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ABSTRACT Nowadays, extremely large amounts of structured and unstructured types of data are stored
in public, private, and hybrid cloud storage using object storage systems. Among these, storing multimedia
data such as image, video, and audio pose unique challenges and long-term effects on object storage Sus-
tainability. Three such challenges are smoother and more efficient video streaming, middleware placement
for media processing, and lastly, management of orphan garbage data. In order to tackle these challenges,
this paper presents a generalized architecture for smooth and efficient management as well as retrieval of
multimedia data in cloud systems. To do so, first, we propose a new middleware package in the object server
for supporting smooth video streaming and on-demand playable video segments. Here, we demonstrate
that video segment download time improves by up to 30% when segmentation is done in the object server
rather than in the proxy server. After, we focus on how to find orphan garbage data on media cloud storage
and to what extent they can hamper data retrieval. Specifically, we present a generalized architecture named
‘RemOrphan’ for detecting the orphan garbage data using OpenStack Swift hash Ring and scripts. We deploy
a private media cloud SPMS and find that around 35% data can be orphan garbage data. Due to the huge
amount of orphan data, rsync replication needs higher time and more network overhead which hampers
the system’s sustainability. We lower around 25% sync delay and 30% network overhead after deploying a
deletion daemon to remove the orphan garbage data.

INDEX TERMS Object storage system (OSS), offline video processing, middleware, garbage collector,
video segmenter, orphan garbage data.

I. INTRODUCTION Next-Generation Data Storage Market will reach USD

With myriad diversified applications, multimedia commu-
nication over the cloud has experienced a substantial surge
in interest in recent times [1], [2], [3]. As of 2022, the
Global Next-Generation Data Storage Market was valued
at USD 58.35 Billion. The market is projected to expe-
rience a compound annual growth rate (CAGR) of 7.8%
from 2023 to 2032. It is anticipated that the Worldwide
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123.66 Billion by 2032 [4], [5]. Several unstructured data
storage needs concurrent communication with cloud systems.
Such communication entails general user services as well as
special user services such as services to management person-
nel. The management personnel can be law-enforcing agency
people, crowd-monitoring authority persons, etc. A classical
example in this regard is the authority of Hajj crowd monitor-
ing authority [6]. A use case for the authority for our focused
context is shown in Figure 1. To serve such use cases, promis-
ing multimedia-based cloud systems are now emerging [7],
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[8], [9]. These systems often use various open-source Object
Storage Systems (OSS) for faster and easier access to image
and video-type data, which are the two foremost ingredients
in multimedia communication over the Internet.

A. OBJECT STORAGE SUSTAINABILITY

Here comes the necessity of Object Storage Sustainability in
the long run with respect to the continuous growth of unstruc-
tured data. Object storage sustainability refers to the design
and implementation of sustainable practices in the context of
object storage systems. Object storage is a method of storing
and managing data as objects, which are typically stored with
associated metadata and a unique identifier. Sustainability in
object storage can encompass various aspects such as energy
efficiency, resource, and storage optimization, and environ-
mental impact reduction. Besides, Object storage Systems
data management and communication is highly dependent
on middleware design and placement of the middleware in
proxy or storage servers [10]. Multiple copies of big data
are stored in OSS to ensure data availability. Hence, regular
syncing and checking are necessary for finding bit rot and
file degradation to ensure long-term preservation storage.
Several studies focus on data storage sustainability and its
impact to ensure long-term sustainability to avoid undesirable
consequences [11], [12].

In this paper, we primarily address two key concerns
regarding the sustainability of object storage: 1) the impact of
middleware placement within the object storage system, and
2) the deletion of orphan garbage data. By addressing these
concerns, we aim to enhance the sustainability and effec-
tiveness of object storage systems, promoting better resource
utilization, performance optimization, and data management
practices.

B. SUSTAINABILITY CONCERN: MIDDLEWARE
PLACEMENT

Besides, several applications such as crowd management,
real-time location-aware services, and medical systems need
to access multimedia data from diversified remote devices (in
Figure 1). As an example, crowd management of millions of
pilgrims for performing Hajj, Umrah, and Kumbh Mela is
challenging, and appropriate processing and communication
from the cloud is a must [6], [13]. Hence, context-aware
and location-aware cloud-based frameworks and services
are emerging [14]. These frameworks need both online and
offline processing of unstructured data such as images and
videos. Additionally, real-time video streaming is another
prominent feature for managing these kinds of services using
cloud infrastructures [15].

Similarly, video experiences slower responses from impor-
tant sites, as the sizes of video files are generally much higher
than those of corresponding image files. Many video stream-
ing service providers in this regard provide their services
using cloud-based video storage systems. Here, efficient
cloud-side operation management is needed to ensure dif-
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ferent features such as smooth video streaming, dynamic
adaptive streaming, etc. Besides, proper and updated video
segments need to be supplied from the cloud storage systems
to achieve the features. In this regard, Recent studies focus on
several methods of mobile and web streaming [1], [2], [16],
[17], gateway-based shaping methods for HTTP adaptive
streaming (HAS) [18], quality of experience of HAS [19],
optimal transcoding and caching for adaptive streaming in
content delivery networks [20], etc.

However, none of these studies focuses on video streaming
support for a cloud specifically for an Object Storage System,
which is now treated as a well-adopted solution for cloud
service development. Moreover, video streaming features of
this kind are primarily designed and implemented utilizing
multiple middleware components. Hence, our first concern
centers around the placement of middleware within the object
storage architecture, which is yet to be addressed in the liter-
ature. We examine the effects and implications of different
placement strategies for middleware components, aiming to
optimize their performance and efficiency within the overall
storage system.

C. SUSTAINABILITY CONCERN: ORPHAN GARBAGE DATA
Yet another aspect worth investigating for image and
video-delivering clouds is the efficient usage of cloud storage.
Due to diversification in operations and usages, there can
arise different types of data and objects in such storage. For
example, components such as client database, AUTH server
database, etc., can produce data and objects that will be never
required at all. To be more specific, in the multimedia cloud
storage [8], [21], there can be different versions of data for
images and videos that are never going to be accessed by a
user.

Irrespective of the future requirements, all the data or
objects of storage are generally considered to be an asset for
cloud storage, as data storage has no concern about what data
is stored or whether the data is necessary or not. However,
there are some other components such as client database,
AUTH server database, etc., which are always necessary
components for designing a complete system. Therefore,
in reality, all data in the cloud storage may not always be an
asset for other components. For example, a user can upload
some personal images to a media cloud system. All the
versions of the images were uploaded successfully, however,
when returning the response the network got disconnected (in
Figure 2).

Hence, there will be no information about these images in
the AUTH server where all the lists of files are stored for
users. This data can be useful for cloud storage, however,
never be used for users’ purposes. We use a new term for
this kind of data - orphan garbage data - to imply such
data is garbage as well as having no effective linkage to its
ancestor. Such data gets generated by different types of cloud
operations, e.g., when a cloud operation produces different
versions of the same data. This happens in the case of offline
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FIGURE 1. A use case of offline processing media data storage. Here, several crowd media files are accessed
from cloud storage by the Hajj management personnel using several diversified remote devices whenever
needed. Hence, different versions of media files (images and videos) are stored in the cloud storage using

offline processing beforehand.

processing media clouds that produce different versions of
data both for images and videos. Such productions result in
orphan garbage data in multimedia cloud storage.

Furthermore, research studies focus on several aspects
of such redundant data deletion architecture. Some stud-
ies present the memory garbage collector algorithms in big
data context [22], [23]. Other studies, Linux container-based
deletion [24], Smartbin-based deletion in wireless sen-
sor networks [25], orphan process detection [26], [27],
and assured deletion [28], [29] present some deletion
approaches, which are not applicable to the case of orphan
garbage data in cloud due to architectural as well as oper-
ational mismatches between cloud and the cases focused
on these studies. Hence, our second concern relates to the
deletion of orphan garbage data. Orphan garbage data refers
to data that is no longer associated with any active objects or
containers within the storage system. We explore techniques
and approaches for identifying and removing such orphan
data, contributing to improved storage efficiency and man-
agement.

D. MOTIVATION AND IMPLICATION
In summary, the substantial growth of unstructured data
generated and stored in Object Storage Systems globally
has resulted in a notable increase in energy consumption.
Besides, middleware modules offer compression or opti-
mization features that reduce the size of responses sent to
clients. Smaller response sizes can result in reduced net-
work bandwidth requirements, leading to potential energy
savings. By reducing the data transfer overhead, less energy is
consumed during transmission and storage. Research studies
have yet to address the crucial aspects of multimedia cloud
operation and communication, including the impact of mid-
dleware placement, the design of adaptive segmented video
streaming [30], [31], [32], and the management of orphan
garbage data for ensuring the sustainability of Object Storage.
Therefore, in this study, we first propose a new middleware
named ‘VideoSegmenter’, which is used for making video
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segments according to any kind of time range using FFmpeg

[33]. One specialty of our middleware architecture is that
it can give the user/streaming server any playable segment
on the fly. Another specialty is the ability to deploy this
middleware in the object server rather than in the proxy server
in OpenStack Swift.

Besides, we propose a novel approach ‘RemOrphan’ for
detecting and deleting orphan garbage data in a multime-
dia cloud. Here, we develop a deletion daemon to find and
remove orphan data in an efficient manner to make the
data storage sustainable along with enhancing CPU usage.
In proposing all these new techniques, we present a video seg-
menter middleware, the impact of middleware placement, and
a deletion daemon to eventually perform the tasks from the
same OpenStack-like system. We evaluate the performance
of the system in an actual setup that involves a server located
in Canada and a client situated in Bangladesh. Our rigorous
experimental results demonstrate that we can achieve up to
30% lower video segment download time, 30% reduced net-
work overhead, and 25% reduced sync delay through utilizing
our proposed techniques.

E. RESEARCH CONTRIBUTIONS AND ORGANIZATION
Our study yields the following contributions, as outlined in
this paper:

o We analyze two important factors related to long-term
Object Storage sustainability - the impact of middleware
placement and orphan garbage data in the Object Storage
System.

e We design a new middleware VideoSegmenter’
for supporting HTTP adaptive streaming in Open-
Stack Swift-like systems such as SPMS. Accordingly,
we implement a new package using setup-tools [34],
which can be easily integrated into the existing Open-
Stack Swift. We analyze and present that the proposed
middleware should be deployed in the object server to
get faster responses to avoid extra overhead and maintain
long-term sustainability.
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FIGURE 2. Offline processing models for storing and retrieving media
files from the cloud. Here, multiple versions of media files are processed
and stored in the cloud. During the processing time, orphan data may be
stored in the cloud.

o We present a new technique for finding unused orphan
garbage data in multimedia storage systems, which
poses a great threat to sustainable storage systems. This
orphan data is responsible for unnecessary sync delay in
replication and extra network overhead related to replica
(r) and the number of objects per node (n).

« Moreover, we design a deletion daemon named ‘RemOr-
phan’ for removing the orphan data using OpenStack
rings and scripts in an efficient way. Our custom dele-
tion daemon presents a configurable solution that offers
options to run it once or in a periodic manner.

« Finally, we perform a rigorous experimental evaluation
of our proposed methodologies in an actual testbed,
which consists of a high-configuration server located in
Canada and a client situated in Bangladesh. Our experi-
mental results confirm the efficacies of all our proposed
techniques against that of classical alternatives.

The organization of this paper is further segmented into
different sections. Section II contains the literature reviews
of recent papers related to our study. After, in Section III,
we present three important concepts - an OpenStack
Swift-like object storage system, middleware in OSS, and
the definition of orphan garbage data. Next, system design
and implementation are presented in Section IV. Besides,
Section V contains experimental test-bed setup and perfor-
mance evaluation. Furthermore, in Section VI, we present the
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discussion and comparative analysis of our proposed method-
ology with the existing literature. Finally, the conclusion and
future prospects of this research are stated in Section VII
respectively.

Il. RELATED WORK

In this Section, we present the related studies exploring object
storage sustainability, on-demand video segmentation, and
streaming and orphan garbage data deletion. In the literature,
we find very few studies on object storage sustainability.
Study [11] demonstrates that long-term preservation storage
requires more than just storing multiple copies of a file.
It is also essential to regularly check those copies for bit
rot and other types of degradation. Therefore, file integrity
tools are necessary to ensure the ongoing integrity of the
stored data. Another study [12] presents that the utilization
of big data at a massive scale is likely to result in some
negative repercussions. While some of these consequences
can be predicted, others may be completely unforeseeable.
This essay focuses on the sustainability-related issues that
arise from the implementation of big data.

A. ON-DEMAND VIDEO SEGMENTATION AND
MIDDLEWARE PLACEMENT

Efficient and smoother video streaming, dynamic adaptive
streaming, etc., are some special features, which need both
cloud server-side and streaming server-side operation man-
agement. For achieving these features, studies [7], [8], [35]
mainly focus on the faster and more secure management of
media files through designing middlewares. The increasing
demand for video streaming services over mobile networks
has outpaced the capacity of wireless links to handle the
growing traffic load. As a consequence, the service quality
of video streaming is adversely affected, leading to a sub-
par user experience. A research study in this regard [17]
constructs a private agent for each active mobile user in the
cloud to adaptively adjust the video quality utilizing scalable
feedback-based video coding techniques.

Furthermore, study [2] has developed a new frame-
work called EMS for streaming ultra-high-definition video.
This framework combines erasure-coded storage with multi-
source streaming. Moreover, they created two metrics, one
for deadline awareness and the other for latency sensitivity,
to measure the quality of service provided by video servers.
Additionally, they propose a federated learning approach to
adaptively update the service quality, which leverages the
power of reinforcement learning techniques to dynamically
select the most suitable servers for local user training, and a
global aggregation of service quality. Study [1] introduced
SPACE where, they have developed and analyzed several
segment prefetching policies that vary in terms of resource
usage, required radio and player metrics, and deployment
complexity.

Moreover, study [36] presents the WVSNP-DASH frame-
work, which relies on video segments that can be played
independently and have a particular naming syntax that
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conveys elementary metadata. This system facilitates flexible
search, transfer, distribution, and playback of video seg-
ments. To enhance the adaptive video streaming performance
in CCN, study [37] suggests a hop-by-hop adaptive video
streaming approach known as HAVS-CCN. Other studies
focus on several methods of mobile and web streaming [16],
gateway-based shaping methods for HTTP adaptive stream-
ing (HAS) [18], survey on quality of experience of HAS [19],
etc.

In addition, existing CDNs may not be sufficiently
cost-effective for distributing adaptive video streaming due
to the lack of orchestration on storage, computing, and band-
width resources. Hence, a research study [20] leverages the
notions of media cloud to deliver on-demand adaptive video
streaming services, where those resources can be dynamically
scheduled minimizing the total operational cost by optimally
orchestrating multiple resources. For this, the study formu-
lates and utilizes an optimization problem by examining a
three-way trade-off between the caching, transcoding, and
bandwidth costs. However, there is no study on video stream-
ing support for object storage systems and the impact of
middleware placement on storage sustainability.

B. ORPHAN GARBAGE DATA DELETION

Furthermore, the research study [28] presents a notion of
SmartBin in place of old-fashioned practices such as hiring
people to regularly check and empty filled dustbins. SmartBin
integrates the idea of IoT with Wireless Sensor Networks.
Another study [29] discusses the need for assured deletion
in the cloud along with identifying cloud features that pose
a threat to assured deletion and describes various assured
deletion challenges as well. Besides, study [38] focuses on
analyzing the GREEDY Garbage Collector strategy under
the condition of uniformly independently distributed write
accesses.

Moreover, study [23] examines existing Big Data platforms
and their memory profiles to investigate why traditional algo-
rithms, which remain widely used, are inadequate. It also
evaluates newly suggested memory management algorithms
that are specifically designed for Big Data environments [39],
[40], [41], [42], [43]. The research assesses the scalability of
these recent memory management algorithms by comparing
their throughput (improvement in application throughput)
and pause time (reduction in application latency) to that of
classic algorithms. Besides, study [22] performs a thorough
evaluation of three widely used garbage collectors, namely
Parallel, CMS, and G1, using four typical Spark applications.
Their evaluation involves a comprehensive analysis of the
relationship between the memory usage patterns of these
big data applications and the GC patterns of the collectors,
leading to several insights into GC inefficiencies. Based on
the findings, the authors provide empirical guidelines for
application developers and offer useful optimization strate-
gies for developing garbage collectors that are suitable for
big data environments.
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On the other hand, in distributed systems, orphan processes
may be generated as a result of remote procedure calls (RPC).
There are two types of orphans: crash-orphans, which occur
when the client crashes, and abort-orphans, which occur
when the parent process is aborted. Orphan processes are
problematic because they consume system resources and can
result in inconsistent data. To address this issue, several
studies have developed new methods for detecting orphan
processes [26], [27]. However, none of these studies deal with
the problem of removing orphan garbage data.

To the best of our knowledge, our proposed methodology
is the first to focus on video streaming data retrieval and the
impact of middleware placement in object storage systems.
Besides, we present an architecture named ‘RemOrphan’
for orphan garbage data detection and deletion to maintain
healthy and sustainable storage, which is yet to be focused
on in the literature.

lll. BACKGROUND

Our goal is to focus on object storage sustainability by analyz-
ing the impact of middleware placement and orphan garbage
data deletion. Hence, in this section, first, we present a media
cloud storage system named SPMS which is designed using
OpenStack Swift. After, we describe the details of middle-
ware in OSS. Finally, the definition of orphan garbage data is
presented using appropriate examples.

A. SPMS (SECURE PROCESSING AWARE MEDIA STORAGE)
OpenStack Swift has gained popularity in the deployment of
numerous media cloud storage. It is an open-source object
storage system that offers various notable features, including
eventual consistency, fault tolerance, high availability, and
replication. Swift comprises two types of servers: the proxy
servers responsible for management and processing, and
the storage servers (account, container, and object servers)
designed for storing databases and data objects [10].

1) READ AND WRITE REQUEST

When a client sends a read request for an object o, the proxy
node initially searches for the storage nodes that store the
replicas of 0. Subsequently, it sends requests to all the replica
(r) nodes of object 0. OpenStack Swift typically employs
a quorum-based voting mechanism for controlling replicas.
Once the proxy node receives a sufficient number of valid
responses (> |r/2]|+1), it chooses the best response, which is
the one with the most recent version of o, and then forwards
it to the client. Conversely, when a write request is made for
0, the proxy node dispatches the request to all r storage nodes
that host o. The write operation is considered successful
as long as a specific number (>[r/2]41) of storage nodes
respond with a ““successful write”” message.

2) PARTITION AND SYNCHRONIZATION

OpenStack Swift, like other popular storage systems,
employs consistent hashing (also known as a distributed hash
table or DHT) to organize data partitions. Specifically, Swift
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FIGURE 3. How different layers of middleware work in Web Server Gateway Interface (WSGI) for Object Storage System.
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FIGURE 4. Different consistency processes and layers in proxy and
storage nodes of OpenStack Swift.

constructs a logical ring, referred to as the object ring or
partition ring, which represents the entire storage space. This
logical ring consists of multiple equivalent subspaces, with
each subspace representing a partition. Each partition encom-
passes a certain number of 4% objects associated with that
partition.

The value of 4 in consistent hashing dynamically adjusts
with the scale of the system. Additionally, each partition is
replicated r times on the logical ring and physically mapped
to r different storage nodes. Assuming homogeneity among
all N storage nodes in the logical ring, each node hosts
a proportional number of partitions, which is calculated as
%, where p represents the total count of unique parti-
tions. To uniquely identify each object, a unique identifier
is assigned, typically generated by computing the MDS5 hash
value of the object’s path.

SPMS, which is designed using OpenStack Swift through
adding several new middlewares. SPMS system has every
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feature of Swift. Moreover, SPMS provides additional fea-
tures related to media management, including media secur-
ing, conversion of image data to PJPEG format, resizing of
images to multiple dimensions, and transcoding and resizing
of videos to various sizes [8], [44]. Since SPMS-like media
storage systems are commonly employed for diverse media
management tasks such as video streaming and storing mul-
tiple versions of objects, it becomes essential to address the
challenges of optimizing multimedia retrieval and effectively
managing orphan garbage data to ensure long-term sustain-
ability.

B. MIDDLEWARE IN OBJECT STORAGE SYSTEM
An Object Storage System like OpenStack Swift is con-
structed on Python’s Web Services Gateway Interface
(WSGI) model and configured through the Python Paste
framework. In the WSGI model, middlewares are a vital part
and they are designed to pass the requests through several
layers to reach the core application. Besides, middleware
wraps other middleware one by one down to the core applica-
tion in the center without knowing anything about the other
layers. Hence, developing middleware codes are easy and
straightforward for the developer to design new features.
Figure 3 presents how a middleware system with multiple
layers works. When a user request enters the system, the
request is potentially altered by each middleware layer as
it moves inward toward the final processing by the core
application. The response then travels back out the layers
of middleware, with each layer having the option to mod-
ify the response. Each middleware layer has the capability
to modify an incoming request or allow it to pass through
without any changes. Eventually, the final response is sent
back to the user. Each middleware layer can inspect, mod-
ify, or short-circuit a request or response. Different features
are implemented using middleware. In OpenStack Swift,
processing-related tasks are handled in the proxy server.
There are other consistency services to maintain replication,
audit, and update of objects in both proxy and storage servers.
Figure 4 presents different consistency processes and layers
in proxy and storage nodes (servers) of OpenStack Swift.
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FIGURE 5. How orphan garbage data is created due to network disconnection, client timeout problem, object versioning, etc. Here, the data.mp4 file is
uploaded from the client. For this single video file, five versions are uploaded in the storage nodes having three copies for each version. Two versions
are successfully stored when background processing, but somehow other versions are not uploaded successfully due to several reasons. Hence, the final
response failed and the URL is not stored in the AUTH database. The above six copies are orphan garbage data that are still in the storage server but will

never be used.

Here, each node consists of middleware layers to perform
several tasks. Hence, middleware placement is a concerning
issue for the long-term sustainability and efficiency of an
Object Storage System.

C. ORPHAN GARBAGE DATA

Data management with optimization of CPU and memory
usage in data centers is now the most challenging topic for
data scientists. Any kind of data is valuable, as all the data in
a storage system can be used for further processing or mining
purposes. A big question is now, is there any garbage data
in the cloud? For example, resizing images and transcoding
videos into multiple resolutions to cater to various remote
devices and data versioning must be needed in the media
cloud. To do so, recent studies present offline processing
models for storing and retrieving media files from the cloud
(in Figure 2a). Therefore, for a single object, there are several
different resolutions of the original one (in Figure 2b). The
data which is never used for quite a long time, is referred to
as ‘unused data’. This data can be archived using an erasure
coding policy or different kinds of mechanisms. However,
there is some kind of data that exists in cloud storage, which
has no information both on the client side or in the AUTH
database. This can happen for network disconnection, client
timeout problems, etc. This is the orphan garbage data that
can greatly threaten data storage sustainability.

Moreover, several studies introduce and design middleware
for image and video processing tasks in the Object Stor-
age System. In SPMS-like systems, for covering diversified
remote devices, many versions of images (200, 300, 600,
etc., to aspect ratio) along with progressive JPEG images are
stored. The same applies to video files, e.g., high-resolution
(720 to aspect ratio) video files, mobile-resolution (400 to
aspect ratio) video files, etc. Besides, study [21] presents
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that the different versions of photos viewed on Facebook are
around 80-100 Billion. Among them, the Thumbnails version
is viewed around 10.2%, the Small version is 84.4%, 0.2%
is the Medium version, and the Large version is 5.2%. This
is one of the main reasons for getting orphan garbage data
created, where no information either on the client side or in
the AUTH database about the orphan data gets stored. The
non-existence of information can occur due to network dis-
connection, client timeout problem, object versioning, etc.,
[8], [35]. Furthermore, transcoding large video files into dif-
ferent resolutions is a challenging task, hence, some research
studies propose background processing rather than waiting
for all the versions to upload and send a successful response.

In study [8], the researchers propose two different designs
to convert and upload high resolution, mobile resolution, and
other versions along with the original video file. In the first
case (Case-1: ‘Response after all uploading’), the system
sends a response after successfully uploading all the versions,
hence it takes a much longer time and the possibility of a
failed response is higher (in Figure 6a). On the other hand,
in the second case (Case-2: ‘Quick response with background
processing’), the system sends a successful response immedi-
ately after getting a successful response for the original video
file and starts background processing for all other versions
(in Figure 6b). For both cases, the system may create orphan
garbage data due to network disruption, client timeout, inter-
nal server communication error, and so on.

We present an example of how orphan garbage data is cre-
ated due to network disconnection, client timeout problems,
object versioning, etc. Here, the data.mp4 file is uploaded
from the client (in Figure 5). Then, to maintain security and
integrity, the file name is changed using some random func-
tion. After, for this single video file, the proxy server sends
five requests to the storage/object server, and each version of
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(a) Case-1: ‘Response after all uploading’
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(b) Case-2: ‘Quick response with background processing’

FIGURE 6. Diagram illustrating the flow of video uploading and transcoding for two distinct scenarios/cases [8].

the data has three copies stored. Two versions are successfully
stored when background processing, but somehow other ver-
sions are not uploaded successfully due to several reasons.
In the storage node, the object is stored using the system’s
own convention (i.e. <epoch-time>.data). Hence, the final
response is failed and the URL is not stored in the AUTH
database. However, the six copies which are successfully
stored through internal communication from proxy to storage
nodes, will remain as the orphan garbage data.

IV. SYSTEM DESIGN AND IMPLEMENTATION

In Figure 7, we illustrate the general architecture of how
we design the structure of this paper to find out the impact
of object storage sustainability. At first, we focus on the
impact of middleware placement in the object storage system.
To do so, we propose a framework for managing multimedia
data smoothly and efficiently in a media cloud storage sys-
tem. Then, we investigate another problem related to orphan
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garbage data. We present our proposed architecture for these
two important realms in the following subsections.

A. VIDEO SEGMENTER MIDDLEWARE
Nowadays, smoother and more efficient video streaming
including dynamic adaptation of streaming has become pop-
ular for its diversified usages. To understand its underlying
methodology, first, we need to know how streaming works in
a large system. Figure 8 presents the architecture of how a
streaming server and cloud system get interconnected while
streaming videos to multiple clients. Here, first, the stream-
ing server collects necessary segments or full files from the
storage server. Then, the streaming manager creates small
chunks from the segment to send those chunks to the clients.
There is another component named the viewer server which
is responsible for publishing the chunks to clients.

It is worth mentioning that, for streaming a video, the
streaming server needs all the information about the video
so that it can download the full video or any segments
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FIGURE 7. The general architecture of how we design the structure of this study to find out the impact of object storage
sustainability. At first, we focus on the impact of middleware placement in object storage systems. Then, we investigate

another problem related to orphan garbage data.

Algorithm 1 Algorithm for the VideoSegmenter Middleware

1: procedure VideoSegmenter(app, env, start_response) > Each middleware has a start_response method which need status

and headers of the response

2: timeRange < env.get(TimeRangeHeader)
3: if requestMethod = GET and timeRange then
4: itr < app(env, start_response) > Here, itr is a dictionary having important attributes in OpenStack Swift, or list
insatance if any error occurs
5 if isinstance(itr, list) then
6: return itr
7: end if > isinstance, list both are python keyword
8 sT, eT < timeRange.split()
9: validTimePattern <— CheckRegex > Check valid time pattern using Regular expressions
10: outF <— SegmentedFileLocation
11: outputFp, etag < SegmentVideo(itr._data_file, outF', sT, eT)
12: itr._fp < open(outputFp, rb)
13: itr._diskfile._data_file <— outputFp
14 itr._obj_size < os.path.getsize(output_fp)
15: itr._etag < etag
16: UpdateHeader () > According to new content-length and new etag of video segment
17: start_response(staus[0], headers[0])
18: return itr
19: end if
20: return app

21: end procedure

from the original file. To save unnecessary processing, the
storage server emphasizes storing segments of the original
file beforehand. In this case, when the storage server has
no segment stored or the downloaded segment is found
to be corrupted, ‘VideoSegmenter’ middleware comes into
play. We design the middleware having it similar to that
for partial range requests. The only difference is that our
design takes the input of a time range header, X-Time-Range:
startTime-endTime. Such a range request is supported by
HTTP protocols and it only gives some bytes within the
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requested range. However, segment requests of our pro-
posed middleware provide any playable segment within the
requested time range. Figure 9 presents a time range request
example of our proposed middleware along with the object
storage architecture of OpenStack Swift.

As Swift has its own architecture, predefined variables,
iterators, etc., for downloading an object, we need to inves-
tigate Swift object storage implementation very deeply and
find out which parts of the implementation need to be refac-
tored when returning segments rather than the full object.
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Algorithm 2 Algorithm for Segmenting Video File

1: procedure SegmentVideo(inP, otP, sT, eT)
endTime

> Here, inP = InputFilePath, otP = OutputFilePath, sT = startTime, eT =

> FFmpeg command for clipping the video segment using sT and Et [33]

> New etag calculation for segment video

2: temp, fileWOExt < inP.rsplit()
3: swiftExt < .data
4: videoExt < .mp4
5: otP+ = join(fileWOEXxt .clip(swiftExt), sT, eT)
6: matchedFile <— glob.glob(otP)
7: tStamp <— time.time()
8: if (mathedFile) then
9: pathWBF | etag <— matchedFile.rsplit()
10: otP <« join(pathWBF , etag, tStamp) + videoExt
11: os.rename(matchedFile[0], otP)
12: return otP, etag
13: else
14 tempPath < otp + randomlint + videoExt
15: clipCmnd < FFmpegCommand
16: output, error <— subprocess.Popen(clipCmnd).communicate()
17: if output then
18: raise Exception
19: end if
20: etag < md5(tempPath)
21: otP < join(otP, str(etag), str(tStamp)) + videoExt os.rename(tempPath, otP)
22: return otP, etag

23: end if
24: end procedure

SPMS cloud storage

Original file Segmented media files

> [T I [B)
sample.mpd| " sl.mp4  s2.mp4 5N.mp4§
2GB :

' ICollcct necessary segment |

Streaming server S pres
Call video
Stream No segmenter
Manager ‘J
| Cache segment |
Cache ¥
| Make chunks |
. 7
/ : \ Send to multiple

clientl |[client?]” " "|clientN| clients

Streaming server workflow

FIGURE 8. Our proposed architecture of VideoSegmenter middleware,
which presents how a streaming server requests for a segment from the
cloud storage.

Moreover, to enable ease of deployment and maintenance,
our target is not to change the open source code, but rather to
deploy a new middleware package so that it can be deployed
and integrated easily with the system.
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i H: X-Time-Range Header :
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V: VideoSegmenter

1530005783.72889.data |

FIGURE 9. An example of segment GET request using proposed
X-Time-Range-Header. (VideoSegmenter middleware (Vs) is deployed in
object server.)

Accordingly, we find that two classes (BaseDiskFile and
DiskFileReader) from two separate files in OpenStack Swift
(/ust/lib/python3.8/site-packages/swift/obj/mem_diskfile.py,
/usr/lib/python3.8/site-packages/swift/obj/diskfile.py)  are
responsible for downloading an object. We change the
values according to new segment size, etag (MDS5 hash
in this files of the downloading object), and location
(_fp, _diskfile._data_file, _obj_size, _etag). We present the
VideoSegmenter algorithm here (Algorithm 1 and 2).
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Subsequently, we consider another key aspect- as the proxy
server is responsible for all the processing, can we deploy
VideoSegmenter in the proxy server? Here, the problem is,
that for segmenting a video file, we need the full file first.
Hence, the proxy server needs to download the full file in
some temporary location and then clip the video to send
segments to the requester. This procedure is slower and
needs more network overhead. On the contrary, if we deploy
VideoSegmenter in the object server, full object download-
ing is not needed anymore as the clipping is done directly
on the data location. Here we need r times processing in
all replicated locations of the original object. However, the
segment will automatically be deleted from its location after
a predefined time in this case.

All the middleware is written in /ust/lib/python3.8/site-
packages/swift/common/middleware/ package of OpenStack
Swift. If we add a new middleware there, then the upgra-
dation of a new release will be required making the
implementation process complex. Hence, we implement a
new distribution of VideoSemter middleware using Python
setup-tools [34]. Besides, in our deployed SPMS object
server, we change the object — server.conf file and add
VideoSegmenter egg file for including our new middle-
ware (use = egg : video_segmenter#video_segmenter in
paste.filter_factory [45]).

We formulate some relationship with network overhead
and sync delay to our proposed architecture.

Vi= D Vi, ey
O<=i<=d

Va ={Va;, Var, Vazs - .., Va, } 2)

where, V; = Full video file, i = Segment/chunk, n = Given
time for chunk size. If the network overhead is o and sync
delay is /, then the impact of processing in different servers
can be denoted as -

{0’ l}PNah’SSd < {0, l}Ppr,Ssd < {07 Z}PdeSSd (3)

Here, Py,, = Segmentation done in the object server
Py, = Segmentation done in the proxy server

Ps, = Segmentation done in the streaming server

Ss, = Streaming done in the streaming server

From equation IV-A, we can see that as the range request
segmentation is done in the object storage server directly,
no need to download the full video in the proxy or streaming
server. Hence, the network overhead and sync delay will be
less in comparison to a proxy or streaming server. We present
the detailed results in Section V. In the next subsection,
we delineate orphan data deletion daemon pertinent to both
video and image data.

B. ‘RemOrphan’: ORPHAN DATA DELETION

Data that is never used for quite a long time is referred to
as unused data. This data can be archived using some erasure
policy or using different types of mechanisms. However, there
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FIGURE 10. Flow diagram for orphan data deletion daemon.

is another kind of data called orphan data or garbage data,
which exposes a great threat to data storage sustainability.
The main reasons for the threat of orphan data include storing
each object using some random names, the existence of dif-
ferent types of object versions [8], [35], network connection
timeout with client or AUTH database, etc. Hence, we pro-
pose an architecture for detecting such orphan data using
OpenStack Swift hash rings and scripts.

It is worth mentioning that the main two design goals of
OpenStack Swift and similar systems are eventual consis-
tency and high availability through replicated data objects
across multiple nodes. When dealing with data-intensive sce-
narios (r > 3 and n > 1000), the process of synchronizing
objects experiences substantial delays and results in extensive
network overhead. This issue is commonly known as the sync
bottleneck problem within OpenStack Swift. Specifically,
during each synchronization round, the storage node respon-
sible for a particular data partition (referred to as P) compares
its local fingerprint of P with the fingerprints of all the other
replicas of P (r — 1 in total). This synchronization process
results in a network overhead of r(r — 1) sync messages. Since
a storage node can host multiple partitions (approximately
n/h partitions, where each sync message contains /4 hash
values), the number of exchanged hash values per storage
node becomes as significant as 6(n X ) in a single sync round.
Consequently, this leads to substantial unnecessary network
overhead [46]. Hence, a high number of objects are always
responsible for sync delay and network overhead. Moreover,
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E"é;;l:_u_iz_l““"“ e oE i ] TABLE 1. The configuration of machines used in the testbed setup.
i CPU: 2 CPU: 2 i
: DISK: D1(50GB) (+>{ DISK: D1(700GB) |: .
: D2(50GB) D2(700GB) |! Proxy Object Account- Client
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FIGURE 11. The testbed setup consists of servers located in Canada and a CPU family 6 16 6 6
client situated in Bangladesh. Intel(R) Intel(R) QEMU
AMD .
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Model name CPU Procoor CPU CPU
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then it appears to be a great loss for storage service providers. t\;l;;uahza“o“ VT-x AMD-V VT-x S [f)‘;gge

To tackle this problem, we propose some key steps in our
orphan data detection and deletion daemon. 1) We collect all
data lists from the client/AUTH database for a certain time
interval. 2) Then, we collect all object lists of all accounts
from the Swift account and container database for the same
time interval. 3) We create the black list and white list from
all versions of the objects. 4) We delete blacklisted files
using bulk DELETE request [10]. Figure 10 presents the flow
diagram of the orphan data deletion daemon.

Our custom daemon server is configurable from the per-
spective of its considered time interval for the collection of
lists. This offers us options to run once or in forever mode
by daily, weekly, or monthly based on our configured time
interval.

V. PERFORMANCE EVALUATION

We assess the performance of our proposed architectures
by implementing them in a real-world environment. Firstly,
we provide a concise overview of our experimental testbed
setup. Following that, we present the experimental results and
findings for each of our three distinct architectures.

A. EXPERIMENTAL TESTBED SETUP

In our testbed deployment in Canada, we utilize high-
resource machines to ensure optimal performance. The media
storage cluster consists of two proxy servers, three account-
container servers, and three object servers. These servers are
equipped with AMD Opteron 62xx class CPUs and run on
CentOS 7 operating system. The memory and disk config-
urations of the Swift servers are as follows: 1) Two proxy
servers with 8 GB of memory and 20 GB of disk storage
each. 2) Three account-container servers, each with 8 GB of
memory, and three disks, each with a capacity of 50 GB. 3)
Three object servers, also with 8 GB of memory and three
disks, each with a capacity of 700 GB. Additionally, each
server is equipped with six 1 GB network interface cards. The
experimental setup of our testbed is depicted in Figure 11,
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and Table 1 provides detailed information about the machines
used in the setup.

Furthermore, as part of our setup, we deploy a private
media cloud SPMS using OpenStack Swift, specifically the
stable Newton branch. This SPMS configuration includes
three replicas (r = 3) and 16384 partitions (p = 16384).
For the account, container, and object ring files, we utilize
nine devices. As per the OpenStack Swift guide [10], these
devices are mounted in the location /srv/node/ < server >,
resulting in approximately 5461 partitions per device. Here,
a server can be an account, container, or object. In addition,
we develop and implement a social site that caters to both
mobile and web users. Over a period of approximately eight
months, we facilitate the uploading of various types of data
from clients to the development server. Besides, in order to
evaluate our proposed architecture, we upload large media
files from a benchmark video surveillance data set. We use
125 videos ranging in size from 3.8 MB to 1.4 GB and upload
the videos in a periodic manner. Furthermore, as part of our
testing, we generated a total of 10,000 accounts and 10,000
containers within the Swift cluster. Subsequently, we upload
approximately 1 million images and video files into these
accounts, resulting in a total object count (n) of 1 million
within our testbed server. The uploaded data amounts to
around 1.5 terabytes (TB), resulting in a total data size of
1.5TB x 3 within our development server.

1) ADDING VideoSegmenter ENTRY-POINT IN SETUP.CFG
FILE

We present the relevant code for the setup.cfg file pertaining
to our implementation. The setup.cfg file serves as the con-
figuration file for OpenStack Swift. All the middleware of
OpenStack Swift is developed using a filter factory pattern
in Paste package [10]. Hence, it is necessary to include each
middleware in the entry-point section of the setup.cfg file.
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[metadata]

name = swift

[pbr]

skip_authors = True

[files]

packages = swift

scripts = bin/swift-account-audit

[entry_points]
paste.filter_factory = healthcheck =
swift.common.middleware.healthcheck:filter_factory

videosegmenter = swift.common.middleware
videosegmenter : filter_factory
9% Ourimplementation

Here, “[ ]”” denotes several sections for setup.cfg file, and
- .. 7 refers existence of more codes in the file that we omit
here.
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2) ADDING VideoSegmenter MIDDLEWARE IN
PROXY-SERVER.CONF FILE

In this Section, we present the configuration change needed
in the proxy-server.conf file relevant to our implementation.
The proxy-server.conf file serves as the configuration file
for the proxy server in OpenStack Swift. The majority of
the middleware implementations are operated through the
proxy server. In order to assess the impact of middleware
placement, we include our developed middleware in the
roxy-Server.conf file in the first experimentation.
[DEFAULT]

# bind_ip = 0.0.0.0

bind_port = 8080

[pipeline:main]

pipeline = catch_errors gatekeeper healthcheck
proxy-logging - - - videosegmenter - - - proxy-logging
proxy-server % our implementation
[app:proxy-server]

use = egg:swift#proxy

[filter:catch_errors]

use = egg:swift#catch_errors

[filter:healthcheck]

use = egg:swift#healthcheck

[filter : videosegmenter]% our implementation
use = egg : swift#videosegmenter
% our implementation

Within the [pipeline:main] section, the various middleware
implementations are listed and separated by spaces. The order
in which the middleware implementations are listed in the
pipeline determines the sequence in which they are called.
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The pipeline includes middleware implementations such as
catch_errors, gatekeeper, health check, proxy-logging, and
others, which are part of the OpenStack Swift framework.
Additionally, we develop and include VideoSeg- menter mid-
dleware in the pipeline.

3) ADDING VideoSegmenter MIDDLEWARE IN
OBJECT-SERVER.CONF FILE
Object-Server.conf is the object server configuration file of
OpenStack Swift. To find out the impact of middleware place-
ment in the object server, later we include the developed
middleware in Object-Server.conf file. We present the code
of Object-Server.conf file pertinent to our implementation
below:

Here, we present the configuration change needed in
the object-server.conf file relevant to our implementa-
tion. The object-server.conf file serves as the configuration
file for the object server in OpenStack Swift. To find out the
impact of middleware placement in the object server, later,
we include the developed middleware in object-server.conf
file.

[DEFAULT]
# bind_ip = 0.0.0.0
bind_port = 6200

[pipeline:main]

pipeline = healthcheck recon - - - videosegmenter - - -
object-server % our implementation
[app:object-server]

use = egg:swift#object

[filter:healthcheck]

use = egg:swift#healthcheck

[filter : videosegmenter]% our implementation
use = egg : swift#videosegmenter
% our implementation

Here, within the [pipeline:main] section, the various mid-
dleware implementations are listed and separated by spaces
for the object-server.conf file. We develop and include
VideoSegmenter middleware in the pipeline.

B. EXPERIMENTAL RESULTS

For testing VideoSegmenter middleware, we make different
segments of 10 minutes and 15 minutes of different video
files (Category-1 having an average size of 0.49GB and
average duration of 94.85 minutes; Category-2: average size
of 0.66GB and average duration of 152.2 minutes; Category-
3: average size 0.87GB and average duration 177.7 minutes).
We deploy VideoSegmenter middleware in both the proxy
server and the object server. There was some difference in
the middleware code for the proxy server. In our proposed
architecture of VideoSegmenter for object servers, we store
or cache the segment for around one to two days in the
object segment location. Hence, a download request of the
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FIGURE 12. Comparison of download time for segments of three different file categories. S1, S2, S3, and S4 denote the average segment of 10 and

15 minutes of 15t to 4th segments respectively. In the graph, 15t bar (blue) represents the download time of the segment from the object server at the
first time request, 2"d bar (orange) represents the same segment download time from the object server at the second time request. Besides, 3'd bar
(green) represents the download time of the same segment from the proxy server.

TABLE 2. Time improvement percentage status for different segments with respect to retrieving the segment from 2"d time vs 15t time from object server
if we place the middleware in object server. Moreover, segment download time comparison is presented by placing the middleware in the proxy server

(object vs. proxy).

File category % Time improvement (1st segment) % Time improvement (2nd segment)

Avg. Size (GB) | Avg. Duration (min) | Object_2nd vs Object_Ist | Object vs Proxy | Object_2nd vs Object_Ist | Object vs Proxy
Short file 0.49 94.85 253 30.25 62.33 20
Medium file 0.66 152.2 15.15 25 37.96 14.91
Long file 0.87 177.7 20 29.69 30.19 14.97

% Time improvement (3rd segment) % Time improvement (4th segment)

File category | Avg. Size (GB) | Avg. Duration (min) | Object_2nd vs Object_Ist | Object vs Proxy | Object_2nd vs Object_Ist | Object vs Proxy
Short file 0.49 94.85 50.45 13.28 19.75 36.22
Medium file 0.66 152.2 44.12 20.93 43.61 30.73
Long file 0.87 177.7 38.21 14.58 40.72 18.14
Avg time improvement Object_2nd vs Object_1st: 22.39% Object vs Proxy: 35.65%

same segment (second download request onward) needs a
lower time than the first-time request from the object server.
Figure 12 and Table 2 present a comparison of download
times from the object server and proxy server for three differ-
ent categories. Here, we show download times for different
segments of different files. We take 100 iterations for every
single segment for each type of download and present an
average of the 100 iterations in the graph. The download times
correspond to three different types of download- 1) down-
load from the object server for the first time, 2) download
from the object server for the second time, and 3) download
from the proxy server. As Figure 12 demonstrates, down-
loading from the object server always takes much less time
than that from the proxy server. Nevertheless, the second
download from the object server takes less time than the first
download utilizing the caching.

Furthermore, Table 3 presents that around 35% of data
is orphan data according to our setup testbed at the first
round when we run the deletion daemon. After removing
the orphan data, sync delay and network overhead get lower
by up to 25% and 30% respectively. Next, several users
upload a bulk amount of images and videos regularly and
we run the deletion daemon after one year again. Table 3
presents the values after removing the new orphan data in
the second experiment. Furthermore, we run the deletion
daemon after two days of the second experiment. Table 3
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TABLE 3. Orphan garbage data deletion status per node for testbed
server.

1st round - Deletion status

[ Metrics [ Before deletion [ After deletion | Tmprovement |
Object count IM 650K lower 35% data
Sync delay 1440s 1080s lower 25% delay
Network 500MB 350MB lower 30%
overhead overhead
2nd round - Deletion status after one year
[ Metrics | Before deletion [ After deletion [  Improvement |
Object count 1G 630M lower 30% data
Sync delay 1280s 965s lower 25% delay
Network 500MB 350MB lower 30%
overhead overhead
3rd round - Deletion status after two days
[ Metrics [ Before deletion [ After deletion | Improvement |
Object count 700M 678M lower 4% data
Sync delay 1280s 1100s lower 20% delay
Network 500MB 350MB lower 30%
overhead overhead

presents the values after running the deletion daemon a
third time.

C. OVERHEAD ANALYSIS

Figure 13 presents the relationship between sync delay (in
seconds) and network overhead (in MB) concerning the
number of objects (n) per node/server, with a replica count
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FIGURE 13. Relation between sync delay and network overhead with
respect to no of objects per node (n) . Here, the value mentioned as nK
(in x-axis), i.e., 10 value represents 10,000 objects.

TABLE 4. CPU and memory overhead for video Segmentation and orphan
data deletion.

Metrics Video Orphan data
Segmentation deletion
CPU 3% 2%
Memory 5% 16%

(r) of 3. As the value of n increases, the sync delay also
increases in proportion to r. However, it is worth noting an
interesting observation that when n surpasses 1 million, the
sync delay exhibits a relatively slower growth rate (for a
fixed r). This phenomenon can be attributed to the number
of partitions involved [46]. When n exceeds 1 million and
becomes significantly larger, such as 2.5 million, the number
of sync messages remains stable. Nevertheless, the size of
each sync message continues to increase with n, as each
message contains additional hash values of more data objects.
Consequently, the network overhead continues to grow with
n when n exceeds 1 million. Moreover, Table 4 provides
information on the memory and CPU overhead of the overall
architecture.

V1. DISCUSSION

This study, for the first time in the literature, establishes the
necessity of object storage sustainability as long-term storage
has diverse effects such as performance, efficiency, energy
consumption, fault tolerance, and so on. We investigate two
concerns related to object storage sustainability - the effect
of middleware placement in proxy or object servers, and the
impact of unused garbage data due to the offline processing of
multimedia data. To do so, we design and develop a new video
segmenter middleware in OpenStack Swift, examine the effi-
ciency of placement, and implement a deletion daemon.

A. COMPUTATIONAL COMPLEXITY ANALYSIS

We propose a system for finding orphan garbage data and
removing the data from the object storage system. Some
studies present distributed memory garbage collector, how-
ever, these studies are not similar to our proposed system.
In this Section, we delineate computational complexities
of commonly used garbage collection algorithms i.e. Mark
and Sweep, Copying (e.g., Cheney’s algorithm), Mark and
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TABLE 5. Computational complexities of commonly used garbage
collection algorithms. Here, k represents the number of live objects in the
heap, b represents the number of live objects being traced and copied, N
signifies the total count of files existing in the filesystem, m refers to the
count of immediate child elements present under a specific directory, and
a indicates the number of files stored within a particular directory.

. Computational
Algorithm Type Complexity
Memory
Mark and Sweep [47] Garbage O(k)
Collector
Copying (c.2. Garbage ow)
Cheney’s) [48] Collector
Memory
Mark and Compact [49] Garbage O(k)
Collector
Memory Varies (typically
Generational [50] Garbage sublinear: O(sqrt(k))
Collector or O(log(k)))
Memory Varies based on
Distributed [23] Garbage algorithm and system
Collector architecture
RemOrphan (our Orphan Data | O(mlogN) + O(a +
proposed) Collector logN)

Compact, Generational, Distributed Garbage Collector, and
our proposed one. Table 5 presents some commonly used
garbage collection algorithms and their associated computa-
tional complexities.

The complexity of distributed garbage collection can vary
significantly depending on the specific algorithm and the
underlying distributed system architecture. The complexity
analysis for distributed garbage collection is often more
nuanced, considering factors such as message overhead,
graph traversal, synchronization, load balancing, scalability,
and fault tolerance. The complexity of distributed garbage
collection is typically higher than that of single-node garbage
collectors due to the added challenges of coordination and
communication across multiple nodes.

Moreover, we demonstrate the computational complexity
of different object storage systems and data structures [51].
We consider Consistent Hash (CH), Content Addressable
Storage (with Multi-Layer Index), Compressed Snapshot,
OpenStack Swift (CH with a File-Path DB), and our pro-
posed system. Table 6 presents a qualitative comparison
of time and storage complexity for different object storage
systems using several data structures. The time needed for
listing and copying a directory using OpenStack Swift hash
rings is O(mlogN) and O(a + logN) respectively. Hence, the
time complexity of our proposed ‘RemOrphan’ algorithm is
O(mlogN) + O(a + logN).

B. COMPARATIVE ANALYSIS

In this Section, we discuss some important aspects of our
study and present a comparison of related research stud-
ies according to several features. In Table 7, we illustrate
and compare the features such as algorithm type, mem-
ory and storage management, developers’ deployment effort,
intended platform, focus metrics, orphan data collection,
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TABLE 6. A comparison of computational complexity for different object storage systems using several data structures [51]. Here, N signifies the total
count of files existing in the filesystem, m refers to the count of immediate child elements present under a specific directory, a indicates the number of
files stored within a particular directory and R is the resizing and transcoding time.

Computational Consistent Content Compressed .
. Addressable OpenStack Swift Our proposed system
complexity Hash (CH) Storage Snapshot
File Access O(1) O(1) O(N) O(1) O(1)
MKDIR O(1) O(N) 0(1) 0(1) 0(1)
RMDIR, MOVE O(a) O(N) O(N) O(a) O(a)
LIST O(N) O(m) O(N) O(mlogN) O(mlogN)
COPY O(N) O(N) O(N) O(a + logN) O(a + logN)
Store/PUT - - - O(a + logN) O(a + logN) + O(R)
Retrieve/GET - - - O(R) + O(mlogN) O(mlogN)
Garbage data deletion - - - - O(mlogN)+O(a+logN)

middleware placement, and deployment, etc. In the algorithm
feature, we discuss what kind of algorithm the studies present
in their work.

Some studies use the Modified Garbage Collector
algorithm, i.e., they extended the traditional Garbage Collec-
tion algorithms [41], [42], [52], [54], [55], [56], [57]. On the
other hand, several studies do not modify the traditional
Garbage collection algorithms, hence we refer to them as
Unmodified Garbage Collector [39], [40], [43]. From the
management perspective, we discover mainly four types of
categories - Memory Garbage Collector [38], [39], [40], [41],
[42], [43], [52], [54], [55], [56], [57], Garbage VM Collector
[24], [53], Orphan Process Collector [26], [27], and Orphan
Garbage Data Collector.

However, no existing literature focuses on the later issue
i.e. orphan garbage data. Besides, we present the system
deployment effort as high, low, medium, and none with
respect to the algorithms proposed in recent studies. Next,
the target platform and performance metrics are presented
in the comparison table. Most of the studies focus on the
metrics - throughput and latency. Besides, study [7] works on
throughput, latency, and concurrency whereas our proposed
architecture improves the throughput, latency, and concur-
rency and makes the system more fault-tolerant. By adopting
a completely new methodology, we can achieve long-term
object storage sustainability by analyzing the proper middle-
ware placement and removing orphan garbage data regularly
using a deletion daemon.

C. LIMITATIONS OF THE PROPOSED SYSTEM
However, our proposed system may have certain limitations,
including:

1) COMPLEXITY

OpenStack object storage middlewares are complex to
deploy, configure, and manage. Hence, to reproduce our pro-
posed system, any vendor requires a deep understanding of
the underlying architecture and components, making it chal-
lenging for organizations with limited expertise or resources.

2) COMPATIBILITY
Our proposed middleware and the deletion daemon may
have compatibility issues with certain applications or legacy
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systems. This can require additional effort for integration
and may limit interoperability in multi-cloud or hybrid-cloud
environments.

3) TIME DELAY

The deletion process in our system can introduce a time
delay before objects are completely removed. This delay is
due to the design considerations for data durability and fault
tolerance.

4) METADATA CLEANUP

When objects are deleted, the associated metadata may not be
immediately removed. Over time, this can lead to a buildup
of unused metadata, which can impact system performance
and storage utilization. Proper metadata cleanup mechanisms
need to be in place to ensure efficient resource management.

5) INCOMPLETE DELETIONS

In certain scenarios, the deletion process may encounter
failures or inconsistencies, resulting in incomplete deletions.
This can leave remnants of deleted objects or metadata in
the system, potentially impacting storage capacity and data
integrity.

6) SCALABILITY CHALLENGES

As the proposed system scales and handles a large number
of deletions, the deletion daemon may face scalability chal-
lenges. Our system needs to efficiently manage and prioritize
deletion requests to ensure timely and accurate removal of
objects.

7) SYNCHRONIZATION DELAY

In the proposed systems, the deletion process may involve
synchronization across multiple storage nodes or data cen-
ters. Synchronization delays can occur, which means that the
deletion may not be immediately reflected across all replicas
or locations, potentially leading to inconsistencies in data
availability.

To overcome these limitations, we plan to design appro-
priate data life-cycle management strategies, backup mech-
anisms, and monitoring processes to address the challenges
associated with the deletion daemon in object storage sys-
tems.
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TABLE 7. A qualitative comparison of related research studies according to several features such as algorithm type, memory and storage management,
developers deployment effort, orphan data collection, middleware placement, and deployment, etc. Here, GC refers to garbage collection.

. Orphan
Research study Algorithm Management Deployment Platform Focus metrics Middleware garbage
effort placement
collector
Greedy Solid State
Althaus et al., 2022 [38] Garbage Memory GC Medium Drives Throughput X X
Collection (SSDs)
Modified scan Storage
. scripts and management, no Object Throughput,
Noor et al., 2022 3] DCT orphan data Low storage Latency v X
quantization deletion
Processing
PokeMem (K\[X;ezl;n etal., 2022) Modified GC Memory GC Medium (Enhanced Throughput X X
Spark)
Resizing and mangtgigzt o Obiect Throughput,
Noor et al., 2021 [7] security %1 ’ Low ) ) Latency, v X
enforcement orphan data storage Concurrency
deletion
GC-CR (Louati et al., 2017) Checkpoint- Decentralized . . )
[24] Restart GC (snapshot) High Storage Latency X X
. . . Lightweight Cloud Garbage .
iCSI (Kim et al., 2017) [53] VM collector VM Collector High Stoarge Latency X X
NG2C (Bruno et al., 2017) [54] Modified GC Memory GC Low Prstcoizsglgg’ Latency X X
Deca (Lu et al., 2016) [40] U“mG"élhed Memory GC High Pr((éc;:;rsgg Throughput X X
Unmodified Processing,
Taurus (Maas et al., 2016) [39] GC Memory GC Low storage Latency X X
Broom (Gog et al., 2015) [42] | Modified GC Memory GC High Pr(‘;\fzfis,;;‘g Throughput X X
FACADE (Ng[i);n etal., 2015) Unmé)glﬁed Memory GC Low pl;ecr::;\ifﬁg Throughput X X
NumaGiC (G[lflr ;l etal,, 2015) Modified GC Memory GC None Pr:;izzgg’ Throughput X X
DSA (Cohen and Petrank et al., . . Processing,
2015) [55] Modified GC Memory GC Medium storage Throughput X X
Orphan
Sabbaghi et al., 2013 [27] process Remote None Processing Fault tolerance X X
Procedure Call
detection
C4 (Tene et al., 2011) [56] Modified GC Memory GC None Pr;?rzzgg’ Latency X X
Orphan
Jahanshahi et al., 2005 [26] rocess Remote None Processin, Fault tolerance X X
P Procedure Call &
detection
G1 (Detlefs et al., 2004) [57] Modified GC Memory GC None Pr;ffrzsglgg’ Latency X X
Throughput,
Orphan Storage Processing, Latency,
RemOrphan (our proposed) garbage data 8 Low object Concurrency, v v
management
collector storage Fault
tolerance

VII. CONCLUSION AND FUTURE WORK
In this paper, we delineate three important realms related to
multimedia data management on the cloud and the diverse
effects on storage sustainability. Here, we point to three
key vacancies in the literature comprising retrieval of video
streaming data, middleware placement based on their respon-
sibility, and detection and deletion of orphan garbage data (a
new type of data that is of no use but retained for a long time
over cloud storage). Hence, we designed a new middleware
in the object server for downloading time interval playable
video segments which can be easily integrated in OpenStack
Swift and similar systems such as SPMS.

Furthermore, we propose a mechanism for removing
orphan garbage data from cloud storage. We perform rigor-
ous experimentation over a real setup established in Canada
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and accessed from Bangladesh. Our experimentation covers
both system-level and subjective evaluations. The evaluation
results confirm that we can achieve substantial performance
improvement using our proposed mechanisms. Our future
work includes the exploration of SSYNC for account, con-
tainer, and object servers using multiple replicas. We also
plan to explore recursive deletion daemon algorithms using
different hash rings. Besides, experimenting with different
server setups with large-scale simulations is yet another
aspect worth investigating in the future.
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