
IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY SECTION

Received 9 September 2023, accepted 20 September 2023, date of publication 25 September 2023,
date of current version 29 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3319068

Wireless Capsule Endoscopy Image Classification:
An Explainable AI Approach
DARA VARAM 1, ROHAN MITRA 1, (Member, IEEE), MERIAM MKADMI 1,
RADI AMAN RIYAS 1, DIAA ADDEEN ABUHANI1, SALAM DHOU 1, (Member, IEEE),
AND AYMAN ALZAATREH 2
1Department of Computer Science and Engineering, American University of Sharjah, Sharjah, United Arab Emirates
2Department of Mathematics and Statistics, American University of Sharjah, Sharjah, United Arab Emirates

Corresponding author: Salam Dhou (sdhou@aus.edu)

This work was supported in part by the Open Access Program from the American University of Sharjah under Award
OAPCEN-1410-E00194.

ABSTRACT Deep Learning has contributed significantly to the advances made in the fields of Medical
Imaging and Computer Aided Diagnosis (CAD). Although a variety of Deep Learning (DL) models exist
for the purposes of image classification in the medical domain, more analysis needs to be conducted on
their decision-making processes. For this reason, several novel Explainable AI (XAI) techniques have
been proposed in recent years to better understand DL models. Currently, medical professionals rely on
visual inspections to diagnose potential diseases in endoscopic imaging in the preliminary stages. However,
we believe that the use of automated systems can enhance both the efficiency for such diagnoses. The aim
of this study is to increase the reliability of model predictions within the field of endoscopic imaging by
implementing several transfer learning models on a balanced subset of Kvasir-capsule, a Wireless Capsule
Endoscopy imaging dataset. This subset includes the top 9 classes of the dataset for training and testing. The
results obtained were an F1-score of 97%±1% for the Vision Transformer model, although other models
such as MobileNetv3Large and ResNet152v2 were also able to achieve F1-scores of over 90%. These are
currently the highest-reported metrics on this data, improving upon prior studies done on the same dataset.
The heatmaps of several XAI techniques, including GradCAM, GradCAM++, LayersCAM, LIME, and
SHAP have been presented in image form and evaluated according to their highlighted regions of importance.
This is in an effort to better understand the decisions of the top-performing DLmodels and look beyond their
black-box nature.

INDEX TERMS Deep learning, explainable AI, gastrointestinal diseases, machine learning, vision
transformer, wireless capsule endoscopy.

I. INTRODUCTION
Wireless capsule endoscopy (WCE) is a popular procedure
within the medical domain due to its non-invasive nature in
screening the digestive tract. It aids in the early detection
and classification of diseases and potentially cancerous cells
within the intestinal tract and in stunting the development
of high-risk illnesses [1]. Many indicators can be classi-
fied as pre-cancerous, as they have not yet developed into
a state of malignancy. The removal of these abnormalities
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before their transformation into malignancy can significantly
reduce the risk of ailment. However, examinations of the
colon and digestive tract are usually a lengthy and invasive
process, which is the main advantage that comes fromWCEs.
With WCEs, images can be collected and screened remotely
from within the intestinal tract, and diagoses can be drawn
regarding the state of a patient’s intestinal tract. The accurate
diagnosis and classification of these endoscopies is critical
for medical diagnosis.

With the development of new technologies in the field
of medical image processing, a recent rise in the use of
Machine learning (ML) and specifically Deep Learning (DL)
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applications has paved the way for researchers to
explore novel techniques in abnormality detection and
classification [2]. The improvements in Computer-Aided
Diagnosis (CAD) through advances in ML algorithms has
proven substantial for effective diagnosis. The utilization of
CAD in cancer diagnosis has allowed physicians to serve as
an additional level of confirmation. Therefore, following a
recent rise of DL in medical image analysis, artificially intel-
ligent models can aid in the classification of abnormalities for
the prevention of colorectal cancer.

Previous iterations of CAD models were viewed as ineffi-
cient due to their heavy emphasis on image feature extraction.
This slowed down potential advancements in visual clas-
sification, since the models look for visual features of the
image as opposed to specific attributes of objects within
the image. In other words, by focusing on extracting the
features of an image, such ML algorithms fail to characterize
the patterns that allow for classification. To overcome this,
DL algorithms employed convolutional operations within
hidden layers, overruling the need for traditional feature
extraction. In addition to significantly increasing the effi-
ciency of these artificially intelligent models, DL algorithms
also outperformed traditional ML models, making them the
alternative for functional usage, including medical image
processing applications.

A popular DL framework is that of the Convolutional
Neural Network (CNN). As opposed to traditional feature
extraction mechanisms, CNNs learn features in an automatic
fashion and can classify from a range of diverge images
accordingly. For this reason, CNNs are favorable to tradi-
tional ML algorithms specifically for CAD applications. The
current state-of-the-art sees optimized DL algorithms tailored
specifically for medical image processing (DL-CAD), but the
extent of its utilization is still limited due to the concerns of
unreliability when the system is put into place [3]. It is, how-
ever, important to note the benefits of employing DL-CAD
systems for the detection and classification of gastrointestinal
(GI) tract diseases.

The primary limitation faced when attempting to train such
deep learning algorithms for medical applications is the need
for large-scale datasets. This proves to be difficult within
the field of medicine, as the collection of reliable, properly
labeled data can be challenging and time-consuming. Simi-
larly, unlike other fields, the use of simulated and synthetic
data is unreliable, as precision and the mitigation of risks are
of utmost importance in the field [2].
The focus of this paper is the evaluation of several novel DL

architectures for the classification of gastrointestinal diseases
and causes for concern in an effort to prevent and stunt the
development of colorectal cancer. The data that is used is
the Kvasir-capsule dataset, which is publicly accessible [4].
The dataset contains images gathered from Wireless Capsule
Endoscopies (WCEs). In this work, multitude of available
DL models are evaluated to come to a conclusion on the
models, parameters and metrics that work best. Then, several
ML models are evaluated to get a baseline understanding

of how classification is conducted on the dataset considered
in this work. In addition to the CNN-based models, novel
transformer-based models are considered, namely, the Vision
Transformer (ViT). Upon presenting a complete analysis of
the different DL models used, the dataset and the models are
analyzed by applying clustering algorithms and evaluating
how well the models cluster unseen data.

The contributions of this paper are summarized below:
1) Apply popular DL architectures on a balanced sam-

ple of the Kvasir-capsule image dataset, including the
Vision Transformer, which has not previously been
implemented on this data. This is in an effort to com-
paratively evaluate the best-performing models on our
data. To the best of our knowledge, this dataset has not
been studied previously in the literature, with the most
similar study being on video frame classification of the
same nature;

2) Apply, analyze, and compare five Explainable AI tech-
niques to the best-performing classifiers, including
GradCAM, GradCAM++, LayerCAM, LIME and a
SHAP-based algorithm;

3) Use the interpretations of the XAI models to further
evaluate how classifiers detect the existence of different
anomalies within the Kvasir-capsule dataset, and by
consequence within the field of GI disease detection
through WCEs.

4) Aggregate the results of classification, the verification
of the best model’s performance and the XAI model
interpretations to come to a comprehensive understand-
ing of the state-of-the-art WCE classification.

Fig. 1 demonstrates the proposed framework used in this
study. We will begin by taking the captured video frames
from the capsule (using the Kvasir-Capsule dataset). Then,
the images will go through several pre-processing techniques
(further highlighted in section III-A). The data will then pass
through a deep learning model before being passed through
an XAI framework.

The rest of the paper is structured as follows. Section II
presents a literature review of the previous research con-
ducted in the field, including classification, object detection
and segmentation. The review further elaborates on the
Explainable AI approaches done on similar datasets including
WCE images. Section III provides an overview of the dataset,
models, and the three variants of Explainable AI used in this
work. The results and discussion are presented in Section IV,
which is divided into two parts: part (A) that displays the
results for the models used and their evaluation metrics,
and Part (B) that goes into detail regarding the Explainable
AI techniques and the features/ regions of importance high-
lighted by XAI. Finally, the future works and limitations are
discussed in the conclusion of the paper.

II. LITERATURE REVIEW
Although a large variety of gastrointestinal diseases exist,
a large subset of the literature dedicated to their classification
and diagnosis is built on polyp classification. Polyps are a
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FIGURE 1. The proposed system model demonstrating the process of collecting data through the endoscopy capsule, applying machine learning
approach for image classification, and generating heat maps through an appropriate explainable AI (XAI) framework.

significant indicator of colorectal cancer, but they are not the
only indicator of potentially harmful diseases within the GI
tract. In this section, the classification of GI tract diseases is
covered, along with an overview of recent studies done using
object detection and segmentation. The review also considers
studies performed on datasets that are either similar to the one
employed in this study, or the same.

The majority of gastrointestinal indicators are non-
malignant. However, hyperplastic and tubular adenomas are
also prone to turning cancerous if not treated for an extended
period of time. For this reason, their detection, and their
further classification, is of significant importance in the diag-
nostics domain for GI diseases [5], [6].

A. GASTROINTESTINAL DISEASES AS A
CLASSIFICATION PROBLEM
The classification of this scope of GI diseases is a deep
learning problem that has been tackled in the past. In [7],
the authors analyzed a binary dataset extracted from videos
of endoscopic examinations. A total of 1, 800 images were
collected and classified as adenomatous or non-adenomatous,
with each image being of size 256 × 256 pixels. The results
when a CNN was trained on the data indicated an accuracy
of 0.751 across 10 folds of cross validation. The authors sug-
gest further studying the automated classification of polyps
through CAD systems. However, it is important to note
the limitations of such a study, given that they treat the
classification of polyps as binary as opposed to separating
them into different classes. Furthermore, the total number
of images in this study were 1, 800, which can be expanded
upon to produce more training data. The authors also opted
to develop a custom neural network architecture as rather
than using a transfer learning model. A similar binary clas-
sification approach to polyp detection can be seen in [8],
in which polyps are classified as either ‘‘malignant’’ or ‘‘non-
malignant.’’ The total size of the dataset is 600 images,
collected from a cohort of 142 patients. However, the original

size of the dataset was increased through image augmentation
to 3, 600 images. The authors used both their own archi-
tecture and also comparatively used the VGG-16 transfer
learning model to come to a baseline regarding the results
of the polyp classifier. Their results were based on the use of
fine-tuning parameters, along with using VGG-16’s feature
extraction layers instead of the base CNNmodel. The results,
as reported by the authors, are summarized below in Table 1.
The best-performing results reported were that of the fine-
tuned model with an F1-score of 0.83. The authors described
the fine-tuning process of the model as consisting of using a
VGG filter, freezing the top layers of the VGG network and
using the RMSprop optimizer. The learning rate used for this
model in specific was 2 × 10−5.

TABLE 1. Summary of results in [8], indicating that the best-performing
model was the fine-tuned model presented by the authors.

Similarly, [9] presents a dual-path CNN that classifies
colonoscopy images as either polyp or non-polyp. The struc-
ture of the proposed method is as such: A colonoscopy
image is taken, put through an image enhancement layer (pre-
processing), and the features are extracted using the dual-path
CNN. Finally, these images are classified into the binary
categories. The image enhancement algorithm used takes the
images and transforms them into the hue, saturation, and
value (HSV) color space. Then, with the help of a Gaussian
function, theV value is extracted from the color space, and the
brightness is corrected using Gamma correction. The images
are then converted back into the RGB color space using image
fusion. These images are then fed into the dual-path CNN,
consisting of 8 layers. The data was trained on the CVC-
ClinicDB, and tested on two other unseen datasets, namely
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CVC-ColonDB and ETIS-Larib. The authors were able to
report an F1-score of 0.9960 on the former, and an F1-score
of 0.9100 on the latter.

Fine-tuning of the models are, however, a significant
indicator of better results. In [10], Younas and colleagues
presented an ensemble learning model for polyp classifi-
cation, with their main objective being the optimization of
the hypertuning parameters. The models were trained on
the PICCOLO dataset [11], discussed later in this section.
Another publicly available dataset was used [12], con-
taining 76 images. With three classes (serrated polyps,
hyperplastic polyps, adenomatous polyps), the data was first
augmented and oversampled to increase from the initial
3, 433 data-points available in the dataset. Authors presented
a comparative study of 6 transfer learning models, which
included GoogLeNet, ResNet-50, Inception-v3, Xception,
DenseNet-201, and SqueezeNet. Based on the performance
of these transfer learning models, the best performing model
was then selected to conduct further experimentation, namely
with regards to the hyper-tuning parameters, including the
learning rate and the optimizers used.

In [13], Zachariah et al. and authors presented a pre-trained
CNN using ImageNet. The feature extraction layers of this
proposed CNN model are based on the Inception-ResNetv2
algorithm. In total, 6, 223 images were used for training and
testing, classified into three categories of polyps. The authors
used 5-fold cross validation and obtained a negative predic-
tive value of 0.97 for unseen data, and an overall surveillance
concordance of 0.94.

In [14], researchers studied the problem of polyp clas-
sification by applying a dataset to the family of ResNet
transfer learning models. These include the following 5 mod-
els: ResNet-18, ResNet-34, ResNet-50, ResNet-101 and
ResNet-150. The models were trained on a dataset consisting
of four classes: Tubular adenoma, villous adenoma, hyper-
plastic polyps, and sessile serrated adenoma. The dataset
contains whole-slide images - a total of 487 slides. These
slides were divided using a sliding-window approach to
classify the images. This study comparatively evaluated
the performance of the ResNet family of models against
annotated images by pathologists. Whilst the pathologists
accurately identified the type of polyp with 0.914 accuracy,
the ResNet family of models obtained a mean accuracy of
0.935. Similarly, another paper using a whole-slide image
dataset is presented in [15], where a total of 2, 074 images
were collected through sliding windows, split across five
classes of polyps. The authors similarly used a transfer learn-
ing approach, using the following architectures: AlexNet,
GooLeNet, VGG and the ResNet family of models, includ-
ing ResNet-50, ResNet-101, and ResNet-152 (two 152 layer
models were used, with different projection mappings). Eval-
uating themodels based on the accuracy, precision, recall, and
F1-score, it was reported that ResNet performed best out of
all, with F1-scores of 0.93, 0.897, 0.883, and 0.888 respec-
tively for each of the four ResNet models tested.

In addition, DL techniques have been employed in the
detection and classification of hemorrhages, another indicator
of gastrointestinal diseases. In particular, a study conducted
in 2016 on the detection of internal bleeding within the gas-
trointestinal tract produced a DLmodel trained on a dataset of
10, 000 images [16]. These images, obtained through WCEs,
produced a neural network capable of achieving an F1-score
of up to 0.9955 in the best-trained instance of the model.
This model was built based on the CNN architecture proposed
by [17] in 2016 and was able to out-perform previous iter-
ations of deep learning models for the detection of internal
bleeding within the gastrointestinal tract [18], [19]. How-
ever, the proposed solution is binary in nature - classifying
images as either containing internal bleeding or ‘‘Normal.’’
A similar study was conducted in 2017 where several transfer
learning models were implemented on a dataset contain-
ing 12, 090 images adopted from WCEs - 390 of which
containing internal bleeding, and 11, 700 of them not [20].
The transfer learning models used in this study were LeNet,
AlexNet, GoogLeNet, and VGG-Net. The authors then tested
the CNN models on both the original testing images and
also an augmented set. The augmentation process involved
rotating the images, changing brightness (luminance), and
adding noise to the images through blurring and Poisson
noise. Their final metrics are reported in Table 2:

TABLE 2. Summary of results in [20], reporting F1-score.

In a survey published in 2023, several prior approaches to
WCE image classification is discussed as a machine learning
problem [21]. The authors summarize the available public
datasets, which includes the Kvasir dataset used heavily
within the scope of our study. The authors state the lack
of publicly available datasets as one of the challenges that
researchers face in the field. Other challenges include the
nature of the data itself, since certain anomalies are difficult to
distinguish from one another, and finally, the reliability of the
diagnoses through the machine learning systems. The authors
go on to cite the use of Explainable AI for increased trust
in back-box models, which is extensively discussed within
the scope of our study. Wahab and researchers conclude that
the promise of WCE imaging for GI disease diagnosis and
localization allows for significant advancement in the field,
with a view towards the incorporation of more ML-based
systems to aid physicians.

B. KVASIR DATASET(S)
In general, the detection of lesions and diseases within
the gastrointestinal tract comes in a few forms, includ-
ing object detection, segmentation, and classification. Most
notably, in [22], a CNN-based model was developed based
on the Kvasir dataset, which is an open-source dataset con-
taining images of lesions, polyps, and other indicators of
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gastrointestinal diseases through Wireless Capsule Endo-
scopies (WCEs).

More recently, [23] presented an automatic DL-based
hemorrhage detection system in which they trained their
own CNN on the Kvasir dataset. This dataset contains
4, 778 images, split into ‘‘Normal’’ and ‘‘Bleeding’’ classes.
By considering different parameters for batch size, number of
epochs, and optimizers, the authors were able to draw conclu-
sions on what combinations of parameters work best for the
Kvasir dataset. The authors reported that the best parameters
for the dataset was a batch size of 32, running for 10 epochs
using the ‘‘Adam’’ optimizer. However, this study was not
able to outperform the study conducted by Sharif et al. and
colleagues [24], where the authors used a private dataset
obtained through WCE imaging containing three classes for
the detection of gastrointestinal diseases. The classes were
labeled ‘‘Bleeding,’’ ‘‘Healthy,’’ and ‘‘Ulcer.’’ This study
presented the novel use of geometric feature extraction for
initially segmenting the lesions within the image and then
using that for classification. Their best results were achieved
using a KNN classifier, with a classification accuracy of
0.9942 and a precision rate of 0.9951.

In 2023, Padmavathi et al. and researchers published a
study on the segmentation and classification of WCE images,
specifically using the Kvasir-V2 dataset [25]. For the classi-
fication, the authors propose the use of a DL model based
on the LeNet-5 architecture. However, the classification is
done based on the features extracted from the segmentation
of the images. This feature extraction is done through the use
of DeepLapV3+. When tested on the Kvasir-V2 dataset, the
authors were able to report an F1-score of 98.49%, improving
upon prior approaches cited in the work.

C. GRADIENT EXPLANATION TECHNIQUES
Given that deep learning methods are usually presented in a
black-box fashion, a significant portion of information is lost
regarding the decisions made by the network in coming to a
final classification. This has given rise to modern Gradient
Explanation techniques, as presented in [26] and [27]. These
techniques explain decisions made by DL models using heat
maps. An example of a gradient explanation technique is
GradCAM [28], which uses gradient information from the
final convolutional layer of a CNN to determine the impor-
tance of different neurons in the final category assigned by
the network. However, a criticism of GradCAM is its short-
comings when localizing multiple instances of an object in
a singular image. This led researchers to the development
of an improved technique, HiresCAM, which addresses this
particular limitation [29]. Other proposed explainable AI
techniques exist, such as Score-CAM [30] and Grad-CAM++
[31], which both build on the idea presented by Grad-CAM
with improvements to the algorithm used in identifying neu-
ron importance. These explainable techniques often provide
researchers with visualizations as to why certain classifiers
segment images in the way that they do, which significantly

improves the interpretation of the classification. This allows
us to see exactly which features the CNN model uses to
come up with its decision, highlighting the important regions
identified.

In [32], Mukhtorov et al. and authors presented a classifi-
cation method for endoscopic images based on Explainable
Deep Learning. In their 2023 study, they combined a
ResNet-152 architecture with GradCAM to obtain the high-
est accuracy reported of 0.9346 when trained and tested
on the Kvasir dataset. The authors undersampled the data
and split it as follows: the training data contained 8 bal-
anced classes of 800 image instances each (for a total of
6, 400 images for training), 800 images for validation, and
a final 800 images for testing. They also presented their a
custom CNN model. The authors were also able to interpret
and study the important features of the images based on the
different regions identified when applying different Gradient
Explanation techniques, including GradCAM, GradCAM++,
LayerCAM, HiresCAM, and XGradCAM. The authors were
able to out-perform prior classifiers that were trained on the
Kvasir dataset, going a step beyond to include XAI interpre-
tations within their work. This includes works conducted in
2019 by Fonollá et al. and colleagues [33] with a highest
recorded accuracy of 0.9020 and Pozdeev et al. [34] with an
accuracy of 0.88.

Despite the significant advances with DL models and
their performance, we still face challenges with regards
to how reliable model predictions are within the scope.
In [35], Dhar et al. and researchers discuss one of the main
issues of the use of DL in the medical field: The lack of
trust and explainability of deep learning models to perform
accurate diagnosis. The authors suggest a higher degree of
transparency within DL models and architectures without
having to compromise data privacy, which can be addressed
through Explainable AI. The authors conclude with a view
towards the co-existence of AI and humans, with a restored
awareness and trust for models’ predictions.

Within the same domain, we can see an increase in the
use of Explainable AI for medical classification and diagno-
sis. In [36], a new XAI framework is presented for use in
ultrasound image classification. The XAI model is trained
on an image dataset containing 19341 ultrasound images
of the thyroid, annotated by physicians for the existence of
anomalies. Similar to what will be presented in this paper,
GradCAM has been used as the explainer. More specifically,
the authors propose the use of XAIwithin themedical domain
for its incorporation in the ultrasound screening process. This
is because of their provision of heatmaps which provide
explanations for the classifier’s predictions.

As presented in sections II-B and II-C, several studies
exist in the literature that use ML and DL techniques for
the analysis of endoscopic images. In 2023, [37] used two
transfer learning models - namely ResNet-50 and Inception-
V4, for the feature extraction of images obtained through the
KID 2 dataset. They were able to successfully identify lesions
in the GI tract with an accuracy of 0.9809. Simiarly in 2023,
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the authors of [38] proposed their own CNN architectures
and trained on the WCE Curated Colon Disease Dataset [39].
Their best results were from a custom CNN based on the
MobileNet-V1 architecture, with an F1 Score of 0.9933.
Other works such as [40] and [41] propose novel methods
of classifying WCE images, but are purpose-built for binary
classification. In particular, [40] uses the Seeker Optimization
algorithm and the Elman Neural Network (ENN) for clas-
sification, whilst [41] uses the Water Strider Optimization
algorithm and long short-term memory (LSTM) for classifi-
cation. Both these works used data obtained from multiple
sources. Table 3 summarizes the most recent and relevant
studies conducted in the field of WCE image classification
and analysis, particularly focusing on the Kvasir datasets and
other datasets of similar nature.

It is important to note that the works presented in this
section is either conducted on different datasets, different
variations of the Kvasir datasets, or is on imbalanced data.
Therefore, it must be acknowledged that there is no specific
baseline to compare our results to. Furthermore, the goal of
this paper is to provide highly accurate results for use within
the medical domain, supported by the deployment of XAI
techniques for validation.

III. MATERIALS AND METHODS
In this section, the dataset used for the study is described
in Section III-A, while the DL models that we train on the
dataset is described in detail in Section III-B. Similarly, the
Explainable AI techniques employed in this study are covered
in Section III-C. The main techniques used are LIME, Shap-
ley and Class Activation Mapping (CAM) based methods,
which can further analyze the models’ decision-making pro-
cess and identify the discriminative features that it has learned
for classification.

A. DATASET
The Kvasir-Capsule dataset is the largest publicly released
WCE dataset to date. This dataset contains data from real
world clinical examinations. The dataset was collected, ana-
lyzed and labelled by a trained clinician. More detail on the
collection of this dataset can be found in [4]. The dataset is
comprised of 47, 238 labeled images and 117 videos where
anatomical landmarks, pathological, and normal findings are
detected [4]. However, only the labeled images are consid-
ered for the purposes of this study. The dataset contains
14 different classes of anatomical and luminal findings, and
samples of the top 9 classes are shown in Fig. 2. The dataset is
heavily imbalanced as indicated in table 4. It contains around
34, 000 images of the ‘‘normal mucosa’’ class while other
classes samples range between 500-4200 images. Hence,
under-sampling techniques is applied to enhance the mod-
els’ performance. We use the threshold of 500 instances to
select the top 9 classes. All classes with over 500 images are
then under-sampled. These classes, along with the number
of instances in the original dataset, are shown in table 4.
The under-sampling technique was chosen in this study as

FIGURE 2. A sample image from each of the 9 classes selected for this
work.

opposed to other balancing methods since it has proven to
work well for highly imbalanced image classification [42].

In [43], the authors compared several CNN models on the
Kvasir-Capsule dataset and managed to achieve a weighted
average F1-score of 0.673. This was achieved using a custom
CNN developed by the authors, FocalConvNet. An important
fact to note is that this study used the top 12 classes of the
117 videos in Kvasir-Capsule, meaning that the authors were
classifying video frames instead of images. This indicates the
lack of comparison between this study and what is presented
in this paper as a comparative baseline, since the nature of the
datasets used are different.

We apply pre-processing techniques to the dataset based
on each transfer learning model used and their requirements.
This includes image resizing, normalization, etc. Moreover,
we use image augmentations with vertical and horizontal flips
of the image because the capsule could be flipped as it travels
along the digestive track, to reduce over-fitting.

B. MODELS
We explore the use of several deep learning and machine
learning models for image recognition and classification. For
this study, we will be using CNN-based models as well as
transformer-based models. We first perform 10-fold cross
validation testing to accurately compare the performance of
each of the models. We then use statistical tests, such as the
One Way Kruskal-Wallis test, to tell if the different distribu-
tions of F1-Scores for each model are statistically different
from each other. Furthermore, we useWilcoxon Signed-Rank
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TABLE 3. Summary of studies presented in section II.

TABLE 4. Distribution of images in the top 9 classes of the Kvasir-Capsule
dataset, including all classes with more than 500 instances.

Test to determine exactly which models performed better or
worse.

After determining the best deep learning model, we fur-
ther explore their ability to extract useful features. This is
done by using the extracted features and training a classical
machine learning based classifier. Once again, we perform
10-fold cross validation and compare the machine learning
models’ ability to distinguish between the classes based on
the features extracted by the best model.

1) CNN-BASED MODELS
CNNs are a type of artificial neural network that is specifi-
cally designed for processing image data [17]. CNNs are the
most used method for many computer vision tasks, including
image and video recognition and natural language processing
(NLP) [17]. They are the basis on which the following archi-
tectures and models are built upon. In this paper, we explore
the use of 6 different pre-trained CNN models as outlined
below.

a: INCEPTIONV3
The InceptionV3 architecture is a CNN designed for image
classification and object recognition [44]. The architecture
improves upon the InceptionV1 and InceptionV2 models and

uses several new ideas to increase accuracy and efficiency.
The network is made up of repeated blocks of ‘‘inception
modules’’, which are composed of parallel convolutions with
varying kernel sizes and pooling operations. They are put
together to capture the local and global features of the image.
Moreover, batch normalization and residual connections
are also employed to improve gradient flow and decrease
the possibility of overfitting. InceptionV3 uses factorized
7 × 7 convolutions to reduce the number of parameters and
computational cost. A newmodule called ‘‘grid reduction’’ is
introduced, which uses max pooling to reduce the spatial size
of the feature maps. Overall, the InceptionV3 architecture
achieves exceptional performance on the ImageNet dataset.
Due to its low computational cost and high efficiency, Incep-
tionV3 has particularly grown in popularity in the field.

b: EFFICIENTNETV2
EfficientNetV2 is an image classification model which builds
upon the success of the previous EfficientNet models. It intro-
duces several new components to make the model more
compact and faster to train [45]. The general Efficient-
Net structure is made up of a stem, a series of repeating
blocks, and a head. However, EfficientNetV2 incorporates
new concepts, such as the ‘‘Squeeze-Excite’’ block and
‘‘Conv-BN-Act’’ block. It also contains a new type of reg-
ularization called the ‘‘Stochastic Depth’’ along with a new
scaling method called ‘‘Compound Scaling.’’ The key blocks
are explained below:

• The ‘‘Squeeze-Excite’’ block that makes the model
focus on the most important features. It has two
main components: a squeeze operation that decreases
the dimensionality of the input tensor and an excita-
tion operation that selectively enhances the important
features.

• The ‘‘Conv-BN-Act’’ block, consisting of a convolu-
tional layer followed by batch normalization.
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• ‘‘Stochastic Depth’’ is a type of regularization that ran-
domly drops some of the blocks during training, which
helps prevent overfitting.

• ‘‘Compound Scaling’’ is a scaling method that allows
the model to be scaled efficiently across multiple dimen-
sions such as depth, width, and resolution. It helps in
creating smaller and more efficient models that can per-
form equally as well as more complex models.

Overall, the EfficientNetV2 architecture improves upon
previous models by increasing in efficiency and speed whilst
decreasing in size. Despite the reduction in size, the architec-
ture is still able to achieve noteworthy performances on image
classification tasks.

c: VGG-16 AND VGG-19
Both VGG-16 and VGG-19 were introduced in the
paper [46], that proposed these two models which have a
simple architecture yet different from most popular transfer
learning models.

Trained on the ImageNet dataset, VGG16 consists of
16 layers which inspires the name. It contains 13 convolu-
tional and 3 fully connected layers used for classification. The
novelty of the algorithm lies in its use of a small receptive
field during processing, which means using filters of smaller
sizes with a smaller stride. This is for both convolutional and
max pooling layers.

Similarly, the VGG19 architecture consists of 19 layers,
this time with 16 convolutional layers instead of 13. Each
of the convolutional layers are grouped into 5 groups, with
max pooling layers in between. VGG19 adds an extra convo-
lutional layer to each of the last three groups as comapred
to VGG16. Both architectures proprosed in the paper are
characterized by their small receptive fields which allow the
model to identify and learnmore complex features.Moreover,
the VGG set of models are designed to be simple and avoid
unnecessary computation using layers like batch normal-
ization. However, it still prevents overfitting by using max
pooling layers after every group of convolutions to reduce the
size of the feature maps.

d: MOBILENETV3LARGE
The MobileNetV3 is a family of lightweight convolutional
neural networks designed for mobile applications [47]. It uses
an inverted residual structure made up of a stem layer and
several bottleneck layers. Each bottleneck layer uses a single-
ton pointwise convolutional layer, followed by a depth-wise
convolutional layer, and another singleton point-wise con-
volutional layer. The MobileNet architectures make use of
hard swish and squeeze-and-excitation techniques to boost
performance and improve efficiency. The model achieves
SOTA performance on several image classification tasks
while still keeping its model size small and computational
costs low. In fact, [47] boasts about a 25% faster detection
for MobileNetV3 while matching MobileNetV2’s accuracy,
showing the impact of the latest MobileNet version.

e: RESNET152V2
ResNet152V2 is an extension of the original ResNet archi-
tecture [48]. It has a very deep architecture consisting of
152 layers with residual blocks, and shortcut connections that
improve gradient flow through the network. These shortcut
layers work to resolve the vanishing gradient problem. It is
designed to also minimize the effect of degradation or the
reduction of accuracy when a network is deeper. The residual
blocks in ResNet152V2 are made up of a group of convolu-
tional and batch normalization layers. In the residual block,
the shortcut connections skip one or more convolutional lay-
ers and directly connect the input to the output, preserving the
input information. The use of shortcut or skip connections
is the primary characterization of the ResNet architecture,
which allows for the use of deeper neural networks with-
out exploding or vanishing gradients, leading to improved
performance.

2) TRANSFORMER-BASED MODELS
Transformer based models [49] are based on the ‘‘self-
attention mechanism’’ which allows them to produce a
representation of different positions of the input sequence.
They adopt an encoder-decoder architecture, with blocks of
replicated layers in each half. The encoder maps an input
sequence into a sequence of hidden states based on the
sequence embedding and the positional encoding of the data.
Each layer of the encoder has two sub-layers: a multi-head
self-attention mechanism and a position-wise fully connected
feed-forward network. The self-attention mechanism allows
the model to learn from a longer range of the input sequence,
while the feed-forward network generates a sequence of out-
put tokens by acting as a non-linear transformation to each
position in the sequence. The decoder operates on the output
of the encoder, and attempts to generate the sequence one
token at a time. It uses a stack of redundant layers and a self-
attention layer. The multi-head attention mechanism in the
decoder helps the model to focus on the relevant parts of the
input sequence for each output token. Both the encoder and
decoder layers are connected with residual connections and
layer normalization.
Vision Transformer (ViT): The ViT is one of the most

popular transformer models for image classification. The ViT
architecture [50] is based on the idea that an image can be
represented as a sequence of flattened 2D patches, and that
these patches can be treated as a sequence of tokens that can
be processed by a transformer network. The ViT architecture
consists of several layers of transformers. To adapt the ViT
model to images, the input image is first divided into a
grid of fixed-size patches, and each patch is flattened into a
vector. These flattened patches are then taken as a sequence
of tokens, which are fed into the transformer layers. The first
token in the sequence is always an embedding representing
the entire image. For image classification, the ViT architec-
ture uses a classification head to map the output of the final
transformer layer to a set of class probabilities.
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In our implementation, we use the ViT pre-trained self-
attention layers followed by the following hyperparameters:
A single dense layer with 1024 neurons and ReLU activation,
a dropout layer with a dropout rate of 0.3, and an output layer
of 9 neurons with softmax activation for classification. The
model was trained with Adam optimizer with a learning rate
of 0.001.

3) CLASSICAL MACHINE LEARNING ALGORITHMS
Several classical machine learning algorithms were used to
classify the images based on the features extracted from
the best performing deep learning model, as explained in
the pipeline. This is better illustrated in Fig. 3, where the
input images of any class is sent to the ViT model, which
provides a feature vector of size 1024. This feature vector
is used as an input for different classical machine learning
models for classification. Hence, this essentially replaces the
dense layer classifier at the end of ViT with a classical ML
algorithm. For comprehensive testing, we employ a variety of
methods. In particular, we explore Decision Trees, K-Nearest
Neighbors, Naive Bayes, Support Vector Machines, Logistic
Regression, Random Forest, Gradient Boosting Classifiers,
and AdaBoost.

FIGURE 3. The general pipeline for applying the classical ML algorithms.
First, the input images are taken and feature vectors are extracted from
them using the ViT model. Then, these feature vectors are fed into
classical ML algorithms.

The input of each of these classifiers will be the feature
vector, obtained from the output of the final layer in the deep
learning model. This allows us to use the feature extraction
of the deep learning model, and thus classifying the image
based on the separation of the feature space. We perform
10-fold cross validation testing to accurately compare the
performance of each of the models and use these classical
machine learning models’ performance to comment on the
usefulness of the extracted features by the best model. This
includes examining the t-Distributed Stochastic Neighbor
Embedding (t-SNE) projection of the feature space and the
separation of the different classes to explain the performance
of the classical machine learning models.

C. APPLYING EXPLAINABLE AI TECHNIQUES
In the medical domain, model prediction explainability and
interpretability are necessary in assisting clinical research and
decision making. The primary issue with endoscopy is that
it requires a doctor or trained nurse to constantly watch the
video feed for up to 30 minutes to observe any anomalies

in the patients body. Having an intelligent machine learning-
driven system that complements the doctors findings can be
beneficial in uncovering otherwise hidden ailments. How-
ever, the lack of explainability of most deep learning models
makes them unsuitable for implementation in the medical
field. Hence, eXplainable AI (XAI) techniques have been
developed to provide explainability to deep learning models
to semantically understand the criteria they use for classifica-
tion, which improves trust and reliability of the model.

Typically, there are two main sets of methods to develop
such explainable systems – ante-hoc and post-hoc tech-
niques. Ante-hoc methods incorporate explainability into a
model from the very beginning. Post-hoc techniques gener-
ally make decisions after the model has been trained. In this
study, we apply five of the latest post-hoc machine learn-
ing methods - SHapley Additive exPlanations (SHAP) [51],
Local Interpretable Model-agnostic Explanations (LIME)
[52], Gradient-weighted Class Activation Mapping (Grad-
CAM) [28], GradCAM++ [31], and Layer-wise Class
Activation Mapping (LayerCAM) [53]. Fig. 1 in the intro-
duction provides the reader with the general XAI pipeline
and experimental structure used in this paper. The model
itself and its predictions are fed into both categories of XAI
techniques (Feature-based and Propagation-based), resulting
in the feature importances and the heatmaps.

As endoscopic imaging belongs to the risk-sensitive field
of medicine, it is not adequate to provide global explana-
tions of the model’s decision making. Each patient requires
diagnosis and localization on a local level. For that, the
XAI methods that would provide case-specific explanations
were used. In addition, model-agnostic technique with post-
hoc implementation level were considered for generalization
purposes. As a result, we applied three different XAI meth-
ods, two of which are feature based; SHAP [51] and LIME
[52], and a third which is propagation-based, GradCAM [28].
Other close XAI techniques include rule-based methods such
as Anchors [54], Bayesian Rule Lists (BRL)s [55], and Gen-
eralized Additive Models (GAM)s. Nonetheless, we argue
that Anchors follow a very similar approach to that of LIME
as both provide explanations through a local region in the
feature space, however, anchors follow a slightly different
procedure by generating if-then rules while LIME relies on
a linear model around an instance [56]. On the other hand,
GAM and BRL do not provide local-level explanations. It is
worth mentioning that GradCAM has different variances and
thereby we decided to analyze our images using GradCAM,
GradCAM++, and LayerCAM for illustration purposes.

The following subsections detail each of the XAI tech-
niques used for the purposes of this study.

1) LIME
Local Interpretable Model-agnostic Explanations or LIME
was proposed by in Ribeiro et al. and colleagues [52],
to explain the predictions of any classifier or regressor by
approximating it locally with some interpretable model.
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FIGURE 4. Explainable AI (XAI) Approaches considered per model,
divided into feature-based, rule-based, propagation-based, and other
approaches.

Consider the blackbox AI model to be explained as a
function f that maps Rd

→ R. So, the probability that an
input x belongs to a particular class is denoted by f (x). Now,
from a class G of potentially secondary models, consider
g ∈ G to be a possible explanation of the prediction made
by f . We define a function πx(z) to represent the proximity
of x to an instance z. The unfaithfulness of the prediction by
our model g in the region within πx(z) is then denoted by
L(f , g, πx). By definition, LIME then evaluates an explana-
tion based on the following equation:

explanation(x) = argming∈GL(f , g, πx) + �(g) (1)

An important point to note is that �(g) here is simply a
measure of the complexity and not the interpretability of the
explanation. Hence, an optimal explanation would require for
us to minimize L whilst keeping �(g) as low as possible for
faster computation.

LIME is algorithmically implemented within five main
steps.

1) A data point ‘x’ is selected from the original dataset
2) A synthetic dataset is then generated through sampling

the original dataset and artificially producing instances,
both close and far to the desired data point x

3) Model is run on the new perturbed dataset to make
predictions

4) We assign weights to each feature based on proximity
to data point x

5) A surrogate model is used to approximate the model in
the region of the selected point x.

The choice of the model is implementation specific and
depends on the nature of the dataset.

2) SHAP
Shapley Additive exPlanations (SHAP) is another XAI tech-
nique that provides interpretability of the model. According
to [51], SHAP is based primarily on the concept of Shapley
values, an important concept in Game Theory. Shapley values
calculate the average marginal contribution of some feature
f towards a model’s score. The advantage of using Shapley

values is that it is a black-box model agnostic technique,
which means that the technique works independently from
the model it is assigned to. On that basis, with just the inputs
and outputs, we can examine the feature contributions and
draw conclusions on the data. What makes SHAP a popular
algorithm choice, is its capability to explain the output of
a model by attributing importance to each feature, whilst
also taking into account the interactions between the features
themselves.

Using coalitions, we are able to compute the Shapley val-
ues of each feature for a data instance x, as predicted by
a model f . The actual Shapley value itself is the average
marginal contribution of a feature.

The interpretability of SHAP values are computed through
the importance values of each feature for local predictions.
In general, the SHAP method calculates the results for 2n
combinations of pixels within an image and the model’s pre-
diction - where n is the number of pixels. Nonetheless, given
that images come with a huge number of pixels n, SHAP
relies on Shapley sampling values method to approximate
estimations for each feature attribute [51].

3) GRADCAM AND GRADCAM++

Another post-hoc explainability method used is the Gradient-
weighted Class Activation Mapping (GradCAM) technique
proposed by [28]. GradCAM is focused primarily on com-
puter vision, whereas SHAP and LIME can also be applied to
tabular and textual data. Built as an improvement to the origi-
nal CAM technique proposed by Zhou et al. and authors [57],
GradCAM is suitable for more complex CNN architectures
with connected layers. The layer used for making predictions
is the final convolutional layer of each of the models to be
tested as they have the most discriminative features. As seen
in Fig. 5, a heat-map is generated, highlighting areas that the
model considers relevant to the final prediction.

FIGURE 5. Original image from Foreign Body class, along with the
generated heat-map from GradCAM and GradCAM++

A crucial limitation of GradCAM is its inability to prop-
erly identify objects in an image if the image has multiple
occurrences of the same class. In the Kvasir-capsule dataset,
multiple occurrences are not uncommon and hence any
improved explainability is beneficial. GradCAM++ was
developed to account for such limitations [31]. Though they
are both based on the CAM architecture, the techniques used
by GradCAM and GradCAM++ are different. GradCAM
generates visual explanations by computing the gradient of
the output class score with respect to the feature maps of the
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last layer of the model. GradCAM++ takes this a step fur-
ther by also computing the second-order gradients to capture
more fine-grained information about the feature maps. The
fundamental difference in all 3 models lies in the way the
weights are calculated and the inclusion of backpropagation
in GradCAM and GradCAM++.

According to the authors, Y c represents the score of a
particular class c. wck denotes the weights for a particular
feature map Ak and class c. Then, using the equation below,
we can calculate the area of interest Lc in each location in the
location (i, j) as follows:

Lcij =

∑
k

wck ∗ Akij (2)

As each location (i, j) directly correlates to the map Lcij,
we can thus obtain a heatmap indicating how the black boxAI
model made the prediction. The fundamental difference in the
models are the way the weights, are calculated and the inclu-
sion of backpropagation in GradCAM and GradCAM++.

4) LAYERCAM
In [53], the authors proposed a more advanced version of
GradCAM called Layer-wise CAM (LayerCAM). Unlike
GradCAM which only uses the final convolutional layer,
LayerCAM uses multiple convolutional layers to generate the
class activation maps. Furthermore, LayerCAM also attempts
to spatially weight the activations by positive gradients solely.
It computes the weighted sum of GradCAM maps from
several intermediate layers of the CNN. Since the last con-
volutional layer tends to have a lower spatial resolution than
the previous layers, the inclusion of multiple layers improves
the accuracy of the algorithm by several orders of magnitude.

Let the image classifier be denoted by a function f for any
parameter θ . The following equation then predicts a target
score yc when some image I is inputted into the function f

yc = f c(I , θ) (3)

Assuming the black box model being explained is a CNN,
let the feature maps of the convolutional layers be denoted
by A. For a network with n layers, the ith feature map can
be obtained by Ak . Similar to GradCAM, LayerCAM also
includes the derivatives of the prediction score obtained [53].
So for any feature map Ak , we can obtain the gradient at any
point of interest (i, j) by the following equation:

gkcij =
∂yc

∂Akij
(4)

The weight now assigned to the chosen point of interest
can be represented as:

wkcij = ReLU(gkcij ) (5)

In order to produce a heat-map for any layer, we obtain the
class activationmap bymultiplying the weight in the equation
above with each point of the feature map [53].

Âkij = wkcij A
k
ij (6)

In order to produce the final heat-map of the image passed,
we find the class activation map by simply finding the linear
combination of the values obtained in Ak . The equation below
represents the final expression:

M c
= ReLU(

∑
k

Âk ) (7)

Thus, the XAI techniques explained above are used in this
work in order to provide explainability and interpretability
to the deep learning models considered in this work and
enhance their reliability and acceptance among physicians
and healthcare professionals.

IV. RESULTS AND DISCUSSION
A. PHASE 1
In this section, the results of applying the following
transfer learning models are presented: InceptionV3, Effi-
cientNet, VGG16, Vision Transformer (ViT), VGG19,
MobileNetV3Large, and ResNet152v2. K -Fold Cross Vali-
dation Was conducted with K = 10 for each model. The
F1-scores, accuracy, precision and recall scores, along with
the confusion matrix for each of the models were obtained.
Since the F1-scores are the primarymetrics to explain the per-
formance of the model, the distribution of F1-scores across
the 10-Fold CV was explored. Table 5 shows the average
and standard deviation of the F1-scores across the 10-Folds
of cross validation for all the models applied in this work.
A more visual representation of the distribution of F1-scores
can be seen in a box-plot of the distribution of 10 F1-scores
per model in Fig.6.

TABLE 5. Average and standard deviation of F1-scores across 10 folds of
Cross Validation.

We can see that across 10-fold CV, EfficientNet, VGG16,
ViT, MobileNetV3Large, and ResNet152V2 all boast
F1-scores of higher than 0.90, with ViT performing the best
with 0.97±0.01. On the other hand, InceptionV3 and VGG19
perform the worst with F1-scores significantly lower than the
other models.

Since InceptionV3 and VGG19 performed poorly on this
dataset, they were dropped from the plot leaving the top 5
models to be examined as in Fig.7. As can be seen, the top 5
models performed exceedingly well, achieving an F1-score of
over 90% consistently, with some achieving F1-scores of over
95% too. The distribution of the top 5 models were examined
further.

We observe that ViT and MobileNetV3Large have the
highest median performances which are well over 96%
F1-score. Moreover, as shown in Table 5, ViT has one of the
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FIGURE 6. Box-plot showing statistical distributions of the F1-scores for
all deep learning models tested.

FIGURE 7. Box-plot showing statistical distribution of the top
5 performing models’ F1-scores.

lowest standard deviations of F1-score across the 10 folds,
which indicates a stable model. In fact, other models such
as EfficientNet and ResNet152v2 have also low standard
deviations of F1-scores which indicate stable models as well.

To further confirm whether all the models tested have
statistically different distributions, we first perform the
Kruskal-Wallis test to test whether all distributions have sim-
ilar medians (Mi = Mj i, j = 1, . . . , 7). The Kruskal-Wallis’

p-value is 0.0000which allows us to reject the null hypothesis
that all the distributions are equal. Hence, we employ all
pairwise tests using the Wilcoxon Signed-Rank test with the
hypotheses:

H0 : Mi = Mj, i ̸= j ∈ {1, . . . , 7}

Ha : Mi ̸= Mj, i ̸= j ∈ {1, . . . , 7}

where Mi is the median for the F1-score distribution of
model i. This test allows us to examine exactly which dis-
tributions differ from each other by performing a pair-wise
comparison between every pair of models to confirmwhether
they have an equal median or not. The column ‘‘Statistically
Different?’’ allows us to determine which models are sta-
tistically different from each other. If H0 is rejected, then
that means that the distributions are statistically different.
Otherwise, (False) means that we fail to rejectH0, suggesting
that the models’ distributions are not statistically different
from each other. Fig. 6 shows clearly that VGG-19 and Incep-
tionV3 perform poorly when compared to the other models.

In table 6, the Wilcoxon Signed-Rank Test is performed
with the top 5 models. It can be noticed that ViT always leads
to the null hypothesis being rejected. Examining the boxplot
shows us that it is because ViT has a superior performance
compared to the other models. Hence, the Vision Transformer
is the best model for solving the problem.

TABLE 6. Pair-wise comparison of distributions for top 5 models using
Wilcoxon Signed-Rank Test.

We examine the average confusion matrix and classifica-
tion report for the ViT across the 10 folds of testing to gain a
better insight into its successes and points of failure. Table 7
shows the precision, recall, F1-Score of the ViT model along
with the number of instances in each class during testing in
each iteration of K-Fold (support). The support of 450 shown
for accuracy, macro average, and weighted average shows
that they are taken over all 450 images in the testing data.

The corresponding confusion matrix for the model can be
seen in Fig. 8. The value in each cell indicates the percentage
of instances classified correctly from that class.

As seen in the classification report presented in Table 7, the
ViTmodel achieved a macro average precision, recall, and F1
score of around 97% across all the 10 folds, which indicates
the success of the ViT in classifying the images. Further
examination of the confusion matrix shows that it is able to
classify all classes correctly, with only very rare confusions
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TABLE 7. Complete model metrics for ViT, including the metrics per-class
and the overall macro and weighted scores (For Precision, Recall, and
F1-score).

FIGURE 8. Confusion matrix of percentage of predictions of each class
across 10-fold cross validation for ViT Model.

with other classes since all the percentages are very close to a
100%. It seems Erosion and Angiectasia classes are the most
confused with other classes, since the model only got 94.19%
and 95.08% of them correctly, but the misclassifications are
still a rare occurrence.

Based on the achieved results, it can concluded that ViT
has been conclusively shown to be the best model. Looking
at ViT architecture, it can be noticed that the main difference
between ViT and the other CNN methods used is the features
extracted by the transformer layers with the multi-head self-
attention. Thus, the idea of using the features extracted by
ViT as input to some classical machine learning models to
classify the diseases was explored. Hence, a series of machine
learning models trained with the features extracted from ViT
were tested. The goal of such testing is to better understand
the usefulness of the extracted features from ViT. The models

FIGURE 9. Box-plot showing the distribution of F1-scores for each of the
ML models used.

TABLE 8. Results of GridSearch for best 3 performing models, showing
best parameters for each.

tested are: Decision Tree, Random Forest, KNN, XGB, Naive
Bayes, SVM, Logistic Regression, and AdaBoost. 10-fold
cross validation was performed. The box plot of the distri-
bution of the F1-scores of the machine learning models is
presented in Fig. 9.

As in Fig. 9, we can easily see Logistic Regression, KNN,
SVM, and Random Forest perform significantly better than
the rest. We can examine these 4 best models more closely as
in Fig. 10 to see that they all achieved an F1 score over 90%
and in this case are comparable to the results obtained through
deep learning. In fact, Logistic Regression and SVM perform
as well as the ViT model with dense layers for classification.

We will take the top 3 best performing models and per-
form GridSearch to hypertune the parameters. In this case,
we are referring to Logistic Regression, SVM and KNN.
When running GridSearch, we obtain the following tuned
hyperparameter results, shown in Table 8.

Observing the high performance of classical machine
learning models using the features extracted by the vision
transformer, indicates that the features extracted are of high
quality and separate the data well. This can be examined by
viewing the distribution of the extracted features, using a high
dimensional visualization technique called t-SNE, as done in
Fig. 11. Viewing the data in two dimensions provides us with
a better understanding of how each class is separated in the
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FIGURE 10. Box-plot of F1-score distributions for only the ML models
that achieved an F1-score above 90%.

TABLE 9. Clustering metrics.

high dimensional space. This can be clearly seen in Fig. 11
since the different colors (different classes) are well separated
and in distinct clusters.

Clearly, the features form distinct clusters based on the
class, which is why even simple models such as logistic
regression performs exceedingly well. However, there is still
slight overlap between a few classes. This may explain why
random forest performs slightly worse than logistic regres-
sion and SVM, but still achieves over 90% F1-scores. The
high performance can be attributed to the feature space being
well separated, allowing it to easily segment the space into the
different classes. Moreover, this is also why simple methods
such as KNN perform exceedingly well since the data is
already highly clustered based on the classes.

Examining the clusters quantitatively, we use three
metrics - Silhouette Score, Calinski-Harabasz Score, and
Davies-Bouldin Score to help determine how well different
clusters are separated, mostly based on the inter-cluster and
intra-cluster distances. As in Table 9, we see the data is well
separated in the latent space.

As can be seen in Table 9, the silhouette score is close
to 0 which indicates that the decision boundaries are rela-
tively close to each other. This is likely because one class
spans multiple clusters which are far apart. Hence, this metric
may seem misleading when used individually. The Davies-
Bouldin Score is fairly low, which indicates good clustering

between similar clusters. The Calinski-Harabasz Score is
high, which indicates well separated and dense clusters.
Hence, the ViT features performs useful feature extraction
which is why most of the classical machine learning models
perform so well.

Based on the experiments performed in Section IV-A, it can
be concluded that ViT performed better that the rest of the
deep learning models explored. Moreover, the use of the
features of ViT with machine learning models have also been
examined which have also proven to be successful. However,
despite clustering analysis of the extracted features of ViT,
the models are still not explainable due to the nature of the
feature extraction fromViT, which is the issue to be addressed
in Section IV-B.

B. PHASE 2
This section covers the results from the various XAI tech-
niques. Fig. 4 summarizes the different approaches based on
the model usage and the XAI methods implemented in this
paper.

1) FEATURE-BASED EXPLANATIONS
SHAP values and LIMEmethods, as feature-based XAI tech-
niques, are by far the most comprehensive and dominant
across XAI methods for visualizing feature interactions and
feature importance [58]. In this section the results of applying
both SHAP and LIME methods on a variety of endoscopic
images are presented and discussed.

a: SHAP
In this section, the results of applying SHAP on the dataset of
endoscopic images are presented. Fig. 12 shows the SHAP
results on the erosion and ulcer classes respectively along
with the highest three predictions. The results showed that
SHAP values provided clear explanations for many classes
within endoscopic images. The red pixels represent features
that contribute towards the corresponding prediction, whilst
the blue pixels represent the features that do not contribute to
the prediction.

SHAP provides adequate explanations in many classes
with notable areas of distinction. However, it fails to pro-
vide reasonable classifications for classes with more complex
inputs (See Fig. 13). SHAP’s approximations result in a
reduction in the input images’ quality. Hence, it reduces
SHAP’s ability to effectively interpret models’ results. It also
clears out an area of improvement as both the classifications
in Fig. 13 are, in fact, incorrect. Both images belong to the
foreign body class, whilst it is predicting them as ‘‘Ileoce-
cal Valve.’’ SHAP clearly shows that the model considered
foreign body as the third and second highest probabilities
respectively, yet it was unable to detect regions of interest to
support this prediction.

b: LIME
In this section, the results of applying LIME on the dataset of
endoscopic images are presented. Fig. 14 shows LIME results
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FIGURE 11. tSNE map showing the clustering of classes when projected onto a 2-dimensional plane. Classes are indicated according
to their color.

FIGURE 12. SHAP results on three highest predictors for Erosion and
Ulcer classes.

on Lymphangiectasia, Pylorus, and Foreign Body classes
respectively.

As evident, LIME provided more sensible explanations
to the model predictions in many cases, especially for the
ForeignBody class, which SHAP could not explain. Nonethe-
less, LIME could easily miss out on important features,

FIGURE 13. SHAP results showing inadequate predictions. Input images
are both under ‘‘Foreign Body’’ class, but SHAP cannot identify regions of
importance.

since the surrogatemodel may produce inaccurate generaliza-
tions [28]. A good indication of this inaccurate generalization
can be seen in some of the sample images (case 1 and case 2)
in which the black edges of the endoscopic images are con-
sidered important for classification.

This can be clearly seen in many cases in which LIME
considers the black edges of endoscopic images as important
(See case 1 and case 2 in Fig. 14), which is a limitation in
LIME technique.

2) PROPAGATION-BASED EXPLANATIONS
Propagation-based explainers such as GradCAM are
improved versions of class activation maps (CAMs) that aim
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FIGURE 14. LIME interpretations for Lymphangiectasia, Plyorus, and
Foreign Body. For the first and second images, LIME interprets regions in
the top right of the images (green and red respectively) as important,
although they are camera faults.

to reduce the time complexity of the latter. As this study
utilized a ViTmodel with no convolutional layers, we decided
to fit the last token computed in the very last attention layer of
the model. This is a safe assumption as the gradient of the out-
put will remain zero along the channels in the last layer [59].
GradCAMweighs the 2-d activations by the average gradient
to generate an image for the selected features. Two variants
of GradCAM were also tested for comparison purposes
which includes GradCAM++ and LayerCAM. Fig. 15 shows
GradCAM results on three different classes: Ulcer, Reduced
Mucosal View, and Foreign Body respectively.

From the results obtained, we noticed that GradCAM with
the first order of gradients produces the best results for the
dataset. Further, GradCAM showed the best overall results
across all three XAI methods implemented. This can be
clearly observed with troublesome classes such as Ileocecal
Valve. Fig. 16 shows a comparison between the three differ-
ent XAI techniques results on the class of Ileocecal valve.
As discussed earlier, these important areas are highlighted
based on the features obtained after training the ViT model in
the case of LIME and SHAP. On the other hand, GramCAM
method depends on the back propagation weights obtained
from the last prediction layer of the model to generate a
heat map highlighting the important areas. A more detailed
description of the procedure followed for each technique can
be found in III-C.

In general, propagation-based models tend to extract better
visual explanations from neural networks as the weights of
the last output layer of the feature map tends to carry more
information about the important regions within an image.

FIGURE 15. Given an input image, the GradCAM, GradCAM++ and
LayerCAM interpretations and results showing regions of importance.

FIGURE 16. For the Ileocecal Valve class, the interpretations of three
variants of XAI techniques, namely SHAP, LIME and GradCAM and their
regions of importance.

This indicates that we expect GradCAM to remain superior
to other explanatory methods regardless of the domain of the
problem at hand. Nevertheless, when the model use does not
utilize a back-propagationmechanism like decision trees or k-
nearest neighbours, a mathematical approach such as SHAP
and LIME techniques is the only way to go. Additionally,
One limitation of GradCAM is that it fails in the localization
of objects with multiple occurrences of the same class [60].
Consequently, the quality of GradCAM results can be highly
reduced in details dense applications such as bacterial micro-
scopic images.

V. CONCLUSION
In this paper, different deep learningmodels were applied on a
dataset of endoscopy images, from which the top 9 classes in
terms of the number of instances we extracted. In summary,
the images were first processed through state-of-the-art DL
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models, with the results showing that the Vision Transformer
(ViT) achieves the most promising outcome with an aver-
age accuracy as high as 96.8% and an F1-score of 97%.
The performance of different surrogate classifiers were fur-
ther investigated using the last feature maps of the vision
transformer as an input. The results showed that logistic
regression, KNN, SVM, and Random Forest all managed to
achieve an average F1-score above 90% where both logistic
regression and SVM achieved results as good as that of ViT
dense layers. Finally, a thorough comparison between three
variants of XAI techniques that can be used in the field of
endoscopic imaging were provided. It can be concluded that
GradCAM yielded the best outcome across all three methods
due to its mechanism of relying on the back-propagation
gradients.

The work presented in this paper show the promise of
using ML and DL models for the purposes of medical diag-
nosis. In fact, this is particularly evident through our highest
accuracy of 96.8%, showing a clear trend of increased reli-
ability within such models. Especially within the field of
medicine and more specifically for WCE images, this paper
helps to promote the reliability of DL models, as verified
and demonstrated further through the implementation ofXAI.
However, it is important to note the limitations of using
machine intelligence for complete diagnosis, since even a
small margin of error as little as 3% can cause a significant
misdiagnosis.We aim to continue improving the performance
of DLmodels in the future. Other future work includes verify-
ing the interpreted XAI results through medical practitioners
in the field. This could include a verification process that
authenticates whether a highlighted region of importance by
the model actually identifies a GI tract disease, which can
further improve upon our study. Collaborative efforts between
ML experts and medical professionals will not only improve
the reliability of such studies, but can also work towards the
end-goal of full implementations within practice. We also
strongly encourage researchers to look further into XAI for
other medical applications, especially for screening and clas-
sification purposes.
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