
Received 4 July 2023, accepted 12 September 2023, date of publication 25 September 2023, date of current version 5 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3319075

Sequential Learning for Modeling
Video Quality of Delivery Metrics
TAUTVYDAS LISAS AND RUAIRÍ DE FRÉIN
School of Electrical and Electronic Engineering, Technological University Dublin, Dublin 7, D07 XT95 Ireland

Corresponding authors: Tautvydas Lisas (D17125255@mytudublin.ie) and Ruairí de Fréin (ruairi.defrein@tudublin.ie)

This work supported by the Science Foundation Ireland (SFI) under Grant 15/SIRG/3459 and Grant 13/RC/2077_P2.

ABSTRACT Video streaming traffic growth poses a challenge for many video content providers to maintain
high video quality on their networks. Modern day networks are highly dynamic due to the adaptation of
routing protocols, time-varying loads, and adaptive codecs. We consider how these dynamics should be
incorporated in learning algorithms. We ask how can sequential learning be used in order to account for
time-varying trends in learning algorithms that perform forecasts in time-varying video delivery systems? We
propose two approaches. The first is called ASAPjitter. It uses a Recurrent Network (RN) to forecast gradients
in a time series of jitter measurements for a video stream and a Convolutional Neural Network to classify the
forecasts. The second approach is called FEATjitter. It maps the jitter time series to a higher dimensional
feature domain. This novel feature domain transform has the aim of enhancing the quality of prediction and
classification of future video jitter measurements. Jitter captures varying congestion levels present in the
network. Three parameters are extracted from the jitter time series: its period, base and rate of decay. These
parameters are used to train an artificial RN to perform forecasts. A batch learning approach such as the
Neural Network (NN) or otherwise referred to a Multi-Layer Perceptron (MLP) is used for classifying the
feature domain forecasts. Experimental results demonstrate how sequential learning can be used effectively
to predict and classify jitter using Deep Learning (DL) frameworks. The accuracy achieved by ASAPjitter is
84.5% compared to 91.6% for FEATjitter. Performance gains in terms of increased classification accuracy
are due to the learning algorithm operating in this feature-space. Performance gains in terms of forecasts are
more effective in the time-domain. Our approach contributes to the development of more effective algorithms
for managing video streaming traffic in dynamic network environments.

INDEX TERMS Jitter, sequential learning, supervised learning, video, quality of delivery.

I. INTRODUCTION
In recent years, Deep Learning (DL) has been adopted in
various disciplines such as computer vision [1]. However, the
application of DL to detect network congestion has only gained
attention of late. With video traffic growing substantially due
to the increase of video availability, network providers have
to adapt and to counter-act the effects of congestion on video
traffic [2]. This establishes the need for accurate prediction
and classification algorithms.

Traditional routing protocols such as Open Short Path First
(OSPF) do not learn from previous experiences regarding

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

network abnormalities such as congestion. Recent Software
Defined Network (SDN) frameworks have attempted to
re-route traffic around network congestion and link-failures.
These approaches come in two forms: reactive and proactive
[3]. Proactive path reallocation approaches rely on traffic
prediction algorithms which can give advance notice of
future congestion events. Batch-learning approaches for
video quality prediction typically do not model dependence
across time [4], although the approach in [7] estimates
parameters for a deterministic function of time. In this paper
we investigate the potential gains from using sequential
learning that explicitly models time dependence. We name this
approach Automated Sequential Adaptive Prediction of jitter
(ASAPjitter).

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 107783

https://orcid.org/0000-0003-0730-9257
https://orcid.org/0000-0002-3912-1470

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

Quality of Delivery (QoD) measurements are network
metrics that capture the performance of a service that is
deployed on a network [5]. Common video QoD metrics
include packet delay from the source to the destination,
which includes transport and queuing delays, packet loss
and throughput. Modelling packet delay metrics can provide
valuable insights into how a network is performing. When a
network experiences high levels of congestion it can degrade
video quality and cause buffering. When this occurs the
playback device aims to estimate how long a player shouldwait
before playing the media so interruptions are not experienced.
The buffer size is determined by a QoD metric which is called
jitter [6].
Delivering high quality video over dynamic complex

networks has traditionally been achieved using static network
management solutions. Recently, a novel passive measurement
approach was proposed to estimate jitter in the presence of
varying traffic [7]. This approach uses the behaviour of a
video codec to estimate network congestion. Given that the
codec is already estimating the level of compression it needs
to apply to the video in relation to network congestion, it can
also be used to accurately estimate the congestion changes
in the network. The effect congestion has on a jitter time
series can be expressed using three parameters: its period,
p, its base, b, and its rate of decay, λ. We show that by
estimating these parameters we can use classification learning
algorithms that would otherwise be unsuited for learning
the exponential components observed in jitter time series.
We name this approach Feature Estimated Adaptive Training
of jitter (FEATjitter).
The recent success of DL approaches in other disciplines

motivates the need for an investigation into the applicability of
sequential learning algorithms for high accuracy forecasts and
classification of network congestion state. Predicting video
quality is a complex task. The problem’s complexity lies in
the nature of the delivery system, which switches between
diverse user demands and service types over a finite, and
shared network [8]. However, if successful, video quality
prediction can improve video quality delivery.

In this paper we make the following contributions.

• We investigate how Recurrent Networks (RN) can be
fit to jitter time series, which display the periodically
decaying exponential behaviour observed in the time
series extracted from a real network test-bed consisting
of Cisco routers.

• We determine the issues involved in fitting parameters to
the jitter time series which emanate from adaptive video
codecs, and propose a solution.

• We consider if fitting RNs to model parameters/features
can improve prediction accuracy. The jitter time series is
composed of decaying exponentials, which suggests that
its dynamic range is large. Model feature time series are
not smoother than the underlying time series, but their
dynamic range is smaller. This suggests that they can be
better modelled by the RN.

TABLE 1. Comparing learning strategies under the following headings:
Domain - refers to the domain the learning algorithm is operating;
Detection Speed - the amount of samples needed for detecting change in
congestion; Modelling Technique - patterns in the data the learning
strategy is modelling; Temporal Dependence - if periodicity is explicitly
modelled by the learning strategy; Prediction Effectiveness - if the strategy
can predict future values effectively; Classification Accuracy - the accuracy
results.

• We develop reconstruction methods for jitter time series
using the forecasted and the original features.

• The different prediction strategies investigated in this
paper are summarized in Table. 1.We evaluate the success
of different prediction modalities. We recommend the
use of sequential learning methods for jitter prediction,
when the jitter time series result from video traffic which
is encoded using adaptive codecs.

This paper is organised as follows. In Section II we review
the related work on video quality of delivery prediction.
Section III describes a network test-bed which is composed
of Cisco routers, a VLC media player client and server and
Ostinato. It also explains how the jitter time series is measured.
Section IV introduces how the jitter features are estimated.
Section V contains a review of RNs and the recent success
in DL optimisation. Section VI illustrates the results of the
experiments and the reconstruction method.

II. RELATED WORK
Video quality prediction has received attention due to the
growing quantity of video traffic on modern networks.
Machine learning (ML) and DL techniques have previously
been used for optimising these networks. The question of
how to select, process and predict future network metrics,
to successfully improve QoD, is still an open question.
The authors of [7] discuss the problem of using Infinite

Impulse Response (IIR) filters, to estimate jitter for video
streaming services. These IIR filters do not attempt to
estimate the congestion in the network that causes the jitter
to change. They demonstrate that if the jitter is estimated
during varying congestion levels, it can be used to significantly
improve congestion state classification for all congestion
levels. To achieve this, they propose a novel algorithm that
estimates the jitter parameters using a set of new metrics
b, λ, and p, to improve the learning abilities of subsequent
classification algorithms. They verify their approach by using
the popular ML methods: Decision Trees (DT) and Random
Forests (RF). A classification accuracy of 98.3% for low
congestion, 41.4% for medium congestion, and 95.8% for high
congestion is achieved. A 100-tap moving average filter is
used to achieve this classification accuracy, which potentially

107784 VOLUME 11, 2023

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

FIGURE 1. The network topology consists of six 2911 ISR routers and a
video server which is streaming a H.264 video over RTP. The different link
technologies (Gigabit Ethernet, Fast Ethernet and Serial) are used to create
routes through the network with different bandwidths, which cause
variability in the measured jitter values. This variability is explained by the
background congestion level. The level of background traffic is varied using
Ostinato.

decreases the responsivity of the system. A second potential
shortcoming of the approach is that the temporal dependence
between jitter measurements is modelled using a deterministic
function, which obtains its parameters from learning rules
for b, λ and p. The approach of modelling the system using
a deterministic function may involve frequent re-estimation
of model parameters when the background traffic varies
significantly. We consider a sequential learning approach
which takes into account temporal dependencies in the time
series: (1) by investigating how jitter time series can be
modelled using RNs; and (2) by coupling the expressivity
of the feature set b, λ and p, which were proposed in [7], with
the sequential learning capability of RNs.
Other learning approaches that do not model temporal

dependence in network congestion and traffic classification
are described in [9]. The primary focus of this paper is on the
use of Support Vector Machines (SVM). In [10], a Multi-
layer Perceptron (MLP) is used to classify packet loss to
adjust congestion window size effectively. Gradient boosting
techniques such as Stochastic Gradient Boosting (SGB) and
Extreme Gradient Boosting (EGB) were evaluated in [11] for
a traffic classification architecture based on SDN, paving the
way for the use of learning algorithms for network control.
In [12], progress towards successful SDN traffic classification
was made using a DL architecture, called Deep-SDN, which
performed a more extensive analysis on the efficiency of the
SDN-based architecture by examining the accuracy, precision,
recall and F1-measure. Deep-SDN was found to increase the
accuracy of application-type classification.
Fadlullah et al. discussed state-of-the-art ML and new DL

research for network systems in [13]. The authors highlighted
the emerging popularity of DL in various computer science
fields due to recent optimisation advances [14]. However,
they stated that the application of DL has only started to gain
traction in network systems. They suggested that it could be
used to stimulate the area of network traffic control. They
prepared an overview of state-of-the-art DL architectures
relevant to traffic control, suggesting that DL should be

used for jitter prediction. The work in [15] illustrated how
the choice of a suitable DL algorithm improved Quality of
Experience (QoE) using video streaming as a use case. The
authors reflected on how a suitable time series representations
could improve the achievable accuracy of DL algorithms,
by comparing three algorithms, SVMs, RFs and Long-Short-
Term-Memory (LSTM), for throughput prediction. The results
showed that the LSTM had the highest prediction accuracy
and that DL methods could be used to increase the prediction
accuracy of a traffic control variable such as throughput. In this
paper, we show that a low prediction error does not necessarily
mean that we will have a good prediction for the next value.
In light of this finding, there is a need for a further clarification
on the authors’ definition of prediction in [15]. Alternative
approaches to implementing LSTM frameworks for network
traffic prediction can be seen in [16], where the author stated
that the LSTM framework was superior to a Least Square
Support Vector Machine (LSSVM), a MLP or an Elman neural
network. The work in [17], investigates the use of LSTMs
for resource allocation schemes and shows that by using this
prediction method, latency could be reduced by 23.2%.
The focus of this contribution is on demonstrating how

network congestion can be passively detected. To achieve this
we describe the difficulty jitter estimates pose for sequential
learning algorithms, which are used to provide predictions.
To address this challenge, we develop and evaluate a sequential
learning algorithm that can be leveraged to improve the
accuracy of QoD classification.

III. TESTBED: VIDEO QoD TIME SERIES
To observe video jitter measurements we used the test-bed
which is illustrated in Fig. 1. AVLC server was set up to stream
a video which uses the H.264 compression standard, to a
VLC client. We used the H.264 codec because it is used more
frequently than codecs such as H.265 and AV1, according to
the authors of [18]. In the view of the authors of [18], not
all browsers and device makers support other codecs such as
H.265, DASH and AV1. It was reported in 2020 that 91% of
browsers and device manufacturers supported H.264. Only
42% supported H.265 and 65% of participants in the survey
supported DASH. The authors of [18] emphasize the continued
importance of H.264, stating that its market share was 83 %
in 2021 and 78/85 % in 2022. In 2022 the authors considered
live encoding video systems in production and VoD systems
in production and reported the percentage of systems in each
category that supported H.264, e.g 78 % and 85 % respectively.
These market share statistics indicate that the H.264 codec
warrants continued consideration by the research community
as it has not been superseded by rival codecs.

The Real-Time Transport Protocol (RTP)was used to stream
the video over a topology which consists of six 2911 ISR
routers. During the streaming session, congestion was
introduced by injecting bursts of low, medium and high levels
of interfering UDP traffic. Delivering RTP traffic, using UDP
in the transport layer, is used as a protocol stack for streaming
byMicrosoft Teams [19]. Delivering RTP over UDP is seeing a

VOLUME 11, 2023 107785

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

FIGURE 2. The adaptive behaviour of the H.264 codec in response to
congestion is observed in this jitter time series. The low congestion indices
are between 1 < n < 3939, medium congestion is between
3939 < n < 7677 and high congestion is between 7678 < n < 11514 where
n is the measurement index.

FIGURE 3. The difference in jitter features (base, b, rate of decay, λ, and
the period, p), which allows us to identify each of the congestion levels,
are illustrated by plotting a sequence of jitter values from low, medium
and high congestion time intervals.

resurgence [20]. For example, in April 2020 Microsoft Teams
supported 75 million daily active users, which represented a
significant increase from the 44 million users it supported
in March 2020, which underlines the significance of its
market-share. Three different routing changes were invoked
so that the video stream was forced to switch between
paths offering different bandwidth. The connections between
intermediate devices were made using Gigabit Ethernet (GE)
links (1000Mbps), Fast Ethernet links (100Mbps) and serial
links (64kbps). During the streaming session three congestion
levels were injected using the Ostinato traffic generator and
jitter measurements, which are denoted as x[n], were taken
from the VLC client using Wireshark. The counter n is the
jitter measurement index.
We demonstrate that congestion levels can be identified

by examining differences in features of the jitter time series.
We hypothesize that jitter time series consist of sequences
of decaying exponentials which occur periodically in the
measured time series. In Fig. 2 we illustrate a jitter time
series which is captured from a 10-minute long video. The
base of these exponentials that occur in this time series, b,
is the first value of each exponential. The rate of decay of
each exponential is denoted, λ. And finally, the period of
each decaying exponential is denoted as p. Fig. 3 illustrates
three zoomed-in segments of the observed jitter time series.
During low congestion the base and the period was much
lower than during medium and high congestion. Similarly,
during medium congestion the base was lower than during
high congestion. In Fig. 3 the period and the rate of decay
parameters for medium and high congestion are quite similar,
however, the amplitude of the base differs significantly.

FIGURE 4. Estimated periodicity of the jitter: the low congestion occurs in
the range of indices 1 < n < 3939; medium congestion occurs between the
range of indices 3839 < n < 7677; and finally, high congestion is between
7678 < n < 11514, where n is the measurement index.

IV. PARAMETER ESTIMATION: BATCH LEARNING
Three parameters can be extracted from the jitter signal: its
period, its base and its rate of decay. First, the trend is removed
by applying a Low-Pass Filter (LPF) to x[n] and subtracting
the low-pass filtered signal from the original signal, x[n],

x[n]← x[n]− LPF(x[n]). (1)

The filter configuration consists of a 7th order Butter-worth
filter with a normalised cut-off frequency of δc = 0.1, a pass-
band ripple of δr ≤ 3 dB, and a stop-band attenuation
δs ≥ 40 dB. A sample window of ω = 150 samples, which
is approximately 2 ≤ ωi ≤ 3 periods, is applied to x[n]
and using the Auto-Correlation Function (ACF) [21], the
lags are found. The lag corresponding to the position of
the first peak, on the right hand side of the peak at lag 0,
is chosen as the period. Fig. 4 illustrates that the period for
low congestion is approximately p[n] = 20 time indices,
whereas during medium and high congestion, the period
corresponds to a lag of approximately 40 ≤ p[n] ≤ 60 time
indices. We estimate the base, b, and rate-of-decay, λ, using
a segment of the exponential function, x[n] = beλn̂[n]. This
approximately comprises the jitter measurements from the
last three periods. The segment time indices are, ωi[n]. The
index n̂[j], denotes shifted time indices, so that they start at
zero, n̂[n] = n−ωi−1[n]. Taking the natural logarithm of x[n],
yields a linear system, ŷ[n] = b̂+λn̂[n], where ŷ[n] = log x[n]
and b̂ = log b. A flow chart in Fig. 5 is used to demonstrate
the procedure, and the resulting time series for the estimated,
b and λ parameters are illustrated in Fig. 6.

V. SEQUENTIAL: TEMPORAL DEPENDENCE LEARNING
In this section we describe how Recurrent Neural Networks
(RNN) can be used to model jitter time series. We then
describe how parameter optimisation is achieved for these
networks, by considering the characteristics of jitter time
series. RNNs are one of the most powerful tools in DL. Popular
applications of these systems can be seen in classification and
forecasting problems. RNNs were first introduced in 1985 by
Rumelhart and L.McClelland [22]. These dynamic systems
were designed to process sequential data more efficiently than
MLPs, which motivates their use in the context of jitter time
series modelling.

107786 VOLUME 11, 2023

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

FIGURE 5. Flow-chart illustrating the feature estimation algorithm: initially
the trend is removed by a LPF; the period is detected via the ACF; the base,
b, and decay, λ, are estimated via least squares estimation.

FIGURE 6. Estimated base (top) and rate of decay (bottom) of the jitter
time series: low congestion occurs in the range of indices 1 < n < 3939;
medium congestion occurs between the range of indices 3839 < n < 7677;
and finally, high congestion is between 7678 < n < 11514, where n is the
measurement index.

A. RECURRENT NETWORKS
When using a traditional MLP, all the elements of the sequence
are fed into the network in one go. This approach ignores
temporal dependencies present in the jitter time series we
observe in the test-bed [23]. We have discussed how jitter
time series can be represented using a base, decay and period
parameter, which suggests that temporal dependence is a
crucial component. When using RNNs, each element of the
sequence is fed into the recurrent unit one by one which can
be seen in Fig. 7. This is achieved by applying a time-shifted
rectangular window to xn which produces a truncated time
series st at time index t . The length of this window, which has
a duration of T , is motivated by the fact that it corresponds

FIGURE 7. The perceptron diagram (LHS) demonstrates that the input is
fed into the network all at once where, in, is each sample of the xn jitter
time series starting from the beginning and finishing at the end. The
simple RNN diagram (RHS) demonstrates that the time series is divided
into sequences, xt , and are fed into the network independently.

to approximately two or three periods of the jitter time series,
similar to the approach in [7], and by the fact that it works well
in practice. The truncation procedure is defined as follows:

st =

{
xn for t ≤ i ≤ t + T − 1
0 otherwise.

(2)

The rectangular window is successively advanced by one time
index, which yields successive time series segments for jitter.
Each new sequence is then truncated into a set of input, xt ,
and target, yt , time series as demonstrated in Fig. 8 for the
case where T = 100, for ease of illustration. The length of the
input sequence, Tx= 60, and output sequence Ty= 40, can be
modified accordingly.

xt =

{
st , for t ≤ i ≤ t + Tx
0, otherwise, and

(3)

yt =

{
st , for t + Tx + 1 ≤ i ≤ t + T
0, otherwise.

(4)

This allows the network to process the time series sequentially
by finding the best fit through each sequence using the sliding
window approach. The simple RNN has a recurrent hidden
state which is

ht = f (Wxt + Uht−1 + b). (5)

The input vector is xt , at time t , ht is the hidden state, and f
is the activation function. A common choice for this function
is the hyberbolic tangent or the Rectified Linear Unit. The
input and hidden weights are W and Uh and b is the bias. The
common learning algorithms for RNNs in temporal supervised
learning tasks are Backpropagation Through Time (BPTT).
During the procedure the network is unfolded in time to
construct a feed-forward neural network. The generalised
delta rule is then applied to the unrolled network to calculate
the error and update the weights [24]. Given the simple
nature of back-propagation, RNNs can only bridge up to
5 ≤ t ≤ 10 time steps. Any time step that is greater than
this causes the error to grow or shrink, which induces the
vanishing or exploding error problem [25].

The exploding error problem leads to oscillating weights,
whereas the vanishing error problem causes the learning

VOLUME 11, 2023 107787

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

FIGURE 8. The unrolled RNN demonstrates how the jitter time series (in
blue) is divided into sequences using a window which is indicated using
dashed red lines. Each sequence is fed through the network independently
with each window shifted to the right in steps of t+1 and the inputs: xt and
the targets: yt , are truncated.

procedure to take an unacceptable amount of time, for the
jitter application we have considered, or it does not work at all.
One solution that addresses this problem is a gradient-based
method called an LSTM. This network can learn how to
bridge time lags of more than t ≤ 1000 discrete time steps.
LSTMs use a solution called Constant Error Carousels (CECs),
which enforce constant error flow within special cells. The
LSTM RNN architecture uses the simple RNN in Eqn. 5 as an
intermediate candidate for the internal memory cell (state), ĉ,
and adds it in an element-wise weighted-sum to the previous
value of the internal memory state, ct−1, to produce the current
state, ct ,

ct = ft ⊙ ct−1 + it ⊙ ĉt , (6)

ĉt = f (Wcxt + Ucht−1 + bc), (7)

ht = ot ⊙ f (ct). (8)

We pay particular attention to the activation non-linearity, f ,
used in Eqns. 6, 7 and 8 in this paper. We modify it based on an
empirical investigation to improve its performance on the jitter
time series we observe. The weighted sum is implemented in
Eqn. 6 in [26], and the gate units, it , ft , and ot are represented
using the o-dot operator, ⊙. The purpose of the input, forget
and output gating units is to control the access to the hidden
and memory state. They are represented as

it = σ (Wixt + Uiht−1 + bi), (9)

FIGURE 9. LSTM cell architecture.

FIGURE 10. GRU cell architecture.

ft = σ (Wf xt + Uf ht−1 + bf), (10)

ot = σ (Woxt + Uoht−1 + bo), (11)

where σ is the recurrent activation, which can also be modified
depending on the input sequence. The representation of the
single cell is illustrated in Fig. 9 for easy comparison with the
GRU approach in Fig. 10.
The Gated Recurrent Unit (GRU) represented in Fig. 10

was proposed in 2014 by Cho et al. in [27] to make each
recurrent unit adaptively capture the dependencies of different
time scales, which suggests that it may perform well for
jitter modelling, especially when its characteristics change on
different time scales due to changing background congestion.
It is one of the most recently contributed gated RNNs that
addresses the common issues of the vanishing and exploding
gradient behaviour. Similar to the LSTM unit, the GRU has
gating units that modulate the flow of information inside the
unit, however, it does not have separate memory cells [28].
This allows the network to only have two gates: the update
gate, zt , that decides how much the unit updates its activation
or content, and the reset gate, rt , which makes the unit act as if
it was reading the first symbol of an input sequence, allowing
it to forget the previously computed state. The GRU model
can be represented in the form of

ht = (1− z)⊙ ht−1 + zt ⊙ ĥt , (12)

ĥt = f (Whxt + Uh(rt ⊙ ht−1)+ bh). (13)

107788 VOLUME 11, 2023

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

Its two gates are presented as

zt = σ (Wzxt + Uzht−1 + bz), (14)

rt = σ (Wrxt + Urht−1 + br). (15)

One of the benefits the LSTM and GRU architectures hold
over the traditional RNN, is the presence of the forget
gate (LSTM) or the update gate (GRU). Traditionally, the
content of the unit is replaced by the new value computed
from the current input and the previous hidden state. This
limits its ability to learn specific features of a sequence
over long series of steps. Because we are modelling large
sample sequences, we do not consider the traditional RNN
to be a viable approach for jitter modelling. On the contrary,
both the GRU and the LSTM keep the existing content and
add the new content on top of it. In addition, the increase
of the number of non-linearities used in these models, and our
ability to modify them, reduces vanishing gradients. This is
important for jitter modelling, because these non-linearities
are what enables these DL networks to accurately rep-
resent sequences such as the those present in jitter time
series.
Although, it is easy to distinguish between the advantages

of the newer architectures, such as LSTMs and GRUs, over the
traditional RNN qualitatively, it is more difficult to perform a
qualitative comparison of the most recent learning approaches.
A quantitative comparison was conducted in [29], to observe
the benefits of the LSTMs and GRUs. The authors concluded
that the GRUwas faster than the LSTM, however, the accuracy
of the GRU started to diminish compared to the LSTM for
larger time series. This can be explained by the structure of
the gating units. The control of the amount of new memory
content that is added to the memory cell for the LSTM
is done by two gating units that are independent to each
other such as the forget and the input gate. On the other
hand, the GRU does not control the amount of new memory
content added to the memory cell with independent gates
but rather a single gating unit such as the reset gate which
controls the information flow from previous activation to
the new one. In addition, the LSTM output gate controls the
amount of memory content that is seen by other units in the
network, whereas the GRU exposes its full content without
any control. Consequently, these differences allow the GRU
to achieve faster training times because of the lower number
of multiplications, however, because of the better memory
content control, LSTMs can model larger time series. In the
context of jitter prediction, we did not observe any reduction in
performance accuracy by using the GRU instead of the LSTM.
We did, however, observe a speed up in training times using
the GRU.
In summary, given that the GRU could be trained faster

with higher accuracy for the jitter time series, we explored
the GRU architecture for modelling jitter. The speed up can
be explained by the simpler structure of the GRU, which
has one less gate, which results in a lower number of matrix
multiplications.

B. OPTIMISATION LITERATURE
We review the parameter optimisation literature because
parameter optimisation impacts the practical aspects of
training models to predict jitter. In addition we review the
literature that motivates the choice of the correct activation
function.

1) PARAMETER OPTIMISATION
DL optimisation algorithms attempt to minimise the value
of the cost function between the output of the model and
a set of given targets by updating the model parameters,
such as the weights, thus enabling learning. However, this
procedure usually requires computations, which have a large
computational complexity. As the networks become deeper,
conventional Stochastic Gradient Descent (SGD) optimisation
objective functions exhibit non-convexity. These objectives
potentially contain multiple local minima, critical points, and
saddle points [30]. Inputs to each layer are affected by the
preceding layers, causing any small change in parameters to
be significantly amplified in deeper layers. Deciding on an
appropriate optimisation algorithm can be a difficult task as
they are often used as part of a black-box approach. Ruder et al.
[31] explains the various stochastic descent optimisation
methods and proposes that the Adaptive Moment Estimation
(ADAM) algorithm [32] can be used as a first choice if one
cannot decide on what algorithm to use. We found empirically,
that for the jitter time series, the NADAM (Nestrov-accelerated
AdaptiveMoment Estimation) optimisationmethod performed
better. The NADAM algorithm enables faster convergence
than ADAM as it uses the Nesterov Accelerated Gradient
(NAG) algorithm [33] to take steps, which are more accurate,
in the direction that reduces the error. It does so by updating the
parameters with a modified momentum step before computing
the gradient.

2) WEIGHT INITIALISATION AND ACTIVATION FUNCTIONS
Proper weight initialisation for DL networks, especially the
recurrent type, is crucial for its convergence. In early deep
networks the weights of each layer were initialised in an
independent and identically distributed way, using a Gaussian
distribution [34]. Xavier et al. [35] discusses how the Sigmoid
activation function

sigmoid(x) = (1+ e−x)−1, (16)

which is applied here to the variable x, is not suitable for
feed-forward neural networks with random initialisation, as it
leads to neuron saturation that damages both the information
capacity and its learning capabilities. This phenomenon refers
to a state during training, where a neuron output value is close
to the value of the asymptotic ends of the bounded activation
function [36]. This is where proper weight initialisation has
the largest effect. Xavier discusses how random initialisation
during backward propagation, especially for deep networks,
leads to divergence in the gradients resulting in larger gradients
in the lower layers and smaller gradients in the larger layers.

VOLUME 11, 2023 107789

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

Recall that the jitter time series model is composed of a
periodic sequence of decaying exponentials. The derivative of
an exponential is an exponential. This is a concern for training
both the LSTM and the GRU on jitter time series because the
change in the weight values depend on the gradients, thus if
the gradients in the lower layers are much larger, the growth
of the weights will be correlated resulting in neuron saturation
which will cause a binary output from the specific neurons
and distort learning.

Xavier proposes a method that causes the back-propagated
gradients to be dependent on each individual layer, which
reduces the variance between individual layer weights and
gives rise to the Hyperbolic Tangent

tanh(x) =
ex − e−x

ex + e−x
, (17)

which is a more suitable alternative to use with the
normalised distribution. This approach is called Xavier
initialisation. However, this method’s derivations are based on
the assumption that the activation functions are linear, which
is not the case for the Rectified Linear Unit activation,

ReLU(x) = max(0, x). (18)

In 2015, He et al. [37] discussed how Xavier initialisation
was less suitable for the ReLU activation and showed how his
method, which promises to take into account the non-linearity
of the ReLU, would have a higher preference for deeper
networks.
Alleviating the vanishing gradient problem has made the

ReLU activation one of the most popular functions for deep
neural networks. Despite its success, the ReLU activation has
a non-zero mean that introduces a bias into the consecutive
layers. If the units do not cancel each other out, learning causes
a bias shift for units in the next layer. The bias shift is larger
if the units are correlated, which slows down the training
procedure. Furthermore, the ReLU does not take into account
the statistical nature of the input time series, which in the
case of jitter is typically a times series which is composed
of periodic, decaying exponentials. The consequence of
this is a problem called Internal Covariate Shift [38]. This
phenomenon refers to the saturating affect the change in
distribution of the inputs has on the distribution of the non-
linear inputs. These saturating effects are amplified according
to the network deepness which leads to poor learning. Batch
normalisation can be used to significantly decrease these
effects by normalising the distribution of the non-linearities
relative to the input time series distribution. This allows the
DL network to adapt its parameters to the distribution of the
input, consequently reducing saturation. Layer normalisation
also addresses the covariate shift problem, however, it does
so by fixing the mean and the variance of the summed inputs
within each layer, rather than the distribution of the time series.
Batch normalisation was found to reduce the training time of
deep neural networks in [39] and layer normalisation for RNs
by Ba et al. in [40]. The work conducted by Ba et al. used the
RN to predict text for Natural Language Processing (NLP).

We found that, in fact, these methods did reduce the training
time of the LSTM. However, the consequence of this reduction
was a decreased prediction accuracy. These contrasting results
to Ba et al. can be attributed to the encodingmethods employed
by NLP, where each sequence represented by binary values of
0 and 1. Due to the reduced sensitivity of these methods to the
adverse effects of normalization, we do not regard the ReLU
activation function as a suitable choice for the observed jitter
time series presented in this paper. A promising new activation
function was introduced by Clevert et al. [41] which has a zero
mean, and is named the Exponential Linear Unit

ELU(x) =
{

α(ex-1), if x ≤ 0
x, if x > 0

}
, where α > 0. (19)

This activation contains negative values, which allows the
network to push the mean activation closer to zero which
can be seen in Fig. 11. This speeds up learning by reducing
the difference between the normal gradient and the natural
gradient. Additionally, Self-Normalizing neural networks
were introduced in 2017, they are based on the Scaled
Exponential Linear Units,

selu(x) = λ

{
α (ex-α), if x ≤ 0

x, if x > 0

}
, (20)

which induce self-normalizing properties such as variance
stabilisation which avoids exploding and vanishing gradients
[42]. It is advised to use the Lecun initialisation, and λ > 1
to ensure a slope larger than one for positive net input. This
method attempts to replace previous normalisation methods
such as Batch and Layer normalisation by pushing the neuron
activations to zero mean and unit variance.
In 2017, Ramachandran et al. conducted a study in [43]

which concluded that the Swish activation could consistently
improve the accuracy of conventional DL networks such as
ImageNet and Cifar . They compared Softplus, ELU, SELU,
GELU, RELU, LReLU, PReLU and Swish,

swish(x) = x sigmoid(βx), (21)

activations and found that the Swish activation function
outperformed previously discussed activation functions. They
suggested that this improvement could be due to the non-
monotonic ‘‘bump’’ when x < 0, that can be seen in Fig. 11.
They showed that the distribution of the pre-activations falls
inside the domain of the bump, −5 ≤ x ≤ 0, for when β = 1.
The selection of activation functions depends significantly on
the type of time series used. We take an empirical approach
to determine the appropriate activation for jitter, and start this
process by implementing the recently contributed functions.

VI. ANALYSIS OF SEQUENTIAL LEARNING FOR JITTER
We examine how sequential learning can be used to predict
jitter. We adopt the following analysis strategy. As a first
step, given that jitter can be modelled using a periodic
exponentially decaying time series, our investigation is driven
by an empirical analysis on how sequential learning algorithms
can be fit to a jitter time series which is constructed of a single

107790 VOLUME 11, 2023

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

FIGURE 11. Activation functions that were considered for the parameter
optimisation procedure: Hard Sigmoid, ELU and Swish.

exponential function. An important part of this analysis is
to evaluate how effective different activation functions are
as part of a prediction algorithm and to determine if the
LSTM or the GRU architecture performs better. We then
construct increasingly more complex time series in order to
analyse when the learning architecture fails, before fitting
parameters to a real-world jitter time series. In the second
step, we consider a two-parameter synthetic test times series,
which consists of the parameters b and λ, and in the third step
of this evaluation, we consider a three-parameter test time
series, which consists of the parameters, b, λ and p. We then
determine if it is possible to fit the algorithm to the jitter time
series and show what parameter modifications can be made to
achieve the best performance. Finally, we determine how to
fit and predict the features b, λ and p, to predict the jitter time
series by reconstructing the future time series values.

A. RNs FOR A SINGLE DECAYING EXPONENTIAL
To begin the training procedure, a time series which has known
features is used to determine if the RN can reproduce it. The
reasoning behind this is that it is not always known what and
how these statistical models learn. Therefore, tuning models
on a simple time series, that has some of the features of the
jitter time series we want to model will help to determine if the
learning algorithm can be fit to this type of time series. This
approach also allows us to determine which hyper-parameters
have the largest impact on model accuracy. A synthetic time
series that resembles the jitter time series which was observed
on the live network, was created. It consisted of the decaying
exponential in Fig. 12. Both of the RNs were trained on a t =
200-sample time series which contained four t = 50-sample
exponentials. The configuration consisted of Tx = 50-sample
input and Ty = 50-sample prediction. Initially, due to the
constraints of the activation functions, the networks could
not capture the base or the correct decay of the exponential.
We modified the recurrent activation from Hard Sigmoid to
Exponential Linear Unit and the non-linearity activation to
Swish. These functions are illustrated in Fig. 11.
The results in Fig. 12 show the improvements that were

made by changing the activation functions. We found that the
recurrent activation had a much larger impact on capturing
the base of the exponential than the non-linear activation.
Additionally, if a conventional activation, such as the ReLU
was used, we began to observe vanishing gradients. The
resulting time series was inconsistent with what we expected;

FIGURE 12. Comparison of the prediction accuracy achieved by the LSTM
and GRU architectures for one synthetically created exponential. We list
the Root Mean Square Error (RMSE) of the solution in brackets after the
learning-activation function pair: LSTM ELU (0.16717), LSTM Sigmoid
(0.03426), GRU ELU (0.01721), GRU Sigmoid (0.09270).

FIGURE 13. Comparing 1 and 51 steps ahead prediction accuracy of two
consecutive exponentials that contain different values for the base, rate of
decay and period.

it contained abnormalities such as zero-value outputs. We
modified the other parameters such as the learning rate over
the range, 10−5 ≤ lr ≤ 10−1, and the loss function to be one
of the following functions: Mean Squared Error (MSE), Mean
Squared Logarithmic Error (MSLE), RootMean Squared Error
(RMSE), Mean Absolute Error (MAE), Huber Loss, Cosine
Similarity or Log Cosh loss.We varied the number of recurrent
layers over the range, 1 ≤ ln ≤ 10, the number of dense
layers over the range, 1 ≤ ld ≤ 8, and number of cells over
the range, 1 ≤ lc ≤ 1024. The results showed that for this
simple time series, these parameters did not have a significant
impact on the accuracy of the fit. Finally, we compared the
LSTM and the GRU architectures and determined that for
this application the GRU was more accurate. Therefore, the
experiments that we include in the remainder of this paper
were conducted using the GRU architecture.

B. RNs FOR SEQUENCES OF DECAYING EXPONENTIALS
Having trained the RNs on one decaying exponential,
we considered the problem of training the RNs on two
consecutive exponentials, e.g. time series that were generated
using three different parameters, b, λ and p. These time series
posed greater challenges for the RNs. Fig. 13 illustrates a
sequence of two exponentials which were generated using
different parameters, e.g. values of b, λ and p. To demonstrate
the challenge, we trained the GRU on two consecutive
exponentials which had a different base, rate of decay and
periodicity. The experiment was conducted with Tx =
102 step input and Ty = 51 step prediction. Fig. 13
illustrates the inaccurate predictions obtained. Prediction

VOLUME 11, 2023 107791

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

Algorithm 1 ASAPjitter: Prediction Model
1: Input : Split training and testing sequences of xn, using a

window size T, with input size Tx , and output size Ty.
2: Parameters : Number of recurrent, ln, and dense layers ld .

Number of cells, lc in the recurrent layers and the number
of neurons in the dense layers.

3: Learning rate, recurrent activation, non-linear activation,
optimisation, initialisation, epoch, batch, and the loss
parameters are selected.

4: Function TrainRN (Tx ,Ty)
5: return : predictionModel
6: Function Predict(predictionModel)
7: return : predictions

Algorithm 2 ASAPjitter: Classification Model
1: Input : Split predictions into training and testing.
2: Parameters : Number of parallel, depth, dense, and the

number of neurons in the dense layers. Select number of
filters, the kernel size, convolution layers, pooling size
and dropout.

3: Learning rate, non-linear activation, optimisation, initiali-
sation, epoch, batch, and the loss parameters are selected.

4: Function TrainCNN (predictions)
5: return : ASAPjitter
6: Function Classify(ASAPjitter)
7: return : congestionState

Algorithm 3 FEATjitter: Classification Model
1: Input : Estimate b, λ and p, parameters from jitter x[n].

Split into training, Tx , and testing, Ts, with one hot
encoded targets, Ty.

2: Parameters : Number of dense layers, and the number of
neurons in the dense layers.

3: Learning rate, non-linear activation, optimisation, initiali-
sation, epoch, batch, and the loss parameters are selected.

4: Function TrainNN (Tx ,Ty)
5: return : FEATjitter
6: Function Classify(FEATjitter)
7: return : congestionState

quality was improved if the prediction was changed to be
1 step ahead. In the test-bed scenario described in this paper,
this corresponded to being able to predict jitter values 1 second
in the future. The reason for the inaccuracies when we
increased the prediction step to be greater than 1, is that the
RN was unable to model the large jumps in the base value
of the exponentials, especially when a sequence contained
multiple jumps. The auto-regression based gates performed
better when they were modelling time series with slopes that
were shallower than the exponentials observed in jitter times
series.

FIGURE 14. Low and medium congestion prediction plot of t = 40 samples
(in the future) when the models are trained on sequences in the range of
0 ≤ st ≤ 20 samples. Obtaining a good RMSE is not always a good
indicator of performance. For example, the RMSE obtained for the entire
11514 samples (selected low and medium samples are plotted above) is
29.9. This is a good RMSE but the predictions are not accurate for the
following reasons. Predictions during low congestion have an offset,
whereas, predictions during medium congestion cannot fully predict the
base value.

VII. RESULTS: RN ALGORITHMS FOR JITTER
Armed with the insights obtained from applying RNs to
successively more complex synthetic time series, we then
trained the RNs on the jitter time series which were observed
in the network in Fig. 1. We increased the complexity of the
RN by adding a larger number of cells, recurrent layers and
dense layers. We started by examining the performance of
the ELU recurrent activation, and then modified the function
used. The non-linearity activation selected was the Swish
function. We decreased the learning rate to lr = 10−4.
We used the Huber loss function and the NADAM optimiser
for all experiments. Samples were selected in the range
0 ≤ n ≤ 300 from each congestion levels and we fit the
RN separately to determine if it was possible to fit the model
to the jitter time series and to obtain good performance.
One interesting point is that when the RN was fit to a the

sequence in the range, 0 ≤ st ≤ 20, from the low congestion
levels, the trained model produced a relatively good prediction
of the period for the rest of the jitter time series (that had
not been seen by the network). The accuracy achieved can be
determined visually from Fig. 14. This performance may be
explained by the fact that the network is learning a temporal
dependency at a very early stage of the jitter time series, which
remains the same through-out each of the congestion levels.
Although, if we examine the full prediction, we can see that
the output does not capture the gradients in the time series,
so even though we are estimating the next period, the benefit
of the predictions are limited. For this reason, we modified the
RN so it could learn the exponential decay in the jitter time
series. We found that using the Huber loss function improved
performance. We hypothesize that this could be due to it being
less sensitive to outliers.
To complete our study of the jitter time series, we fit

the network on a longer jitter time series, which comprised
of 11514 samples. We found that during medium and high
congestion levels, due to the large energy of the sequences that
contained large base value exponentials, the network exhibited
exploding gradients. To investigate this, we summed the values

107792 VOLUME 11, 2023

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

FIGURE 15. ELU activation function (LHS) and sequence energy (RHS)
which shows when using the ELU activation the sequence energy remains
the same before and after the activation function. The low congestion
indices are between 1 < n < 3939, medium congestion is between
3939 < n < 7677, and high congestion is between 7678 < n < 11514,
where n is the measurement index.

of each input sequence, xt , and called this the sequence energy,
and defined it as

se(i) =
t+Tx−1∑
i=t

xt (i). (22)

In Fig. 15, it can be seen that the energy of the medium
and high congestion sequences were much larger than in
the low congestion states. Furthermore, when these large
sequences were fed through the activation functions they
caused exploding gradients which were inherited by the
predictions, and appeared as large pulses. The experiments
that are presented here were performed on time series that
were normalised so that they had a range of 0 to 0.5. Further
investigation on the effect of normalization indicates that it
have a positive effect on reducing the exploding gradient
problem, however, this may come at the cost of increased
training time. To counter the affect of exploding gradients,
we reverted back to the hard Sigmoid recurrent activation
function, as it has boundaries which clip the high energy
sequences. Consequently, the normalisation ratio should be
modified accordingly so there is no loss of information.

A. ASAPjitter: SEQUENTIAL LEARNING FOR
MODELLING GRADIENTS
By modifying these parameters, we were able to fit the
RN to the full jitter time series, however, because of the
unpredictability of the base value we could not satisfactory
predict the jitter exponential before it occurred. This can be
seen in Fig. 16, where the prediction was approximately linear
until the exponential occurred. Then the RN attempted to
predict the decay. This suggests that most of the predictions
are unreliable at best, and not useful at worst, when it comes to
detecting congestion changes. An additional recommendation
is that we should only model the jitter time series when
the exponentials decay, e.g. after the start the start of an
exponential, in the jitter time series rather than the full time
series, which is composed of decaying exponentials and
sudden jumps due to the start of a new exponential or a change
in the congestion level. Furthermore, when we trained the
classifier on every prediction the classifier exhibited a lack of
sensitivity to the true class and incorrectly classified ranges of

FIGURE 16. Predicting the exponential using the hard Sigmoid activation
function, for low to medium congestion change (top), and medium to high
(bottom). The predictions, pt show that the GRU can predict the rate of
decay once the initial base value is captured by the GRU, we calculate the
total RMSE as 43.6.

FIGURE 17. The rate of change of jitter which is used to detect when the
exponentials occur. The pulses correspond to the high values in the base
parameter.

jitter to the wrong class. This can be explained by the linear
predictions used during each of the congestion states. It means
that the only relevant points for acceptable predictions are
the first couple of samples of the exponential. Therefore,
we introduced a pre-processing step, which detected each
sequence that contained the first value of an exponential, and
we then segmented those sequences for training.

To detect these sequences, we calculated the Rate Of
Change (ROC) in the jitter time series. A time series for this
new metric is illustrated in Fig. 17. To calculate the ROC,
we took the difference between the current sample, pt , and
previous sample, pt−1,

ROC(t) = (pt − pt−1). (23)

The results show that the ROC for the low congestion state had
a much lower amplitude than the two other states. There was a
significant difference in amplitude between the ROC in the low
and then the medium and high congestion states. This was due
to the difference in the base values in these states. When these
changes occurred, we could detect the start of the exponential,
which contained information about the congestion state and
we used that sequence for training and prediction.

This preprocessing step has several benefits. The first
benefit is that all the irrelevant sequences have been removed,
which allows the model to be trained on many more
exponentials without over-fitting the model. The second
benefit is that by removing all of the linear predictions
in each of the congestion states we accommodated the

VOLUME 11, 2023 107793

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

TABLE 2. GRU parameters.

TABLE 3. Classifier parameters.

classifier, because if we do not remove the linear predictions,
the classifier will be fitted on the same linear predictions
throughout each of the congestion states and will not be able
to distinguish between them. To classify the predictions we
trained a Convolutional Neural Network (CNN) as a classifier
with the selected parameters that are illustrated in Table. 3.
The CNN architecture was chosen as it modelled temporal
dependencies similar to recurrent networks. The results show
that the accuracy of this classification method was 100%
for low congestion, 56% for medium congestion and 97.5%
for high congestion, with only 1 sample of an exponential.
We name this method as ASAPjitter. These results suggest
that we can use this method for classification at a very early
stage (1 sample of a new exponential).

B. FEATjitter: PREDICTION
To investigate if the forecast accuracy coud be improved,
we trained the GRU on the estimated parameters b, λ and p.
Once again, the input length of Tx = 60 and prediction length
of Ty = 40 were selected for the GRU. This configuration
was chosen because depending on the congestion levels,
the period of the original time series varied between 20 ≤

p[n] ≤ 40 samples, meaning that if the prediction length was
Ty = 40 samples into the future, we coud estimate the next
1 ≤ ωi ≤ 2 periods. To prepare the training data, we used
the sliding window approach where we truncated the full time
series into 0 ≤ T ≤ 100 sample windows with each window
shifted by one sample to the right.
The GRU parameter configuration can be seen below in

Table. 2. To determine the accuracy we calculated the RMSE.
In the results we can see that the calculated percentage error
was low, which suggests a high prediction accuracy has been
achieved. However, this is accuracy is due to overlapping
linear prediction values throughout the time series. In fact, the
predictions are ineffective because the estimated parameter
trace contains sudden changes that are difficult to predict.
The reason for this is that the feature time series does

not contain any recurring slopes that can be modelled, as a
consequence, the algorithm models linear functions, so it
cannot anticipate the sudden changes in the parameter time
series, which are there because of the changes in the jitter
parameters. Consequently, the benefit of this prediction
method is limited because the changes in congestion are
determined by the changes in the jitter parameters. If these
parameters cannot be predicted before they occur, the changes
in the time series will not be accurately predicted. We would
like to highlight the point that a low error does not necessarily
mean an effective prediction. Based on these results, we do not
recommend the utilization of a prediction layer as it consumes
computational resources without yielding substantial benefits.

C. FEATjitter: CLASSIFICATION
To conclude our investigation into sequential learning,
we tested the classification abilities of the GRU architecture
for the estimated parameters. We used the configurations
presented in Table. 2. However, for classification we selected
the input length to be Tx = 100. Using the jitter time series
we were unable to accurately classify between the three states,
which resulted in single state classification where we were
only identifying high congestion. This is likely due to the
low values in each congestion states which caused the linear
predictions. However, by mapping the jitter metric into a
feature domain we found that we could accommodate learning
and increase the classification accuracy. Using a multivariate
configuration on the b, λ and p parameters, we achieved a
classification accuracy of 97% for low congestion, 20.4% for
medium congestion and 94% for high congestion as seen in
Table. 4. The challenge was classifying between medium and
high congestion, as the GRU classified most of the medium
congestion state belong to the high class. In addition, we found
that adding a parallel CNN layer improved classification
accuracy up to 82% for the medium congestion state. This
suggests that for classification it would be better to use a CNN
architecture rather than a recurrent one. The results for the
multivariate CNN implementation can be seen in Table. 4 with
the CNN parameters in Table. 3.
We recognise that in practise training a CNN requires a

lot more computational resources than the traditional batch

107794 VOLUME 11, 2023

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

FIGURE 18. Reconstructed low congestion levels (top), reconstructed
parameter (bottom LHS) and predicted reconstructed parameter (bottom
RHS).

learning approaches such as the MLP. The classification
accuracy achieved by the MLP was 100% for low congestion,
83% for medium congestion and 91.9% for high congestion.
Therefore, we suggest the use of a MLP for classifying the b, λ
and p parameters.We named the resulting approach FEATjitter.
This result is achieved for the predicted and original b, λ and
p parameters. Due to variability in the effectiveness of the
prediction layer, we do not report results obtained using the
prediction layer in the FEATjitter algorithm.

D. TIME SERIES RECONSTRUCTION
To evaluate the accuracy of the proposed (b, λ, p)-estimation
method and to validate our choice of not including a prediction
layer in FEATjitter, the original parameters (b, λ, p) and the
predicted parameters were taken and used to reconstruct
the jitter time series. Each constituent decaying exponential
in the time series is defined using the following model,

x̂[n] = be−nλ, where n ≥ 0, (24)

and the entire time series is reconstructed by adding delayed
and truncated decaying exponentials according to the model
in [7]. The results are plotted against the original signal in
Fig. 18. The plots show that for the low congestion level, the
reconstructed time series was accurate for both the predicted
and the original parameters. Although, there was a slight
difference in the base of the reconstructed time series for the
FEATjitter predictions, the periodicity and rate of decay was
reconstructed with high accuracy.
One point to note, is the importance of the transition

period, that is, when congestion changed between states. In the
original jitter time series, congestion state changes occurred
at n = 3939 and n = 7677 in Fig. 2. We considered this
congestion state change from low to medium congestion in
Fig. 19. To predict congestion changes we need our model to
accurately capture the point of transition.We can see in Fig. 19,
that the transition was not captured by either of the methods.
As mentioned in Section VII-B, the predicted features do not
offer significant advantages over the original features, given
that the FEATjitter model failed to anticipate abrupt changes
before they occurred.

FIGURE 19. Transition from low to medium congestion, for the
reconstructed time series using the original features and the predicted
features; it can be seen that the transition period cannot be captured by
either of the methods.

FIGURE 20. Reconstructed medium (top) and high (bottom) congestion
levels from original and forecasted parameters.

TABLE 4. Classification accuracy for a GRU, FEATjitter and ASAPjitter
methods.

Furthermore, we wanted to compare the reconstruction
accuracy with medium-high congestion levels. Although,
Fig. 20 demonstrates that the base value accuracy decreases for
the higher exponentials, we can reproduce the rate of decay
and periodicity with high accuracy. This suggests that the
parameter estimation method cannot capture the base of the
exponential during high congestion. Further improvement
of the estimation method suggest that improvements in
classification accuracy of the FEATjitter model might be
possible.

VIII. CONCLUSION
In this paper we contribute sequential learning solutions
for predicting and classifying network congestion states
using the adaptive behaviour in jitter, that results from
the use of the H.264 video codec. We demonstrate how
difficult it is for sequential learning algorithms to classify
congestion states when the jitter time series are composed
of a series of delayed and truncated exponential functions.
We propose that by mapping the jitter time series into
a feature domain which contains estimates of the jitter
features such as the base, b, the rate of decay, λ, and

VOLUME 11, 2023 107795

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

period, p, can significantly improve the classification abilities
of sequential learning algorithms. We explain how this feature
domain representation is unsuitable for prediction, because
it contains unpredictable jumps which are difficult to model
using RNs.
We then show how the jitter time series can be processed

so that they are more suited to prediction by modifying
the parameters of the RN. We demonstrate that we can
successfully predict the decay of the exponential in the time
series. We proposed a rate of change metric to identify
the useful segments of the sequences that will yield useful
predictions and train a CNN architecture to classify them.
By implementing this method, which we name ASAPjitter,
we were able to classify congestion states by only using
n = 1 sample of a new congestion state, with an accuracy of
100% for low congestion, 56% for medium congestion and
97.5% for high congestion. In addition, we proposed a method
named FEATjitter, that used a MLP architecture to classify
the three parameters: b, λ, and p. We provided evidence that
we could detect congestion changes using FEATjitter with
an accuracy of 100% for low congestion, 83% for medium
congestion and 91.9% for high congestion.

We briefly summarize some of the potential advantages and
disadvantages of the two approaches. First of all, running the
parameter (b, λ, p)-estimation algorithm is computationally
cheap compared to executing a RN, as it only requires
several matrix multiplications. This requires the estimator to
estimate the whole jitter time series and to produce the three
parameters which are all of the same length as the original
jitter time series. To train a classifier we need to train it on
the three parameters, making it computationally expensive
for sequential classifiers. Therefore, we suggest that batch
learning approaches such as MLP would be more suitable
for classifying the estimated parameters. In comparison, the
DL approach segments the jitter so only relevant congestion
information is used to train the classifier, which reduces the
computational requirements making it an attractive approach.
A second important comparison category is the speed which
the classifier detects changes in congestion. The RN can
detect changes with only one sample of the exponential. The
estimation of the parameters only occurs at the end of each
period which reduces the response time. We believe that
because of these differences, these two algorithms could work
in tandem. ASAPjitter could be used to detect any changes
early, and FEATjitter could be used to rectify any inaccuracies
in detecting medium congestion.
We hypothesise that a joint ASAPjitter-FEATjitter

approach could be implemented as a universal algorithm for
detecting congestion changes in video streaming. For example,
different videos contain different jitter variations, and so if a
universal algorithm was trained on a large time series which
contained a large number of congestion changes, it would
not need to be retrained for different videos. In future work,
we will investigate if larger networks might perform better
by implementing attention based RNs such as Transformers
[44]. We posit that this joint ASAPjitter-FEATjitter approach

will pave the way for self-aware networks, whereby self-
measurement, and self-observation, together with on-line
control mechanism, operate adaptively to attain the required
performance and QoE [45].

ACKNOWLEDGMENT
This work supported by the Science Foundation Ireland (SFI)
under Grant 15/SIRG/3459 and Grant 13/RC/2077_P2.

REFERENCES
[1] F. Tang, B. Mao, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue, and

K. Mizutani, ‘‘On removing routing protocol from future wireless networks:
A real-time deep learning approach for intelligent traffic control,’’ IEEE
Wireless Commun., vol. 25, no. 1, pp. 154–160, Feb. 2018.

[2] M. Usama, J. Qadir, A. Raza, H. Arif, K. A. Yau, Y. Elkhatib, A. Hussain,
and A. Al-Fuqaha, ‘‘Unsupervised machine learning for networking:
Techniques, applications and research challenges,’’ IEEE Access, vol. 7,
pp. 65579–65615, 2019, doi: 10.1109/ACCESS.2019.2916648.

[3] A. Malik, R. de Fréin, and B. Aziz, ‘‘Rapid restoration techniques for
software-defined networks,’’ Appl. Sci., vol. 10, no. 10, p. 3411, May 2020,
doi: 10.3390/app10103411.

[4] R. de Fréin, ‘‘Source separation approach to video quality prediction in
computer networks,’’ IEEE Commun. Lett., vol. 20, no. 7, pp. 1333–1336,
Jul. 2016, doi: 10.1109/LCOMM.2016.2563418.

[5] M. T. Vega, C. Perra, and A. Liotta, ‘‘Resilience of video streaming
services to network impairments,’’ IEEE Trans. Broadcast., vol. 64, no. 2,
pp. 220–234, Jun. 2018.

[6] S. Zhang, W. Lei, W. Zhang, and Y. Guan, ‘‘Congestion control for RTP
media: A comparison on simulated environment,’’ in Simulation Tools and
Techniques. Cham, Switzerland: Springer, 2019, pp. 43–52.

[7] R. de Frein, O. Izima, and A. Malik, ‘‘Detecting network state in
the presence of varying levels of congestion,’’ in Proc. IEEE 31st Int.
Workshop Mach. Learn. Signal Process. (MLSP), Oct. 2021, pp. 1–6, doi:
10.1109/MLSP52302.2021.9596271.

[8] R. de Frein, ‘‘Effect of system load on video service metrics,’’ in
Proc. 26th Irish Signals Syst. Conf. (ISSC), Jun. 2015, pp. 1–6, doi:
10.1109/ISSC.2015.7163768.

[9] J. B. Madalgi and S. A. Kumar, ‘‘Development of wireless sensor network
congestion detection classifier using support vector machine,’’ in Proc.
3rd Int. Conf. Comput. Syst. Inf. Technol. Sustain. Solutions (CSITSS),
Dec. 2018, pp. 187–192, doi: 10.1109/CSITSS.2018.8768738.

[10] K. Han, J. Y. Lee, and B. C. Kim, ‘‘Machine-learning based loss
discrimination algorithm for wireless TCP congestion control,’’ in Proc.
Int. Conf. Electron., Inf., Commun. (ICEIC), Jan. 2019, pp. 1–2, doi:
10.23919/ELINFOCOM.2019.8706382.

[11] P. Amaral, J. Dinis, P. Pinto, L. Bernardo, J. Tavares, and H. S. Mamede,
‘‘Machine learning in software defined networks: Data collection and traffic
classification,’’ in Proc. IEEE 24th Int. Conf. Netw. Protocols (ICNP),
Nov. 2016, pp. 1–5.

[12] A. Malik, R. de Frein, M. Al-Zeyadi, and J. Andreu-Perez, ‘‘Intelligent
SDN traffic classification using deep learning: Deep-SDN,’’ in Proc. 2nd
Int. Conf. Comput. Commun. Internet (ICCCI), Jun. 2020, pp. 184–189,
doi: 10.1109/ICCCI49374.2020.9145971.

[13] Z. Md. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, ‘‘State-of-the-art deep learning: Evolvingmachine intelligence
toward tomorrow’s intelligent network traffic control systems,’’ IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2432–2455, 4th Quart., 2017,
doi: 10.1109/COMST.2017.2707140.

[14] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, ‘‘Advances in
optimizing recurrent networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., Vancouver, BC, Canada, May 2013, pp. 8624–8628, doi:
10.1109/ICASSP.2013.6639349.

[15] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha, E. Halepovic, R. Jana,
and V. Gopalakrishnan, ‘‘On leveraging machine and deep learning for
throughput prediction in cellular networks: Design, performance, and
challenges,’’ IEEE Commun. Mag., vol. 58, no. 3, pp. 11–17, Mar. 2020,
doi: 10.1109/MCOM.001.1900394.

[16] H. Lu and F. Yang, ‘‘A network traffic prediction model based on wavelet
transformation and LSTM network,’’ in Proc. IEEE 9th Int. Conf. Softw.
Eng. Service Sci. (ICSESS), Beijing, China, Nov. 2018, pp. 1–4, doi:
10.1109/ICSESS.2018.8663884.

107796 VOLUME 11, 2023

http://dx.doi.org/10.1109/ACCESS.2019.2916648
http://dx.doi.org/10.3390/app10103411
http://dx.doi.org/10.1109/LCOMM.2016.2563418
http://dx.doi.org/10.1109/MLSP52302.2021.9596271
http://dx.doi.org/10.1109/ISSC.2015.7163768
http://dx.doi.org/10.1109/CSITSS.2018.8768738
http://dx.doi.org/10.23919/ELINFOCOM.2019.8706382
http://dx.doi.org/10.1109/ICCCI49374.2020.9145971
http://dx.doi.org/10.1109/COMST.2017.2707140
http://dx.doi.org/10.1109/ICASSP.2013.6639349
http://dx.doi.org/10.1109/MCOM.001.1900394
http://dx.doi.org/10.1109/ICSESS.2018.8663884

T. Lisas, R. De Fréin: Sequential Learning for Modeling Video Quality of Delivery Metrics

[17] X. Liang, Q. Tian, F. Wang, W. Yu, and X. Xin, ‘‘A dynamic resource
allocation based on network traffic prediction for sliced passive optical
network,’’ in Proc. 19th Int. Conf. Opt. Commun. Netw. (ICOCN), Qufu,
China, Aug. 2021, pp. 1–3, doi: 10.1109/ICOCN53177.2021.9563790.

[18] Bitmovin’s 4th Annual Video Developer Report. Accessed: Sep. 19, 2022.
[Online]. Available: https://go.bitmovin.com/video-developer-report-2020

[19] N. H. Gauthier and M. I. Husain, ‘‘Dynamic security analysis of zoom,
Google meet and Microsoft teams,’’ in Proc. Silicon Valley Cybersecurity
Conf., vol. 1383, Y. Park, D. Jadav, and T. Austin, Eds. Cham, Switzerland:
Springer, 2021, pp. 3–24, doi: 10.1007/978-3-030-72725-3_1.

[20] D. Thorp-Lancaster, ‘‘Microsoft Teams hits 75 million daily active users,
up from 44 million in March,’’ Windows Central, Tech. Rep., 2020.
[Online]. Available: https://www.windowscentral.com/microsoft-teams-
hits-75-million-daily-active-users

[21] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ, USA: Prentice-Hall, 1975.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning internal
representations by error propagation,’’ in Parallel Distributed Processing:
Explorations in the Micro-structure of Cognition: Foundations. Cambridge,
MA, USA: MIT Press, 1987, pp. 318–362.

[23] S. Elsworth and S. Guttel, ‘‘Time series forecasting using LSTM networks:
A symbolic approach,’’ 2020, arXiv:2003.05672.

[24] R. C. Staudemeyer and E. R. Morris, ‘‘Understanding LSTM—A
tutorial into long short-term memory recurrent neural networks,’’ 2019,
arXiv:1909.09586.

[25] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[26] R. Dey and F. M. Salem, ‘‘Gate-variants of gated recurrent unit (GRU)
neural networks,’’ in Proc. IEEE 60th Int. Midwest Symp. Circuits
Syst. (MWSCAS), Boston, MA, USA, Aug. 2017, pp. 1597–1600, doi:
10.1109/MWSCAS.2017.8053243.

[27] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, ‘‘On the
properties of neural machine translation: Encoder–decoder approaches,’’ in
Proc. SSST-8, 8th Workshop Syntax, Semantics Struct. Stat. Transl., Doha,
Qatar, 2014, pp. 103–111, doi: 10.3115/v1/W14-4012.

[28] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical evaluation of
gated recurrent neural networks on sequence modeling,’’ in Proc. NIPS
2014 Workshop Deep Learn., Dec. 2014, pp. 1–9.

[29] S. Yang, X. Yu, and Y. Zhou, ‘‘LSTM and GRU neural network performance
comparison study: Taking yelp review dataset as an example,’’ in Proc. Int.
Workshop Electron. Commun. Artif. Intell. (IWECAI), Shanghai, China,
Jun. 2020, pp. 98–101, doi: 10.1109/IWECAI50956.2020.00027.

[30] C. Zhang, P. Patras, and H. Haddadi, ‘‘Deep learning in mobile and wireless
networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2224–2287, 3rd Quart., 2019, doi: 10.1109/COMST.2019.2904897.

[31] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’ 2016,
arXiv:1609.04747.

[32] D. P. Kingma and J Ba, ‘‘ADAM: A method for stochastic optimization,’’
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–13.

[33] Y. Nesterov, ‘‘A method for unconstrained convex minimization problem
with the rate of convergence O(1

k2
),’’ in Proc. Dokl. Akad. Nauk. SSSR,

vol. 269, 1983, pp. 543–547.
[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017, doi: 10.1145/3065386.

[35] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[36] A. Rakitianskaia and A. Engelbrecht, ‘‘Measuring saturation in neural
networks,’’ in Proc. IEEE Symp. Ser. Comput. Intell., Dec. 2015,
pp. 1423–1430, doi: 10.1109/SSCI.2015.202.

[37] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[38] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. 32nd Int. Conf. Mach.
Learn., Lille, France, vol. 37, Jul. 2015, pp. 448–456. [Online]. Available:
https://proceedings.mlr.press/v37/ioffe15.html

[39] M. Hasani and H. Khotanlou, ‘‘An empirical study on position of the batch
normalization layer in convolutional neural networks,’’ in Proc. 5th Iranian
Conf. Signal Process. Intell. Syst. (ICSPIS), Shahrood, Iran, Dec. 2019,
pp. 1–4, doi: 10.1109/ICSPIS48872.2019.9066113.

[40] J. L. Ba, J. R. Kiros, and G. E. Hinton, ‘‘Layer normalization,’’ in Proc.
NIPS, 2016, pp. 1–14.

[41] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, ‘‘Fast and accurate
deep network learning by exponential linear units (ELUs),’’ 2015,
arXiv:1511.07289.

[42] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, ‘‘Self-
normalizing neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 30, 2017, pp. 1–10.

[43] P. Ramachandran, B. Zoph, and Q. V. Le, ‘‘Searching for activation
functions,’’ 2017, arXiv:1710.05941.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

[45] E. Gelenbe, J. Domanska, P. Fröhlich, M. P. Nowak, and S. Nowak,
‘‘Self-aware networks that optimize security, QoS, and energy,’’
Proc. IEEE, vol. 108, no. 7, pp. 1150–1167, Jul. 2020, doi:
10.1109/JPROC.2020.2992559.

TAUTVYDAS LISAS received the B.E. degree
in electrical and electronic engineering from
Technological University Dublin, Ireland, in 2021,
where he is currently pursuing the Ph.D. degree
with the School of Electrical and Electronic
Engineering. His area of research is prediction
algorithms for video quality-of-delivery metrics
for network management. His research interests
include machine learning, deep learning, quantum
machine learning, and signal processing.

RUAIRÍ DE FRÉIN received the B.E. degree in
electronic engineering and the Ph.D. degree in
time-frequency analysis and matrix factorization
from University College Dublin (UCD), Ireland, in
2004 and 2010, respectively. He is a CONNECT
Funded Investigator and a Lecturer with the
School of Electrical and Electronic Engineering,
Technological University Dublin, Ireland. He held
Marie Sklodowska-Curie Fellowships with the
KTH Royal Institute of Technology, Stockholm,

and Amadeus SAS, Sophia Antipolis, France. Over the past few years, he has
developed algorithms for predicting quality-of-delivery metrics for network
management and monitoring strategies for small cell networks and monitoring
techniques for internet protocol television (IPTV). His research interests
include machine learning for integrating microgrids, sparse signal processing,
software-defined networks, and VANETs.

VOLUME 11, 2023 107797

http://dx.doi.org/10.1109/ICOCN53177.2021.9563790
http://dx.doi.org/10.1007/978-3-030-72725-3_1
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/MWSCAS.2017.8053243
http://dx.doi.org/10.3115/v1/W14-4012
http://dx.doi.org/10.1109/IWECAI50956.2020.00027
http://dx.doi.org/10.1109/COMST.2019.2904897
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/SSCI.2015.202
http://dx.doi.org/10.1109/ICSPIS48872.2019.9066113
http://dx.doi.org/10.1109/JPROC.2020.2992559

