′, I ′K2,Cat,K1,SBox ′ is pro-
duced.

5) Stage 1: Ant Extermination.

a) Just as with the first stage of the original
image encryption, the partially decrypted image
I ′K2,Cat,K1,SBox ′ is split into 3 color channels, I ′r ,
I ′g, and I

′
b.
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FIGURE 8. Plain and encrypted versions of the Peppers image, and their respective histogram plots.

b) These 3 color channels are XORed with the
same combined Ant Fields built during the key
generation step, as follows:

Ir = I ′r ⊕ Antr ,

Ig = I ′g ⊕ Antg,

Ib = I ′b ⊕ Antb. (8)

c) The 3 decrypted color channels are finally com-
bined to form the completely decrypted image, I .

With the encryption process complete, the image data is
restructured to form the decrypted image I . The complete
decryption is shown in Fig. 7 as a flow chart.

IV. SECURITY ANALYSIS AND NUMERICAL RESULTS
This section describes the various tests and measurements
done on the proposed cryptosystem to measure its perfor-
mance. A number of metrics often used in image encryption
literature are applied to a number of images here, which
are then compared with counterpart values from algorithms
described in related research on image encryption. The
images used here are all sourced from the University of
Southern California’s Signal and Image Processing Institute’s
miscellaneous image library. All of the images are taken at a
size of 256×256, unless mentioned otherwise. The following
tests and metrics are discussed in this section:

• Visual and Histogram Analyses (Section IV-A)
• Mean Squared Error (Section IV-B)

• Peak Signal-to-Noise Ratio (Section IV-C)
• Mean Absolute Error (Section IV-D)
• Information Entropy (Section IV-E)
• Correlation Coefficient (Section IV-F)
• Fourier Transformation Analysis (Section IV-G)
• Histogram Dependency Tests (Section IV-H)
• Differential Attack Analysis (Section IV-I)
• Key Space Analysis (Section IV-K)
• Execution Time Analysis (Section IV-L)
• The National Institute of Standards and Technology
Analysis (Section IV-M)

• S-Box Performance Analysis (Section IV-N)

A. VISUAL AND HISTOGRAM ANALYSES
The objective of any cryptographic system is to obscure
the relationship between the plain-text and the cipher-text.
For an image encryption system, this requires that as little
as possible information about the contents of the original
image be revealed by the contents of the encrypted image.
The contents should be present in some form, otherwise
decrypting the image would be impossible and the data would
actually be lost, but whatever information is there should not
be immediately obvious.

The first test to ensure the effectiveness of the proposed
system relies on the Human Visual System (HVS) and its
examination of both the encrypted images and the encrypted
images’ color histograms. Figure 8 shows the results of
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TABLE 2. MSE values comparison of different images.

encrypting the plain Peppers image, as well as the effect on
that image’s distribution. It is clear that the encrypted image
reveals no information about the contents of the original
image, lacking any clear edges or defining features: there is
no visual symmetry or correlation between the plain image
and the encrypted one.

The color histograms indicate that the encryption scheme
successfully obscures any color related data as well. Sta-
tistical cryptanalysis techniques may take advantage of an
image’s unique color distribution to reveal some information
about it given the encrypted image. However, the encrypted
image’s color histogram shows a completely homogenized
distribution, with no discerning features to be taken advantage
of in an attack.

These same properties are visible not just in the encrypted
Peppers image, but also in the House, House2,Mandrill, Tree,
Sailboat, Girl, and Lena images, all displayed in the figures
located in Appendix.

B. MEAN SQUARED ERROR
Although a quick examination using the HVS is useful to
tell at a glance whether the encryption system is working
as intended, a more thorough mathematical examination is
necessary to ensure that the encrypted image actually differs
strongly from its source image. One such metric used to
determine this level of difference is the Mean Squared Error
(MSE). TheMSE is a widely used metric in image encryption
literature and is expressed as follows:

MSE =

∑M−1
i=0

∑N−1
j=0 (P(i,j) − E(i,j))2

M × N
, (9)

where P(i,j) and E(i,j) are pixels from the plain and encrypted
images, respectively, at location (i, j), in an image of size
M×N . The MSE effectively takes the average of the squared
difference between 2 respective pixels in 2 different images.
Ideally this value would be as high as possible, signifying as
great a difference as possible between the 2 images, and a
cryptosystem that is highly resistant to statistical attacks.

The larger the computedMSE value between a plain image
and its encrypted image, the better is the performance of an
image cryptosystem, as this would reflect better resilience
against statistical attacks. Table 2 displays the computed
MSE values for the proposed cryptosystem and the values
computed by algorithms from similar research. The table

TABLE 3. PSNR values comparison of different images.

TABLE 4. MAE values comparison of various images.

TABLE 5. Comparison of entropy values of the Lena image RGB channels.

shows that the MSE values of the various tested images
perform comparably to those in similar research.

C. PEAK SIGNAL-TO-NOISE RATIO
Related to the MSE is a metric called the Peak Signal-to-
Noise Ratio (PSNR). Just as the MSE presents the average
difference between respective pixels in 2 images, the PSNR
reflects the average difference between an encrypted image’s
average difference from its source and its maximum possible
intensity. The PSNR is calculated as follows:

PSNR = 10 log
( I2max
MSE

)
, (10)

where Imax represents the maximum pixel intensity of a
grayscale image. In the case of the single-channel images
used in this research, Imax = 255. Since the PSNR relies on
the inverse of theMSE for its calculation, a lower PSNR value
typically indicates better performance of the cryptosystem
as a whole. Table 3 shows the calculated PSNR values for
a number of images tested using the proposed encryption
system, as well as the values from similar research articles.
Table 3 clearly shows performance that is similar to that of
the literature cited, if not better at times.
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FIGURE 9. Correlation Coefficient diagrams of the plain and encrypted Peppers images.

TABLE 6. Comparison of the entropy values of the Lena image of the
proposed cryptosystem and various algorithms from the literature.

TABLE 7. Horizontal, diagonal, and vertical calculations of the correlation
coefficients in various plain images.

D. MEAN ABSOLUTE ERROR
A third test that can indicate an encrypted image’s difference
from its source is the Mean Absolute Error (MAE). Also
useful for ensuring an encryption system’s resistance to

TABLE 8. Horizontal, diagonal, and vertical calculations of the correlation
coefficients in various encrypted images.

differential attacks, the MAE acts similarly to the MSE,
comparing respective pixels across different images and
taking the difference between them.However, where theMSE
takes the square of the difference in its mean computation, the
MAE takes the absolute value of that difference, as defined
here:

MAE =
1

M × N

M−1∑
i=0

N−1∑
j=0

P(i,j) − E(i,j), (11)

where the plain image’s pixels are represented by P(i,j), the
encrypted image’s pixels are represented by E(i,j), and both
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TABLE 9. Correlation coefficient comparison of plain and encrypted Lena image color channels with the literature.

FIGURE 10. Correlation Coefficient diagrams of the plain and encrypted red channels of the Peppers image.

TABLE 10. Correlation coefficient comparison between plain and
encrypted Lena images.

images are of dimensions M × N . Just as with the MSE,
a larger MAE value indicates a greater difference between the
source image and its encrypted counterpart, which implies
better performance for the encryption system as a whole.
Table 4 shows the MAE for the same images tested in IV-B

and IV-C, as well as MAE values from similar research. Once
again, the table shows that the encryption system performs
comparably to the other algorithms, if not better in some
cases.

E. INFORMATION ENTROPY
To further ensure the effectiveness of the encryption
algorithm, an analysis of the data actually produced by the
encryption algorithm is carried out. One such analysis is a
test of the Shannon Information Entropy of the image, which
is generally calculated as follows:

H (m) =

M∑
i=1

p(mi) log2
1

p(mi)
, (12)
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FIGURE 11. Correlation Coefficient diagrams of the plain and encrypted green channels of the Peppers image.

where p(mi) represents the probability of occurrence of each
symbolm in the total number ofM symbols in an image. This
is performed over the 3 separate color channels of the image.
In essence, information entropy describes just how many bits
are needed, on average, to store the data in the set as a whole.
For a perfectly random RGB image, that value would be 8,
the maximum size given for storing color data in any pixel
[53]. Tables 5 and 6 compare the entropy values from the Lena
image with those of similar research articles, indicating a fair
amount of randomness in the encrypted images. While not
as similar as the results for the MSE and PSNR metrics, the
values still remain somewhat comparable.

F. CORRELATION COEFFICIENT ANALYSIS
In further ensuring the randomness and the distribution of the
input images’ visual data in their encryption, a computation
of the image’s correlation coefficients is carried out. The
correlation coefficient r helps assess the relations between
adjacent pixels in any of the horizontal (H), vertical (V),
or diagonal (D) directions across an image. Since typical
images will contain some kind of cross-correlation between
pixels in close proximity, any strong encryption system must

be capable of eradicating those relations and hiding any
identifying visual data. Equations (13) to (16) describe the
method by which the correlation coefficient is calculated.
Equation (16) is first used to calculate the average pixel
distribution in each image, followed by (15) calculating the
dispersion of those distributions. Equation (14) computes the
covariance of each image’s distribution and, with all those
values in hand, (13) calculates the correlation coefficient:

rxy =
cov(x, y)

√
D(x)

√
D(y)

, (13)

where

cov(x, y) =
1
N

N∑
i=1

(xi − E(x))(yi − E(y)), (14)

D(x) =
1
N

N∑
i=1

(xi − E(x))2, (15)

and

E(x) =
1
N

N∑
i=1

(xi). (16)
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FIGURE 12. Correlation Coefficient diagrams of the plain and encrypted blue channels of the Peppers image.

where x and y are 2 images, while N is the total number of
bits representing all the pixels in one of the 2 images.

Ideally, a well encrypted image would have all its corre-
lation coefficients as 0 indicating no relationships between
adjacent pixels of any type. Values close to±1 indicate a very
strong correlation, which should only appear in plain images
that have strong substructures. An encrypted image should
show r values close to 0 in every possible direction.

Tables 7 and 8 show the calculated r values for the plain
and encrypted images analyzed previously. As expected, the
r values for the plain images in Table 7 are quite high,
representing normal pixel correlation in the plain images,
while the r values in Table 8 are all quite low, indicating
that the correlations were dispersed upon encryption. This
dispersion is also made clear visually in Fig. 9, where sub-
figures 9a, 9b, and 9c show normal pixel behavior in plain
images, and sub-figures 9d, 9e, and 9f show the uniform,
scattered distribution in the plots expected from correlation
coefficient analysis on encrypted images. Similar plots are
displayed in Figs. 10, 11, and 12, which show the same
relationships but for the individual color channels. Once
again, the plain images’ correlation plots show strong lines
down the center, indicating high pixel correlation, while the

encrypted correlation coefficients show highly scattered plots
that indicate a complete lack of pixel correlation.

Tables 9 and 10 compare the correlation coefficient values
calculated for the Lena image with those from similar
research. It is clear that the proposed algorithm encrypts
imageswith an effectiveness that is comparable to counterpart
algorithms from the literature.

G. FOURIER TRANSFORMATION ANALYSIS
Another technique that can be used to measure just how
diffused the content of the encrypted image is, is the Discrete
Fourier Transform (DFT). TheDFT is amathematicalmethod
that transforms any signal from the time domain into the
frequency domain, effectively splitting it into many other
periodic signals. This same technique can be applied to
images, examining the shape of their DFT before and after
encryption to check if any artifacts remain. The DFT of an
image of N ×N dimensions, where each pixel is represented
as f (i, j), into the frequency domain is calculated as follows:

F(k, l) =

N−1∑
i=0

N−1∑
j=0

f (i, j)e−i2π(
ki
N +

li
N ). (17)
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FIGURE 13. Fourier transform of the plain and encrypted House images.

In the equation, f (a, b) indicates the representation of the
image in the spatial domain, and the exponential term is
the basis function that relates to every point F(k, l) in the
Fourier space. The basis functions are trigonometric waves
with increasing frequencies. Thiss indicates that F(0, 0) is
the DC-component of the image, and translates into average
brightness, while F(N − 1,N − 1) represents the highest
frequency.

Figure 13 represents the effect of applying the DFT to plain
and encrypted versions of the House image. It is clear that

the DFT of the plain image in Fig. 13a contains broad streaks
in the middle, forming a cross-like structure that represents
the high concentration of pixels at dominant brightness. The
connectedness of the cross also points to the natural source
of the image, with most pixels possessing the same or similar
levels of brightness. In the DFT of the encrypted image,
seen in Fig. 13b, no such structure exists, and instead a
uniform distribution of pixel values is displayed. No singular
brightness or group of brightness is dominant with all pixel
values possessing distributed brightness. This indicates that
any and all identifiable characteristics in the original image
were lost upon encryption.

H. HISTOGRAM DEPENDENCY TESTS
Although section IV-A briefly discussed the differences
between plain and encrypted images’ color histograms,
a more in-depth analysis of those differences is warranted
to ensure that the proposed cryptosystem is secure against
advanced cryptanalysis techniques as well. As such, a number
of methods can be used to evaluate the linear dependency
between a plain image’s color histogram and the encrypted
histogram. Dependency levels are generally calculated in the
range [−1, 1], where a value as close to 0 as possible is
preferred, indicating a lack of dependence. Values of 1 and
−1 both indicate strong dependence and inverse dependence
respectively. The following 5 linear correlation evaluation
techniques are used:

• Blomqvist’s β tests the correlation between 2 histogram
distributions x and y as a medial correlation coefficient
(given the medians of the distributions as x and y). It is
typically defined as follows:

β = {(X − x)(Y − y) > 0} − {(X − x)(Y − y) < 0}.

(18)

• Goodman-Kruskal’s γ measures the monotonic associ-
ation of pairs of values in both histograms. Any pair
of values in both histograms might either support or
undermine the correlation. The metric is defined as:

γ =
nc − nd
nc + nd

. (19)

• Kendall’s τ evaluates the relation between the 2 his-
tograms in relation to the size of the sample by
employing a similar concept of pairs supporting or
undermining the correlation. The correlation metric is
defined as:

τ =
nc − nd
n(n−1)

2

. (20)

• The Spearman rank correlation ρ test compares the
position of an element in a sorted list of elements from
the histogram to the mean rank value as follows:

ρ =

∑
(Rix − Rx)(Riy − Ry)√∑

(Rix − Rx)2
∑

(Riy − Ry)2
. (21)
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TABLE 11. Histogram dependency tests for various images.

• The Pearson correlation r connects components of
each distribution to each distribution’s mean. It can be
calculated as:

r =

∑
(Xi − X )(Yi − Y )√∑

(Xi − X )2
∑

(Yi − Y )2
. (22)

The results of applying the 5 discussed tests to images in
the test library are shown in Table 11. Most values are close
to 0 in all tested color channels and images, indicating little to
no dependence between the plain-text and cipher-text images
used.

I. DIFFERENTIAL ATTACK ANALYSIS
Differential attacks are a class of cryptographic attacks that
attempt to retrieve the encryption key by modifying the
source image slightly and analyzing the resulting encryption.
An encryption scheme resistant to cryptographic attacks
would diffuse any change in the plain-text throughout the
cipher-text in an unpredictable manner, to avoid leaking
any information to statistical attackers attempting to execute
differential attacks. The Number of Pixel Changing Rate
(NPCR) and the Unified Average Change Intensity (UACI)
are the 2 measures typically employed to determine an image
encryption system’s strength against differential attacks. The

NPCR is defined as:

NPCR =

∑
i,jDi,j

M × N
× 100, (23)

where Di,j is given by

Di,j =

{
0, C1(i,j) = C2(i,j),

1, C1(i,j) ̸= C2(i,j).
(24)

Simply put, the NPCR is a computation resulting in the
number of differing pixels between a plain image and its
encrypted version. The UACI is mathematically expressed as

UACI =
1

M × N

∑
i,j

C1(i,j) − C2(i,j)

255
, (25)

where C1(i,j) and C2(i,j) are 2 images of dimensions M × N .
The UACI calculates the difference between the average
intensity in an image and its encrypted version. The results
for the NPCR and UACI calculation on the encrypted Lena
image are provided in Tables 12 and 13. The ideal value of the
NPCR is 100% although few encryption algorithms actually
reach that value, and the ideal value of the UACI is 33.35%.
The tables show that, while the NPCR values are quite close,
the UACI values are somewhat lacking, but still comparable
to those generated by the other schemes in similar literature
on image encryption.
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FIGURE 14. A visual representation of three different types of occlusion attacks, as well as the resultant decryption of those occlusions, clearly
showing no recognizable pattern, as well as preservation of most of the visual data from the source image.

TABLE 12. NPCR values for the RGB channels of the Lena image.

TABLE 13. UACI values for the RGB channels of the Lena image.

J. OCCLUSION AND NOISE ATTACKS
Two other types of attacks, besides differential attacks, that
strong encryption schemes should be capable of counteract-
ing are occlusion and noise attacks. Poor encryption schemes
may show patterns or recognizable artifacts upon encryption
or decryption when controlled alterations are made to the
plain-text or cipher-text respectively. These artifacts may
reveal information about the scheme and the encryption key
when statistical techniques are applied. Thus, it becomes of
great importance to ensure that no such artifcats show when
those attacks are made.

The two types rely on the same principle of altering the
plain-text and examining the decryption to attempt to gain
information. Occlusion attacks do this by blocking parts of
the plain-text with known information and examining the
propagation of the additional data in the encryption, while
noise attacks add information by applying different types and
levels of noise to the plain-text. Figures 14, 15, and 16 show
the effects of occlusion, salt-and pepper-noise, and Gaussian
noise attacks respectively. Figure 14 shows that, even when
blocking up to 25% of the encryption, the decrypted image
remains very much recognizable and the altered pixels are
widely distributed and randomly scattered throughout the
image. Figure 15 shows the same, with strong resistance
to salt-and-pepper noise, while Fig. 16 shows a lack of
any organized reaction to the input Gaussian noise, at all
magnitudes. In general, the proposed algorithm is shown not
to react in any organized manner when affected by occlusion,
salt-and-pepper noise, and Gaussian noise, making it resistant
to those attacks.

K. KEY SPACE ANALYSIS
Key space analysis is a technique that gives an analysis of
the number of possible keys that can be used in an encryption
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FIGURE 15. A visual representation of salt-and-pepper attacks of different magnitudes on the Mandrill image’s encryption; very little effect is seen,
and most of the original visual data is preserved.

scheme. It is typically used to get an understanding of just
how resistant an encryption scheme is to brute force attacks.
A larger key space is preferable, making it more difficult for
brute force attackers to cryptanalyze the required key. Unlike
encryption schemes, the key space of the presented scheme
is highly variable, since the number of required variables
relies on the actual value of the control variables themselves.
As such, the following key space analysis will consider
the key space given the input variables used throughout
section IV. Those values are as follows:

• Generation of 3 Composite Ant Fields, each requiring:
– Field dimensions: 2 variables.
– Number of sub-fields: 1 variable.
– Number of ants per sub-field: 1 variable.
– Starting position and direction of every ant in every

sub-field. For the sample calculations, this was
taken as 64 sub-fields, with 1 ant in each: 64× 1×

3 variables.
– Number of colors: 1 variable.
– Unique rule for each ant in every field. For the

sample calculation: 64 × 1 × 1 variables.
– Number of steps for each sub-field: 64 × 1.

• This totals 325 values per Composite Ant Field.

• With 3 fields (one field per RGB color channel), this
presents a total of 325 × 3 = 975 variables.

• Generation of 3 Mersenne-Twister PRNG sequences
(2 directly for encryption, and one for S-box construc-
tion), each requiring a single seed value.

• Cat Map specification requires 3 variables, the a and
b values specific to the matrix, and the number of
iterations n.

• In total, 975 + 3 + 3 = 981 variables are required.
Assuming that each value is taken as a real value by

the brute force computation, where each real value has a
maximum machine precision of 10−16, the total key space
becomes 10981×16

= 1015696 ≈ 252141. This value is
high enough to consider the scheme resistant to brute force
attacks according to [30]. Table 14 displays the achieved
key space values of the proposed system and that of others
in similar literature. The proposed system actually exceeds
the calculated key space for most of the provided algorithms
showing very high resistance to brute force attacks.

L. ENCRYPTION TIME ANALYSIS
Since the objective of any image encryption system is to
be capable of encrypting images for actual real usage, the
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FIGURE 16. A visual representation of Gaussian noise attacks of different standard deviations on the Mandrill image’s encryption; very little
organization in the generated changes is seen, and most of the original visual data is preserved.

TABLE 14. Key space values comparison.

encryption time of the provided system should be within a
certain acceptable range. Table 15 shows the encryption time
for the proposed image encryption system when applied to
an image of dimensions 256×256. Experimentation with the
scheme’s input variables revealed that the Cat Map’s input
iterations value had the greatest effect on the execution time.
As such, Table 15 shows the effect on execution time at
different values of the Cat Map iterations input, as well as
the effect on 2 other metrics, the MSE (described in section
IV-B) and Information Entropy (described in section IV-E)
to give some perspective on the effect of the Cat Map on the
encryption as a whole.

TABLE 15. Execution time of the proposed image cryptosystem when
applied to the 256 × 256 House image, with respect to the number of
iterations of the Cat Map during encryption. MSE and IE values are also
displayed.

As described in Section II-C the Cat Map is periodic. The
period for the matrix applied in the experiments performed
in Table 15 is 196, so iteration values up to half the period
were taken. Very little change in the MSE or Information
Entropy was measured upon changing the iterations of the
Cat Map, so the minimal value of 5 is taken for the purposes
of comparison with other encryption schemes in Table 16.
Table 16 shows that the proposed scheme operates relatively
quickly, encrypting images of dimensions 256×256 in about
0.4 seconds. In addition, AES is used to encrypt an identically
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TABLE 16. Encryption time comparison of the Lena image of dimensions
256 × 256.

sized image on the same machine, as shown in Table 16,
to demonstrate that the proposed image encryption system is
more efficient.While the proposed cryptosystem is somewhat
slower than the fastest scheme presented, specifically that
presented in [8], it is important to remember that encryption
time is also often the function of the machine operating the
encryption and its current state. The achieved encryption
time of the proposed cryptosystem translates into an average
encryption rate of 3.7 Mbps.

M. THE NATIONAL INSTITUTE OF STANDARDS AND
TECHNOLOGY ANALYSIS
The United States National Institute of Standards and
Technology (NIST) has a number of statistical documents and
analysis tools devoted to cryptology. Once such tool is the
SP 800-22 Statistical Test Suite, which is a set of analyses
and tests designed to evaluate the efficacy of pseudo-random
number generators. This can be useful when applied directly
to the output of encryption produced by the proposed scheme.
While not exactly suited for measuring the strength of the
scheme’s encryption, any encryption data that passes the
NIST SP 800-22 tests would present enough chaotic behavior
to be considered reliable encryption. Table 17 shows the
results of all the suite’s tests when applied to the image data
from the encryption of the 256×256 sized Sailboat image. All
of the table’s values exceed the minimum pass requirement of
0.01, showing that the results of an encryption produced by
the proposed scheme are encrypted strongly enough to act as
an effective PRNG.

N. S-BOX PERFORMANCE ANALYSIS
The generated S-box is one of 2 key elements in the proposed
encryption scheme that act as sources for Shannon’s property
of confusion. As such, it becomes of some importance that
the S-box be assessed on its efficiency independently. Five
tests are usually applied to S-Boxes to ensure their efficacy:

• Non-linearity (NL), which measures the number of bits
in a Boolean function’s truth table that needs to be
changed, for it to reach the nearest affine function.

• Linear approximation probability (LAP), which indi-
cates the probability for an S-box to be biased.

• Differential approximation probability (DAP), which
displays the effect of changes in the input on the output.

TABLE 17. NIST analysis of the image-data bitstream from the encrypted
Sailboat image of size 256 × 256.

TABLE 18. Comparison between the proposed S-box (generated using
Mersenne-Twister Seed = 456) and those provided in the literature.

• Bit independence criterion (BIC), which measures the
relationship between encryption technique and resulting
repeated patterns in the output.

• Strict avalanche criterion (SAC), which measures the
rate of change in the output relative to the rate of change
in the input on a bit-by-bit basis.
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FIGURE 17. Plain and encrypted versions of the House image, and their respective histogram plots.

FIGURE 18. Plain and encrypted versions of the House2 image, and their respective histogram plots.

The S-box used in the proposed scheme is generated
dynamically using the Mersenne-Twister PRNG. A long
sequence of values are taken from the PRNG and used to

generate a number of S-boxes. Those S-boxes are evaluated
using the 5 tests mentioned above, and the test scoring
the clothest to the optimal values is adopted. The results
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FIGURE 19. Plain and encrypted versions of the Mandrill image, and their respective histogram plots.

FIGURE 20. Plain and encrypted versions of the Tree image, and their respective histogram plots.

for one such S-box are shown in Table 18, where they
are also compared with the optimal values for each test,
as well as those of S-boxes used in similar literature. While

not exactly ideal, the values produced by the S-box are at
least somewhat comparable with those produced by similar
literature. Additionally, the S-box is generated dynamically

106272 VOLUME 11, 2023



W. Alexan et al.: AntEater: When Arnold’s Cat Meets Langton’s Ant to Encrypt Images

FIGURE 21. Plain and encrypted versions of the Sailboat image, and their respective histogram plots.

FIGURE 22. Plain and encrypted versions of the Lena image, and their respective histogram plots.

and with self-revision, so adjustment of the pseudo-random
sequence produced by the Mersenne-Twister generator may
produce even better outputs. In any case, this method of S-box

generation generally foregoes the intricacies of S-box design
in favor of randomness in the contents, making it perform
somewhat poorly on some of the tests in Table 18.

VOLUME 11, 2023 106273



W. Alexan et al.: AntEater: When Arnold’s Cat Meets Langton’s Ant to Encrypt Images

FIGURE 23. Plain and encrypted versions of the Girl image, and their respective histogram plots.

V. CONCLUSIONS AND FUTURE WORK
In conclusion, this paper has presented a novel five-stage
image encryption algorithm that provides an efficient and
secure mechanism for real-time image encryption applica-
tions. The proposed technique incorporates a multitude of
chaotic and randomness-inducing mathematical operations,
such as Langton’s Ant, Mersenne Twister PRNG, S-box
substitution, and Arnold’s Cat map for instigating confusion
and diffusion. Security analyses indicate the algorithm’s
resilience to various attacks including brute-force, statistical,
differential, as well as various other forms of attacks.
Additionally, it has passed the stringent NIST SP 800-22
statistical test suite. Compared to existing image encryption
schemes, the proposed method exhibits lower computational
complexity allowing real-time encryption of HD images.
The security evaluation and performance results validate the
effectiveness of the proposed encryption stages and their
combination. This demonstrates the algorithm’s suitability
for practical secure image transmission over open networks.
As future work, hardware implementations of the algorithm
on FPGA and ASIC can be explored to enable very high-
speed real-time encryption. The security can be further
analyzed under a wider array of attacks. Overall, this work
adds a new high-speed image encryption scheme to the
literature providing an optimal balance between security and
the measured real-time performance.

APPENDIX
VISUAL IMAGE ANALYSIS REPOSITORY
See Figures 17–23.
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