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ABSTRACT The welding process for medium and thick plates typically involves multi-layering and multi-
channeling, but its quality and reliability require further improvement. Therefore, this study introduces
the convolution neural network algorithm to establish a deep learning model for weld seam recognition.
Additionally, the structured light imaging method is used to accurately position the V-shaped weld groove.
Meanwhile, a machine vision based multi-layer and multi-pass dynamic routing planning algorithm was also
studied and designed, and a contour feature point recognition algorithm for the filling layer was developed.
Thus, dynamic routing planning is achieved. It is demonstrated that the difference between the coordinates
acquired by the deep learning model and the ideal region decreases steadily and reaches a minimum of
(200,80). The confidence level of weld seam detection gradually increases with the adjustment of the
welding robot, reaching a maximum of 98%. The confidence level of the detected feature points reaches
100%. In the meantime, the remaining height of the fusion after welding is 2.5mm. There are no negative
phenomena present on the surface of the weld seam, meeting the necessary process requirements. Such
discrepancies as undercut, incomplete penetration, slag inclusion, and porosity are absent. It shows that the
welding technology based on machine vision has strong feasibility, effectively improves the automation level
and efficiency of welding technology, and provides reliable technical support for the development of modern
machine vision welding technology.

INDEX TERMS Machine vision, multiple layers and channels, initial point positioning, dynamic lane
arrangement, welding, machine learning algorithms, robot vision systems.

I. INTRODUCTION
Welding is an important manufacturing process, and the
quality of the weld seam is directly related to the strength and
reliability of the welded part. Further development of robotics
can focus on research in dynamic nesting planning, weld
initial point localization, robot path planning and trajectory
tracking. The aim is to improve the quality and accuracy
of the weld seam, reduce the distortion rate, and minimize
the effect of ambient light on weld seam localization [1].
Currently, vision sensors are mostly used in automatic weld
seam path tracking for welding robots. In the multi-layer
multi-pass scheduling problem, the traditional way is mainly
to obtain the trajectory of the filler weld by offsetting the weld
path. Although thismethod is relatively straightforward to use
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and enhances welding efficiency, it is vulnerable to weldment
deformation resulting from the high temperature. Therefore,
the method of filling directly following the trajectory may not
be able to guarantee the welding quality [2], [3]. In addition,
although traditional machine vision methods can enhance
the accuracy of initial weld seam localization, they may
be sensitive to ambient lighting during welding, thereby
resulting in error amplification. This may adversely affect the
quality of the weld. In further developing work on robotics,
attention could be given to the research on dynamic nesting
planning, weld initial point localisation, robot path planning
and trajectory tracking. Thus improving weld quality and
accuracy, reducing the rate of distortion and the effect of
ambient light on weld positioning. These studies will help
to further improve the automation and efficiency of welding
technology. Therefore, the study suggests implementing
machine vision algorithms to dynamically extract suitable
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parameters for adjusting the weld trajectory to enhance
filler quality. At the same time, the weld recognition deep
learning model is used for rough positioning of the weld
position. The machine vision algorithms accurately locate the
starting point of the weld to improve welding quality and
efficiency, and to advance the automation and intelligence
of welding technology [4], [5]. The research mainly includes
four parts. The first part mainly reviews the existing welding
methods for multi-pass welds at home and abroad. The
second part is mainly based on the processing method
of machine vision algorithm to study the initial point
positioning of the weld seam and the dynamic scheduling
method of multi-layer multi-pass welding of medium-thick
plate. Among them, in the first section, a deep learning
model for recognising V-shaped bevels is mainly trained
using the convolutional neural network algorithm. And the
image processing algorithm for the weld’s feature points is
composed utilizing the machine vision processing technique
to attain the initial location of the weld. This approach
empowers the welding robot to autonomously identify the
initial position point of the weld under a vast field of
view. In the second section, a dynamic scheduling algorithm
for multi-layer multi-pass welding of medium-thick plates
is presented by analyzing the welding robot’s multi-layer
multi-pass welding method. The system can modify welding
parameters while welding and capture contour images during
multi-layer, multi-pass welding to recognize characteristic
points of the weld contour. It then updates the welding
position based on the remaining width and height information
of the weld bevel in real time. In the third part, the
performance advantages of the machine vision-based multi-
layer multi-pass dynamic lane planning algorithm and the
initial point positioning algorithm are verified. The fourth
part of the paper summarises and discusses the proposed
methods and experimental results, and presents the current
shortcomings and future prospects. The contribution of this
article lies in the introduction of machine vision algorithms
to extract parameters such as the remaining filling height of
the weld seam and the remaining width of the weld layer,
based on the original path offset method. The extraction of
these parameters is dynamic and can be adjusted based on
real-time welding conditions. Secondly, a machine vision
based structured light vision algorithm is used for initial
positioning of welding points. Compared to currently more
advanced stereo vision algorithms, this algorithm displays
smaller deviation values in the initial positioning of welding
points and presents significant performance advantages.
Finally, by dynamically adjusting the welding trajectory and
extracting parameters based on machine vision algorithms,
the filling quality of multi-layer and multi-pass welding can
be improved.

II. RELATED WORKS
The welding problem of multiple welds has always been a hot
topic in the industrial field. Scholars such as S.Trupiano have
found that simulating multi-layer and multi pass welds using

traditional 3D models is time-consuming. Therefore, a new
equivalent parametric modeling method has been proposed to
simulate longitudinal multi pass welds. This model can detect
the local deformation and residual stress of welds, utilizing
the steady-state structural analysis method. Compared to
traditional 3D numerical models, this welding modeling
method reduces the calculation time by about 10 times [6].
R.K.W.Vithanage et al. have used the maximum inter-class
variance method for the extraction of laser beam contours
in images for a multilayer multi-pass welding problem. The
center of mass for the laser line contour is determined by
column and linear regression is used to optimize the contour
line. The adaptive slope detection algorithm is utilized to
locate the image laser jump between the weld seam and
the weld plate, facilitating the detection of the weld seam’s
left and right boundaries, which subsequently leads to the
identification of the weld seam. The results show that the
algorithm can be applied to the guidance of the weld start
position, and has a high recognition accuracy [7].M.Zhu et al.
believed that the control and prediction of residual stress
can provide a more complete structural evaluation of welded
joints. Therefore, a method combining finite element analysis
with practical application was proposed and the effecting of
welding sequence on ML-MC welded joints was explored.
The welding sequence has a small impact on the peak residual
stress, but huge in the longitudinal residual stress inside the
joint [8]. Y.Han’s team proposed the integral robust control
algorithm for the planning and tracking of welding paths.
Through image processing and analysis of the workpiece,
the information regarding the area and path to be welded
is determined. The results showed that the algorithm can
effectively automate the welding process and improve the
welding quality [9]. A.Sarmat et al. proposed a neural adap-
tive learning algorithm for constrained nonlinear systems
with disturbance suppression to further improve the control
performance and robustness of welding robots. The algorithm
can employ a neural network to estimate the system’s
nonlinear mapping relationship, and execute online learning
and parameter modification based on the error signal to
accomplish disturbance suppression and asymptotic tracking
of the system. The results indicated that it contributes to the
suppression and adaptive adjustment of system disturbances
and disturbances [10]. Scholars such as M.Shahabi believed
that the V-shaped groove joint of intersecting pipelines needs
to be filled with multi-layer welding, but it increased the
complexity of the problem. Therefore, the team proposed a
multi-layer welding method for pipelines with intersecting
rear walls. This method effectively fills the joint space of the
V-shaped groove around the pipeline, and the path planning
method has good robustness [11].

L.H. Guilherme et al. wrote a set of welding robot trajec-
tory planning software for the trajectory planning problem in
the multilayer-multipass welding process of industrial robots.
It determines the machine welding position parameters for
each weld pass through a multi-layer-multi-pass welding
method in which the user manually sets the welding position
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points and the number of weld passes. The software obtained
better welding results in welding tests [12]. Y. He et al. pro-
cessed image information by laser-assisted vision. They used
a distance filtering method to recognize the image feature
point information of weld contour in multi-layer multi-pass
welding process. The method provides a reference for the
weld width recognition algorithm in multi-layer multi-pass
scheduling planning. The results showed that the inflection
point identification of the bottom of the weld groove plays a
certain reference role in the process of measuring the weld
depth [13]. To address the sensitivity of cold cracking in
steel structure welding manufacturing, N.MukMukai’s team
proposed a new welding process and applied it to window
constrained welding cracking experiments. The content of
metallic hydrogen under this process was greatly reduced,
which has a good effect of preventing cold cracking and
reduces the preheating temperature of about 50◦C [14].
To effectively monitor the safety status of oil pipelines,
scholars such as Hasan have designed a numerical simulation
method for residual stress states in multiple weld seams.
It calculated the residual stress distribution, temperature
and hardness distribution of multi pass welding through
two-dimensional thermal finite element model, and takes
temperature dependence as an important factor to consider.
The results showed that the simulation results have a high
degree of consistency with the test results, which can save
time [15]. P.Asadi’s team raised a non coupled thermal
3D model for numerical analysis of residual stress. It was
capable of designing circular welding around pipelines. The
simulation results showed that as the welding speed gradually
increases, the axial tensile stress on the pipeline surface
shows a decreasing trend, proving the effectiveness of this
model [16].
In summary, many researchers in the industry have

conducted extensive research on the welding methods of
multiple welds, and many of them have combined them
with visual algorithms for weld detection and welding. But
its main approach is to first obtain the size of the weld
seam and then set the welding path, which is easily affected
by temperature and causes deformation of the original
path. Therefore, in this project, machine vision algorithms
were used for dynamic welding of welds to achieve good
application results in actual ML-MC welding.

III. ML-MC WELDING PLANNING AND INITIAL WELDING
POINT POSITIONING BUILT ON MACHINE VISION
Welding robot is a robotic system that automatically per-
forms welding tasks with high precision, efficiency and
consistency. With the development of industrial automation
and intelligence, welding robots are widely used in the
manufacturing industry. Multi-layer multi-pass dynamic lane
planning is to automatically plan the welding path and lane
sequence according to the shape and requirements of the
weld seam. The machine vision system inspects the weld
seam to gather information on its position, shape, and size to
facilitate path planning and lane optimization. This method

FIGURE 1. The structural schematic diagram of YOLOv3.

is suitable for complex welding processes and multi-layer
multi-pass tasks to improve welding efficiency. Welding
robots have a wide range of application prospects in industrial
manufacturing. Through multi-layer multi-pass dynamic
path planning and weld initial point localization based on
machine vision, it improves welding quality and precision,
reduces deformation rate, and promotes the development
of automation and intelligence of welding technology. The
paper aims to provide efficient, reliable and flexible welding
solutions for the manufacturing industry. This chapter will
focus on the specific implementation steps and application
effects of machine vision algorithms in the positioning
of the initial point of welding and multi-layer multi-pass
platoon welding planning [17], [18]. The schematic diagram
of the research method in the paper is shown in the
figure 1.

A. MACHINE VISION BASED INITIAL POSITION POINT
LOCATION TECHNOLOGY FOR WELDS
1) TARGET IDENTIFICATION AND DETECTION ALGORITHM
BASED ON CONVOLUTIONAL NEURAL NETWORK
In the process of identifying weld seams, the use of deep
learning (DL) object detection algorithm can more accurately
identify the type and location of the weld seam. Therefore,
the Convolutional neural network (CNN) target detection
algorithm is proposed to locate the initial position of the
weld. The CNN structure mainly includes convolutional,
input, fully connected, excitation and pooling layer. Among
them, the role of pooling layer is to select features, thereby
reducing the number of features. The fully connected layer
mainly achieves dimensionality reduction of local features,
and performs classification and regression processing on
them. In addition, because the majority of the gathered data
displays a non-linear distribution, the study incorporated a
Rectified Linear Unit (ReLU). This technique is able to
successfully address the issue of gradient vanishing during
CNN computation, resulting in the effective training of
deep networks. The calculation of the ReLU function is
Equation (1).

σ (x) = max(0, x) =

{
0, x < 0
x, x ≥ 0

(1)

To ensure accurate recognition of welds in a large field of
view, the YOLOv3 algorithmwas used to train the DLmodel.
YOLO primarily partitions the image into multiple regions
and employs CNN to operate on images within the same
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FIGURE 2. The structural schematic diagram of YOLOv3 is shown in the
figure.

region, simultaneously assessing the image’s confidence
level. Next, it selects the regions that meet the confidence
requirements to obtain the location information of the
detection target. Compared with YOLOv1 and YOLOv2
algorithms, YOLOv3 has a faster detection speed. The
network structure consists of 106 convolutional layers. The
initial 53 convolutional layers were utilized for network pre-
training, whereas the remaining 53 convolutional layers were
used for formal training. Meanwhile, the algorithm includes
three detections. Among them, the algorithm performs the
first detection at layer 82, with a step size of 32 and the
generated feature map size of 13 × 13, which mainly used
for detecting larger target objects. The algorithm performs
a second detection at layer 94, with a step size of 16 and
generating a size of 26× 26 images, mainly used for detecting
medium sized images. The algorithm performs the third
detection on layer 106, with a step of 8 and a generated image
size of 52 × 52, mainly used for detecting smaller target
objects [19]. Figure 2 is a schematic diagram of the structure
of YOLOv3.

2) INITIAL POINT POSITIONING OF WELD SEAM BASED ON
IMAGE PROCESSING ALGORITHM
The cross-section of the V-shaped weld groove of a welded
component has several corner features, which are called the
characteristic points of the groove. This includes the left
edge, right edge, and bottom feature points. The schematic
diagram of the V-shaped weld groove is exhibited in Fig.3(a).
The identify method for feature points mainly adopts image
processing algorithms. The algorithm saves the coordinate
positions of the three feature points of the weld and analyzes
their spatial relationships, enabling accurate classification of
whether the current structured light’s captured target object
belongs to the V-groove. Next, the laser image of the weld
seam read by the camera undergoes image preprocessing
which includes extraction of the Region of Interest (ROI)
region, gray scale processing of the ROI region image, and
threshold segmentation for extracting the contour line image
of the weld seam. Finally, the image of the weld seam area is
trimmed using morphological processing and combined with
stripe refinement and other operations to extract the centerline
position of the laser stripe. The effect of extracting ROI
regions from the image is shown in Fig.3(b). The research
mainly analyzes the V-groove of the weld, and processes the

FIGURE 3. Diagram of V-shaped weld groove.

structured light contour image of the weld to identify the
feature point information of the V-groove [20].

The image processing method involves several steps.
Firstly, the welding image captured by the camera needs to
be preprocessed. Secondly, grayscale processing should be
performed on the region of interest of the image. Then, the
region is segmented based on the preset threshold, and the
contour line region image is extracted. Finally, morphological
methods were used to process the image, and the centerline of
laser welding stripes was extracted through methods such as
stripe refinement. Among them, the threshold segmentation
of the weld contour image is achieved through binary
processing of the image, which mainly filters the pixels in
the laser contour image area. Meanwhile, the selection of
the binarization algorithm mainly hinges on the grayscale
threshold of the pixel, and its calculation is Equation (2).

u(x, y) =

{
0, f (x, y) ≤ T
255, f (x, y) > T

(2)

T in Equation (2) represents the grayscale threshold. In image
acquisition, the width of the laser emission line will affect
that laser stripe. As a result, in identifying feature points,
it is necessary to refine the laser welding contour lines. In the
definition of stripe refinement, R represents a set of planes.
B represents the boundary of the set. P represents a point in
the set. The point closest to P on the boundary is M. The
union of P points is the skeleton of the set of planes. When
performing stripe refinement, it is first necessary to determine
the weld contour pixels and skeleton pixels of the plane set
R. Next, remove the non skeleton points from the contour
pixels, and finally use the remaining skeleton pixels to replace
the original plane set. Repeat the above operation until all R
are skeleton pixels.In addition, Hough line fitting is required
after extracting the centerline of the image. However, the
Hough line fitting algorithm mainly uses voting mechanisms
for fitting operations, which can lead to the phenomenon
of fitting multiple line segments. Therefore, it is necessary
to arrange the fitted line segments from left to right, and
compute the angle and intersection coordinates of every two
adjoining line segments, to achieve more precise recognition
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FIGURE 4. The IPP process of the weld seam.

FIGURE 5. Schematic diagram of structured light seeking the starting
point of weld.

of feature points [21], [22]. Among them, the left endpoint
p1(x1, y1) represents the left edge of the weld groove, and
the middle endpoint p2(x2, y2) is located at the bottom of the
weld. The right endpoint p3(x3, y3) represents the right edge
of the weld groove. Next, it is necessary to perform feature
matching calculations on the identified corner coordinates.
The positional coordinate relationship of the feature points is
Equation (3).  −t ≤ y1 − y3 ≤ t

−k ≤ x2 − (
x1 + x3

2
) ≤ k

(3)

In Equation (3), t and k represent thresholds.
To locate the initial welding point more accurately,

a method combining depth learning prediction with tra-
ditional structured light image processing algorithm is
introduced. The specific IPP process of the weld seam is
Figure 4.

The IPP step of the weld groove is to first use a
DL detection camera to capture images, and input them
into the deep learning model for detection, to obtain the
locationdetails. When the robot moves to a suitable area, the
contour of the V-shaped weld is recognized by utilizing a
structured light sensor camera. If the sensor fails to detect
the contour of the V-shaped weld, the robot will continue to
move in the direction of the weld until the sensor detects the
contour information. Then, the position information of the
feature points at the bottom of the weld seam is identified,
and the coordinates of that position are obtained using a
hand eye transformation algorithm. Finally, the robot moves
to the beginning point of the weld seam according to the
obtained position coordinates, thereby completing the IPP
process [23]. The specific positioning process diagram is
Figure 5.

B. ML-MC WELDING PLANNING BASED ON MACHINE
VISION
1) ACQUISITION OF WELD TRACK SECTION PARAMETERS
ML-MC welding mainly includes filling, cover and backing
welding. Due to the susceptibility of the cross-sectional area,
it is necessary to set welding parameters in advance to meet
the needs of different groove widths and angles of the weld
bead. Due to the root structure of the weld groove is the
weakest position, the quality of the entire ML-MC welding is
affected by the quality of the backing weld. Therefore, strict
control of welding heat is required when welding the backing
layer. If the welding heat is too high, it will increase the fusion
ratio of the weld bead, leading to an increase in impurities
in the weld metal and the occurrence of cold cracks. If the
heat input is too small, the cooling rate of the bottom layer of
the plate will be accelerated, which will lead to brittle hard
tissue of the weldment structure, and reduce the toughness
of the weldment to form cold cracks. In the filling welding
of ML-MC, if the input heat is too large, it will increase the
thickness of each layer of weld seam, resulting in a decrease
in the forming effect of the weld seam and susceptibility
to liquefaction cracks. Therefore, the input heat should be
reduced to prevent the occurrence of cracks and increase the
toughness of the weld seam. The main function of cover
welding is to fully cover the groove after filling welding,
thereby ensuring the quality of welding formation [24], [25].
The filling area is mainly affected by many parameters such
as the current size of the welding machine. The calculation of
the welding cladding section area is Equation (4).

S =
Vf πD2

f

4Vw
(4)

In equation (4), Vf represents the wire feeding speed. Vw
is the travel speed of the welding machine. Df is the wire
diameter. In the actual welding process of the weld bead,
the welding equipment will automatically adjust the welding
current, voltage, and wire feeding speed according to the
actual situation. The welding voltage is mainly used to supply
energy for the melting of the welding wire, and the higher
the voltage, the faster the melting speed of the welding wire.
The welding current mainly adjusts the balance between the
melting speed and wire feeding speed. The cross-sectional
area of the weld bead is mainly influenced by multiple factors
such as cladding efficiency et al. The welding current and the
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FIGURE 6. Schematic diagram of visual dynamic lane arrangement.

cross-sectional area of the filler layer weld bead were used
for data fitting. The results are listed in Equation (5).

S = 0.2396 × Ii − 24.5285 (5)

Ii in Equation (5) represents the welding current.

2) VISUAL DYNAMIC ROW PLANNING OF MULTI-LAYER AND
MULTI-CHANNEL WELDING PATHS
The path planning method for ML-MC welding usually
adopts equal area filling or equal height filling. However,
this method’s effectiveness during the welding process can
be easily impacted by the formation of the weld seam, which
can cause issues such as groove deformation, deviation in
the welding position of the remaining weld beads, and low
welding quality [26]. Therefore, the study introduces visual
dynamic routing on the basis of traditional algorithms, which
canmonitor the groove changes of welds in real-time, thereby
achieving path correction of welding. Figure 6 is a schematic
diagram of visual dynamic lane arrangement. In Figure 6, hi
andWr represent the height and width of the weld bead to be
welded.H represents the height of the entire weldment, and F
represents the angle of theV shapedweld groove. The steps of
this method are firstly to use structured light sensors to obtain
the actual distribution position of weld bead in the welding
process in real time. Next, the obtained parameters should be
comparedwith the planned path of the original weld bead. If it
does not exceed the set error range, the next weld bead will be
welded according to the original weld bead parameters. If it
exceeds the designated error range, adjust the planning of the
next weld bead’s position in real-time to ensure the filling
height of the weld bead matches the actual planning, thus
avoiding sharp corners and grooves. In addition, this method
achieves effective filling and controllable forming of welds
under the influence of various fluctuation parameters, thereby
obtaining more ideal welding joints.

The dynamic path arrangement planning of ML-MC
welding adopts contour filling. The images are collected
by structured light sensors, and the visual algorithm is
compiled at the same time. At the same time, it is necessary
to detect the angle of the weld groove, the width of the
groove, and the thickness of the welded part. Based on these
parameters, the height of the remaining welding layer and the
width of the filling layer can be calculated. To establish a
coordinate system utilizing the cross-section of the welding
groove, wherein the x-axis is oriented towards the welding
advancement direction; The y-axis indicates the horizontal
direction that is perpendicular to theweld seam, and the z-axis

FIGURE 7. Schematic diagram of dynamic lane arrangement coordinate
system.

is directed towards the thickness of the welded component.
The schematic diagram of the V-shaped groove ML-MC
dynamic layout coordinate system is Figure 7.

The height of the remaining layer to bewelded is calculated
as Formula (6).

di =
d(mz − gz)

mz
(6)

In Equation (6), d represents the height of thewelding groove.
mz is the z-axis coordinate of the point along the edge of the
groove. gz represents that of the welding starting point. The
width calculation of the filling layer is Equation (7) [27].

L ′
=

(d − di)

tan(π−α
2 )

(7)

In Equation (7), α represents the angle of the weld groove.
The number of weld beads to be filled is calculated as
Equation (8).

n =
L ′

M
(8)

In Equation (8), M represents the swing coefficient of the
welding. The coordinate positions of each layer of weld bead
are displayed in Equation (9).

gij(x, y, z) ⇒


xij = x0
yij = yi1 + j · 1y
zij = z0 + i · 1z

(9)

In Equation (9), gij(x, y, z) represents the position coordinates
of the i layer and j column of the welding seam. 1y is the
width, and 1z is the height. The calculation of the welding
height of the remaining filling layer is Equation (10).

dh = di − dk (10) (10)

In Equation (10), dk represents the thickness of the cover
layer. The cross-sectional area of the last filling layer is
calculated as Equation (11).

Si =
dh + 2 · (d − di)

tan(π−α
2 )

× dh (11)

The area calculation of the diamond weld bead is
Equation (12).

Sr = dh ×M (12)
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The planned number of weld beads for this diamond shaped
weld bead layer is calculated as Equation (13).

n′′
=

Si
Sr

(13)

The calculation of welding current is Equation (14).

Vw =
24.5285 + Sr

0.2386
(14)

If the measured coordinate error of the weld bead exceeds
the established range, it is necessary to perform a sec-
ondary pass arrangement within the welding layer. The
coordinates of the secondary pass arrangement appear in
Equation (15) [28].

gij(x, y, z) ⇒


xij = x0
yij = yic + j · 1y
zij = z0 + i · 1z

(15)

In Equation (15), yic represents the y-axis coordinate of
the c-th weld bead of layer i. In actual welding operations,
the main focus is on accurately identifying the contour
feature point positions of the weld seam. The study selected
medium and thick plate welding workpieces for multi-layer
and multi pass welding experiments. To optimize contour
collection and save workpieces during welding, a bottom-
to-top approach is utilized. This method facilitates contour
gathering for every weld seam. The cladding forming images
of different welding layers are collected by structured light
vision sensor. To collect the cladding profile image under
the same weld condition and save welding materials, the
research will weld the same weld, and use structured light
sensors to collect images of weld beads with different lengths.
Usually, different welding layers exhibit different shape
characteristics. The base layer takes a clear ‘‘V’’ shape, while
the filling layer displays distinct contour, edge, and corner
characteristics, particularly at the weld/cladding intersection.
In the algorithm for identifying the bottom of the weld
groove, it is first acquired to reduce the length parameter
threshold of the fitting line to fit more weld contour lines.
Simultaneously, it needs to set the angle threshold between
adjacent lines and calculate the corner position of the fitted
line. Next, it is necessary to record the coordinates of the
four intersection points in the image from left to right in order
to obtain the trench bottom feature points of the underlying
layer. Among them, the two intersections in the middle
represent the characteristic points of the filling layer, and the
intersections at both ends represent the left and right edge
points of the weld groove. Finally, the corresponding weld
path is determined by utilizing the height and width of the
weld seam and the distribution information of feature points
within the filling layer. This approach achieves ML-MC
welding dynamic routing of the weld groove [29], [30].
The specific process of dynamic routing for ML-MC is
Figure 8.

FIGURE 8. The specific process of dynamic routing for ML-MC welding.

TABLE 1. Table of initial point prediction coordinates of weld joint.

IV. APPLICATION ANALYSIS OF ML-MC
DYNAMICROUTINGPLANNING AND IPP GROUNDED ON
MACHINE VISION
In the experiment to verify the relationship betweenMV-ML-
MC-DRP and weld IPL, a TCP communication server was
used as the recognition system software to achieve interactive
data transmission. TCP communication client is set as the
system software for dynamic programming of weld seam
routing and IPP of weld seam. To verify the effectiveness of
weld IPL, the study first used YOLOv3’s already trained DL
model to identify the position of the weld groove and roughly
locate the initial point of the weld. Then the SLV is utilized
to determine the confidence of the weld contour. Then, SLV
is used to determine the confidence of weld contour. The
confidence of weld detection refers to the probability or
reliability that the system believes that a detected weld is
correct. Confidence is one of the important indicators for
evaluating the performance of detection algorithms.When the
confidence level is greater than the set threshold, the current
initial point of the weld seam is located and the welding
robot is adjusted to IPP. As the confidence level changes, the
coordinate information of the weld seam changes as Table 1.
The difference between the coordinates determined by the
DL model and the optimal area decreases gradually, with a
minimum of (200,80).Moreover, the confidence level of weld
seam detection gradually increased, reaching a maximum
of 98%, and the confidence level of detected feature points
reached 100%. This shows that the model and SLV have high
detection accuracy and performance advantages.

The study then proceeded to measure the distance between
the start point of the weld seam and the tip of the wire
after positioning the system. This involves measuring the
horizontal distance 1x and vertical distance 1y between the
two endpoints, and determining the error for both values
using the collinear theorem. The superiority of the SLV
is verified through experimental comparison and analysis
with current advanced stereo vision algorithms. Figure 9
displays the measured values for horizontal and vertical

106728 VOLUME 11, 2023



T. Li, J. Zheng: Multi-Layer and Multi-Channel Dynamic Routing Planning

FIGURE 9. Horizontal and vertical distance and error value results.

distance deviation and error after 50 sets of experiments.
From Figure 9(a) in the SLV, the initial point of the welding
robot has a maximum deviation of 0.12 mm in the horizontal
direction. The minimum deviation is only 0.05 mm, resulting
in a reduction of deviation values by 0.03 mm and 0.01 mm
when compared to the stereo vision algorithm. At the same
time, the initial point of the SLV in the vertical direction
has a maximum deviation of 0.13 mm, and the minimum
deviation value is only 0.05 mm. Compared with the stereo
scopic vision algorithm, the maximum deviation is 0.13 mm.
Compared with the stereo vision algorithm, the deviation
values are reduced by 0.03mm and 0.03mm, respectively.
From Fig. 9(b), the maximum error of the SLV is 0.20mm,
and the minimum error is only 0.07mm. Compared with
the stereo vision algorithm, the error values are reduced by
0.05mm and 0.04mm, respectively. This shows that compared
with the stereo vision algorithm, the SLV has a higher
positioning accuracy for positioning the initial welding point.

Research continues to validate the effective performance
of the dynamic routing algorithm for machine learning-based
multitask welding. The experiment initially identifies the
feature points’ location, calculates their position data relative
to the welding robotic arm, and acquires the weld seam path.
Next, it identifies the position coordinates of the contour
feature points of the weld seam in the image, and pre plans the
welding path based on the calculated welding current value.
Finally, the study aims to achieve welding of the base layer
in accordance with the weld path and to identify the contour
feature points of the weld repeatedly during the welding of

TABLE 2. Pre planned welding parameters for each weld bead before
welding.

TABLE 3. Average error results for each channel weld.

the cover and filling layers. Table 2 is the pre planned welding
parameters for each weld bead before welding.

Further research was conducted to verify the effectiveness
of the visual dynamic routing algorithm for multi-layer
and multi-pass welding, and ablation experiments were
conducted on it. Experimental comparison was conducted
between traditional welding techniques and welding tech-
niques based on visual dynamic routing algorithms. The pixel
error analysis indicators of weld feature points are Maximum
Error (ME) and Root-mean-square deviation (RMSE). The
average error results of each weld seam are shown in the
Table 3. From the Table 3, it can be seen that compared
to traditional welding techniques, welding techniques based
on visual dynamic routing algorithms have lower feature
point recognition errors. The ME value of each weld seam
is only 3.58, a decrease of 16.56 compared to traditional
algorithms. And its RMSE value is only 1.15, which is
14.07 lower than traditional algorithms. The visual dynamic
routing algorithm for multi-layer and multi-pass welding has
significant performance advantages.

The structured light camera is used to recognize the
weld contour and extract the position coordinates of its
feature points, so that the required weld information can
be obtained. The contour feature points’ recognition results
during welding are shown in Figure 10. As the filling layer
continues to increase, the positions of the two feature points
in the middle continue to move up, while the remaining width
of the welding layer gradually decreases. At this point, the
width of the feature points of the two filling layers in the
middle continuously changes as the number of filling layers
increases.

The width of feature points and the remaining width of
the welding layer obtained through visual system recognition
are listed in Figure 11. As the welded area expands, the
width of its distinctive points and the residual width of
the welded layer fluctuate continuously. Among them, the
fluctuation range of the feature points is 59mm-138mm, and
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FIGURE 10. Recognition results of contour feature points during welding
process.

FIGURE 11. Feature points and residual width information of welding
layer.

the fluctuation range of the remaining width of the welding
layer is 6.189mm-17.462mm. By utilizing the dynamic
routing planning algorithm for ML-MC welding, the visual
sensing system provides feedback to the welding robot
regarding the relevant welding layer width and weld bead
width data. The welding equipment will adjust its current and
welding position for the following layer using feedback data.
This allows for efficient scheduling and planning of ML-MC
welding.

The welding path of the backing weld is obtained by scan-
ning the welding visual sensor, while the welding trajectory

FIGURE 12. Comparison of current values between dynamic
programming and pre planning.

of the cover weld and fill weld is obtained by dynamically
offsetting the backing weld layer. The comparison results of
two groups of experiments with the welding current obtained
after dynamic programming and the pre planned current
value are shown in Figure 12. After dynamic adjustment of
the current value, the current values of each filling welding
layer have deviations from the pre planned current values,
with the maximum current deviation reaching 30A. The
dynamic adjustment current values of the base welding and
each cover welding are completely consistent with the pre
planned current values. This indicates that in the actual
welding process, the welding robot will adjust the current
based on real-time detection data from visual sensors, thereby
achieving more accurate welding operations.

To verify the practical application effect of machine vision
based dynamic routing welding method, the paper will
conduct actual inspection on the welded parts after welding
using this method. After completing the welding of each
layer, the cross-section is first polished, and then corroded
with a 4% nitric acid solution to obtain that of the weld
bead. The entire welding time is 15-20min. The relationship
between weld cross-sectional area and current for each weld
layer at different welding speeds and the relationship between
weld current and weld cross-sectional area for the filler
layer are shown in Fig. 13. The cross-sectional area of the
weld bead is mainly affected by the welding speed and
welding current. The cross-sectional area deducts with the
rise of welding speed and rises with the welding current
booming. When the current is 291A and the welding speed
is 30cm/min, the cross-sectional area reaches the maximum
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FIGURE 13. Relationship diagram between welding current and weld
bead cross-sectional area.

FIGURE 14. Cross section view of welded workpiece.

value of 44.5mm2. In addition, the growth rate of that area of
the filling layer is faster than that of the other welding layers.
This shows that welding speed and welding current play a
crucial role in the quality of the filler layer. It is therefore
necessary to adjust the welding speed and welding current to
the optimum using vision sensors.

The experiment continued to conduct 4-layer and 8-pass
welding on the welded parts to verify their actual effect.
The welding cross-section image after corrosion treatment
is exhibited in Figure 14. This welding treatment includes
5 filling layers and 2 cover layers. After actual measurement,
the remaining height of the fusion after welding is 2.5mm.
There are no adverse phenomena such as undercut, incom-
plete penetration, slag inclusion, and porosity on the weld-
seamsurface. This indicates that the overall welding quality
fully meets practical needs and can be applied to actual

welding engineering. In actual welding, the dynamic routing
welding method not only improves production quality, but
also simplifies the routing algorithm, thereby improving
production efficiency.

V. CONCLUSION
The filling quality of welding is the most critical element in
the entire process. To further lift the filling quality of ML-
MC, CNN and structured light imaging method of V-shaped
weld groove are introduced to precisely locate the initial point
of weld groove. At the same time, the paper also designed
MV-ML-MC-DRP and contour feature point recognition
algorithms for filling layers to dynamically schedule welding
for ML-MCwelding. The results show that in the initial point
localization experiments, themaximum deviation value of the
initial point of the welding robot in the horizontal direction
within the SLV is 0.12 mm, and the minimum deviation value
is only 0.05 mm. Compared with the stereo vision algorithm,
the deviation values are reduced by 0.03 mm and 0.01 mm,
respectively. Moreover, the maximum matching deviation of
the initial point in the vertical direction in the SLV value is
0.13mm and the minimum deviation value is only 0.05mm.
Compared to the stereo vision algorithm, the deviation
values are reduced by 0.03mm and 0.03mm, respectively.
Meanwhile, the maximum error of the SLV is 0.20mm and
the minimum error is only 0.07mm. Compared to the stereo
vision algorithm, the error values are reduced by 0.05mm
and 0.04mm, respectively. In the recognition verification
of the visual system, the width of feature points and the
remaining width of the welding layer continuously fluctuate
up and down as the welding layer increases. The fluctuation
range of feature points is 59mm-138mm, and the fluctuation
range of the remaining width of the welding layer is
6.189mm-17.462mm. Among them, when the current is
291A and the welding speed is 30cm/min, the cross-sectional
area of the filler layer reaches the max of 44.5mm2.
It shows that the welding system based on machine vision
has good practical application effect and meets the process
requirements of welding. At the same time, the welding
technology effectively improves the welding accuracy and
welding quality, and promotes the automation and intelligent
development of welding technology. However, this study did
not optimize the design of the welding robot control system,
which is an important part of the robot welding system.
Therefore, subsequent research can improve the control
accuracy and response speed of the robot by introducing
advanced control algorithms and optimisation methods.
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