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ABSTRACT The effectiveness of network intrusion detection systems, predominantly based on machine
learning, is highly influenced by the dataset they are trained on. Ensuring an accurate reflection of the
multifaceted nature of benign and malicious traffic in these datasets is paramount for creating IDS models
capable of recognizing and responding to a wide array of intrusion patterns. However, existing datasets
often fall short, lacking the necessary diversity and alignment with the contemporary network environment,
thereby limiting the effectiveness of intrusion detection. This paper introduces TII-SSRC-23, a novel
and comprehensive dataset designed to overcome these challenges. Comprising a diverse range of traffic
types and subtypes, our dataset is a robust and versatile tool for the research community. Additionally,
we conduct a feature importance analysis, providing vital insights into critical features for intrusion
detection tasks. Through extensive experimentation, we also establish firm baselines for supervised and
unsupervised intrusion detection methodologies using our dataset, further contributing to the advancement
and adaptability of IDSmodels in the rapidly changing landscape of network security. Our dataset is available
at https://kaggle.com/datasets/daniaherzalla/tii-ssrc-23.

INDEX TERMS Network traffic dataset, intrusion detection, network security, anomaly detection, machine
learning.

I. INTRODUCTION
As the digital world becomes increasingly interconnected,
and the need for robust network security has become
paramount. This increasing interconnectedness, driven by
technologies ranging from mobile computing to the Internet
of Things (IoT), brings with it an exponentially growing
attack surface, making network security not merely an
optional layer but a critical necessity. At the heart of this
defense strategy lie Intrusion Detection System (IDS). These
systems employ many techniques, from statistical anomaly
detection to signature-based methods and, increasingly,
Machine Learning (ML) approaches, to identify and mitigate
anomalous or malicious activity within a network. When
discussing the role of ML in IDS, it’s crucial to highlight
the concept of data diversity, illustrated by practices like data
augmentation. Data augmentation is a common technique
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to introduce variability into the training data in training
ML models, particularly Deep Learning (DL) methods.
This technique can prevent models from overfitting specific
patterns and instead promote the ability to generalize to
unseen instances. Similarly, the value of data diversity
extends to network traffic datasets used for training IDS
models, as it can enrich the models’ ability to identify a
broader range of intrusion scenarios.

Despite the critical importance of data diversity, traditional
network traffic datasets, which are frequently employed
in shaping network security approaches, exhibit significant
limitations, most notably a lack of variation within the
category of malicious samples, as documented in Appendix B
Table 5. The table demonstrates that for 17 out of the
18 reviewed datasets, less than 10 attacks were captured.
We aimed to contribute to this lack of depth in the diversity of
attacks by launching 24 unique attacks. The lack of diversity,
particularly within the malicious class, limits the ability of
IDS models trained on these datasets to generalize effectively
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to new, unseen intrusions commonplace in today’s complex
networks. The IoT has added another layer of complexity
to network traffic, with its unique data patterns and its
inherent security challenges. Despite efforts to create IoT-
specific datasets, many of these initiatives fail to capture
the full spectrum of device interactions and the diverse
range of potential intrusions that can occur in these settings.
The heterogeneity of IoT networks, characterized by a vast
array of interconnected devices with varying capabilities
and vulnerabilities, amplifies the challenge of curating a
representative dataset. Consequently, this presents an urgent
call for creating more comprehensive and diverse datasets
that better encapsulate the contemporary threats networked
systems face.

In this paper, we propose TII-SSRC-23, a new dataset
designed to address the challenges outlined earlier. The
dataset totals 27.5 GB and is bifurcated into two main cat-
egories: benign and malicious, encompassing eight distinct
traffic types. These types are divided into 32 traffic subtypes:
six benign and 26 malicious. Both the raw network traffic
data, stored as Packet Capture (PCAP) files, and the extracted
features, presented in the form of Comma-Separated Values
(CSV) files, are included in our dataset. Our methodology for
dataset generation begins with defining the network topology,
serving as the foundation for all subsequent interactions. This
includes generating benign traffic miming typical network
interactions across unique data types such as video, audio,
text, and background traffic. Following this, we outline the
generation of malicious traffic, replicating four types of
network threats: Denial of Service (DoS) attacks, brute-force
attacks, information gathering tactics, and botnet traffic, with
a specific emphasis on the Mirai botnet. Feature extraction
and importance are analyzed, followed by supervised and
unsupervised experiments that establish firm baselines for
future works. Our main contributions can be summarized as
follows:

• We present the open-source TII-SSRC-23 dataset,
a heterogeneous collection encompassing eight traffic
types (audio, background, text, video, bruteforce, DoS,
information gathering, botnet) and 32 subtypes across
both benign and malicious categories.

• We conduct an exhaustive survey on 18 existing network
traffic datasets, providing key insights to aid researchers
in dataset selection for IDS research.

• We perform a comprehensive feature importance analy-
sis within network traffic data, offering valuable insights
on critical features for intrusion detection tasks, thereby
facilitating IDS model optimization.

• Through extensive experimental evaluation, we estab-
lish firm baselines for supervised and unsupervised
intrusion detection methodologies using our dataset,
fostering the development of robust IDS systems
optimized for diverse network traffic situations.

The remainder of this paper is structured as follows:
Section II provides a comprehensive review and analysis of
preceding work that centers around creating and publicly

releasing network traffic datasets, tackling the limitations
and challenges inherent to existing data sources. Section III
provides an exhaustive description of our proposed network
IDS dataset generation process, encompassing the testbed,
the types, and the characteristics of both benign andmalicious
traffic. In Section IV, we examine statistical patterns and
characteristics of the produced network traffic through the
lens of feature importance analysis. This includes data pre-
processing stages, feature extraction via CICFlowMeter [1],
and feature importance computations to discern the most
informative features. Section V is dedicated to evaluating
both supervised and unsupervised methodologies to set solid
baseline performances for intrusion detection using our
dataset. Conclusively, Section VII wraps up the paper.

II. RELATED WORKS
This section delves into a comprehensive timeline of IDS
datasets spanning the last quarter-century, from earlier
published datasets in 1998 to more recent ones released
in 2023. We review a range of datasets, including some
of the more traditional testbed datasets featuring network-
layer attacks, real-world network deployments, and IoT
datasets. Table 1 presents a survey of the datasets, considering
characteristics such as the year of the dataset’s creation,
number of traffic objects, dataset’s published format, size
of the raw traffic, number of features extracted from the
dataset, traffic source, and deployed network topology. The
number of traffic objects is either represented as a value
with the bidirectional flows1 label (bi. flows) or just as
a value. The latter implies that no information was found
regarding the type of traffic object of the dataset. The
published format, which represents the form in which the
data was published, is described either as raw, denoting that
the network traffic provides packet-level information, or as
statistics, providing information about the traffic objects.
The traffic source falls into three categories: real, emulated,
or synthetic. Real denotes that the data were captured in a
real-world network deployment, emulated refers to the data
being captured in a controlled network environment with
traffic generated manually using scripts or similar means,
and synthetic means a network traffic simulation tool was
used to generate data. In both real and emulated traffic, real
network traffic is generated using real devices. The difference
between both is related to the way in which the real network
traffic is generated; in emulated traffic, the type of traffic
generated in the order and time in which it is generated
is controlled, whereas in real traffic the data is produced
by users in an uncontrolled real-world deployed network
environment. Finally, for the testbed, we have defined small
to indicate that the testbed contained fewer than 20 nodes,
medium to indicate that the testbed contained 20 to 50 nodes,
and large to indicate that a real-world network deployment or
a testbed consisting of more than 50 nodes was used. In the

1Formal definitions of unidirectional and bidirectional network flows can
be found in Appendix A.
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TABLE 1. IDS datasets characteristics.

case that we could not find specific information for a dataset
or is irrelevant considering the data available, it is indicated
by a dashed mark.

The DARPA98 dataset [2] established a performance
benchmark for intrusion detection systems with a military
network testbed showcasing diverse traffic types like DoS,
probing, and privilege escalation attacks. This dataset
inspired the development of the KDD99 dataset [3], which
processed the raw traffic portion of the DARPA98 dataset
comprising of benign and malicious traffic. Despite its
merits, KDD99 had a significant problem of redundant
records [4], leading to the inception of the NSL-KDD
dataset [4]. NSL-KDD, a polished version of KDD99,
underwent preprocessing to eliminate redundancy, offering
a more realistic evaluation context for intrusion detection
systems and anomaly detection algorithms. However, these
datasets share a key limitation – their outdatedness hinders
their utility for modern network traffic analysis [20]. The
Kyoto 2006+ dataset [5], which encapsulates real-world
network traffic data harvested from Kyoto University
between 2006 and 2009 using honeypots, has its limitations.
It lacks manual labeling and introduces anonymization, and
its network traffic perspective is constrained to honeypot-
targeted attacks. While the dataset incorporates ten additional
attributes compared to the aforementioned datasets that are
useful for IDS investigation, the benign traffic simulation is
limited to Domain Name System (DNS) and mail traffic data,
excluding amore extensive range of real-world benign traffic.

The ISCX 2012 dataset [9] used an innovative approach
involving α and β profiles to mimic benign user activities
and malicious scenarios. The benign user behavior included
traffic from the protocols: Hypertext Transfer Protocol
(HTTP), Simple Mail Transfer Protocol (SMTP), Secure
Shell Protocol (SSH), Internet Message Access Protocol
(IMAP), Post Office Protocol (POP3), and File Transfer

Protocol (FTP). This dataset includes raw packet-level data
in PCAP files, featuring approximately 2.4 million bidirec-
tional flows. Echoing this methodology, the CICIDS2017
dataset [12] generated a realistic background traffic scenario
using the B-Profile system. This system models the behavior
of 25 users based on HTTP, Hypertext Transfer Protocol
Secure (HTTPS), FTP, SSH, and email protocols. It com-
prises six attack profiles, specifically bruteforce, heartbleed
botnet, DoS, Distributed Denial of Service (DDoS), web,
and infiltration attacks. Developed in 2015, the UNSW-NB15
dataset [10] comprises benign and malicious network traffic
data generated using a network traffic simulation tool over
a week in a controlled setting. The dataset includes nine
attack classes: backdoors, DoS, exploits, fuzzers, and worms.
Presented in packet-based format (PCAP) and bidirectional
flow-based format, it features 49 attributes and predefined
train-test splits. The dataset contains around 2.5 million
bidirectional flows with an estimated 2.8% malicious traffic.
The UNIBS dataset [6] consists of traffic collected on the
edge router of a campus network using 20 workstations.
The traffic collected provides valuable network traffic
information related to the campus network’s communication
patterns and behavior. However, the dataset does not contain
malicious traffic traces. The CTU-13 (Capture The Flag)
dataset [7] contains real botnet traffic mixed with benign
traffic captured in a university network. The malicious traffic
includes 13 scenarios of botnet samples in which each
scenario included botnet, benign, C&C, and background
flows. The dataset is labeled to indicate the type of malware
attack. It is available in PCAP and bidirectional flow-based
format. The TUIDS dataset [8] encompasses benign user
behavior and various malicious traffic types including botnet,
DoS/DDoS, probing, coordinated port scan, and privilege
escalation. The dataset was generated using approximately
250 clients, captured in raw packet-level and bidirectional
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flow formats. It is labeled and contains around 250k flows.
As the dataset is not publically available, we could not
determine the size of the raw traffic. Shifting the focus to
DoS- and DDoS-based datasets, the DDoS 2016 dataset [11]
contains benign traffic instances and focuses onDDoS attacks
such as User Datagram Protocol (UDP) flood, smurf, HTTP
flood, and SQL Injection Dos (SIDDoS). However, the traffic
was generated using a network traffic simulator. The CIC
DoS dataset [13] focuses on eight different application layer
DoS attacks, particularly HTTP DoS. To create benign traffic
that mimics normal user behavior, traffic from the ISCX
2012 dataset was used. The dataset is provided in raw capture
format, making it useful for studying and evaluating intrusion
detection methods in the context of application layer HTTP
DoS attacks.

As for IoT-based datasets, the BoT-IoT dataset [15] offers
a mix of benign and botnet traffic, simulating a realistic net-
work environment. It comprises synthetically created benign
traffic as well as diverse attack types such as DDoS, DoS,
Operating System (OS) and service scan, keylogging, and
data exfiltration attacks, with DDoS and DoS attacks further
classified by protocol. The dataset incorporates protocols
like Transmission Control Protocol (TCP), UDP, Address
Resolution Protocol (ARP), Internet Control Message Proto-
col (ICMP), Internet Group Management Protocol (IGMP),
and Reverse Address Resolution Protocol (RARP). The
dataset features around 73 million bidirectional flows. The
LATAM-DDoS-IoT dataset [18] is designed with a primary
focus on DoS and DDoS attacks, implemented in a testbed of
physical and virtual IoT components. Benign traffic from a
production network was collected. The dataset includes two
versions: LATAM-DoS-IoT and LATAM-DDoS-IoT, with
30 and 49 million bidirectional flows, respectively. The
CIC IoT 2022 dataset [17] was developed for the profiling,
behavioral analysis, and vulnerability testing of IoT devices
using various protocols. It collects data from experiments
covering power-on, idle, interactions, scenarios, active net-
work communications, and attack traffic: flood and Real
Time Streaming Protocol (RTSP) bruteforce. The collection
process targeted IoT devices linked to an unmanaged switch,
simulating a wireless IoT environment. The Edge-IIoTset
dataset [19] caters to IoT and Industrial Internet of Things
(IIoT) applications. The dataset is a multi-layered testbed,
utilizingmore than 10 different IoT devices, and encompasses
14 attacks related to IoT and IIoT connectivity protocols.
These attacks are categorized into five threats, including
DoS andDDoS, information gathering, injection, man-in-the-
middle, and malware attacks. The dataset contains around
20million bidirectional flows, with about 11.2 million benign
and 9.7 million malicious, with 61 extracted traffic features.
The TON-IoT dataset [16] integrates IoT and IIoT systems
and devices across edge, fog, and cloud layers within an
orchestrated testbed architecture. The data encapsulate both
synthetically created benign traffic and nine attack scenarios,
shared as raw and processed traffic data in PCAP and
CSV formats, along with operating system logs. The dataset

comprises approximately 22.3 million bidirectional flows
captured in 44 features. The benign traffic represents around
3.6% of the flows in the dataset, leaving about 96.4% as
malicious flows. Lastly, the N-BaIoT dataset [14], captured
in an IoT lab environment, records benign and botnet events.
The dataset includes network traffic data from nine IoT
devices and encompasses 10 attack types originating from the
BASHLITE andMirai botnets. Featuring 23 distinct features,
the dataset is shared in CSV format. The dataset comprises
over 7 million flows.

Table 5 lists the attacks executed in all the aforementioned
IDS datasets. Although multiple datasets exist, such as
UNSW-NB15 and CICIDS 2017, encompass many attack
categories, our dataset concentrates on a wide breadth of each
attack. Specifically, we investigate a variety of attacks within
each of our four categories: DoS, bruteforce, information
gathering, and botnet. This investigation results in a total of
26 unique attacks launched.

III. TII-SSRC-23: DATASET GENERATION METHODOLOGY
In this section, we detail our methodology for creating the
proposed 27.5 GB dataset in PCAP format. The traffic
is bifurcated into two primary categories (benign and
malicious), spanning eight traffic types (audio, background,
text, video, bruteforce, DoS, information gathering, Mirai
botnet), including 32 subtypes (six benign and 26 malicious).
Table 2 identifies the traffic types and subtypes, with each
subtype quantified by the number of combinations2 and
bidirectional flows. Moreover, the ‘‘combinations’’ column
denotes the traffic variations within a traffic subtype,
approximated by the number of traffic permutations launched
informed by the subtype’s parameters, as listed in Appendix
Section B. The necessity for diversifying traffic patterns to
enhance the resilience of IDS is examined in Section III-A.
Our methodology begins with the specification of the
network topology, outlined in Section III-B, which forms the
foundation for all subsequent interactions. The generation of
benign traffic, emulating typical network interactions across
the following unique data types: video, audio, text, and
background traffic, is illustrated in Section III-C. Finally,
Section III-D describes the generation of malicious traffic,
replicating four types of network threats.

A. TRAFFIC DIVERSIFICATION FOR IMPROVED IDS
ROBUSTNESS
Despite the impressive performance of various IDS datasets
evaluated through ML/DL methodologies within their cor-
responding test environments, a significant performance
decline is observed when these models are implemented
in real-world contexts [20]. This performance degradation
often results in expensive misclassifications due to high
false positive or false negative rates, thereby underlining
a predominant challenge encountered by ML-driven IDSs.

2The number of combinations can exceed the number of bidirectional
flows; this strictly depends on the protocol and how they are terminated.
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TABLE 2. Distribution of bidirectional network traffic flows in the
dataset, classified by type and subtype. The column ‘‘Bi. Flows’’
represents the number of samples for each traffic subtype.

An effective mitigation strategy involves utilizing network
traffic datasets with diversified characteristics during train-
ing. This diversification allows the models to generalize
better and accurately classify network traffic in real-world
deployments. Although numerous existing datasets under-
score the incorporation of an extensive variety of benign
and malicious traffic, the emphasis on including diverse
traffic patterns within each traffic category is noticeably
lacking. In contrast, our proposed IDS dataset adopts a unique
approach by stressing the generation of diversified traffic
patterns within each traffic category. This is achieved through
carefully manipulating data traffic parameters during the data
generation stage, as described in the subsequent sections.
By integrating this degree of diversity, our dataset is designed
to enhance the robustness and effectiveness of ML-based
IDSs, particularly when facing an array of complex and
evolving network traffic situations.

B. NETWORK CONFIGURATION OVERVIEW
Our data recording setup captured benign and malicious
traffic, deploying a testbed configuration composed of five

nodes. These nodes encompass two laptop systems running
Ubuntu 20.04 and three embedded devices, each offering
processing capabilities equivalent to a Compute Module
4 device.3 Two of the embedded devices are interconnected
to each laptop via Ethernet connections. At the same time,
the third embedded device operated as a mobile unit,
allowing placement in various locations, thus facilitating the
simulation of diverse network interference scenarios. During
traffic recording, the mobile embedded device is strategically
relocated across three distinct locations to generate variations
in network interference. The labels ‘‘low,’’ ‘‘mid,’’ and
‘‘high’’ interference, which are relative terms, denote the
distinct degrees of interference experienced at each respective
location, as determined by the corresponding throughput
values, i.e., approximately 154 Megabits per second (Mbps)
for ‘‘low’’, 69.7 Mbps for ‘‘mid’’, and 38.4 Mbps for ‘‘high’’
interference scenarios. Specifically, at the first location
the mobile device is placed half a meter away from the
testbed, leading to the lowest level of interference. At the
second location, the mobile device is stationed six meters
horizontally away from the testbed, separated by two rooms,
resulting in the highest level of interference. In contrast, the
third location sees the mobile device placed six meters below
the testbed, precisely one floor apart with a glass wall and
concrete flooring, creating mid-level interference. During all
traffic capture scenarios, the tcpdump tool4 was set to capture
the traffic on the mobile embedded device. The embedded
devices operate within a decentralized system where peer-
to-peer communication occurs via a wireless medium. The
traffic flow path is managed via the Better Approach to
Mobile Ad-hoc Networking (BATMAN) [21] protocol chain,
maintaining a static bi-directional path. This setup ensures
that the communication passes through all nodes within the
BATMAN chain before reaching the destination node.

In the Mirai malware attack scenario, the communication
between the Command-and-Control (CnC) server and the
bots does not follow an end-to-end path. Consequently,
to comprehensively capture all CnC and botnet traffic we
recognized the need to construct a centralized testbed. This
modified testbed included five nodes, with a Raspberry Pi
4 set as the Access Point, two Ubuntu 20.04 laptop systems as
the victim and the botmaster hosting the CnC server, and the
ScanListen server, as well as two bots deployed on Compute
Module 4 (CM4) boards. All traffic was recorded on the
Access Point using the tcpdump tool to capture bidirectional
communication between the botmaster, the bots, and the
victim.

C. BENIGN TRAFFIC
Our data collection, within the context of benign traffic,
comprises four distinct types: audio, video, text, and back-
ground. Video traffic comprises the majority of benign flows,

3Raspberry Pi Compute Module 4. https://datasheets.raspberrypi.com/
cm4/cm4-datasheet.pdf

4Tcpdump: Unix-based network packet analyzer http://www.
tcpdump.org/
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accounting for more than 65% as deduced from Table 2.
Audio and text traffic each comprises around 15%, with
background traffic making up around 3%.

1) AUDIO AND TEXT TRAFFIC
The Mumble5 voice-over Internet Protocol (IP) application
was utilized to create audio and text traffic independently.
The interaction between the client and the server was enabled
using the Pymumble Python module, with a Python script
devised to transmit audio and text messages using a script
with over 100 varied-length strings from screenplays and
literary works; the strings contained a variation of alphanu-
meric and special characters. The network environment
incorporated one server and three clients. The server was
set on an embedded device, and the two laptop machines
operated as clients, transmitting messages to the server. The
clients dispatched audio/text messages with a 5% probability
of disconnection from the server. Upon disconnection, the
client system was programmed to automatically re-establish
the connection after a brief intermission. The audio and text
traffic were each captured over a period of one hour.

2) BACKGROUND TRAFFIC
The background traffic was recorded for a period of one hour.
This strategy was twofold: not only did it contribute to the
dataset by gathering background traffic, but it also provided
a reference framework to aid in manually identifying specific
background data types requiring filtration from the attack
PCAP files. The background traffic contains broadcast
packets, DNS messages, ICMP router solicitation messages,
and ARP packets; the protocols spanned the following: ATA
over Ethernet (AOE)), multicast Domain Name Resolution
(MDNS), Internet Control Message Protocol for IPv6
(ICMPv6), and ARP.

3) VIDEO TRAFFIC
The Video LAN Client (VLC) application was employed to
generate video traffic, leveraging its accompanying Python
module for automated video streaming. A custom Python
script was created to introduce heterogeneity in the video
traffic bymodulating ten distinct video streaming parameters:
pixel resolution, video codec, audio codec, video bitrate,
audio bitrate, video scale, frames per second, multiplexer
type, sample rate, and the underlying protocol. The VLC
streaming server was instantiated on the laptop. This server
was responsible for streaming a playlist of seven unique
videos. The streaming session was allotted one hour, where
protocols such as UDP, Real-Time Transport Protocol
(RTP)/Transport Stream (TS), and HTTP were utilized
for transmission. This procedure led to the creation of a
PCAP file for each of the utilized communication protocols.
Comprehensive details regarding the modulated video traffic
parameters are available in Appendix B Table 6.

5Mumble: open-source voice chat application. https://www.mumble.info/

D. MALICIOUS TRAFFIC
In the context of malicious traffic, our compiled dataset
embodies four different attack types. These comprise DoS,
Bruteforce, Information Gathering, and Botnet. The DoS
attacks represent the majority, accounting for approximately
86% of the malicious traffic flows, followed by Information
Gathering accounting for 12%. Mirai Botnet and bruteforce
each constitute 1% of the malicious traffic. After the data
capture, a filtering process was applied to the attack PCAP
files during preprocessing, purging them of non-malicious
data, as expanded upon in Section IV-A.

1) DOS
DoS attacks, regarded as one of the most pervasive and
frequently exploited types of network traffic intrusions,
have witnessed a surge in both frequency and intensity in
recent years. The year 2015 was a notable milestone in the
history of DoS attacks, setting unprecedented records for data
flood transfer rates, a trend that intensified in the following
year [22]. These attacks, infamous for their disruptive effects,
can rapidly deplete their targets’ computational resources
and bandwidth within minutes, effectively denying access
to legitimate users. Reflecting the significant relevance of
these attacks and in line with this trend, more than 85%
of our dataset constitutes DoS attacks. Our investigation
covers 12 unique flood attacks, each exploiting distinct
vulnerabilities to inundate target devices. These flood attacks
span HTTP, ICMP, Media Access Control (MAC), TCP
(Acknowledgement (ACK), Congestion Window Reduced
(CWR), Explicit Congestion Notification (ECN), Finish
(FIN), Push (PSH), Reset (RST), Synchronize (SYN), Urgent
(URG)), and UDP. To incorporate variability and diversify
the traffic, we meticulously modulated multiple parameters
during the deployment of these attacks. Parameters such
as speed of packet transmission and payload size can
be key indicators of a DoS attack. Reference [11] given
their significance in the identification of DoS activities,
we dedicated special attention to manipulating them in order
to capture the various ways these parameters are exploited
by attackers. Within the ICMP, TCP, and UDP floods we
adjusted the speed of packet transmission to three distinct
modes specified in Hping3: ‘‘fast’’, ‘‘faster’’, and ‘‘flood’’,
ranging from 10 packets per second (pps) to over 1000 pps,
capturing a range of stealthy to aggressive flood attacks.
Additionally, we varied the payload size to range from small
inconspicuous payloads to larger payload flooding tactics to
capture diverse DoS attack strategies.

The TCP flood attack capitalizes on the intrinsic features
and behavior of the TCP protocol, exploiting the interactions
using various flags present within the TCP packets. As listed
above, we launched eight distinct types of TCP flood
attacks. Within each, we varied six attack-related parameters:
packet transmission speed, payload size, randomized source
ports, TCP checksum validity, TCP window size, and TCP
data offset. This yielded 192 unique TCP flood traffic
combinations captured over 18.7 minutes. The UDP flood
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attack operates by transmitting a large volume of UDP
packets. We modulated four parameters: packet transmission
speed, payload size, randomized source ports, and UDP
checksum validity, producing eight UDP traffic combinations
captured over a period of three minutes. In the case of the
ICMP flood, we varied the payload size resulting in four
unique combinations of traffic captured over a period of two
minutes. The HTTP flood attack is a type of volumetric
application layer attack that aims to inundate the target
with HTTP requests. We modulated three parameters for
this attack: request method (GET, POST, Random), number
of concurrent workers, and number of concurrent sockets.
This configuration resulted in 27 unique traffic streams
spanning a period of 11.3 minutes. The MAC flood was
launched for 30 minutes, with no parameters adjusted, as the
macof tool does not provide any traffic options to vary.
In Appendix Table 7, we provide further details of the
modulated parameters for each flood attack, offering deeper
insights into the experimental setup and configuration for our
IDS dataset.

2) BRUTEFORCE
Despite their age and lack of sophistication, bruteforce
attacks retain startling prevalence and efficacy in the contem-
porary digital landscape. This attack involves systematically
attempting all possible combinations of credentials from a
list of keys to discover a successful pair. The Patator tool6

was used to execute bruteforce attacks on five services:
DNS (forward and reverse lookup), FTP, HTTP, SSH, and
Telnet. For launching the bruteforce attacks on the FTP,
HTTP, SSH, and Telnet services, we used a list of around
400k usernames and two million leaked passwords.7 The
Filezilla Client application was set on the victim to perform
the FTP bruteforce attack. The HTTP bruteforce attack
was executed against a phpMyAdmin server hosted on the
victim’s machine, using GET and POST request methods.
To carry out the forward DNS lookup, we tested around 12k
domain names against the server domain. The reverse DNS
lookup involved querying a range of IP addresses to identify
the victim’s hostname.

3) INFORMATION GATHERING
An information-gathering attack constitutes a critical initial
step for attackers preparing for future exploits on their
target system, proving particularly beneficial for malware
attacks. Such an attack aims to acquire, among other things,
information on a network’s architecture, OS, and active
security defense mechanisms. Information-gathering attacks
manifest in several forms, of which we implemented six
types, specifically: port scan (TCP and UDP), OS detection,
version detection, script scan, and ping scan utilizing the

6Patator: multi-purpose bruteforcer https://www.kali.org/tools/patator/
7The list of credentials used were obtained from a bruteforce database.

https://github.com/duyet/bruteforce-database/tree/master

Hping3 and Nmap8 tools. We employed various IDS evasion
strategies to circumvent detection to render the scans more
covert.

A port scan involves scanning the ports of the victim to
ascertain their status. The execution of a successful port
scan provides the attacker with an entry point to penetrate
the network and extract the targeted information. Hping3
was utilized to perform a scan on all ports using six TCP
flags. Additionally, Nmap was used to perform a UDP scan
and seven types of TCP port scans with multiple parameters
varied for each. The TCP port scans were of the following
types: Connect, SYN ACK, FIN, Window, Maimon, XMAS,
and NULL. As for a ping scan, it operates to discern the
presence of hosts in a network by using their IP addresses.
Nmap was deployed to launch seven ping scans, namely:
ICMP echo, ICMP timestamp request, ICMP netmask
request, TCP SYN, TCP ACK, UDP, and Stream Control
Transmission Protocol (SCTP) Initialization (INIT) scans.
Finally, OS detection, version detection, script scanning, and
traceroute techniques were performed. This was facilitated
using the pre-configured ‘‘Aggressive Scan’’ Nmap option,
which activates multiple advanced scans to probe the target
machine comprehensively. All of the information gathering
tactics yielded 102 unique combinations of traffic, elaborated
upon in Appendix table 7.

4) BOTNET MALWARE
In the field of cybersecurity, malware–a form of software-
based attack–poses a significant threat by compromising
system confidentiality. This breach can lead to sensitive data
theft, disruption in system operations, or render the system
entirely inoperative. Among various types of cyberattacks
against embedded systems, botnet malware is one of the
most prevalent [23]. The Mirai botnet is a notable example
of this type of malware [23]. Designed specifically to
infiltrate devices running a Linux system, Mirai aims
to transform these systems into botnets that can launch
substantial network-level and HTTP flood attacks on servers.
Mirai executes this by exploiting the default username and
password combinations configured during the initialization
of IoT devices. The common expectation is that users will
replace these default credentials. However, this often does not
occur in practice, leading to devices remaining vulnerable to
malicious intrusion. In such cases, hackers leverage scanning
and bruteforce attacks to identify accessible devices to gain
control over the device by injecting the Mirai malware.
The Mirai attack follows the following sequence of events:
(Scanning Stage) The existing bots initiate a scan to identify
potential new devices to infect. As the bots were deployed on
twoCM4deviceswith limited processing power, the scanning
process was significantly time-consuming. To expedite the
bruteforce stage, we manually configured the target IP;
(Bruteforce Stage) The bots then attempt to brute open Telnet

8Nmap: open-source utility for network discovery and security auditing.
https://nmap.org/
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ports on discovered devices utilizing a set of commonly used
IoT device credentials. Upon successful bruteforce attempts,
the bots report the pertinent device details and the successful
credentials to the ScanListen server; (Loader Stage) The
CnC server monitors the status of the ScanListen server and
instructs the loader to inject a malicious binary onto the
discovered device upon successful authentication. The Mirai
malware was manually loaded onto the CM4 bots as they
were found to be immune to Mirai infection; (Attack Stage)
The CnC server then dispatches attack commands to the bots
to initiate an attack on a specific victim IP.

We initiated eight vectors of the Mirai attack, specifically:
ACK, DNS, HTTP, GREETH, GREIP, SYN (SYN URG,
SYN PUSH, SYN RST, SYN FIN, SYN-ACK), UDP, and
UDP plain flood attacks. The UDP Plain flood attack is a
simplified version of the UDP flood, offering limited options
but enabling a higher packet transmission rate. The GREETH
andGREIP attacks inundate the target withmaliciousGeneric
Routing Encapsulation (GRE) encapsulated Ethernet and IP
packets, respectively. The GREETH assault includes Trans-
parent Ethernet Bridging over GRE-encapsulated packets
in its payload, whereas the GREIP attack encompasses
solely IP packets. Despite similar operational patterns,
the GREETH attack incorporates an additional L2 frame.
We altered various attack parameters in initiating the Mirai
DDoS assaults, some of which include the payload size,
randomized source and destination ports, and type of service,
as elaborated upon in Appendix Table 8. The resultant Mirai
DDoS attack data comprise two primary traffic types: CnC
traffic, capturing the interaction between the botmaster and
the bots, as well as bot traffic, which represents the DDoS
attack activities. We also share the scanning and bruteforce
traffic between the bots and the target device.

IV. NETWORK TRAFFIC FEATURE EXTRACTION AND
IMPORTANCE EVALUATION
This section is dedicated to exploring the procedures of
feature extraction and importance evaluation in network
traffic data. Our main interest lies in revealing inherent
statistical tendencies and subtleties encapsulated in the
network traffic data that have been generated. An overview
of the data preprocessing stages, including the filtering
of PCAP files, is given in Section IV-A. We employ the
CICFlowMeter tool for feature extraction and elucidate this
process in Section IV-B. In Section IV-C, we delve into
feature importance analysis, providing an in-depth study
of the most impactful features related to various types of
network traffic.

A. DATA FILTERING AND PREPROCESSING
Following data capture, Wireshark was used to filter the
obtained files, stored in the PCAP format, based on the
type of traffic each contained. Files containing malicious
data underwent manual filtering to eliminate background
traffic, which helped prevent contamination of the malicious
files with benign data. The background traffic PCAP helped

determine what types of benign data packets the malicious
traffic files needed to be filtered from. We noticed the
rare presence of packets with random protocols in the files
associated with DoS attacks. As these are presumably part of
the executed attack, they were not filtered out.

B. FEATURE EXTRACTION
While the primary objective of this study is not to contribute
to the field of feature engineering, it is essential to describe
the process we employed to extract valuable insights from
our network traffic data. We utilized CICFlowMeter, a well-
acknowledged tool frequently employed in intrusion detec-
tion literature. CICFlowMeter establishes a robust framework
for extracting crucial features from traffic sessions. These
sessions are defined based on bidirectional flows, a strategy
consistent with the predominant network traffic object used
for classification, compared to packets and unidirectional
flows. Bidirectional flows offer a comprehensive network
traffic perspective, facilitating precise and detailed examina-
tion. CICFlowMeter enables us to extract 75 distinct features
from each bidirectional flow. The tool processes raw network
traffic data, maps the packets to their respective bidirectional
flows, and then computes essential statistical features.9 The
processed data, represented in the form of these computed
features, are provided in a structured CSV file format. This
format streamlines the subsequent stages of network traffic
data analysis and interpretation. The CSV files were labeled,
incorporating three levels of classification such as ‘‘Label’’
(Benign or Malicious), ‘‘Traffic Type’’ (Audio, Background,
Text, Video, Bruteforce, DoS, Information Gathering, Mirai),
and ‘‘Traffic Subtype’’ as listed in Table 2.

To further understand the distribution and structure of our
high-dimensional data, we employ t-distributed Stochastic
Neighbor Embedding (t-SNE) for visualization. Figure 1
presents the t-SNE plot of our data, providing a clear visual
summary of how our data points relate. From the plot, one
can also discern the rich diversity inherent in the TII-SSRC-
23 dataset. While distinct clusters corresponding to different
traffic types are evident, the mingling of samples, especially
within the malicious categories, underscores the multifaceted
nature of intrusion patterns captured in our dataset. This
intermingling, far from being a drawback, actually highlights
the dataset’s comprehensive coverage of a vast spectrum of
attack vectors and behaviors.

C. FEATURE IMPORTANCE ANALYSIS
Before delving into the experimental phase of this study,
it is critical to conduct a comprehensive analysis of feature
importance. This analysis not only allows us to ascertain
the relative significance of each feature and comprehend its
bearing on the classification task but also provides insights
for future work. Given the high dimensionality of our dataset,

9For more details regarding the extracted features, please
refer to the CICFlowMeter Github repository: https://github.com/
ahlashkari/CICFlowMeter/blob/master/ReadMe.txt
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FIGURE 1. Clusters in network traffic data visualized using t-SNE.

pinpointing the features that contribute most profoundly to
our classification models’ performance is vital. Additionally,
this analysis is instrumental for future research that utilizes
our shared dataset, as it provides valuable insights into model
development within intrusion detection. This foundational
understanding of feature importance could be leveraged to
enhance the effectiveness of future intrusion detectionmodels
and strategies.

We employed Permutation Feature Importance (PFI) to
compute the feature importance. PFI works by randomly
shuffling the values of one feature at a time and then
evaluating the resultant effect on the model’s performance.
A marked decrease in the model’s performance implies
the shuffled feature’s importance for the predictive task in
question. However, evaluating feature importance should not
entirely depend on a singular execution of PFI. It is advisable
to perform multiple runs per method and utilize various
classifiers when assessing feature importance. This is because
a feature’s importance can fluctuate depending on themodel’s
architecture and the specific run of the algorithm.We promote
a more comprehensive understanding of feature importance
by employing multiple methods and runs, providing a more
robust foundation for our analysis. We employed three
classifiers to calculate feature importance: the RandomForest
(RF) classifier, the eXtreme Gradient Boosting (XGBoost)
classifier, and the Extra Trees (ET) classifier. These clas-
sifiers were selected by their efficiency and potential for
parallelization, which permitted the experiment to be carried
out within a feasible timeframe. It’s also worth noting that,
for each classifier, we conducted three separate runs of PFI,
thereby enhancing the reliability of our feature importance
estimations.

FIGURE 2. Ranking of the five most critical features in network traffic
classification. Plot (a) illustrates the five attributes distinguishing benign
from malicious traffic. Plot (b) depicts the five principal features
employed in segregating network traffic into various unique categories:
audio, video, text, DoS, Mirai, and bruteforce attacks.

Two distinct feature importance experiments were con-
ducted: (1) a binary classification experiment aimed at
distinguishing benign from malicious traffic and (2) a
multiclass classification experiment intended to identify
specific types of network traffic. Boxplots of the feature
importances for each scenario are presented in Figure 2. Plot
(a) displays the top five features in distinguishing benign
traffic from malicious ones. In contrast, plot (b) outlines the
five most influential features in segregating network traffic
into various unique categories, encompassing audio, video,
text, DoS, Mirai, and bruteforce attacks.

Results from the feature importance experiment depicted in
Figure 2(a), classifying benign vs. malicious traffic indicate
that the top five most important attributes are Forward
Maximum Packet Length (FWD Max Pkt Len), Backward
Initial Window Byte Size (BWD Init Win), Flow Byte Rate
(also referred as Flow Byte/s), Forward Initial Window Byte
Size (FWD Init Win), and Forward Minimum Segment Size
(FWDMin Seg Size). Notably, FWDMax Pkt Len and BWD
Init Win present high feature importance scores, particularly
in their third quartile values, implying a critical role in
distinguishing benign and malicious network traffic. These
features’ broad range of importance values reflects their
diverse influence across different classifiers and PFI runs.
Moreover, the Flow Byte Rate feature shows considerable
variability in its importance, as evidenced by its interquartile
range. Despite not reaching the upper limit seen in the
first two features, it retains a notable importance score,
making it a valuable contributor to traffic classification.
In contrast, the FWD Init Win feature exhibits a relatively
stable and moderate range of importance values, suggesting a
steady but lesser contribution to network traffic classification.
Finally, while not as impactful as the top-ranking features,
the FWD Min Seg Size feature still contributes to the clas-
sification task. Its median importance score, though lower,
provides a meaningful addition to the overall classification
task.
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FIGURE 3. Variation of standardized feature values across traffic types. The left of the dashed line represents benign traffic (Audio, Video, Text) while
the right denotes malicious types (Bruteforce, DoS, Information Gathering, Mirai).

Results from the feature importance experiment, illustrated
in Figure 2(b), aimed at classifying network traffic into
various unique categories, indicate that the top five most
important attributes are Forward Initial Window Byte Size
(FWD Init Win), Forward Maximum Packet Length (FWD
Max Pkt Len), Forward Header Length (FWD Header
Len), Standard Deviation of Idle Time (Std. Idle Time),
and Maximum Packet Length (Max Pkt Len). The FWD
Init Win feature is the most significant, supported by its
nearly maximal feature importance scores across the first,
second, and third quartiles. Its consistently high importance
demonstrated across multiple classifiers and PFI runs,
underscores its pivotal role in differentiating between various
types of network traffic. Remarkably, FWD Init Win is
one of the top five important features in both experiments,
attesting to its relevance across distinct classification tasks.
The other four features also contribute significantly to the
classification task, with varying importance scores. FWD
Max Pkt Len, particularly in its third quartile, substantially
influences traffic classification. Additionally, FWD Header
Len and Std. Idle Time plays important roles, enhancing
the model’s ability to distinguish between traffic types. Max
Pkt Len, although not scoring as high as the others, still
contributes notably to the overall classification task. These
top five attributes, especially FWD Init Win featured in
both experiments, play a vital role in effectively classifying
network traffic.

Given the most important features identified from the
feature importance analysis, we can now examine their raw
values across different traffic types. Figure 3 presents the
standardized feature values for the top eight most important
features, allowing us to identify significant variations among
the traffic types. Across the Video, Audio, and Text traffic
types, we notice a notable variation in the values of the
features compared to the DoS, Mirai, and Bruteforce traffic
types. There seems to be a consistent pattern for the first
three traffic types, where the feature values exhibit a more
widespread distribution, covering a larger range of values.

In contrast, the DoS, Mirai, and Bruteforce traffic types
show a more concentrated distribution of feature values,
with relatively lesser variations. Moreover, we can identify
several features with distinct characteristics among the first
three traffic types. For instance, FWD Max Pkt Len stands
out with relatively high variability in the values across the
Video, Audio, and Text traffic types. In contrast, features
like FWD Init Win and FWD Header Len exhibit relatively
stable and consistent values across the benign traffic types.
We notice a different trend when examining the malicious
traffic types (DoS, Mirai, and Bruteforce). The features
displaymore uniform values, indicating less variability across
these traffic types. Features such as FWD Min Seg Size and
FWD Header Len show particularly distinct characteristics
compared to the benign traffic types, reinforcing their
relevance in distinguishing between benign and malicious
traffic.

V. EXPERIMENTAL EVALUATION AND BASELINE
RESULTS
In this section, we evaluate supervised and unsupervised
methodologies to establish firm baseline performances for
intrusion detection utilizing our dataset. This undertaking
serves two functions. Firstly, it equips future research that
leverages our dataset with crucial insights and performance
benchmarks. Secondly, it offers robust baselines for two
essential tasks in network security: supervised intrusion
detection and unsupervised intrusion detection via Out-of-
Distribution (OOD) detection, that is, network anomaly
detection. Through this, we enable the comparison of emerg-
ing models and methodologies using our shared dataset,
thereby promoting the development of more effective intru-
sion detection systems. Section V-B details the application
of supervised methodologies to distinguish various types
of network traffic while simultaneously acknowledging the
inherent limitations of these methods when dealing with
unseen attacks absent from the training data. In contrast,
Section V-C investigates the use of unsupervised approaches

118586 VOLUME 11, 2023



D. Herzalla et al.: TII-SSRC-23 Dataset: Typological Exploration of Diverse Traffic Patterns

for anomaly detection, emphasizing the need to incorporate
a wide variety of real-world traffic patterns to boost model
robustness and adaptability to changing traffic distributions.

A. DATA HANDLING AND EXPERIMENTAL DESIGN
The preprocessing phase involved removing unnecessary
columns and duplicates. The columns removed were source
IP and port, destination IP and port, and flow identifier,
allowing us to focus on the most pertinent features for
our analysis. We applied normalization and standard scaling
techniques to address disparities in the scales of different
features. Missing data were handled using two different
strategies based on the nature of the data. Missing values
in numerical data were substituted with the mean value
of the respective feature. In contrast, missing values were
replaced with the most frequent category for categorical
data. One-hot encoding was employed specifically for the
‘protocol’ feature, the only categorical variable in our dataset.
We refrained from performing any form of dimensionality
reduction. In our preliminary experiments, we tried to balance
the dataset using the Synthetic Minority Over-sampling
Technique (SMOTE), specifically targeting every class with
under 1,000 samples. Our goal was to ensure each class had
at least 1,000 samples by synthetically generating data, and
this was applied solely to the training set. However, despite
these efforts, the SMOTE application did not result in any
significant performance improvement. Thus, we decided not
to use SMOTE in our final experiments, opting to maintain
the original distribution and authenticity of the dataset.

To evaluate the models, we employed several metrics,
including the F1 score, Area Under the Receiver Operat-
ing Characteristic Curve (AUROC), and Area Under the
Precision-Recall Curve (AUC-PR). The F1 score balances
precision and recall and provides an overall assessment
of a model’s accuracy. The F1 score we employed uses
the macro average, the unweighted mean of the F1 scores
for each class. The AUROC measures a model’s capability
to distinguish between classes, with a higher AUROC
indicating better performance. The AUC-PR summarizes the
precision-recall curve and is particularly useful in scenarios
with class imbalances. These metrics were chosen based
on our problem’s characteristics and the need to assess the
models from various perspectives.

B. BASELINES FOR SUPERVISED-BASED INTRUSION
DETECTION
Our experiments for the supervised classification are carried
out in three steps: (1) a binary classification to differentiate
between benign and malicious traffic, (2) a multiclass
classification to categorize diverse types of traffic, and
(3) a multiclass classification to classify the traffic into
subtypes further. In our supervised experiment, we opted
for the following classifiers: RF, Decision Tree (DT),
ET, Multilayer Perceptron (MLP), Support Vector Machine
(SVM), and XGBoost. Although K-Nearest Neighbors was
initially considered, it was later omitted from our selection

TABLE 3. Baseline results (%) of ML models on our published dataset for
supervised network intrusion detection tasks. These results provide a
baseline for future research and comparison with emerging models and
methodologies.

due to its below-average experiment results. These models
were chosen due to their widespread utilization, interpretabil-
ity, and robustness in dealing with various classification
problems. Refer to the appendix C-A and Table 12 for a
comprehensive list of the approximated optimal parameters
for each classifier.

Table 3 presents the mean performance metrics obtained
from three separate runs of each method from three separate
runs of each model. Binary classification results showed high
performance from all models for distinguishing benign and
malicious traffic, with SVM having the lowest F1 score of
57.87 (accuracy 99.84) and XGBoost having the highest F1
score of 98.79 (AUROC 100). Multiclass classification for
traffic types saw similar performance, with SVM lowest and
XGBoost highest (F1 score 97.31, AUROC 99.80). MLP,
DT, ET, and RF exceeded 99.94 accuracies. Traffic subtype
results followed this trend, with MLP and SVM lagging
(F1 scores of 78.41 and 80.57, respectively) and ET leading
(F1 score of 93.36).

The results demonstrate that the selected classifiers gen-
erally performed well in our dataset’s binary and multiclass
classifications. However, the performance was not uniform
across all models in binary tasks, with SVM and MLP
classifiers yielding less satisfactory F1 scores. Conversely,
the XGBoost and ET classifiers excelled in all experiments,
proficiently classifying benign and malicious traffic and
differentiating various traffic types and subtypes. As we
subdivided network traffic into more refined categories,
a noticeable decline in the performance of our methods
became apparent, underscoring the increased challenge in
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TABLE 4. Baseline results (%) for anomaly-based intrusion detection
methods. Metrics are presented for two different threshold settings: the
99th percentile and the maximum value. The table compares each
model’s AUROC, precision, recall, and F1 score under each threshold
setting.

finer-grained classifications. For a detailed understanding
of the performance, refer to the classification results for
each class in each experiment, provided in the Appendix
(Tables 9, 10, and 11). Table 9 provides the XGBoost
precision, recall, and F1 score for benign and malicious
traffic. Table 10 offers details on the XGBoost precision,
recall, and F1 score for each traffic type, whereas Table 11
delineates the Extra Trees precision, recall, and F1 score for
each traffic subtype. This additional information enhances
our understanding of the models’ effectiveness across diverse
traffic types and subtypes.

C. BASELINES FOR ANOMALY-BASED INTRUSION
DETECTION
We formulate anomaly-based intrusion detection as an
unsupervised task, conceptualizing it as an OOD detection
problem. In this configuration, the in-distribution is repre-
sented by normal data, the only data type used during model
training. During testing, both normal and malicious traffic
are introduced, the distributions of which should ideally be
separable. For this experiment, the focal evaluation metrics
are the AUROC and the F1 score, computed at both the 99th
percentile and maximum threshold of the scores obtained
from the training set. The maximum threshold, a well-
known thresholding technique, is particularly effective when
the normal and malicious traffic score distributions do not
overlap, thereby representing a distinct separation between
these classes. Conversely, the 99th percentile threshold
is employed to handle situations with extreme maximum
normal scores. The anomaly detection methods selected
for our unsupervised experiments include: Isolation Forest
(IF), Kernel Density Estimator (KDE), Local Outlier Factor
(LOF), Support Vector Machine (OC-SVM), and Deep
Support Vector Data Description (Deep SVDD) [24]. For an
in-depth discussion on the methods, especially details on
Deep SVDD, please refer to appendix C-B and Table 12
which provides a comprehensive list of the approximated
optimal parameters for each method.

Table 4 presents the mean performance metrics for
each anomaly-based intrusion detection method analyzed,
obtained from three separate runs of each model, all with
distinct seed settings. The results indicate that the models

have significant variations in their performance. For instance,
the IF model struggled to distinguish between normal
and anomalous traffic, resulting in the lowest AUROC of
58.21. This performance equated to a modest F1 score of
1.54 at the 99th percentile threshold. The model could not
identify anomalies at the maximum threshold, yielding an
F1 score of 0.0. KDE exhibited a satisfactory performance,
registering an AUROC of 64.19. With an F1 score of
77.3 at both the 99th percentile and maximum thresholds,
the KDE model demonstrated consistency across the two
threshold settings. Following the KDE, Deep SVDD showed
exceptional performance, registering the highest AUROC
of 97.84 and a notable F1 score of 99.83 at the 99th
percentile threshold. Deep SVDDmaintained a high F1 score
of 99.76 even at the highest threshold, highlighting its stable
performance across both threshold settings. The performance
of LOF, andOC-SVMmodels was inconsistent. Interestingly,
the OC-SVM model showed high precision but observed a
notable decrease in the recall and, therefore, the F1 score at
the maximum threshold.

The results highlight the variation in model performance
and emphasize the significant effect of threshold selection
on said performance. This highlights the necessity for
meticulous threshold selection when evaluating unsupervised
anomaly detection methods. Given the intricate nature of
network anomaly detection, more sophisticated strategies
are commonly needed for effective anomaly identification.
Take, for example, ARCADE [25], which implements
a DL strategy, leveraging an adversarially regularized
1D-convolutional neural network autoencoder to learn the
normal traffic pattern from raw network data. Our dataset,
including raw traffic, aligns well with these advanced tech-
niques. The strong performance of Deep SVDD in network
traffic analysis further reinforces the value of adopting these
advanced techniques.

VI. CONCLUSION
Addressing the widespread challenge in public network
traffic datasets where there is an overrepresentation of
benign and a scarcity of diverse malicious network
traffic, we introduce the TII-SSRC-23 dataset avail-
able at https://kaggle.com/datasets/daniaherzalla/tii-ssrc-23.
We emphasize the importance of data diversity in enhancing
IDS efficacy within ML-based paradigms. TII-SSRC-23
dataset encompasses a wide spectrum of benign and
malicious traffic patterns, including 32 benign and malicious
traffic subtypes with 26 unique attacks launched, each
enrichedwithmany variations in traffic parameters. Although
the imbalance towards malicious samples of our dataset may
appear to be a drawback, we highlight that this reflects
the diversity present in the malicious traffic. As previously
mentioned, the representation of benign examples can be
enrichedwith traffic from the aforementioned public datasets.
By exploring feature importance analysis, we have suc-
cessfully unearthed the generated data’s inherent statistical
tendencies and intricacies. Moreover, our experimental
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evaluations established benchmark performance for each
subtype. These benchmarks not only serve as a baseline for
upcoming research but also underscore the importance of
using both supervised and unsupervised methodologies in
ensuring comprehensive security coverage against a wide
array of network threats.

VII. FUTURE WORK
Future improvements upon our research could benefit from
expanding the TII-SSRC-23 dataset by merging it with
other benign datasets, amplifying the diversity of benign
traffic types, and enhancing the dataset’s representative-
ness. Furthermore, the performance of IDS models trained
on our data could be rigorously tested in real-world
deployment scenarios to assess their effectiveness under
real-world operating conditions. The insights from this
paper can steer future research towards prioritizing traffic
diversity to capture the complexities of network traffic,
thereby strengthening the development of intrusion detection
systems to address evolving network security challenges
effectively.

APPENDIX A
PROBLEM NOTATION
Let us formalize the concepts of unidirectional and bidi-
rectional network flows. Consider a network where packets
are transmitted between different endpoints. A packet p can
be defined as a tuple p = (sip, sprt, dip, dprt, τ ), where sip
is the source IP address, sprt is the source port, dip is the
destination IP address, dprt is the destination port, and τ is
the transport-level protocol used. The arrival of each packet
is indicated by its corresponding timestamp t .

A. UNIDIRECTIONAL NETWORK FLOW
A unidirectional network flow F = (p1, p2, . . . , pn),
commonly referred to as network flow, represents a sequence
of n packets that share the same 5-tuple, i.e., for any pair of
packets pi and pj, where i, j ∈ {1, 2, . . . , n}, we have that
pi = pj. Additionally, the packets within the flow are ordered
based on their arrival timestamps, such that ti < ti+1, where
i ∈ 1, 2, . . . , n− 1. Here, pi represents the i-th packet in the
sequence, and ti represents the timestamp of the i-th packet.

B. BIDIRECTIONAL NETWORK FLOW
A bidirectional network flow, or a session or conversation,
exchanges network flows between two endpoints. Let C
represent a bidirectional network flow composed of two
individual network flows: F1 = (p1, p2, . . . , pm) and
F2 = (q1, q2, . . . , qn). A session C is defined as a tuple
C = (F1,F2), satisfying the following conditions: for
every packet pi in F1 and every packet qj in F2, we have
pi = (sip, sprt, dip, dprt, τ ) and qj = (dip, dprt, sip, sprt, τ ).
This ensures that the network flows within the session are
bidirectional, where one flow contains packets moving from
the source to the destination, and the other flow contains
packets moving from the destination back to the source.

TABLE 5. IDS datasets malicious traffic.

C. INTRUSION DETECTION
Based on the definitions provided for unidirectional and
bidirectional network flows, we present the task of Intrusion
Detection. This task involves classifying a network flow
F , whether unidirectional or bidirectional, into one of two
categories: benign ormalicious. For this purpose, we formally
introduce the Intrusion Detection function D : F → {0, 1}
that assigns binary labels to network flows. In this mapping,
an output of 0 corresponds to a benign flow, whereas an
output of 1 signifies a malicious flow. Note that, in certain
instances, the labels assignedmay vary such that -1 represents
malicious flows, and 1 represents benign flows. Function D
is learned from a training dataset of network flows D =

{(F1, y1), (F2, y2), . . . , (Fn, yn)}, where eachFi is a network
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TABLE 6. Detailed overview of the tools, parameters, and combinations employed for the generation of benign traffic.

flow, and yi ∈ {0, 1} is the associated ground truth label. The
Intrusion Detection problem can also be extended to address
multi-class problems. In such scenarios, the function D
identifies whether a flow is benign or malicious and discerns
the specific type or subtype of the traffic. Consequently,
function D is defined as D : F → {0, 1, 2, . . . , k}.
In this mapping, the output k represents k distinct classes
of network traffic types or subtypes. Like the binary case,
function D is learned from a training dataset of network
flows where each flow is linked to a label indicating its
traffic type or subtype. Whether a binary or multi-class case,
the optimal Intrusion Detection function accurately classifies
unseen network flows, thereby contributing to identifying and
mitigating potential network threats.

APPENDIX B
NETWORK TRAFFIC GENERATION DETAILS
This section delves into the finer intricacies of our traffic
generation procedures, detailing the specifications for each
traffic type and the parameters that underwent variation
during the generation process. Tables 6, 7, and 8 together
provide an extensive breakdown of the elements, including
traffic types, subtypes, tools, varied parameters, and an
estimated number of combinations. The ‘‘Combinations’’
column indicates the count of traffic variations within a
specific traffic subtype. This count is approximated based
on the number of traffic permutations generated using the
parameters varied unique to that subtype. The Mirai botnet
attack is represented in Table 8, with the ‘‘Tool’’ column
omitted since all derived attacks are associated with the
Mirai botnet. We outline the parameters manipulated for each
traffic subtype and their respective values and subsequently
enumerate the varied parameters in the traffic generation
process.

In terms of benign traffic, as presented in Section III-C,
we generated audio, background, text, and video traffic.

For video traffic, we manipulated eleven parameters such
as network interference levels (low, mid, high), video
resolutions ranging from 240 to 1080 pixels, various audio
and video bitrates, video scaling factors, frame rates, sample
rates, an array of video codecs (e.g., MPEG-4, H-264), audio
codecs (e.g., MPEG, Vorbis), and multiplexer types (e.g.,
MPEG-TS, MKV), presented in Table 6. A compatibility-
maintaining mapping was designed to synchronize video,
audio, and multiplexer types interactions. During the data
capture phase, we performed numerous rounds of traffic
generation, with a Python script employed to facilitate VLC
video streaming and randomize the parameters. Specific
considerations were also given to factors like audio and
text traffic message length, and a deliberate 5% client dis-
connection rate was introduced. The intricate manipulation
of these parameters across various benign traffic subtypes
was designed to capture real-world benign network traffic
complexities.

To provide comprehensive coverage concerning traffic
diversity, we conducted an intensive examination of various
parameters within malicious traffic, attempting to vary the
parameters extensively to achieve maximum coverage. Using
dedicated tools listed in Table 7, we systematically manipu-
lated different types of attacks, such as DoS and Information
Gathering, carefully evaluating and altering the parameters
specific to each attack. For all malicious traffic capture,
apart from botnet traffic, we varied the network interference
to capture data in low- and high-interference environments,
expanded upon in Section III-B. In DoS attacks, we explored
MAC, HTTP, ICMP, TCP, and UDP subtypes whilst altering
attack-related parameters. The packet size and speed of
transmission, critical characteristics of DoS attacks, were
also purposefully adjusted, incorporating transmissionmodes
from Hping3, ‘‘fast’’, ‘‘faster’’, and ‘‘flood’’ with 10 packets
per second (pps), 100 pps, and over 1000 pps respectively, and
payload sizes ranging from 50 to 50,000 bytes. Furthermore,
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TABLE 7. Comprehensive summary of the tools, parameters, and methods used to generate malicious traffic.
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TABLE 8. Comprehensive summary of the tools, parameters, and methods used to generate Mirai Botnet traffic type.

TABLE 9. XGBoost precision, recall, and F1 score for benign and
malicious traffic.

TABLE 10. XGBoost precision, recall, and F1 score for each traffic type.

our approach included employing Nmap for conducting com-
prehensive scans, including OS detection, version detection,
script scanning, and traceroute. The exploration encompassed
a variety of configurations, enhancing the assessment of
victim systems as listed in Table 7. Some attacks, such as
the DoS MAC flood and the Bruteforce attacks, had limited
variability due to the tools’ constraints.

Finally, Table 8 provides nuances of parameters within
the context of the Mirai Botnet attack. We executed eight
distinct attack vectors, each with various manipulation
parameters. A script was devised for Mirai DDoS attacks
incorporating the varied parameters. Different subtypes of

attacks, such as DDoS ACK and DDoS SYN, entailed
specific manipulations like payload size, type of service,
and random source/destination ports, culminating in multiple
variations. This systematic diversification across each attack
subtype contributes to our dataset’s comprehensive and
intricate representation of malicious network activities.

APPENDIX C
HYPERPARAMETERS
A. SUPERVISED METHODS
The supervised methods selected for our supervised exper-
iments include: RF, DT, ET, MLP, SVM, and XGBoost.
Each classifier underwent a hyperparameter tuning process
using grid search. The grid search resulted in the following
approximated optimal hyperparameters. For RF, the max-
imum tree depth was found to be ‘none’, the minimum
number of samples required to split a node was 2, and the
number of estimators used was 100. For DT, the function for
measuring the quality of splits was ‘entropy’, the maximum
tree depth was ‘none’, the minimum number of samples
required at a leaf node was 1, and the minimum number of
samples required to split an internal node was 5. For ET, the
function for measuring the quality of splits was ‘entropy’,
the maximum tree depth was ‘none’, the minimum number
of samples required to split a node was 4, and the number
of estimators used was 200. For the MLP, the activation
function was ‘tanh’, the L2 penalty (regularization term)
parameter was 0.0001, the configuration for the number of
neurons in the hidden layers was (64, 64), and the solver
for weight optimization was ‘adam’. For XGBoost, the
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TABLE 11. Extra Trees precision, recall, and F1 score for each traffic
subtype.

TABLE 12. Optimal hyperparameters for different methods.

maximum depth of the trees was 6, the learning rate was
0.1, the subsample ratio of the training instances was 1, the

number of gradient-boosted trees was 200, and the subsample
ratio of columns for each split, in each level, was 0.5. Finally,
for the SVM, the penalty parameter of the error term was 1,
the kernel coefficient was ‘scale’, and the function used in the
algorithm was ‘linear’. The detailed results of the grid search,
presenting the optimal hyperparameters for each method, are
provided in Table 12.

B. UNSUPERVISED METHODS
The anomaly detection methods selected for our unsu-
pervised experiments include: IF, KDE, LOF, OC-SVM,
and Deep SVDD [24]. We conducted a grid search for
each method to tune hyperparameters. The approximate
optimal hyperparameters derived from this procedure are:
For OC-SVM, we set the kernel function to ‘linear’, γ

to ‘auto’, and ν to 0.1. We set the kernel function to
Gaussian for KDE and the bandwidth to ‘auto’. For IF,
we set the number of estimators to 2000. For LOF, we set
the number of neighbors to 20 and the leaf size to 30.
The Deep SVDD was implemented using Pytorch 2.0.1,
employing an encoder and decoder MLP architecture for
pre-training while minimizing the mean squared error over
1000 epochs. This approach facilitates the encoder in learning
the nuances of a normal distribution. After the preliminary
phase of encoder pre-training, the center point is calculated,
and the decoder component is eliminated. Subsequently, the
encoder undergoes further training to reduce the distance
between projected embeddings and the center point. The
underlying logic is that by adopting this strategy, the model
will be adept at mapping normal samples closer to the central
point while unable to do so as efficiently for the samples not
included during the training process. The deviation between
the projected and center embedding is used as a scoring
metric during testing. The pre-training and training phases
employed Adam optimization, with a learning rate 1e-4 and
an L2 penalty of 1e-6. The encoder and decoder consist of a
79-neuron layer with ReLU activation, followed by a linear
layer. The latent space has been dimensioned to 20. The
detailed results of the grid search, presenting the optimal
hyperparameters for each method, are provided in Table 12.
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