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ABSTRACT Parkinson’s Disease (PD) in the set of neuro-degenerative disorders stimulates due to the
loss of dopaminergic neurons from the substantia nigra. Electroencephalogram (EEG) signals are being
extensively utilized for diagnosing PD. The existing approaches extract the features using various frequency
transformations that lose valuable signal information. An optimized Deep Convolutional Neural Network
(CNN) inspired by the encoder part of U-Net architecture is proposed for classifying PD incorporating the
resting electroencephalogram (EEG) signal dataset. The proposed model follows the U-Net architecture for
extracting the features from the signals. The EEG recordings are taken from two datasets: the University
of Mexico (UNM) EEGs and the University of California San Diego (UCSD) resting state dataset. The
EEGs are pre-processed with a basic pre-processing pipeline, then separated into single channels, plotting
each channel as a simple graph. These graphs are then fed to the proposed 23-layered convolutional neural
network (CNN) for classifying PD from the normal control. Consequently, the model achieved maximum
values of 93.10%, 93.18%, 93.09%, and 0.9313 of accuracy, precision, recall, and F1-score respectively
for the UNM dataset, whereas, 97.90%, 98%, 97.87% and 0.9794 of accuracy, precision, recall, and
F1-score respectively for UCSD dataset. The results show improved scores compared to the individual
Machine Learning and CNN models applied on the same datasets.

INDEX TERMS CNN, EEG, PD, deep learning.

I. INTRODUCTION
Parkinson’s Disease (PD) is a well-known neurodegenerative
disorder influencing a substantial population [1]. It pro-
gresses in a manner impacting the motor actions of the patient
intensely by inducing the loss of dopaminergic neurons in the
substantia nigra pars compacta [1], [2]. It deprives the patient
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of cardinal motor activities, including cognitive and speech
control too [3]. Some early signs tell about the beginning
of neurodegeneration; however, PD is generally signified
by two broad classes of symptoms, wittingly, motor and
non-motor symptoms [3], [4]. Non-motor symptoms include
a lot of indications, but the major contributor towards the
diagnosis or prognosis of PD is the Motor Symptoms in
contrast with neuroimaging techniques [5]. Neuroimaging
translates cognitive functionality extensively, analyzing the
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varied transformations occurring in the brain utilizing images
and signals [6], [7]. Whether they are chemical reactions or
electrical impulses, explaining the motor actions precisely
[3], [5].

Quantitative neuroimaging techniques are currently in
progress to decipher the brain. In accordance, a lot of
functionality has been traced till now, including the mal-
functioning areas damaging motor activities of the body.
Significantly, motor actions, particularly are the best source
to explain the reasons for the deficiencies happening in
Central Nervous System (CNS). Diagnosing PD too relies
on the motor symptoms that include Tremors, Rigidity,
Bradykinesia, Postural Instability, Difficulty in Walking
(Gait), Dystonia, and Vocal System [1], [3], [8]. Neu-
roimaging techniques demonstrate motor functionalities to a
greater extent, including Computed Tomography (CT) scans,
Magnetic resonance imaging (MRI), Functional magnetic
resonance imaging (fMRI), Brain-Computer Interface (BCI),
etc., and the signals like Electroencephalography (EEG) [9],
[10]. The EEG signals to read the electrical impulses pro-
duced by the chemical reaction within the brain, describing
the specific action proposed by the brain based on certain
stimuli. If someone touches any hot appliance immediately,
the brain recognizes the instrument is hot and retracts the
hand [8], [11].

EEG signals are vastly used brain signals to read the brain’s
electrical activity. They are used in most neurodegenerative
diseases like Alzheimer, Parkinson’s, and so on [8]. EEG
signals are classified into five basic frequency spectra
inclusive of delta (δ) ranging from 0.5 —4 Hz, theta (θ)
ranging from 4 —7 Hz, alpha (α) 8 —12 Hz, beta (β)
ranging from 14—26 Hz and gamma (γ ) above 30 Hz or
some authors restricts to 45 Hz [12], [13]. These waves
depict the body’s functionality, from which the beta wave
reflects the active waking state of the body, indicating active
thinking, focusing on the worldly creatures and problem-
solving state. Analyzing these signal reflexes paves the way
for detecting the difficulty in executing particular motor
actions. As is though, they are used for detecting some
major neurological disorders, including Epileptic disorders,
Schizophrenia, Alzheimer and PD [4], [8], [14]. To translate
these signals appropriately, different techniques are used.
Most of the authors have used frequency transformation to
make the signal readable. For classification, machine learning
approaches were deployed excessively [8].
Medical data in the form of signals and images is

accumulating exponentially; the modalities themselves are
making it enormous since the recording is taking GBs to
TBs and counting. Processing exhaustive data and making
predictions from them is not easy. A triad of computer
science known as Artificial Intelligence (AI) is sculpted to
aid these types of datasets to map human intelligence with
the machines [15]. AI, in turn, contains Machine Learning
(ML) that uses machines to analyze the data for making
predictions to train themachines [8]. Inspiring the researchers

to employ ML, most of the research has been conducted
employing state-of-art ML techniques, specifically in the
medical domain. Lots of ML techniques have been applied
in diagnosing neurodegenerative diseases. Likewise, much
of the research is done in diagnosing Epileptic disorders,
Alzheimer, and schizophrenia along with depression-related
disorders [8], [16], [17], [18]. Correspondingly, extensive
efforts are laid to diagnose PD by employing ML over
different data sets. Inclusive of hand-written digits, speech
dataset, performing different tasks by applying head mount
EEG cap [3].

A. MOTIVATION OF STUDY
A lot of research has been concluded regarding neurode-
generative disease. Also, compelling efforts have been laid
to diagnose PD using different methodologies, with every
mechanism adopting different modalities inclusive of voice
dataset, assigning a task to the patient, and gait movements.
Each modality is quite an effective way to pave the way
toward learning the patterns of PD. To differentiate PD
from normal controls, motor activities should be understood
precisely. For such consideration, direct cognitive translation
is a better way, and EEG is one such technique.

B. MAIN CONTRIBUTIONS
The proposed methodology aims to classify PD patients by
employing deep learning focussing on:

➢ Dealing with the raw EEGs, only with basic pre-
processing. Compared to the deep learning method,
classical machine learningmethods, such as kNN, SVM,
RF, etc., require hand-crafted feature engineering for
classification. Subsequently, the results may be biased.
The proposed methodology employs the raw EEG for
classifying Parkinson’s patients from standard control.
Compared to classical machine learning algorithms
such as kNN, SVM, and RF, classification requires
hand-crafted feature engineering. We have proposed a
customized CNN architecture.
For preprocessing the EEGs we have followed the basic
preprocessing steps discussed in the section III-B. These
steps are utilized to clean the EEGs and make them
more interpretable. The pre-processing steps include
noise removal, artifacts removal, filtering, bad channel
removal, and additional steps explained in the sections
above specific to the resting state EEGs. These steps
are followed to make the EEGs suitable for input to the
CNN.
One of the significance of the proposed approach is
that we do not have to follow the complex step of
manual feature extraction since we have plotted the
pre-processed signals in the form of images that could
be directly fed to the CNN, which directly learns and
can draw the relevant spatial patterns and temporal
dependencies for the EEGs.

107704 VOLUME 11, 2023



S. Q. A. Rizvi et al.: Classifying PD Using Resting State EEG Signals and UEN -PDNet

By transforming EEGs into signals, we have neutralized
the limitations and biases bounded with the feature
engineering or manually extracting the features, which
allows the CNN to leverage the inherent information
contained within the raw EEGs.

➢ Applying CNN in its simplest form. Inspired by the
encoder part of the U-Net architecture, we have doubled
the number of filters in every convolutional layer starting
from 32 filters to 256 filters in the fourth convolutional
layer.
As we know, the U-Net architecture is well-known for
image segmentation. One of the distinctive features of
the U-Net architecture is its feature learning technique
which empowers the U-Net architecture to segment
the image efficiently. The U-Net architecture comprises
two main parts, encoder and decoder; the encoder part
extracts the essential feature of the image or low-level
feature, and in the decoder part, these fine-grained
features are combined with some high-level features for
understanding the particular area of the image.
We only follow this feature extraction approach to the
encoder part since we classify the images rather than
the segment. To learn the fine features of the signal,
we followed the encoder part of the U-Net architecture.
The EEG signals plotted on one figure make it more
complex to read; hence we have doubled the number
of filters in every convolutional layer to make CNN
understand from the low-level features to the high-level
features.
In the proposed methodology, we have started with a
relatively low number of filters, specifically 32 in the
first convolutional layer. Onward, we have increased the
number of filters up to 256 in the last means fourth
convolutional layer, this increasing order of filters lets
the network learn more abstract or complex features as
it travels deeper in the network. The sequential increase
in the number of filters will help the network learn
the input signal’s hierarchical impression by acquiring
both low-level and high-level features related to the
classification task.
The inheritance of the encoder part of the U-Net
architecture enhances the proposed custom CNN in its
discriminative capability. The successive increase in the
number of filters allows the CNN to learn the intricate
patterns and the structures existing in the plotted EEG
signals improving the classification.
Conclusively, we have inherited the encoder of U-Net
architecture into the simple CNN architecture to mini-
mize the complexity of the model while maintaining the
balance between the complexity and the performance,
facilitating the efficient feature extraction and classifi-
cation of the EEG signals with its complex structure.

➢ Using limited resources constituting valuable contri-
bution in classifying PD. We have performed all the
pre-processing along with training the model on an HP
OMEN series laptop having the configuration, ‘‘Intel(R)

Core(TM) i5-7300HQ CPU 2.50 GHz processor con-
taining oneNVIDIAGeForceGTX 1050GPU of 2GB’’.
However, the model consists of 23 layers, with every
training data containing more than 1000 readings. The
model over-performed state-of-art approaches using the
same dataset.
With limited resources on board, the proposed
23-layered architecture achieved promising results. The
complexity of the dataset could be considered as one
of the two datasets having 60 channels plotted on
one figure, with each sub-category having more than
1000 readings. The proposed architecture has learned
the complex features with intricate patterns from the
EEG signals by successfully classifying the patients
from the normal controls.
Our approach demonstrated that training the model
does not necessarily require high computing devices; it
could be done on limited resources. This perspective is
exceptionally considerable since it makes the proposed
methodology more convenient and functional in a
real-world environment having limited resources.
In addition, the proposed model has shown better
performance than the other models operated on the
same dataset. Dominant to other models, our approach
demonstrated better functionality in the evaluation
matrices inclusive of accuracy, precision, recall, and
F1-score. Prominent to other discussed approaches oper-
ational on the same dataset, the proposed methodology
contributes to Parkinson’s classification and presents a
compelling alternative for researchers in the field.

The rest of the paper is framed in the following manner.
Section II discusses some of the latest research in charac-
terizing Parkinson’s disease (PD). The proposed framework
describing the data acquisition up to the proposed CNN
architecture in distinguishing the six cases that emerge from
the two datasets is discussed in Section III. The formulated
outcome from the proposed architecture is presented in
Section IV. Consequently, in Section V, the interpretations
made by the proposed methodology, inclusive of the con-
straints description and the future prospects, are summarized.

II. LITERATURE REVIEW
Neurological diseases greatly impact the population; a
substantial group of the population is affected by such
diseases. Various modalities are present to shed light on
the insight of these disorders for diagnosing and making
conclusions. Amongst these modalities, brain signals play
an essential role in interpreting cognitive functionality.
Supporting the researchers in discovering many defective
conditions relating to specific disorders. These findings assist
doctors and researchers in making proper decisions and
diagnosing the disorders. Many researchers have applied
computational techniques for classifying and analyzing
neurological disorders.

In one of the recent efforts Ozlem et. al. proposed
a methodology for detecting seizures by employing
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Synchrosqueezing Transform (SST) for high-resolution
time-frequency presentation on two datasets. Namely, the
IKCU dataset and CHB-MIT dataset from which they
have formed features like grey-level co-occurrence matrix
(GLCM) and higher-order joint TF (HOJ-TF) moments.
The calculated features are then passed to various machine
learning classifiers achieving 95.1% accuracy, 95.54% recall
and 96.87% precision for the IKCU and 95.13% accuracy,
90.30% recall and 93.37% precision [19]. Alternatively,
Aayesha et al. design a methodology for classifying ictal
and interictal seizure from the unknown. Taking into account
two benchmark datasets Bonn and Children’s Hospital of
Boston-Massachusetts Institute of Technology (CHB-MIT)
considers both traditional machine learning as well as Fuzzy-
based approach. Inferring that both K-Nearest Neighbour
(KNN) and Fuzzy rough Nearest Neighbour (FRNN) confer
the best accuracy [20]. Additionally, Yong-Gi Hong et al.,
proposed a technique to detect the oxygen intake by the body
while respiration from the nose and mouth. They assessed
the EEG dataset and implemented Linear Discriminant
Analysis (LDA) for feature extraction in parallel with the
machine learning classifier Random Forest for classification.
Discovering that nose breathing guarantees normal oxygen
supply whereas breathing from the mouth disrupts the supply
[21]. Utilizing theUCI-based EEGdatasetMdKhurram et. al.
devised a mechanism for classifying epilepsy. They applied
principal component analysis (PCA) for feature extraction
along with genetic algorithm (GA) for classification;
they also reduced the feature set for accomplishing the
task [22].

On the other hand, significant research has been published
for classifying and diagnosing PD by utilizing various
machine learning algorithms. Inclusive of this, Betrouni et al.
in [23] proposed a methodology for classifying 100 PD
patients using dense EEGs. They utilized FFT for frequency
transformation and SVM and KNN as the machine learning
classifier. Achieving an accuracy of 87 ± 3.5 with SVM and
an accuracy of 88 ± 2.8 with KNN. Another approach has
been proposed engaging QEEG that distinguishes between
PD and healthy controls. The dataset consists of 79 distinct
dimensions from 10 brain regions transformed to the
frequency domain. The classifiers used were SVM, LR with
LASSO, RF, DT, and LR, from which RF outperforms other
models with an accuracy of 78% [24]. EEG has been wielded
by Emad et al. for classifying PD from normal controls.
They converted the resting EEGs into the deep latent space.
Utilizing the orthogonalized directed coherence (gOPDC)
enumerating the directional connectivity (DC) between the
pairwise EEG channels among the quartet frequency (θ ,α,β,
and γ ) and visualizing the calculated DCs into 2D plots as the
input to the selected network of VGG-16 (as the pre-trained
model). It achieved the accuracy of 99.62% with precision
100% and recall of 99.17% along with 0.9958 of F1- score,
and the AUC averaged over 10 repetitive instances of training
proffers 0.9958 [25].

A bit earlier, Shu et. al. proposed a deep learning model
comprised of 13-layers that takes the pre-processed EEGs
as input and gives the accuracy of 88.25% with 84.71%
and 91.77% sensitivity and specificity respectively [26].
Murugappan et al. studied the emotion recognition of PD
patients and normal controls (NC). Collecting the EEGs in
different emotions, particularly anger, fear, sadness, disgust,
and happiness. Tuneable Q wavelet transform (TQWT)is
used for decomposing the signals. Eleven statistical features
were extracted, and six were selected and fed to six different
machine learning classifiers. From the six classifiers best per-
formance was delivered by the probabilistic neural network
with maximum mean accuracy, sensitivity, and specificity
of 96.16%, 97.59%, and 88.51% respectively for normal
controls along with 93.88%, 96.33% and 81.67% for PD
patients [27]. Marcin et. al. proposed an approach composed
of a convolutional neural network (CNN) to classify the EEGs
of the patient among the three classes of Parkinsonism. From
these classes, namely, mild cognitive impairment (PD-MCI),
no symptoms (PD-N), and Parkinson’s Disease Dementia
(PD-PDD), two types of classification were proposed. One,
the classification into two-tier categorization (PD-N vs MCI
vs PDD) and the second one three-tier categorization (PD-N
vs PD-MCI, PD-N vs PD-PDD, and PD-MCI vs PD-PDD).
Two inputs were fed to CNN in the form of raw EEGs and
calculated PSDs. The accuracy rises over 50% for three-class
categorization and remains between 60 —70% for two-class
categorization [28].
Besides, a prolific exploration was done by Sharon

Hassin-Baer et al. to indicate the biomarkers related to the
early stages of Parkinson’s disease. Collecting the EEGs
of patients as well as normal controls and calculating their
event-related potentials (ERP) along with brain network
analytics (BNA). They applied the machine learning mech-
anism to obtain a 15 BNA features-based neuro marker to
differentiate the PD patient from the healthy controls [29].
Additionally, Ruilin Zhang et al. proposed a methodology
to differentiate between REM sleep disorder, PD, and PD
with REM disorder from the normal control for the dataset
collected from Shaanxi Provincial Peoples Hospital. Two
types of classification were intended by employing tuneable
Q-factor wavelet transform together with deep residual
shrinkage network (TQWT-DRSN) in the first experiment.
Whereas wavelet packet transforms along with deep resid-
ual shrinkage network (WPT-DRSN) for the second one.
Achieving 99.92% accuracy in two-class classification for
PD prognosis, among the 3-class and 4-class classification
tasks WPT -DRSN outperforms TQWT -DRSN with the
accuracy of 97.81% and 92.59% in comparison with 95.20%
and 90.46% [30].
Alongside, Sugden et al. proposed a methodology for

classifying PD from the normal controls containing two
datasets, specifically, the University of Mexico and the
University of Iowa datasets. They applied channel-wise
1D-CNN that is trained with subject-wise cross-validation.
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FIGURE 1. EEG preprocessing pipeline.

Their model accomplished 69.2%, 66.5%, and 72.2% of
accuracy, sensitivity, and specificity, respectively, epoch-wise
performance. Whereas 77.2%, 83.5%, and 71.0% of accu-
racy, sensitivity, and specificity subject-wise performance
[31]. In another attempt, Shaban et al. proposed a 20 layered
CNN architecture for classifying the PD-on medication from
PD-Off medication and the healthy controls. Continuous
wavelet transform (CWT) was used for frequency transfor-
mation, whereas gradient-weighted class activation mapping
(Grad-Map) for visualizing the features. Their approach
achieved the maximum values for evaluation metrics up to
99.9% [32]. Furthermore, Chu et al. prompted an approach
for early detection of PD using EEG micro-states and deep
learning. They utilized gradient-weighted class activation to
depict the brain’s activated regions corresponding to every
micro-state group. The proposed approach produced the
identification rate from 90%–99.0% [33].
With bounteous research on board, researchers had carved

the way for clinicians to diagnose PD on multiple angles
specifically related to EEG signals. Much research has
been published considering time-frequency representation
rather than on raw signals, even raw signals with a bit of
pre-processing that dwell the path for real-time diagnosis.
We have tried to classify the PD from normal controls without
any frequency transformation.With the aim of diagnosing PD
with raw EEG signals. The proposed and compared models
are listed in Tables 3 and 4.

III. METHODOLOGY
A. DATA ACQUISITION
We have collected two datasets, namely, Predict Resting
State Parkinson disease EEG dataset collected from an
open-source depository named ‘‘Predict’’ coded with d002
taken from the paper [34]. The dataset comprises 28
Parkinson’s patients with the same matched controls. The
data set is recorded with the patients visiting the lab
twice. Once with on-medication recording means with the

prescribed medicine taken by the patient, and once without
taking medicine with the time difference of 15 hours night
long in between the two recordings. Also, the recordings are
performed in the state of eyes open, and eyes closed with 64
EEG electrodes. Along with one VEOG channel known as
65 and the rest of three were XYZ form 66 − 68 on hand
accelerometer having 500 Hz as a sampling rate, the details
description is given in [34].

The second dataset is acquired from OpenNeuro, the UC
San Diego dataset, which is the resting state dataset of
PD patients. The dataset consists of 15 PD patients and
16 healthy controls. The recordings were taken in two stages,
once on-medication and off-medication scenarios. Inbrain’sf-
medication case, the patients were advised to pause their
medications for 12 hours before taking the recordings. These
recordings were captured using the BioSemi ActiveTwo
technique with 32 channels at the sampling rate of 512 Hz,
along with eight EXG channels. This dataset is abbreviated
as the UCSD dataset, fully demonstrated in [35].

B. SIGNAL PROCESSING
After the EEG has been recorded, it should undergo baseline
correction. It is essential due to the deviation produced by
static charges, hydrated skin, and skin potentials in the EEG
signals. These factors can produce an offset in EEG that
gradually moves upward and downward, deviating from the
original signal. Baseline corrections are used to overcome
these drifts or deviations in the EEG [36], [37].

Apart from baseline correction, another deviation is
produced by the noise present in the EEG signal. These noises
or artifacts are the external elements arising due to various
reasons explicitly, having environmental, experimental, ‘‘nd
phys’’ological effects [38]. These artifacts can be categorized
into extrinsic aParkinson’sc artifacts. Deliberately, extrinsic
artifacts are the noise appended due to external elements like
environmental errors or experimental errors. The intrinsic
artifacts are associated with physiological activity (like eye
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FIGURE 2. Proposed UEN -PDNet.

movement, muscular activity, cardiac vibrations) [38], [39].
To deal with these noises, different pre-processing pipelines
are present. The pre-processing pipelines are used to reject
these artifacts and approximate EEG, making it clearer and
readable.

We have followed the pre-processing steps from [34] and
[35]. The steps involved in basic pre-processing are done in
the same fashion. For both datasets, specific steps are the
same, but there are some differences as the latter dataset
contains only 32 channels, and the former contains 64. The
primary EEG pipeline is described in Figure 1. General steps
are described here as in

• Eradicating the VEOG channels that are non-EEG
channels from the predicted dataset along with the XYZ
accelerometer. In the case of the UCSD dataset EXG,
eight channels should be removed.

• Re-referencing and downsampling to the central elec-
trode known as CPz in the case of the UNM dataset and
Cz in the case of the UCSD dataset.

• Eliminating the persistently lousy channels
• Excluding the contaminated channels re-referencing the
channels to average.

• Removing the mean from every channel.
• For eliminating the low-frequency range, a high-pass
filter is applied of 0.5 Hz (using a two-way FIR filter).

• Using EEGLAB eliminating artifacts.

For assessment, we have divided the recordings into the
number of channels. Hence in the case of the UNM dataset,
as each recording for the subject contains almost 60 channels,

not the same for every recording, we have divided each
channel into a single data point. And in the case of the UCSD
dataset, there are 32 channels from which approximately
30 channels were functional due to the rejection of wrong
channels. Several channels arise due to the rejection of wrong
channels not persistent for every subject.

C. PROPOSED APPROACH
Subsequently, we have tried to produce significant results
from the raw data. We have directly plotted the segregated
EEG channels produced from the primary pre-processing
pipeline using MATLAB. These plots are then fed to the
2D-CNN to make a classification. The basic outline of the
proposed methodology is shown in Figure 2.

1) CONVOLUTIONAL NEURAL NETWORK (CNN)
A convolutional Neural Network (CNN) is a neural network
that tries to catch the trends present in the data. Hence
it is more specifically useful for pictorial or graphical
representations. As these graphical representations are stored
in the system digitally in the forms of grids, these networks
read the inputs in the forms of grids inspired by the animal
visual cortex [40]. The neurons attached to every layer
function in a way that human brains perceive. The neurons
in the brain react to receptive fields so that the associated
neurons convey their outputs to the next layer to completely
visualize the patterns. Under the human brain, every neuron
responds to stimuli particular to the confined range of the
visual realm, known as a receptive field in the human
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TABLE 1. CNN layers.

visionary system. Every neuron in CNN reacts similarly and
processes the input in its receptive field only [41]. CNN
consists of several layers, namely convolutional, pooling, and
fully connected layers, with some additional layers included
later on, specifically the Batch normalization layer, Dropout
Layers. The Convolutional layer is the primary layer of
CNNwhich primarily extracts the features as activations. The
basic functionality of the layers is enlightened concisely in
Equation (1).

A ∗ B =

∫
C(a, b)D(x + a, y+ b). (1)

We have performed parameters tuning extensively dis-
cussed in section III-F. The initialization of the hyperpa-
rameters is done in initializing the model. The basic layer
of CNN is the convolutional layer that produces the feature
map by convoluting the filter size by the given image size
given by the Equation (1). We have used 4 convolutional
layers, and in each layer, we have doubled the number of
filters starting from 32—256 inherited from the encoder part
of the U-Net architecture. The dropout layer follows the
convolutional layer, and the dropout layer is used to overcome
the problem of overfitting.When the model is trained well but
under-performs on testing or new data. We have used 0.21 as
the dropout rate in the proposed model.

The dropout layer prevents overfitting, but for the non-
normalized data, there is a possibility of biasedness towards

higher values. To overcome this biasedness, we have used a
Batch normalization layer that maintains all the outcomes in
a standard scale without compromising the quality, depicted
by the Equations (2), (3), (4) and (5). We have used the Batch
Normalization layer with every convolutional layer to train
the model correctly.

ȳi =
yi − µa√
η2a + ϵ

(2)

where,

µa =
1
n

n∑
j=1

yi, (3)

is the batch mean, and

η2a =
1
n

n∑
j=1

(yi − µa)2 (4)

is the batch variance, hence the scaled and shifted activations
are given by the equation

zi = αȳi + θ (5)

where α and θ are the learnable parameters.
In addition, the ReLU activation function is used, followed

by the Max-Pooling operation. The ReLU function increases
the non-linearity for proper feature extraction expressed by
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the Equation (6). Finally, the dense layer and softmax layers
are used, followed by the classification layer

ReLU (x) = max(0, x) (6)

2) PERFORMANCE EVALUATION METRICES
We have used four evaluation matrices, specifically Accu-
racy, Precision, Recall, and F1-scores given by the Equations
(7), (8), (9) and (10) respectively. Explicitly, accuracy informs
us about the closeness of the predicted value to the actual
value. Precision tells us how much the model is correct
in optimistic predictions. The Recall, the true positive rate
(TPR) or true positives, calculates the correct prediction rate.
F1-score is the harmonic mean of precision and Recall which
tells us about the model’s performance. A more explicit
stance of the terms True Positive, True Negative, False
Positive, and False Negative are needed for more apparent
concepts on the said matrices.

➛ True Positive (tp): The right positive predictions by the
model.

➛ True Negative (tn): The right negative prediction by the
model.

➛ False Positive (fp): The wrong positive prediction by the
model.

➛ False Negative (fn): The wrong negative prediction by
the model.

Now, the evaluation of the matrices is calculated by the
formulas

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(7)

Precision =
tp

tp+ fp
(8)

Recall =
tp

tp+ fn
(9)

F1 − Score = 2 × (
Precision ∗ Recall
Precision+ Recall

) (10)

D. EXPERIMENTAL SETUP AND EXPERIMENTATION
We have already pre-processed the EEGs in section III-B
and separated the channels into a singular window. All
these signals are then plotted using MATLAB. We have
also utilized the Convolutional Neural Network (CNN) for
classification comprised of 23 layers inherited from the
encoder part of U-Net architecture. The proposed model
comprises of Convolutional layer followed by the dropout
layer, batch-normalization layer, and ReLU activation along
with the max-pooling layer shown in Fig 3 and Table 1. Four
Convolutional, Dropout, Batch-Normalization, and ReLU
Layers are used in addition to three Max-Pool layers
followed by a fully-connected or dense layer, softmax, and
classification layer comprised of the whole CNN model.

Inclusive of all in our experimentation, there are 6 cases for
both Datasets since we have six patient cases compared to the
two control cases, which can be observed from Table 2.
For every case shown in the Table, 2 number of plots differs

for both the classes On-medication and Off-medication.

TABLE 2. Individual cases in both the dataset.

In the case of On-med eyes-closed vs. Eyes Closed Controls,
the image set of patients contains 1617 plots, whereas the
controls’ image set consists of 1398 plots. Similarly, in all
the cases, the number of plots is different due to the rejection
of channels and removal of non-EEG channels. The original
image has the size of 875 × 656 pixels, which we have
trimmed down to 500×500 pixels. We have divided the 70%
of the Dataset for training, and from the remaining 30%, one-
half is for validation, and the other half is left for testing.

E. HYPER-PARAMETERS OPTIMIZATION
Hyper-parameter optimization is an essential step in training
CNN. Numerous methods are present for optimizing the
hyper-parameters like Grid Search, Random Search, and
Bayesian Optimization. We have used Bayesian Opti-
mization and the hyperparameters function in MATLAB.
We have already explained hyperparameters used in detail in
Section III-F. We have tried both manual Optimization and
Bayesian Optimization too.

In manual hyperparameters optimization, we have trained
the model with different hyperparameters combinations
finding the optimal model. The same is done with Bayesian
Optimization with the same hyperparameter combination.
The hyperparameters we have selected are the Initial
Learning rate, Squared Gradient Decay Factor, Minimum
batch size, and Maximum Epochs from the training options.
Whereas the hyperparameters used in the layers option
are Filter size for the convolutional layer, Dropout factor
in the Dropout Layer, and Pooling Layer, the Pool size
and Stride as the hyperparameters. In some cases, manual
Optimization produced the best result, and in most cases,
Bayesian Optimization produced optimal results.

However, BayesianOptimization has converted the lengthy
task into a simple one. We have tried all the possible
combinations of variables, such as in the case of the Initial
Leaning Rate, the tuning is done from 0.01—0.0001. The
Squared Gradient Decay Factor is tested from 0.75—0.99 for
the ADAM optimizer. The Learn Rate Drop Factor is variated
from 0.01—0.1, and the Learn Rate Drop Period is tested
in 5 —20. Mini Batch Size is tested between 1—8, but
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FIGURE 3. CNN layered architecture.

due to lack of resources maximum length of batch size is
stuck to 8; on increment from 8, the GPU was going out of
resources.Max Epochs has played an essential role in training
the model; at the beginning, when we were doing manual
hyperparameter tuning, we took Max Epochs as 30, but the
model was not performing well both on validation as well as
a testing dataset, with BayesianOptimization theMaxEpochs
reached to 60 prospering best results in the case of On Med
Eyes Closed of UNM dataset.

In the case of Layer hyperparameters, we have performed
tuning for Convolutional Layer parameters where the filter
size varied from 1—4 and the number of filters remained
fixed to 32 for the first convolutional layer. For the second
convolutional layer, the filter size was the same, but the
number of filters was fixed to 64; similarly, for the third and
fourth convolutional layers, the filter size was varied in the
same manner, and the number of filters was fixed to 128 and
264 respectively. The dropout factor in the first Dropout
Layer was tried between 0.1 —0.5, which gives 0.20 as the
best dropout factor; it remains the same for all four Dropout
Layers. For the Max-Pooling layers, the Pool size is varied
between 1 —4 with Stride from 1 —3 giving the best pool
size of 2 along with Stride 2.

This describes a case of OnMed Eyes Closed off the UNM
dataset where the Bayesian Optimization has delivered the
optimized results. But in some cases, Bayesian Optimization
has failed, and manual Optimization has provided the best
results. Although we have performed both optimizations in
every case, in ablation studies III-F, we have discussed only
manual Optimization because the discussion is too long, and
we cannot discuss every particular aspect in the paper.

F. ABLATION STUDIES
In the beginning, we were trying to make a classification
by plotting all the channels on one graph as a regular EEG.

But due to the shorter dataset, the problem of under-training
prevails. Which produces the problem of underfitting, and
the model performed abominably. To overcome the anterior
issue, we have plotted all the channels individually obtained
from the pre-processing pipeline for both UNM and UCSD
datasets.

To obtain the best results, we have experimented with
two optimizing techniques: adaptive Moment Estimation
(ADAM) and stochastic gradient descent with momentum
(SGDM). In some trials, SGDM outperformed ADAM, but
mostly in all the cases, ADAM yielded the best results. In the
neural network, we have trained and tested iteratively for
every dataset containing all On-med and Off-med classes.
The hyperparameters tuning one by one is done for every
class considering one optimizer at a time to improve the
classification accuracy. In the first trial, we used only the
Convolutional, ReLU, and Max-pooling layers with three
blocks connecting with the softmax and classification layers.
The classification validation and testing accuracy was stuck
at about 87% and 83%, respectively, for the UNM dataset,
which we have considered first.

1) STOCHASTIC GRADIENT DESCENT WITH
MOMENTUM (SGDM)
The gradient descent looks for the minima in the search
space for every specific objective function, calculating the
target function’s derivative descending from the derivative’s
direction. Since the gradient or the derivative can move in
the absurd direction, a hyper-parameter known as momentum
is added in the gradient descent that tells about movements
made in the past. The momentum value ranges from 0—1;
normally assigned values are 0.8. 0.9 or 0.99. For the SGDM,
we have started the momentum factor with 0.75 along other
hyperparameters within the convolutional neural networks
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TABLE 3. Comparison of performance of proposed approach on UCSD dataset with the existing researches.

(CNN). In the first iteration, we used the filter size of 4 with a
32 number of filters in the first convolutional layer. Whereas,
50 is in the second convolutional layer and 100 in the third
convolutional layer. In addition, we have used the ReLU layer
and max-pooling layer having filter size 2×2 with a stride of
2 too. The first iteration took 10 hours, producing an accuracy
of 83% with an image input size of 500 × 500.
In the next recurrence, add the dropout layer with dropout

factor 0.5 in addition to filter size 4 and several filters 32 for
the first convolutional layer; for the second convolutional
layer only the number of filters is increased to 64 with
all the rest remaining the same. Similarly, in the third
convolutional layer, the number of filters increased to 128 the
filter size remained the same. From the first trial, after adding
other layers, the testing accuracy achieved was 82% with
a validation accuracy of 89%; the problem of overtraining
persists, giving the network a tough time for the testing
dataset. Hence, with every convolutional layer, one dropout
layer, one Batch Normalization layer, one ReLU layer, and
one Max-pooling layer are appended. Except with the last
convolutional layer, instead of the Max-pooling layer fully-
connected layer, the softmax layer and the classification layer
are added, producing approximately the same results as in the
previous.

It was observed that not any beneficial results were
obtained from the previous trials. Henceforth, we increased
the count of every Convolutional, Dropout, Batch normaliza-
tion, ReLU, and Maxpooling layer by one. With momentum
set to 0.75, the filter size of the convolutional layer is set
to 4 for all four layers, along with the number of filters
set to 32, 64, 128, and 250 for the first, second, third and
fourth convolutional layers respectively. The dropout factor
of 0.25 remains the same for the first dropout layer, whereas
it was set to 0.2 for the following three layers. In addition, the

max-pooling filter size was set to 2 along with the stride of
2 × 2 for all four max-pooling layers. The number of epochs
was increased to 60 from the 30 in the previous trial with
the initial learning rate of 0.0001. It produced the validation
accuracy of 91.10% and the testing accuracy of 90.80% for
the off-medication eyes open cases. In contrast, the validation
accuracy achieved for the eyes closed cases was 91.30%,
along with the testing accuracy of 91.00%. This was the best
metric achieved overall for the UNM dataset amongst all the
conditions.

We continued the iterations variating different hyper-
parameters; likewise, we varied the momentum to 0.80,
bounding other hyperparameters to the same as previous.
For all the conditions starting from the off-medication eyes
open, the validation accuracy obtained was 90.64% with a
testing accuracy of 90.20%. In addition, for off-medication
eyes closed, the validation accuracy attained was 88.40%,
and the testing accuracy of 86.50%. For medication,
it remains approximately the same. Whereas in the case of
on-medication eyes closed, the validation accuracy reached
89.00% with testing accuracy of 85.00%. Also, we had
performed intensive experimentation with umpteen iterations
for varying the hyperparameters, but the best results achieved
were in the case of 0.75 momentum for off-medication cases.
On the other hand, in the case of on-medication, the best
results were attained with 0.75 momentum and the dropout
factor of 0.21 for the first layer and 0.20 for the rest of the
layers.

2) ADAPTIVE MOMENT ESTIMATION OPTIMIZATION (ADAM)
Adam could be recognized as combining Root Mean Square
Propagation (RMSProp) and the SGDM since it utilizes
the squared gradients for scaling the learning rate imported
from the RMSProp along with the momentum incorporating
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TABLE 4. Comparison of performance of proposed approach on UNM dataset with the recent researchers.

the moving average of the gradient instead of the gradient
analogous to SGDM.

On the experimentation part, we took all the conditions
one by one to improve the model’s performance. Inclusive
of the results obtained as in the case of SGDM optimizer,
we tested all the conditions with Adam to vary the squared
gradient decay factor set to 0.80 and other hyperparameters
for both the datasets. Starting from the UNM dataset with
Off Medication eyes closed condition, the experimental
results obtained were almost similar compared to the SGDM
optimizer in preliminary steps. Setting the filter size to 2 and
the number of filters to 30 for the first convolutional layer
with the same filter size with several filters were set to 60 and
100 in the second and third convolutional layers. The dropout
factor was also set to 0.40 for the first trial with a filter size
of 2 and the stride of size 2 too in all the Maxpooling layers.

From our experience with the SGDM optimizer, the
dropout factor between 0.20—0.25 produced good results.
Hence, in these cases, we maintained the dropout factor
in this range only. In preliminary steps, we considered
three convolutional layers, three Dropout layers, three
Batch Normalization layers, three ReLU layers, and two
Maxpooling layers connected with one Fully connected layer,
one Softmax layer, and one Output layer. Image size remains
500 × 500 with a dropout factor of 0.25 for each layer. The
filter size is set to 4 for all the convolutional layers alongside
30, 60, and 100 filters in the three layers, respectively.

The maximal accuracy achieved in this case was 87.4% for
validation with a testing accuracy of 83.6%.

Since the evaluation metrics did not provide improved
results, in the next iteration, the dropout factor for the first
layer was dropped to 0.20 with 0.25 in the next two dropout
layers. The gradient decay factor was shifted to 0.90, and the
filter size was the same in this trial, with the number of filters
increased to 32 in the first convolutional layer along with
64 and 128 for the second and third layers. In the Maxpooling
2D layer, the filter size was also set to 2 with stride 2. The
validation accuracy achieved in this case was 90.70% with
a testing accuracy of 84.70%. Although the training was
relatively successful in testing the dataset, the results showed
degraded trends.

In the search for better results, we performed the subse-
quent trial by modifying the hyperparameters. The results
had shown the number of filters worked well in the previous
setup for the convolutional layers in the order of 32, 64, and
128. Also, we tried the dropout factor varying from 0.4—0.2
with the max-pooling filter of size 2. In this iteration,
we updated the dropout factor to 0.21 for all three dropout
layers with several filters set to 100 for the third convolutional
layer. To get improved results, the image size was reset to
567 × 500 with the caution of not losing the necessary
information. The filter size of the Maxpooling layer remains
2 with the stride 2. The squared gradient decay factor was
set to 0.90 in the training options. The output attained was
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FIGURE 4. Evaluation metrics of datasets.

not commendable. Instead, the result drowned again with a
validation accuracy of 87.70% and the testing accuracy of
85.20%. It is clear from this trial that increasing the image
size doesn’t improve the results.We had performed numerous
iterations with increasing image size but showed only the best
one.

In the next attempt, every Convolutional layer, Dropout
Layer, Batch Normalization layer, ReLU layer, and
Max-pooling layer was increased by one. The filter size of
the convolutional layer remains 4 for all four layers just the
number of filters was set to 32, 64, 128, and 256 for the four
layers, respectively. The dropout factor was set to 0.21 for all
four layers, including a filter size of 2 for the Max pooling
layer with a stride of 2 for all four layers. The initial learning
rate was set to 0.0001 with the squared gradient decay factor
setting to 0.99. The input image size was reset to 500× 500;
for the last several experiments, it was 567×500. The results
were quite moderate, with a validation accuracy of 91.14%
and the testing accuracy of 89.30%.

The input image size was variated between 800 × 656 to
500× 500, which increases the training time. In addition, the
accuracy remains the same. Hence, the image size was reset
to 500 × 500 to improve the time complexity and accuracy.
With such deviation in the accuracy, we have performedmany
hyperparameters tuning inclusive of the number of epochs,
the number of filters in the convolutional layer, the size of
filters, the dropout factor, image size, and the number of
layers.

Finally, we got some valuable results for the testing
accuracy. The final configuration of the hyperparameters
was primarily the input image size reset to 500 × 500.
For the convolutional layers, the filter size was 4 for all
four layers, and the number of filters was 32, 64, 128, and
264. The dropout factor finally used was 0.21 for all four
layers. The filter size of 2 with the stride of 2 was set for
the max pooling layer. The number of epochs was tested

between the range 30—60 with best results achieved at
60 epochs. With such extensive effort, we have configured
the hyperparameters taking the maximal accuracy of 93.10%
for the instance of PD_OFF_EO vs HC_EO in the UNM
Dataset. On the other hand, the optimal accuracy achieved of
97.90% for PD_OFF vs HC case of UCSD Dataset produces
an enhanced performance with other evaluation metrics. This
procedure was done for all the datasets described above,
producing different results. The final results are depicted in
Figures 4 and 5.

IV. RESULTS
We have proposed the CNN model for dataset sub-divisions
mentioned in Table 2. Totally 6 experimentation was
concluded for both datasets; in particular, as in the case of
the UNM dataset, 4 significant conditions exist. Exclusively,
On medication, eyes open (PD_ON_EO) vs. eyes open,
healthy controls (HC_EO), On medication, eyes closed
(PD_ON_EC) vs. eyes closed healthy controls (HC_EC),
Off medication eyes open (PD_OFF_EO) vs. eyes open,
healthy controls (HC_EO) and Off medication eyes closed
(PD_OFF_EC) vs. eyes closed healthy controls (HC_EC).
Whereas, for the UCSD dataset, two conditions exist
specifically, On medication (PD_ON) vs. healthy controls
(HC) and Off medication (PD_OFF) vs. healthy controls
(HC) conditions. The proposed model is unique in that it is a
derivative of U-net architecture with only encoder properties;
it is also operating on the raw data. The results show the
proposed methodology is an improvement in analyzing the
data in raw format.

In the case of the UCSD dataset, two conditions exist,
On medication and Off medication. The proposed model
has illustrated that the results obtained from the discussed
approaches considering the same dataset are enhanced. Inclu-
sive of, [41] in which Khare et al. decompose the EEG into
sub-bands using an automated tunable Q wavelet transform
(A-TQWT) and finally using a least square support vector
machine (LSSVM) for classification. A classification of
PD_OFF vs. HC achieved an accuracy of 96.13% along with
PD_ON vs. HC with a classification accuracy of 97.65%.
In [42], Ruiz proposed a technique for classifying Parkinson
patients with healthy controls by considering both UNM and
UCSD datasets. They had classified with multiple classifiers
amongst which SVM outperforms others with accuracy,
precision, recall, and F1-score of 85.10%, 86.60%, 84.30%
and 0.8540 for PD_OFF vs. HC respectively. On the other
hand, for PD_ON vs HC the accuracy, precision, recall and
F1-score 83.90%, 84.0%, 83.70% and 0.8380 respectively.
Another methodology Qiu et al. proposed utilizes the power
spectral densities (PSD) and phase-locked values (PLV) for
assessing the multi-pattern analysis and considering both the
group on medication and off medication by utilizing LeNet-5
as the classification algorithm achieving the classification
accuracy of 89.16% for the PD_OFF vs HC and 92.10% for
the PD_ON vs. HC [43].
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FIGURE 5. Individual evaluation metrices comparison.

The proposed approach outperforms the discussed meth-
ods by applying the generic methodology comprising plots of
EEGs fed to the 23 layered CNN. Achieving the classification
testing class accuracy of 96.80% for the PD_ON vs. HC in
addition to precision, recall, and F1-score of 96.85%,
96.78%, and 0.9682, respectively. They are coupled with
97.9% accuracy for PD_OFF vs. HC and precision-recall and
F1-score of 98%, 97.87% and 0.9794, respectively. Table 3
depicts the details of the UCSD dataset.

For the UNM dataset, the EEG recording contains the
conditions of Off medication with eyes closed and eyes open
and On medication with eyes open and closed. In most of
the discussed approaches, as in [44], Anjum et al. proposed
a method for EEG extracting features from power spectral
densities (PSD) of EEG by linear predictive coding (LPC)
and incorporating hyperplanes to distinguish between the PD
patients and the healthy controls accomplishing accuracy of

78.7% for PD_EO vs. HC_EO and 82.20% for PD_EC vs.
HC_EC.

Furthermore, Ruiz in [42] implemented a rich set of
features accommodating waveforms shape, spectral and
statistical features. Also, for the classification of PD_OFF vs.
HC as well as PD_ON vs HC, they used multiple classifiers.
Amongst which SVM outperforms others, attaining the
accuracy, precision, recall, and F1-score of 87.7%, 87.7%,
87.4%, and 0.875 respectively for the PD_OFF vs. HC.
Together with 86.9%, 90%, 83% and 0.8630 of accuracy,
precision, recall and the F1-score respectively for PD_ON vs
HC. Besides, Lee et al. propounded a scheme for restricting
PD patients from healthy controls. Extracting the features
using Hjorth parameters and classifying using the Gradient
Boosting Decision tree (GBDT) provides an accuracy of
89.30% with F1-score 0.9030 [45]. Likewise, Shah et al.
formulated a scheme to differentiate PD vs Controls deducing
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FIGURE 6. Results for ONMED EC patients vs EC healthy controls.

the features using discrete wavelength transform (DWT),
Differential entropy, and Hjorth parameters. They used two

FIGURE 7. Results for ONMED EO patients vs EO healthy controls.

classifiers CNN and KNN. The DWT-transformed images
were fed to CNN, producing an accuracy of 82.5%.Whereas,
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for KNN the features extracted from Differential Entropy
and parameters were used, producing an accuracy, precision,
and recall of 88.51%, 89.22% and 91.58% respectively [46].
On the contrary, in the proposed approach, the features
are retrieved by CNN for characterizing the PD patients
from the healthy controls. We have performed four different
computations inclusive of on-medication and off-medication.
Individually, PD_OFF_EC vs HC_EC, PD_OFF_EO vs
HC_EO, PD_ON_EC vs HC_EC and PD_ON_EO vs
HC_EO. Achieving the performance metrics better than
the previous approaches depicted in Table 4. Besides, all
the experimentation is done on Hp OMEN series laptop
having the configuration, Intel(R) Core(TM) i5-7300HQ
CPU 2.50 GHz processor containing one NVIDIA GeForce
GTX 1050 GPU.

We have performed 6 different analyses based on the
division of dataset described in Table 2. We have taken all
channels with the condition’s eyes closed and eyes open
within the on-med and off-med conditions. The results are
described here.
I.) UNM Dataset

For the UNM dataset, all four conditions displayed in
Table 2 are addressed. The results achieved in all these
conditions are discussed below with all the possible
details.

i.) On-med Eyes Closed Patient vs Eyes Closed Control:
The results show differentiation accuracy between the
patients and the control is 92.4% of validation accuracy
with 91% of testing accuracy in addition to 91.5% of
Precision, Recall of 90.68% and F1-score of 0.9109.
Which shows clearly the emendation in the resulting
metrics depicted in figures Fig 6a, Fig 6b and Fig 6c. The
confusion matrix reveals the insight of the predictions
made by the model; since it can be observed from
the matrix, the correct predictions are shown in the
diagonal that are avowed as true positives (tp) and true
negatives (tn).
The matrix depicts that 120 cases are correctly pre-
dicted as Controls with eyes closed out of 301 total
readings present in the testing dataset that is 39.9%,
similarly 154 cases are classified as Patients with
eyes closed that would be 51.2% of all the readings
present. 7 patients are incorrectly predicted as Controls
equate to 2.3% in consideration of all the testing sets.
Comparatively, 20 of the Controls are wrongly predicted
as Patients contributing 6.6% across the whole testing
set.
On the whole, 91% cases are correctly predicted while
9% are wrong. The good part about the model is that it
concluded with minimized type II errors. In our case, the
wrong predictions made by the model as a type I error
is 2.3%, which is a false positive. Hence only 2.3% of
the patients are wrongly predicted as controls, whereas
6.6% among the controls are predicted as patients.
Noticeably, we have described the results obtained from

the testing dataset only. The validation part is shown in
figure 6b.
Conclusively, it could be safer if the controls are
predicted as a patient. It might not be an expensive
trade-off as when the patient may be predicted as
a control that might lead to disastrous outcomes.
Furthermore, the evaluation metrics we have explicitly
obtained, Precision of 91.5% is close to the Recall of
90.68% with the F1- score of 0.9109. Thus, results
depict the efficiency of the model in the case of the
On Medication Eyes Closed condition. The high and
closely related values of Precision, Recall, and the
F1-score demonstrate that the model performed well on
the dataset apart from the Accuracy.
Also, the AUC Fig 6d depicts the correctness of
the model as ROC depicts the inclination of the
model towards predicting the correct instances over the
incorrect instances.

ii.) On-med Eyes Open Patient vs. Eyes Open Control:
On the Eyes Open dataset, the results show a bit different
trend but approximately the same in Accuracy, which is
92.57% of validation accuracy as defined by the result
shown. With the 91.2% testing accuracy in addition
to 91.23% of Precision, 91.17% of recall, and the
F1-score of 0.9120 as shown in figures Fig 7a, Fig 7b
and Fig 7c. Also, AUC depicted in the ROC-Curve
figure 7d depicts the efficacy, showing the trade-off
between the actual positive rate (TPR) and the false
positive rate (FPR). Similarly, the confusion matrix
obtained in the On-med Eyes Open scenario reflects the
results that can be observed from the diagonal of the
matrix.
The confusion matrix shows that the true positives
predicted by the model are 128 constituting 43.2% from
the set of total 296 readings. Correspondingly, the true
negatives predicted by the model are 142 corresponding
to 48% from the set of 296 sample set. Concurrently,
12 patients are wrongly predicted as Controls com-
pounding 4.1% whereas 14 controls are incorrectly
predicted as patients contributing 4.7%.
Out of 140 Controls 128 are correctly predicted makes
91.4% whereas, 8.6% are wrongly predicted as patient.
Additionally, from the set of 156, Patients’ predictions
142 are precisely predicted making 91% of the total
patient’s predictions. On the same side, 14 are wrongly
predicted as controls contributing 9% of the total
patient’s predictions.
In the class of Controls eyes open 128 cases are correctly
predicted that makes 90.10% of the total controls cases.
While 14 cases are predicted as patients comprising
9.9%. In the case of Patients with eyes open 142 cases
are correctly predicted by the model among 154 total
patients that constitutes 92.2% and 12 cases are wrongly
predicted as controls constituting 7.8% of the total
patients with eyes open.

VOLUME 11, 2023 107717



S. Q. A. Rizvi et al.: Classifying PD Using Resting State EEG Signals and UEN -PDNet

FIGURE 8. Results for OFFMED EC patients vs. EC healthy controls.

Comprehensively, in the On med Eyes Open condition
91.2% cases are correctly predicted whereas 8.8%

FIGURE 9. Results for OFFMED EO patients vs EO healthy controls.

are wrongly predicted. Also, the type I error (False
positives) in this case too is comparatively low than the
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type II error (False negatives) in the testing part of the
dataset.
Meanwhile, the evaluation matrices inclusive of Preci-
sion that is 91.23% is very close to Recall of 91.17%.
In addition, the F1-score of 0.9120 exhibits the balance
between Precision and Recall. Specifically, we have
discussed the results obtained from the testing division
of the dataset apart from the validation part.

iii.) Off-Med Eyes Closed Patient vs Eyes Closed Control:
In the case, off-med eyes closed, the validation accuracy
results in 92.49% with the test data accuracy of 91.50%
with the Precision of 91.70%, Recall of 91.31% and
F1-score 0.9151. Showing an impressive improvement
in comparison with the previous results can be seen
in figures Fig 8a, Fig 8b, Fig 8c, and Fig 8d. The
results show notable improvements also described by
the confusion matrix. The confusion matrix obtained
explains the model performance clearly in both the
subsets of the divided dataset into validation and the
testing dataset. We are discussing only the improvement
shown by the confusion matrix obtained from the testing
dataset. It can be observe from the confusion matrix
the diagonal elements showing the correct predictions
made by the model. Explicitly, 123 cases are correctly
predicted as controls with eyes closed corresponds to
42% out of total 293 readings. Furthermore, 145 cases
are correctly predicted as Patients off med with eyes
closed that constitutes 49.5% of the total cases.
8 of the cases are incorrectly predicted as Controls with
eyes closed corresponds to 2.7% among the total cases.
In the same manner 17 of the cases are incorrectly
predicted as Off med Patients constituting 5.7% of the
total cases.
Amongst the 131 total Eyes Closed Controls predictions
123 cases are correctly predicted that is 93.9% and 6.1%
of the cases are wrongly predicted. In the same manner,
89.5% of the total Eyes closed Patients predictions are
correctly predicted, whereas 5.8% arewrongly predicted
as the Controls.
Out of total 140 Controls readings, 123 are correctly
predicted that attaining 87.9% accuracy. On the other
hand, 17 cases are wrongly predicted as Eyes Closed
Patients consisting of 12.1% of the total Controls
cases. Among the 153 total Off med Eyes Closed
Patients cases, 145 are correctly predicted as the Patients
corresponds to 94.8% accuracy. On the contrary, 8 cases
are incorrectly predicted as Controls making 5.2% of the
total cases.
Conclusively, 91.5% are correctly predicted among
the total predictions, whereas, 8.5% are incorrectly
predicted. Apart from the accuracy, the type I error
(False Positives) 2.7% is much lower than the type II
error (False Negative) 5.8%. False positives are the cases
where patients are incorrectly predicted as controls,
whereas False negatives are the cases where Controls are
wrongly predicted as patients. It is one of the model’s

positive indications, especially in our cases where if the
Patient is miss-classified as the Control, it leads to a
tragic outcome: False negatives 2.7% compared to 5.8%
of False positives.
Alongwith the accuracy, Precision quantified as 91.70%
in addition to the Recall calculated as 91.31% with
the F-1 Score of 0.9151. The evaluation metrics show
the model’s performance; the F1-score is related to
Precision and Recall. This closeness concludes that the
model performed well in detecting the Patients in the
case of Off Med Eyes Closed Patients on the testing
dataset. In addition, the AUC in the ROC curve eval-
uates to 0.9133, confirming the model performance’s
efficacy.

iv.) Off-med Eyes Open Patient vs Eyes Open Control:
In the scenario of off-med Eyes open, the validation
accuracy of 94.90% with testing accuracy of 93.10%
in addition with Precision 93.18%, Recall of 93.09%
and the F1-score having 0.9313 displayed by the figures
Fig 9a, Fig 9b, Fig 9c, and Fig 9d.
In Off medication Eyes Open instance, the results
obtained are discussed earlier, specifying the values
obtained for accuracy, precision, recall, and F1-score.
On the other hand, we have a confusion matrix that
speaks more precisely about the outcomes. The diagonal
elements shown in the Fig 9c display the accurate
predictions made by the model. In the current scenario,
130 cases are correctly predicted as Controls with eyes
open, corresponding to 44.7% of the total 291 cases.
Whereas 141 cases are accurately predicted as Patients
with eyes open in the case of Off medication Eyes open,
contributing 48.5% of the total cases. On the contrary,
8 cases are wrongly predicted by the model as Control
constituting 2.7% of the total cases, and 12 cases are
incorrectly predicted as Patients from the total cases
composing 4.1% of the total cases.
Among the total 138 Control predictions, 130 cases are
correctly predicted by the model, reaching the accuracy
of 94.2%, whereas 8 are incorrectly predicted, that is
5.8% are wrong predictions. On the contrary, out of 153,
total Patients’ predictions of 141 are correctly predicted
as Off-med Eyes open Patients that produce an accuracy
of 92.2% and the remaining.
7.8% are the wrong predictions.
In the set of total 142 Controls with Eyes Open, 91.5%of
the cases are correctly predicted as Controls that counts
130. Contrastingly, 12 cases are incorrectly predicted
as Off-med patients imparting 4.1%. On the other
hand, among the 149 Off-med Eyes closed patients,
141 correct predictions are made ensuing 94.6% of
accuracy.With 8 cases arewrongly predicted as Controls
that is remaining 5.4% of the total proportion.
Exclusively, AUC in the ROC-curve manipulates to
0.9309 demonstrating the efficiency of the model
prediction in the light of Accuracy, Precision and
F1-score.
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FIGURE 10. Results for OFFMED case.

Predominantly, 93.1% of the total cases are correctly
predicted containing both the Patients as well as
Controls in the scenario of Off-med Eyes Closed along
with 6.9% of the incorrect predictions.

FIGURE 11. Results for ONMED case.

Alternatively, the evaluation matrices we have calcu-
lated depict the efficacy of the model. By producing the
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Precision of 93.18%, Recall of 93.09% in addition to the
F1-Score 0.9313. The yielded values demonstrate the
effective performance of the model. Also, the accuracy
achieved in the case of Off-med Eyes Open is the
best one among the set of four instances in the UNM
dataset. In addition, the Precision, Recall, and F1-Score
also demonstrate the performance of the model in Off
medication Eyes Open scenario.
From the results achieved in all the four considered
instances of the UNM dataset are the best ones.
We have tried as discussed in the III-F different model
specifications to achieve the best possible evaluation
matrices for all the cases independently. What we have
achieved is detailed in the above sections. Amongst all
the cases the best performance evaluation matrices are
achieved in Off medication Eyes Open scenario.

II.) UCSD Dataset
In the UCSD dataset, there exist two situations one On
medication and the second one is Off medication. The
name explains the said conditions, on medication is the
case when the subject is having EEG recording when
the subject have taken the prescribed medicines. On the
other hand, Off medication is the case when the subject
didn’t have taken the medicine within 12 hours of the
EEG recording.
We have applied the designed model with both the
variations first with the SGDM classifier along with
Adam classifier alternatively. The results obtained are
better than as achieved in the case of UNM dataset.
The detailed results are discussed below with evaluation
metrics.

v.) Off-Med vs Healthy Control:
The first condition in the UCSD dataset starts with Off-
medication, the validation accuracy achieved for the
Off-medication case is 97.90% along with the accuracy
from the test set is 96.80%. In addition, with the
Precision 96.85%, Recall of 96.78% and the F1-score
0.9682 can be observed from the figures Fig 10a,
Fig 10b, Fig 10c, and 10d.
The confusion matrix is a valuable metric for displaying
the efficiency of the model which cannot be achieved
from other metrics. The diagonal element of the
Confusion matrix demonstrates the correct predictions
made by the model which is 47 cases are correctly
predicted as Controls that represent true positives with
44 cases correctly predicted as Patients that is known as
true negatives.
Among the total 49 Control predictions 47 are correctly
predicted as controls achieving 95.9% accuracy. With
2 incorrect predictions scoring 4.1%. In the same
manner, 44 cases are rightly predicted as Patients from
the set of total 45 Patients predictions attaining the
accuracy of 97.8%, along with 1 negative predictions of
Patient as Control accounting 2.2%.
Out of 48 total Controls 47 are correctly predicted
bestowing 97.9% correct predictions. With 1 Control

being wrongly predicted as Patient contributing 2.1%.
In the same manner, amongst 46 Patients, 95.7% are
correctly predicted as Patients computing to 44 positive
predictions, with 2 of the wrong predictions proportion-
ing to 4.3%.
All inclusive, accuracy of 96.8% is achieved with 3.2%
mis-classification. Explicitly, out of 96 total instances,
91 are correctly predicted by the model that makes
96.8% along with 3 incorrect predictions resulting
in 3.2%.
In addition the AUC in the ROC-curve computes to
0.97985 depicting the adequacy of themodel for positive
predictions.
Besides accuracy 3 other evaluation metrices are consid-
ered including Precision of 96.85% with 96.78% Recall
and finally the F1-Score of 0.9682 is achieved. These
scores demonstrate the efficacy of the model. The values
of Precision and Recall are almost the samewhich shows
the effectiveness of the predictions made by the model.
With F1-Score demonstrating the relativity of precision
and recall which is recorded with high value among all
iterations.

vi.) On-med Patients vs Healthy Control
In the UCSD dataset, the results are far better than
the UNM dataset as the training and the confusion
matrix describe the validation accuracy of 98.95% in
accordance with 97.90% of testing accuracy shown by
the model. This is better than as achieved regarding
the off-med patients and in comparison, to all the
proposed models including the Precision of 98%, Recall
of 97.87%, and the F1-score of 0.9794. the results are
shown in the figures Fig 11a, Fig 11b, Fig 11c, and 11d.
The first case we have considered in the UCSD
dataset is On-med. In a similar fashion, the confusion
matrix obtained in this case too describes the model
performance precisely. The diagonal elements state the
correct predictions made by the model in the form of
True Positives (tp) and True Negatives (tn). In the On-
med circumstance, there are 48 cases that are correctly
predicted as Controls from the total 95 cases yielding
50.5%. Also, 45 cases are correctly predicted as Patients
contributing 47.4% among the entire collection.
In the same manner there are 2 cases where the model
miss-classifies Patients as Controls rendering 2.1% from
the whole set of readings. On the other hand, there are
not any incorrect predictions for the controls as Patients.
48 of the total Control predictions are correctly predicted
as Controls notably 96% of correct predictions. On the
same side, 2 of the total predictions are inaccurate that
is 4% of the cases are incorrectly predicted. Together
with 45, correct predictions are made among the total of
45 total patients cases accomplishing 100% predictions
with not any wrong predictions.
Out of the 48 total Controls all the 48 are correctly
predicted as Controls which means 100% correct
predictions without any wrong prediction. Similarly, out
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of 47 Patients, 45 are correctly predicted as patients
contributing 95.7% with 2 incorrect predictions as
Controls resulting in 4.3% incorrect predictions.
AUC in the ROC-curve calculates to 0.98958 depicting
the dominance of positive predictions over wrong
predictions.
On the whole, 97.9% are the correct predictions whereas
2.1% are inaccurate predictions achieving in 97.9%
of accuracy. In addition, the evaluation metrics were
achieved in the form of Precision of 98%, Recall
of 97.87% along with F1-Score of 0.9794 and the
AUC 0.98958. The evaluation metrics with high values
of Precision, Recall, and the F1-Score describe the
efficiency of the proposed model.

Across the board all the results are discussed and presented
in detail. It could be observed the model doesn’t respond well
in the case of the UNM dataset. Achieving only maximum
accuracy of 94.90% for validation checks and the testing
accuracy of 93.10% amongst all the cases within the UNM
dataset specifically for the Off-med Eyes Open instance. For
the UCSD dataset, we get maximum accuracy in the case
of on-med patients with validation accuracy of 98.5% with
testing accuracy of 97.9%.

V. CONCLUSION
We have proposed a methodology consisting of 23 layered
CNN for classifying PD from the healthy controls. This
includes six variants from the two datasets. In all those
cases the proposed methodology has proven better than state-
of-art techniques as demonstrated in Tables 3 and 4 while
having equal performance metrics in some cases. Our main
concern was to distinguish between the PD patients and the
Healthy controls in all the cases exclusively, achieving better
performance metrics. Although, in most of the discussed
approaches none of them have taken all the respective cases,
especially in the scenario of the UNM dataset which is
composed of four cases shown in Table 2. In all these
cases the proposed methodology had achieved an accuracy
of above 90%, and other performance evaluation matrices
also concluded with a score of more than 90%. On the other
hand, in the case of the UCSD dataset, we have attained
performance evaluation metrics up to 98% which is better
than recent research.
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