
Received 17 August 2023, accepted 6 September 2023, date of publication 25 September 2023,
date of current version 12 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3318931

DSA-BEATS: Dual Self-Attention N-BEATS Model
for Forecasting COVID-19 Hospitalization
AMIRHOSSEIN MOTAVALI 1, KIN-CHOONG YOW 1, (Senior Member, IEEE),
NICOLE HANSMEIER2, AND TZU-CHIAO CHAO 3,4
1Faculty of Engineering and Applied Sciences, University of Regina, Regina, SK S4S 0A2, Canada
2Department of Biology, Luther College, University of Regina, Regina, SK S4S 0A2, Canada
3Institute of Environmental Change and Society, University of Regina, Regina, SK S4S 0A2, Canada
4Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada

Corresponding author: Kin-Choong Yow (kin-choong.yow@uregina.ca)

This work was supported by the Health Canada’s COVID-19 Safe Restart Agreement Contribution Program.

ABSTRACT The high number of hospitalization cases of COVID-19 made public health providers over-
loaded. Forecasting the number of hospitalized patients related to COVID-19 can help public health providers
make informed decisions for controlling the spread. In this study, we present the Dual Self-Attention
NBEATS (DSA-BEATS) model, a novel approach that effectively combines the self-attention mechanism of
transformers with the proficiency of the N-BEATS model in dealing with multivariate forecasting problems.
We expanded the dataset to a multivariate one by including data from Canadian transportation hub cities and
SARS-CoV-2 RNA load in wastewater, which allowed for a more comprehensive modeling of the complex
relationships impacting COVID-19 hospitalizations. These transportation hub cities were the major ports of
entry for international travelers coming to the country. The DSA-BEATS model was tested on a 55-day test
set with a 12-day horizon, resulting in a Mean Absolute Percentage Error (MAPE) of 14.23%, which implies
an accuracy of 85.77%. These results demonstrate substantial improvements over state-of-the-art models
such as N-BEATS and Informer, validating the efficacy of the DSA-BEATS model in accurately predicting
COVID-19 hospitalizations. The study provides a significant contribution to the ongoing development of
enhanced timeseries forecasting methods, particularly in the context of public health crises. The DSA-
BEATS model’s ability to capture complex temporal relationships and effectively handle multivariate data
inputs underscores its potential in a wide range of forecasting tasks beyond the COVID-19 pandemic.

INDEX TERMS N-BEATS, self-attention, forecasting, wastewater, transportation hubs, COVID-19.

I. INTRODUCTION
The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the causative agent of the Coronavirus disease
2019 or COVID-19, has spread worldwide causing about
650million reported cases andmore than 6million deaths [1],
[2]. Throughout the pandemic, healthcare services were fre-
quently interrupted by overwhelming numbers of additional
COVID-19 patients, indicating the need for models to fore-
cast hospital admissions [3]. The forecasting of COVID-19
hospitalization cases is a critical task that enables healthcare
providers and policy-makers to effectively plan and allocate
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resources. Accurate and timely predictions can assist in man-
aging hospital capacities, optimizing staffing, and informing
mitigation strategies, all of which contribute significantly
to controlling the disease’s impact on health systems and
societies. Traditionally, timeseries forecastingmodels such as
Autoregressive IntegratedMoving Average (ARIMA) [4] and
its variants have been used for this task.Machine learning and
compartmental models are the most popular baseline fore-
casting approaches for hospitalization predictions, according
to the Centers for Disease Control and Prevention (CDC) [5].
For example, Rodríguez et al. [6] incorporated COVID-19
data as timeseries and built a neural network architecture for
forecasting. Along with the COVID-19 timeseries data, they
also used mobility information as inputs to their network. In a
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model developed by Jin et al. [7] attention and transformer
methods were used for forecasting and the inputs were past
COVID-19 trends. On the other side, researchers such as
Park [8] modified a standard Susceptible-Exposed-Infective-
Recovered (SEIR) model to aggregate different variables
including mobility, transportation, and spatial-temporal to
capture COVID-19 dynamics and eventually forecast hospi-
talizations. Wang et al. [5] used statistical and data-driven
models for hospitalization predictions that use COVID-19
public search (internet search) information as inputs to the
model.

A. PROBLEM DEFINITION
More recently, machine learning-based methods have started
to gain traction due to their ability to model complex patterns
and dependencies in the data. Among these, the Neural Basis
Expansion Analysis for Timeseries (N-BEATS) [9] model,
a feed-forward neural network specifically designed for
timeseries forecasting, has shown impressive performance.
However, despite its strengths, N-BEATS is not without
its limitations. Specifically, the model does not inherently
account for interdependencies within the timeseries data,
making it potentially less effective at capturing complex tem-
poral dynamics. This is a notable challenge in the context
of COVID-19 hospitalization forecasting, where temporal
dependencies (e.g., the effects of transportation and variant
spread) play a crucial role. On the other hand, attention-based
models, such as the Transformer, effectively capture these
dependencies via self-attention mechanisms, thereby provid-
ing context-aware predictions. However, they often struggle
with capturing long-term dependencies and trends, an area
where N-BEATS excels.

To address these issues, this study proposes to augment the
N-BEATSmodel with a Dual-Self Attention mechanism. The
intent is to harness the interpretability and trend-capturing
capabilities of N-BEATS while leveraging the context-aware
forecasting ability of attention mechanisms. By merging
these complementary strengths, we aim to enhance the accu-
racy and robustness of COVID-19 hospitalization forecasts.
In this study, we operationalize our problem as follows: Given
a sequence of historical COVID-19 hospitalization data from
a region and the major transportation hub cities, our goal is
to forecast future hospitalization cases of the region using
an N-BEATS model augmented with a Dual-Self Attention
mechanism. Themodel’s performancewill be evaluated using
common error metrics and compared with traditional and
state-of-the-art forecasting models. Furthermore, to prove
the efficiency and effectiveness of our proposed approach,
we will conduct an ablation study. In this analysis, the predic-
tive performance of the original N-BEATSmodel, the original
Transformer model, and our proposed N-BEATS with Dual-
Self Attention will be compared. This comparative study will
shed light on the relative contribution of each model compo-
nent to the predictive performance, thereby quantifying the
added value of the proposed dual-self-attention mechanism.

Ultimately, we seek to develop a tool that provides more
reliable, effective, and context-aware predictions to support
decision-making in healthcare during the ongoing pandemic.

B. MOTIVATION
Accurate and timely forecasting of hospitalization cases is
crucial for optimizing resource allocation, planning patient
care, and informing public health policies. Traditional time-
series forecasting models, although effective in certain sce-
narios, may not fully capture the complexities inherent in
pandemic data, which includes temporal dependencies, non-
linear trends, and effects of interventions.

Recent advances in machine learning, specifically deep
learning, have shown promise in timeseries forecasting
tasks, including N-BEATS [9] and Transformer [10] mod-
els. N-BEATS, with its trend-capturing capabilities and
interpretability, and Transformers, with their powerful self-
attention mechanism, each bring unique advantages to
the table. However, they also have their own limitations.
N-BEATS does not inherently account for complex tempo-
ral interdependencies, and Transformers often struggle with
long-term dependencies. In the context of COVID-19 hos-
pitalization forecasting, where both long-term trends and
complex temporal dependencies are vital, a model that
combines these strengths could provide a more robust and
accurate solution.

C. CONTRIBUTIONS
This paper makes several significant contributions toward the
goal of improved COVID-19 hospitalization forecasting:

• Introducing and using a new variable for forecasting
COVID-19 hospitalization:The hospitalization rates of
the transportation hub cities have been used as a new
variable for forecasting the hospitalization rates of a
non-transportation hub city for the first time.

• Proposing a new model: We proposed a novel integra-
tion of N-BEATS and Transformer models, augmenting
N-BEATS with a Dual-Self Attention mechanism. This
unique model combines the trend-capturing learning
abilities of N-BEATS with the context-aware capabili-
ties of Transformers, enhancing both the accuracy and
robustness of forecasts.

• Real-world Dataset and Applicability: Our work
contributed to the real-world challenge of COVID-19
hospitalization forecasting, and by extension, to health-
care resource management during the pandemic. The
proposed model has been applied to a real-world dataset
that is uniquely collected by us and can be utilized
by healthcare providers and policymakers for informed
decision-making, ultimately contributing to better pan-
demic management.

• Ablation Study: We carried out an ablation study
comparing the original N-BEATS model, the original
Transformer model, and our proposed N-BEATS with
Dual-Self Attention. This study illuminates the specific
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contribution of each component and quantifies the added
value of the proposed dual-self attention mechanism.

• Benchmarking Performance: We evaluated the per-
formance of our proposed model against other state-
of-the-art models such as the informer using suitable
error metrics, thereby providing a comprehensive under-
standing of its efficacy in the task of COVID-19
hospitalization forecasting.

Although this study’s focus is on COVID-19 hospital-
ization rate forecasting, our study pushes the frontier of
timeseries forecasting as a general problem, demonstrating
the potential of combining the state-of-art model’s strengths
in tackling real-world forecasting problems. It opens up
avenues for further research into the integration of various
modeling approaches for improved predictive performance.

D. MANUSCRIPT OUTLINE
The rest of the paper is organized as follows: Section II
provides a comprehensive literature review, discussing both
traditional and state-of-the-art methods in timeseries fore-
casting, with a particular emphasis on the N-BEATS and
Transformer models. We also cover existing research on
COVID-19 hospitalization forecasting to give a context
for our work. In Section III, we first delve into our data
augmentation and analysis and then will describe our fore-
casting methodology, based on the N-BEATS model, the
self-attention mechanism, and our proposed integration of
these into a Dual-Self Attention N-BEATSmodel. Section IV
outlines the model configuration and training details as
well as our results, including the comparative performance
of the models and the insights gained from the ablation
study. In Section V, we discuss the implications of our
results and the strengths and limitations of our study. Finally,
in Section VI, we conclude our paper, summarizing our con-
tributions and the potential impact of our work on COVID-19
hospitalization forecasting. The possible directions for future
research are discussed in section VII.

II. RELATED WORK
The task of timeseries forecasting, specifically in the con-
text of epidemiology and health informatics, has been a
vibrant area of research for many years. This literature review
will provide a synopsis of significant traditional and state-
of-the-art models used for this task, with a special focus
on N-BEATS and Transformer models. We will also cover
existing work on COVID-19 hospitalization forecasting to
contextualize our proposed approach.

A. TRADITIONAL TIMESERIES FORECASTING METHODS
Traditional forecasting methods refer to statistical algo-
rithms that are based on mathematical equations and are
commonly utilized for timeseries forecasting [4]. These
methods are relatively simple to implement and interpret, and
they can effectively forecast any timeseries data that does
not change its statistical properties such as its mean and

variance over time (stationary timeseries). However, they are
not well-suited for non-stationary data, and they may struggle
to capture complex patterns or sudden changes in the data.

The most commonly used traditional timeseries forecast-
ing models are ARIMA [11] (AutoRegressive Integrated
Moving Average) and its variants. ARIMA is a traditional
statistical model and is a combination of an Auto-regression
part and a moving average. ARIMA models work best when
there are clear trends and seasonal orders in the dataset.
ARIMA assumes that the timeseries data is stationary, which
may not be the case in many real-world applications.

The parameters of an ARIMA model are selected based
on the characteristics of the timeseries, such as stationarity,
trend, and seasonality. The selection of the parameters is
often done through a grid search or a maximum likelihood
estimation. SARIMA (Seasonal AutoRegressive Integrated
Moving Average) [12] is a variant of ARIMA that includes
additional parameters that account for seasonality in the data.

Regarding the COVID-19 forecasts, studies have used tra-
ditional models to forecast COVID-19 data. For example,
García et al. [13] used ARIMA-based models for forecast-
ing the number of COVID-19-related deaths in Spain. They
tested their model for a short period of time (10 days in
total) and reported an average accuracy of 95% over those
10 days. However, it’s worth noting that their forecast cov-
ered a period where the trend of deaths was smoothly rising
without any sharp changes or even a decline. Also, the num-
ber of COVID-19 death cases tends to be more stable and
predictable compared to variables such as COVID-19 hos-
pitalizations, thereby rendering the application of traditional
models somewhat less challenging.

B. MACHINE LEARNING METHODS
Deep learning technologies, such as neural networks, have
been vital in various fields, including the tracking and control
of COVID-19. For COVID-19 forecasting, neural networks,
including RNNs, CNNs, and Transformer Models, have been
essential [14]. LSTM networks, a variant of RNNs, were
identified as the most used method for COVID-19 forecast-
ing, with 35% of related papers employing them or their
variants [15]. Chandra et al. [16] specifically implemented
multiple LSTM networks to forecast COVID-19 in India
using a sliding window approach as well as a sequence-to-
sequence approach.

Transformer models, known for revolutionizing natural
language processing, are also suitable for forecasting by
treating time-series data as sequences, capturing complex
patterns [17]. Different variants of the transformer model
have been proposed for providing timeseries forecasting
and one of the most widely adopted ones is the Informer
[18]. The Informer models utilize sparse attention transform-
ers as a key feature in their architecture. This particular
design allows them to efficiently extract and understand
long-term temporal dependencies within the data, making
them adept at recognizing patterns and trends that span over
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extended periods. Multiple variants of the Informer model
have been proposed including the tightly coupled convolu-
tional transformer (TCCT) algorithm, Autoformer algorithm,
FEDformer algorithm, Pyraformer algorithm, and Triformer
algorithm [19], each of them designed for a specific problem.

C. INFORMER: A TRANSFORMER-BASED MODEL
The Informer [18] model is a notable advancement in time-
series forecasting, innovating on the original Transformer
[10] model’s structure. While Transformers, known for their
self-attention mechanisms, were initially used for language
translation and text summarization, Informer refines these
principles for time-series forecasting. It introduces a novel
ProbSparse Self-Attention, which activates only key time
steps in the sequences, reducing computational complex-
ity and memory usage. Furthermore, the Informer model
features a Distilling-Informer mechanism, which condenses
long-term historical data into a compact form. This aids in
accurate forecasting by efficiently utilizing crucial historical
information, making the model more adept at handling tasks
requiring extensive historical context.

The Informer model’s merits have been substantiated
through several empirical studies. In the original informer
paper [18] the Informer model is tested against several other
models, including the Transformer model and traditional
models such as ARIMA, across multiple public datasets.
In these comparative analyses, the Informer model consis-
tently demonstrated superior performance. In the context of
COVID-19 forecasting, self-attention mechanisms enable the
model to allocate varying attention levels across different
steps in the input sequence, which can be particularly benefi-
cial for identifying crucial past observations impacting future
predictions. Previous studies have used similar architectures
inspired by the informer or transformer models to forecast
COVID-19. For example, [20] proposed an Interpretable
attention network based on the informer model to forecast
COVID-19 with promising results. Authors in [21] proposed
a method based on transformers to capture short-term and
long-term dependencies within the COVID-19 timeseries.
The model used publicly available COVID-19 data such as
confirmed cases, deaths, community mobility trends, and
demographic information to produce predictions. Similarly,
[22] and [23] developed a deep learning model based on the
transformers for forecasting COVID-19 and their results out-
performed state-of-the-art models. Therefore, deep learning
models based on the transformers have shown their potential
in capturing the short-term and long-term dependencies in
timeseries data which results in accurate forecasting ability.

D. N-BEATS MODEL
N-BEATS is a deep learning-based forecasting model
introduced in 2019 by Oreshkin et al. [9], designed to
overcome the limitations of traditional models, offering a
more flexible and interpretable framework. Unlike RNNs,
it uses stack-propagated feedforward neural networks for

timeseries forecasting and has been shown to outperform
several state-of-the-art models in various datasets, including
energy consumption and temperature data [9], [24].

The N-BEATS network is composed of two sub-networks:
the Backcast and Forecast networks. The Backcast network
is used to generate the history representation and capture
the past information to be projected on the future forecasts,
while the Forecast network takes the history representation
and generates the forecast for a certain number of steps into
the future. Notably, the architecture allows the model to be
trained using standard backpropagation techniques due to its
full differentiability.

N-BEATS architecture consists of multiple identical
blocks, with each block having a backcast and forecast
path. Each block in the architecture is constructed of fully
connected layers, where each layer is equipped with normal-
ization and activation functions. The backcast and forecast
paths are separate in each block but are built from the same
set of functions learned during the training process. The input
to each block is the residual error between the original input
series and the backcast of the previous block. This residual
input mechanism allows N-BEATS to generate multiple addi-
tive components of the forecast. These blocks are stacked
together, allowing the model to extract and learn complex
temporal patterns at each level. The final forecast of the
N-BEATS model is the sum of the forecasts from all blocks,
allowing for a highly composite and nuanced prediction
output [9], [24].

Previous studies have used the N-BEATS network for
forecasting COVID-19 variables. For example, Papaste-
fanopoulos et al. [25] implemented multiple forecasting
models such as N-BEATS to forecast the number of con-
firmed COVID-19-positive cases, recovered cases, and death
cases in 10 different countries. As they stated in their results,
‘‘a one-size-fits-all approach does not exist’’ but statistical
models prevail over the deep learning counterparts such as
N-BEATS in their experiments. However, the researchers
noted that the lack of large volumes of data for training
deep learning models might have contributed to this finding.
Additionally, it is important to consider the temporal con-
text in which this study was conducted. The data examined
was from 2020, a period when COVID-19 data was limited.
Moreover, the models relied solely on historical data as input,
without any additional features. The absence of additional
input features may limit the generalizability of the findings.
It is thus crucial to replicate this study on more recent and
extensive datasets that incorporate additional input features
to strengthen the generalizability of these findings.

On the other hand, in a study done by Jin et al. [26]
COVID-19 positive cases and death cases in India, the US,
and the UK were forecasted with multiple single variate deep
learning algorithms as well as traditional statistical models.
The authors used only historical data and provided a compar-
ison of the results in which the deep learning models such
as N-BEATS outperform statistical models by far in all of
their experiments. The authors have used the most updated
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data from 2022, but they didn’t include any additional input
features into their models to provide a multivariate forecast.
Therefore, deep learning networks particularly the N-BEATS
can provide more accurate results than statistical models in
forecasting in case the input data is sufficient and suitable.

E. MULTI-VARIATE COVID-19 FORECASTING
Machine learning excels in forecasting disease incidence
by utilizing multiple variables from external sources, unlike
traditional methods that rely solely on historical data. This
approach enables more robust predictions, though the selec-
tion of the optimal input variables continues to be a challeng-
ing area of research interest. For example, Neural networks,
a deep learning algorithm, have been applied to forecast the
number of COVID-19 positive cases. Wieczorek et al. [27]
in their first study developed a complex network of artificial
neurons (ANNs) containing multiple layers and the model
was used to precisely forecast the COVID-19 case count
and spread [28]. Their model considered the geographical
conditions, i.e., location, latitude, and longitude, as input data
and used a dataset extracted from the actual number of cases
of the last two weeks obtained from each region as a training
dataset

Pinter et al. [29] studied a dataset from Hungary to fore-
cast the number of infected people and the mortality rate.
They used a hybrid deep learning approach including a
Multi-layered Perceptron (MLP) and Imperialist Competitive
Calculation (MLP-ICA). The MLP was used as the predictor
in the model while ICA was used as the optimizer. The model
was optimized to forecast for a horizon of nine days and
the results were compared against an adaptive network-based
fuzzy inference system (ANFIS) [30].

In previous studies, wastewater-based epidemiology
(WBE) as a method of tracking the presence of SARS-
CoV-2 RNA in wastewater samples, has shown the ability
to provide an early warning of viral outbreaks in a com-
munity [10]. Therefore, many researchers considered the
wastewater data in their COVID-19 forecasting models to
increase the forecasting accuracy. For example, Ai et al. [31]
used viral (SARS-CoV-2) load and location identity, domain-
specific features like biochemical parameters of wastewater,
geographical parameters of the sewer sheds, and some socioe-
conomic parameters of the community data in multiple deep
learning architectures to provide a forecast for COVID-19
positive cases. Their results showed that those deep learning
models that considered WBE outperformed other forecasting
models.

III. METHOD
In this research, we propose a novel model that combines the
N-BEATS [9] forecasting model with a dual self-attention
mechanism based on the Transformer model inspired by [32]
to forecast the number of COVID-19 hospitalizations. Our
methodology is rooted in leveraging the unique strengths of
each model: the ability of N-BEATS to extract and learn com-
plex temporal patterns of the timeseries, and the capability

of the Transformer model with its self-attention mechanism
to capture intricate long-range dependencies within the data.
The following sections provide a comprehensive explanation
of our unique real-world dataset, the proposed model’s archi-
tecture, the training process, and the performance evaluation
metrics. This innovative integration aims to harness the com-
bined predictive power of these models, offering a robust and
efficient solution to the complexities inherent in forecasting
the volatile nature of COVID-19 hospitalization data.

A. DATASET COLLECTION
During the pandemic situation, the Government of
Saskatchewan, Canada [33] gathered epidemiologic data of
the COVID-19 pandemic in different Saskatchewan (SK) ter-
ritories. The hospitalization counts for the City of Regina, the
capital city of Saskatchewan, are recorded and publicly pub-
lished daily. Therefore, the dataset includes dally hospitalized
cases related to COVID-19 from 2020/08/04 to 2022/02/06.
Our goal is to forecast the number of hospitalization cases in
the city of Regina.

To increase the accuracy of the forecast, in addition to
the hospitalization counts for Regina, the hospitalization
counts of cities such as Saskatoon, Calgary, Ottawa, Toronto,
Vancouver, and Montreal are also collected in the dataset.
To gather data from transportation hub cities, we used a com-
bination of web scraping and publicly available data sources.
Table 1 summarizes all data that is present in the dataset
regarding the daily number of hospitalization data from the
mentioned cities and their description.

Wastewater has been used to study COVID-19 epidemiol-
ogy because the virus or its RNA is expelled into the water
drain system via feces of infected individuals [39], [40]. The
University of Regina is gathering the wastewater samples of
Regina and analyses the samples to report the SARS-COV-2
RNA load in Regina’s wastewater. Raw untreated sewage is
picked up from the wastewater plant and then concentrated in
the lab environment. The solids of the samples get broken up
and the genetic material is extracted from them. The SARS-
CoV-2 RNA load in wastewater (RNA copies/mL) is then
reported [41].

B. DATASET ANALYSIS
The epidemic status of Regina is supposed to be related to
the other cities of Canada, especially the ones that have inter-
national airports. Studies have shown that transportation hub
cities, such as airports and train stations, have been identified
as potential hotspots for the spread of the contagious virus.
The introduction of COVID-19 to regions has been through
international airports, and the virus spread around the region
is more attributed to local trips between cities [42]. In this
research, we consider Regina as a non-international trans-
portation hub as it has a small airport, and most international
travelers with the intention to visit Saskatchewan have to first
arrive at one of the major Canadian international airports and
then travel locally to SK. By incorporating data from these
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TABLE 1. Input Hospitalization data from all cities and their correlation amount with Regina.

transportation hub cities, we can better capture the regional
variations in the spread of the virus. Therefore, the pandemic
status of the transportation hub cities is an important external
data source that can help increase the accuracy of COVID-19.

A Time lagged Pearson Correlation analysis [43] is done to
assess and confirm the correlation between Regina’s hospital-
ization and those transportation hub cities, and the maximum
amount of the correlation at the reported time lag. The cor-
relation results suggest that the hospitalization data from
all of those transportation hub cities are correlated with
Regina’s hospitalization and all of those cities’ hospital-
ization counts lead Regina’s hospitalization. Although the
calculated amount of correlation and the lead time are not
directly used in the proposed forecasting model, these results
confirm that the additional input data would help the model
provide a more accurate forecast.

Mathematically, the time-lagged correlation for two time-
series xt and yt , for delay (time displacement or lag) L,
represented as r(L), is calculated as follows [43]:

r (L) =

∑
t [(xt − x) ∗ (yt−L − y)]√∑
t (xt − x)

2
√∑

t (yt−L − y)
2

(1)

where:

• r is the correlation coefficient.
• xi and yi are values of the x-variable and y-variable in a
sample respectively.

• x and y are mean of the values of the x-variable and
y-variable respectively.

Therefore, the maximum correlation is calculated with the
following algorithm:

In addition to collecting data from hospitalization cases,
we have collected and analyzed Regina’s wastewater data.
Given the things we know about viral dynamics in individ-
uals and fecal shedding, wastewater surveillance is expected
to lead hospitalization by a few days. The presence of the
virus’s RNA in a patient’s shedding occurs shortly after an
infection, while an infected person must develop symptoms
and seek treatment to be hospitalized through the health
system [40], [44].

The same time-lagged correlation analysis shows that the
SARS-CoV-2 RNA load in Regina’s wastewater has a corre-
lation amount of 0.62 with Regina’s hospitalization and leads

Algorithm 1 Calculating the Maximum Correlation
1: Input: timeseries xt , yt , MaxLag
2: Output: Maximum Correlation, OptimalLag
3: Maximum Correlation = NEGATIVE_INFINITY
4: OptimalLag = 0
5: While lag <=MaxLag do
6: x ′t = xt
7: y′t = yt−lag
8: correlation = Compute r (L) (x ′t , y′t ) # From Eq. (1)
9: if correlation > Maximum Correlation then
10: Maximum Correlation← correlation
11: OptimalLag = lag
12: end if
13: lag = lag+1
14: end While
15: return Maximum Correlation, OptimalLag

Regina’s hospitalization by 9 days. Therefore, the SARS-
CoV-2 RNA load in wastewater is also included as the input
data to the forecasting model.

C. MODEL SUMMARY AND CONFIGURATION
This section provides an overview of the proposed
DSA-BEATS model and its modules. In this paper, we have
proposed a multistep multivariate approach to provide a
robust accurate forecast of the number of hospitalized cases
of COVID-19. The approach uses multiple variables such as
the rate of presence of the SARS-CoV-2 virus in wastewater
of the city and the epidemiological status of the adjacent cities
and provinces to create a multivariate timeseries problem.
Then a deep learning neural network is specifically designed
to learn the relationships between the timeseries.

Figure 1 demonstrates all of the modules of our proposed
DSA-BEATS model with the connections and flow of infor-
mation along it. In this research, we propose a network that
exploits two convolutional structures to embed the timeseries
data into two representations with temporal information of
different scales, namely, the Global Temporal Convolution
representation and the Local Temporal Convolution represen-
tation. These two representations are fed into self-attention
modules to capture the dependencies betweenmultiple series.
The final forecast is generated by summing up the outputs of
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FIGURE 1. DSA-BEATS Model structure. This figure shows different modules of the model.

both attention modules ( ̂yAttention) and the N-BEATS module
( ̂yN−BEATS). The details of each block are discussed in the
following sections.

All the mentioned data inputs form a multivariate time-
series represented in theMatrixXT ,F where T is the timesteps
and F is each feature (timeseries). Therefore, each xt,f repre-
sents the value of timeseries f at timestep t. In this network,
the model input is a set of the observed values, and the
timeframe of those observed values is named the lookback
window with a length of w ≤ T , which ends with the last
observed value yT . The forecasting problem is formulated as
follows: a forecast horizon of lengthH ahead from the current
timestep (t) is predicted from the past observations from
Xt−w,F until Xt,F . Therefore, we predict the future values of
hospitalization as [yt+1, . . . , yt+H ] ∈ RT given the values of
the lookback window. In this research the horizon is fixed at
H = 12, and the lookback window size is fixed atw = 32 and
we predict the hospitalization cases in a rolling fashion until
the end of the test set. The model is introduced to a window of
W = 32 days of input and generates 12 days of output. Then
the window is lagged for 1 day and the process is repeated up
to the end of the data.

D. GLOBAL TEMPORAL CONVOLUTION MODULE
Inspired by [32], the proposed network includes a temporal
convolution module to learn the time-invariant patterns in the
dataset. Convolutional neural networks have demonstrated
their potential in capturing features and facilitating parallel
computing. Hence, we propose utilizing a combination of the
convolutional neural networks by using a kernel of size 1× T ,
known as global temporal convolution [32], to extract time-
invariant patterns for the timeseries.

Each filter in this module scans through the input matrix X ,
resulting in a 1 × F vector using the Rectified Linear Unit
(ReLU) activation function. The resulting vectors are merged
ultimately to produce an output matrix Mg of size ng × F,
where ng is the number of filters in the global temporal
convolution. Each column of the matrixMg can be interpreted
as a learned representation of each timeseries.

E. LOCAL TEMPORAL CONVOLUTION MODULE
In addition to the global convolution, a local temporal con-
volution is deployed in the model to capture the impact of
each timeseries on one another, considering relative time
steps. The global temporal convolution is designed to cap-
ture long-term and overall relations between time steps, and
the local temporal convolution attempts to determine local
temporal relations, which will be advantageous for forecast-
ing the future. The length of kernels used in local temporal
convolution is a hyperparameter l, where l < T . Each kernel
moves along the time dimension and generates a matrix Pk,L .
Then a 1 × F max-pooling is applied over each row of
the matrix Pk,L to capture the most representative features
on each row of Pk,L to represent local temporal relations
in timeseries. Consequently, an output matrix Ml of size
nl × F is created, where nl is the number of filters in the
local temporal convolution.

F. SELF-ATTENTION MODULE
The model utilizes a self-attention module inspired by the
Transformer [10] due to its robust feature-extraction capa-
bility. The primary goal of the self-attention module is to
capture the dependencies among various timeseries. For
each learned representation of the timeseries provided by
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the convolution modules, the self-attention module learns
the relationship with other learned representations, including
itself. The self-attention module comprises a stack of N
identical layers, with each layer consisting of two sub-layers:
a self-attention layer and a position-wise feed-forward layer.
The attention block structure has the same encoder-decoder
configuration as discussed in [10].

The attention function is defined asmapping a query vector
and a set of key-value pairs to an output vector. Specifi-
cally, given a query vector and a set of key-value pairs, the
attention mechanism computes a weight for each key-value
pair by taking the inner product between the query and the
corresponding key. These weights are then normalized using
a softmax function and used to compute a weighted sum
of the value vectors, resulting in an output vector that is a
function of the input query and key-value pairs at every other
position in the timeseries. In the self-attention module of the
proposed model, the output of the global temporal convolu-
tion, Mg, is projected onto a set of matrices Qg, Kg, and Vg
and representing the queries, keys, and values, respectively.
Then, the attention mechanism computes the output matrix
by computing the weighted sum of the value matrix, where
the weight for each position is computed as the inner prod-
uct between the corresponding query and key vectors. The
resulting output matrix is used to represent the dependencies
between different time steps in the input sequence, which
can be utilized for forecasting. Mathematically, self-attention
computes the scaled dot product for the global convolution by
the following equation:

ZG = softmax(
QG(KG)T
√
dk

)VG (2)

In which, dk is the dimension of the keys. To consider
the information from different subspaces of representation at
different positions, multi-head attention is applied. To achieve
the final representation ZGO , we linearly project and concate-
nate the weighted representations.

ReLU activation is used between two linear transforma-
tions in the feed-forward layer which is mathematically
represented as:

FG = ReLU
(
ZGOw1 + b1

)
W2 + b2 (3)

The self-attention is applied in the same way to the output
Matrix of the local convolution, Ml and the final output of
FL is generated. Then a fully connected neural network layer
is applied to combine both FG and FL and get a prediction
( ̂yAttention) of the values for the length of forecasting horizon
H = 12.

G. N-BEATS MODULE
The input window from Matrix X first gets reshaped to be
prepared for the N-BEATS network. Data reshaping is done
by flattening the multi-variate timeseries data along the time
axis which result in a one-dimensional representation of the
input window. Therefore, the input Matrix of order W × F

is converted into a vector with a length of W × F. This
reshaping is done through a flattening layer which is placed
before the N-BEATS network. The flattened univariate input
vector which includes inputs from all of the variables with the
length of the window size (w) is then passed to the N-BEATS
network. The output of the N-BEATSmodule is then summed
up with the output of the attention module to produce the final
forecast.

The fundamental component of the N-BEATS module
architecture comprises a fully-connected non-linear regres-
sor, which receives the historical data of a timeseries as
input and generates multiple forecasts for the given horizon.
Therefore, the N-BEATS module consists of stacks of blocks
of fully connected (FC) neuron layers, which conceptually
can be described as a multivariate linear regressor followed
by a ReLu [45]. The first block is fed with the past values
of the input timeseries of size W × F for the length of the
lookback window and generates forecast (of size H × F)
and backcast outputs (of size W × F). Backcast output
is the block’s contribution to decomposing the input and
the subsequent blocks receive the backcast output (of size
W × F) of the previous block through residual connections.
The network consists of multiple blocks and the process is
repeated.

Taking a look into the mathematics, the N-BEATS archi-
tecture runs a residual recursion over the entire input window
and sums block outputs to make its final forecast. Consider
L hidden layers are included in each residual block and there
are R residual blocks in the network. The input and residual
block and layers are shown with r and ℓ, respectively. Take
W r,ℓ as the weight of the fully connected layer and take
br,ℓ as biases, then the fully connected layer would be as
follows:

Cr,ℓ
(
hr,ℓ−1

)
≡ ReLu

(
Wr,ℓhr,ℓ−1 + br,ℓ

)
(4)

The N-BEATS operation is described as [9], [46]:

xr = ReLu
[
xr−1 − x̂r−1

]
, (5)

hr,1 = Cr,ℓ
(
xr

)
, . . . , hr,l = Cr,ℓ

(
hr,ℓ−1

)
, (6)

x̂r = Brhr,l, ŷr = F rhr,l . (7)

Projection matrices have dimensions of F r∈RH×dh and
Br∈Rw×dh assuming that x̂0 ≡ 0 and x0 ≡ x. Therefore, the
final N-BEATS output is the sum of the output values from
all of the residual blocks:

̂yN−BEATS =
∑

r
ŷr (8)

With all the details described around our proposed DSA-
BEATS model, algorithm 2 summarizes the whole process of
our proposed DSA-BEATS network.

IV. EXPERIMENTS AND RESULTS
In this section, the proposed DSA-BEATS model is applied
to our specific dataset, and the results are compared with
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Algorithm 2 DSA-BEATS Network
1: Input: Input Matrix XT ,F with multivariate series for the size of the lookback window
2: Output: Forecasted output XT+H
3: Initialize global and local temporal convolutions, self-attention module, and N-BEATS module
4: i = 0
5: while i < D do # for each series in X
6: Apply global temporal convolution to the series obtaining Mg
7: Apply local temporal convolution to the series obtaining Ml
8: Apply max-pooling to Ml
9: i = i + 1
10: end while
11: j = 0
12: while j < N do # for each layer in the self-attention module
13: Apply the self-attention layer to Ml and Mg to generate key-value pairs QL ,KL ,VL and QG,KG,VG
14: Compute attention scores for global module as ZG using QG,KG,VG # Equation (2)
15: Apply multi-head attention to ZG and linearly project to obtain the final representation Z ′G

16: Apply position-wise feed-forward layer on Z
′G to get FG # Equation (3)

17: Compute attention scores for local module s ZL using QL ,KL ,VL # Equation (2)
18: Apply multi-head attention to ZL and linearly project to obtain the final representation Z ′L

19: Apply position-wise feed-forward layer on Z ′L to get FL # Equation (3)
20: j = j + 1
21: end while
22: k = 0
23: while k < M do # for each block in N-BEATS module
24: Apply N-BEATS block to X to get backcast and forecast outputs
25: Subtract the backcast from X to get the remainder
26: Add the forecast to a cumulative forecast
27: Set X as the remainder
28: k = k + 1
29: end while
30: Set N-BEATS forecasted output as ̂yN−BEATS
31: Combine FG and FL using a dense layer to get self-attention based prediction ̂yAttention
32: Sum ̂yN−BEATS and ̂yAttention to get the final prediction XT+H
33: return XT+H

other state-of-the-art models such as the Informer and the
N-BEATS. The Informer model has been chosen as the most
widely adopted self-attention-based forecasting method. Its
strong performance and widespread acceptance make it an
essential benchmark for comparison. The N-BEATS model
is also selected as a robust and representative example of
cutting-edge neural network approaches in the forecasting
field.

To report the performance of the model, two well-known
metrics are selected and used. These two metrics, RMSE and
MAPE values, are calculated and reported for the forecasted
versus the actual values in the dataset for every model. The
RMSE and MAPE values are calculated for the test set and
reported as the result of the forecast.

A. MODEL CONFIGURATION
To train the model, we need to first split the dataset into
train, validation, and test sets. The data was split into training,
validation, and test sets, to ensure that the networkwas trained

on the training set, optimized and checked on the validation
set, and finally evaluated on the test set. Adam [47] optimizer
has been used for training. 90% of the data was used for
training and validation and the remaining 10% of the data was
held out for the test set.

The test set includes 55 days and the model is going to
forecast for a horizon of 12 days ahead. After training is
done, the model is introduced to the last window of input
(w = 32) days of the test set and will forecast for the
next 12 days (H = 12). However, during the test phase,
each time in the future is only forecasted once meaning the
32-day-lookback window is shifted by 12 days (as the model
has already predicted those 12 days) to avoid any repeated
forecasts. The train and validation subsets are also used for
hyperparameter tuning of the model which is done by a grid
search. The hyperparameter tuning was done to minimize the
MAPE and then, the model was tested on the test set and the
result on the test set was reported. Since the test set includes
55 days and the horizon is 12 days, the model generates
forecasts 5 times to cover the whole test set and the reported
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TABLE 2. RMSE and MAPE errors for the Proposed model vs. the
state-of-the-art forecasting methods.

MAPE and RMSE results are the average results through the
whole test set.

B. COMPARATIVE ANALYSIS
For comparative analysis, we have used the original
N-BEATS model proposed in [9] and the Informer [18]
model. In the univariate attempts, the COVID-19 hospital-
ization has been forecasted for a horizon of 12 days as a
univariate timeseries problem considering the past number of
hospitalizations from Regina. In the multivariate forecasting
attempts, the same models have been used considering all
the inputs mentioned in the dataset. The proposed model is
trained with all the inputs from the dataset. Table 2 provides
all the mentioned comparative results. In our evaluation,
our proposed DSA-BEATS model consistently outperformed
both the standalone N-BEATS and Informer [18] models in
terms of forecasting accuracy when predicting COVID-19
hospitalizations. This performance superiority was appar-
ent across both evaluation metrics, indicating the model’s
robust predictive capabilities. Moreover, the resilience of the
DSA-BEATS model to overfitting was distinctly evident.
Despite the test set comprising 55 unseen samples, and the
model having to produce a forecast five times due to a 12-day
horizon to cover the entire test set, the model maintained its
high performance. This result suggests that our model can
generalize well to unseen data. Detailed analyses of these
findings will be provided in the subsequent sections, offering
a comprehensive understanding of the strengths and potential
limitations of our DSA-BEATS model. In addition, Table 2
shows that the inclusion of supplemental inputs, specifically
information regarding transportation hub cities and RNA
samples in the wastewater data, played a significant role in
enhancing the accuracy of our forecasts.

C. ABLATION STUDY
In order to understand the contributions of the individual
components of our DSA-BEATS model, we conducted an
ablation study. This study involved the systematic removal
of individual components, namely, the global temporal con-
volution part, the local temporal convolution part, and the
N-BEATS component, from our DSA-BEATS model. The
purpose of this exercise was to assess the impact of each com-
ponent on the overall performance of the model Specifically,
we focused on understanding the impact of integrating dual
self-attention mechanism into the N-BEATS model and the

TABLE 3. RMSE and MAPE errors for the ablation study.

performance of the standalone N-BEATS and Transformer
models.

According to the Root Mean Square Error (RMSE) and
Mean Absolute Percentage Error (MAPE) metrics in Table 3,
removing the N-BEATS module from the DSA-BEATS
model results in a significant decrease in performance, indi-
cating the essential role played by the N-BEATS component.
This is in line with previous research suggesting that the
N-BEATS have a solid performance in forecasting the time-
series data. Furthermore, removing any of both Global and
Local temporal convolutions also exhibits a reduction in per-
formance upon removal of their respective parts. However,
the impact is relatively less severe than that observed upon
removal of the N-BEATS component. This can be attributed
to the overlap in the features learned by the two branches.
In essence, when one part is removed, some of the lost
features can be obtained from the other part.

Consequently, upon integrating the dual self-attention
mechanism into the N-BEATS model to create the
DSA-BEATS model, the resulting combination exhibited a
significant improvement in performance according to both
RMSE andMAPE results. This model leveraged the strengths
of both individual models, effectively capturing complex
temporal patterns resulting in the lowest error rates. The
findings from this ablation study underscore the effectiveness
of our approach in providing a robust method for forecasting
COVID-19 hospitalizations, highlighting the unique benefits
of integrating the N-BEATS and Transformer models.

V. DISCUSSION
Both the Informer [18] model and the N-BEATS model
performed better when Regina’s hospitalization data was aug-
mented with the hospitalization data from the transportation
hub cities and the amount of the virus RNA in wastewater
data. Authors in [25] stated that COVID-19 data is not long
enough for deep learning models such as the N-BEATS net-
work to provide competitive performance. However, those
proposed additional inputs, i.e., the hospitalization from the
transportation hub cities and the daily amount of the virus
RNA in wastewater samples helped to build a multivariate
forecasting problem resulting in a more accurate forecast of
Regina’s hospitalization. These findings align with the previ-
ous research. For example, in research by Peccia et al, [40] a
simple fully connected neural network model was developed
that could forecast the number of COVID-19 hospitalization
by using the RNA load data in the wastewater. By using a
differential equation-based model, Kaplan et al. [48] demon-
strated that hospitalizations could be anticipated from the
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FIGURE 2. Actual VS Forecasted values side-by-side in DSA-BEATS model.

SARS-CoV-2 RNA load in wastewater. On the other hand,
while some studies have used neighboring regions’ data to
build a forecasting model [16], we couldn’t find any previous
study that used the pandemic data from the transportation hub
cities to build a model for forecasting other places.

While using the additional inputs from wastewater and
transportation hub cities helped the N-BEATS and Informer
models provide a more accurate forecast, the proposed
DSA-BEATS model performed even better on the test set.
One of the critical factors contributing to the model’s supe-
rior performance was its ability to incorporate the dual
self-attention mechanism effectively. This inclusion allowed
the model to allocate varying levels of attention to differ-
ent periods in the timeseries data, capturing significant past
observations and their influence on future hospitalizations
accurately. This attribute was especially crucial in effec-
tively forecasting the volatile COVID-19 hospitalization data,
which tends to fluctuate due to various external factors.
As depicted in Figure 2, a side-by-side comparison of actual
versus predicted hospitalization values on the test set clearly
illustrates the success of the DSA-BEATS model. The fore-
casted values closely mimic the actual values, indicating that
the model has captured the historical trends in the training
set and was able to transfer this understanding to produce
accurate forecasts for the test set. The similar shapes and
matched trends of the forecasted and actual values affirm
the model’s capability to capture both the general trend and
inherent volatility in the COVID-19 hospitalization data.
Therefore, the outcomes of our study underscore the efficacy
of this hybrid model in effectively capturing both the trend
and volatility inherent in the COVID-19 hospitalization data.

VI. CONCLUSION
This study introduced theDSA-BEATSmodel, a novel hybrid
forecasting approach that combines the dual self-attention
mechanism of the transformer model with the forecasting
abilities of the N-BEATS network. Our research under-
scored the effectiveness of this model in accurately predicting
COVID-19 hospitalizations, a task characterized by volatil-
ity and a need to consider complex temporal relationships.

To tackle this problem, multiple inputs were considered
in a novel deep-learning model to forecast the hospitaliza-
tion counts related to COVID-19 in Regina, Saskatchewan.
We have used the epidemic data of the major transporta-
tion hub cities of the country and the virus RNA load in
Regina’s wastewater as auxiliary inputs to the model. The
results analysis suggests these auxiliary inputs have proved
to be beneficial when forecasting hospitalization in epidemic
situations, and the proposed DSA-BEATS model was able to
get the most out of this data and provide an accurate forecast.

The DSA-BEATS model performed exceptionally well
in our experimental setup, outperforming both standalone
models according to the RMSE and MAPE metrics. The
incorporation of the dual self-attention mechanism allowed
the model to allocate varying attention to different time peri-
ods in the data, leading to the accurate capture of significant
past observations and their influence on future values. This
enhanced ability to understand intricate temporal dependen-
cies was particularly effective in dealing with the volatile
nature of COVID-19 hospitalization data.

In conclusion, the DSA-BEATS model presents a signif-
icant step forward in timeseries forecasting, particularly in
the context of pandemic response planning and manage-
ment. We hope that our study will inspire further research
in this direction, contributing to the ongoing global efforts
to manage and mitigate the impacts of COVID-19 and future
pandemics.

VII. FUTURE WORK
While our findings are promising, we believe there is room
for further improvement and exploration. Future work could
investigate the impact of other external factors on COVID-19
hospitalizations and the use of other hybrid models or
ensemble techniques. Additionally, the application of the
DSA-BEATS model to other complex timeseries forecasting
tasks would further validate its effectiveness and flexibility.

While the DSA-BEATS was applied to the COVID-19
hospitalization dataset its potential extends beyond this spe-
cific context. It is equally suited for any other multivariate
timeseries forecasting problem, particularly where auxiliary
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inputs are closely correlated with, and predictive of, the pri-
mary timeseries.

Although the primary focus of this study was not to delve
deeply into the correlations between the epidemic statuses
of Canadian cities, we utilized Pearson Correlation analysis
as a means to validate the beneficial effects of our inputs
on the model. However, exploring the intricate relationships
between epidemic statuses across Canadian cities, particu-
larly when coupled with transportation statistics such as flight
and vehicular travel data, presents an intriguing avenue for
future research. This line of investigation, while outside the
scope of our current study, can potentially contribute valuable
insights to enhance predictive models and strategic responses
to epidemics.

VIII. LIMITATIONS
While the DSA-BEATS model has demonstrated promising
results in the context of our study, it is important to rec-
ognize and articulate the limitations that may impact the
interpretation and generalization of the findings. The fusion
of Dual-self attention and N-BEATS adds a layer of com-
plexity to the model, making it computationally expensive.
This complexity may hinder its applicability in scenarios
with limited computational resources. Moreover, While the
model has shown to be effective in forecasting, it may lack
interpretability in understanding the underlying relationships
between variables. The complex architecture may make it
difficult to explain why specific predictions are made, which
could be a limitation in certain applications where clear inter-
pretability is crucial.

A limitation of this study is the reliance on RMSE (Root
Mean Square Error) and MAPE (Mean Absolute Percentage
Error) for evaluating the forecasts. Although these metrics
are the most common metrics being used in forecasting stud-
ies, they have their own limitations. Specifically, RMSE can
be sensitive to outliers, leading to overestimation of gen-
eral prediction error if extreme values are present. On the
other hand, MAPE can be biased, especially with values
close to zero, and may not equally penalize overestimations
and underestimations. Thus, the interpretation of the results
must be approached with an understanding of these inherent
limitations, and future studies may consider incorporating
supplementary metrics to provide a more comprehensive
evaluation of forecast accuracy. However, the DSA-BEATS
model has performed better than the studied state-of-the-
art methods and has provided a better performance in both
metrics ensuring the model’s competitive performance.

In this study, we have introduced the utilization of hospi-
talization data from transportation hub cities as an exogenous
input to forecast the situation in non-transportation hub areas.
However, this methodology may present challenges in set-
tings where transportation hub cities do not play a comparable
role. Specifically, in regions such as many European coun-
tries where population density is higher and transportation
dynamics are diverse, the concept of a central transportation
hub may not apply in the same way as it does in areas like

Canada. Under such circumstances, the model would neces-
sitate the identification of alternative exogenous variables
that can guide the hospitalization forecasts. The complexity
and availability of these alternative inputs might vary sig-
nificantly across different regions, introducing an additional
layer of complexity to the model’s implementation. The suc-
cessful application of this approach in other geographical
contexts may thus require careful consideration and possibly
adaptation to local conditions, reflecting the heterogeneous
nature of transportation systems and public health landscapes
worldwide.
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