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ABSTRACT High-precision temperature control technology is currently more and more important in
industrial thermal processing systems. In this paper, an RNN controller with integral-proportional-derivative
(IPD) compensation driven by a reference model is proposed for single phase hotplate temperature control
systems. A reference model is introduced based on the real controlled plant for the RNN controller to
obtain better self-learning and adjusting efficiency by providing a more valuable teaching signal. Further,
an Adam optimization algorithm is applied to improve the control performance of the RNN controller.
The simulations were developed under a MATLAB environment and the experiments were performed on a
temperature experimental platform that used a digital-signal-processor (DSP) as digital controller. The results
of simulations and experiments were quantitatively compared with those for a conventional temperature
control system which only had an IPD controller. The control efficiency of the proposed RNN method was
successfully evaluated.

INDEX TERMS Cooperative temperature control, recurrent neural network controller, Adam optimization
algorithm, single phase hotplate temperature control.

NOMENCLATURE14

xN RNN controller output.
α Gain of weight training and updating.
αad Step size of Adam calculation.
β Ratio of bias training and updating.
δh(n) Local gradient of hidden layer.
δo(n) Local gradient of output layer.
η Gain of the low-pass filter.
τ Pure delay time.
b Offset value of the neurons in hidden layer.
C Conventional PID controller.
c Bias of the neurons in the output layer.
CNN Recurrent neural network controller.
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ey Error between the output of reference model and the
real output temperature.

f (·) Activation function of each neurons in the RNN
controller.

Fout Output of the feedforward compensator.
FF Feed forward compensator.
K Steady state gain.
Kp Proportional gain of the controller.
m Number of output layer neurons.
Nin Input of neural network controller.
Nout Output of neural network controller.
o(n) Induced local domain of the output layer.
P(s) Controlled object.
Rm Output of reference model.
T Time constant.
Td Differential time constant.
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Ti Integral time constant.
U Weight of input neurons.
u(n) Induced local domain of the hidden layer.
V Weight of output neurons.
W State memory neurons’ weight.
w(n) Gradients of the neuron.
x Sum of xN and xC .
xC PID output.
y Error between the output of reference model.
yref Set reference value for the system.
ey2 Self-learning signal for the RNN controller.
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I. INTRODUCTION18

With the rapid development of artificial intelligence (AI),19

the application of this technology to industrial processes are20

becoming increasingly popular, with demands for control21

systems with optimal processing ability unprecedentedly22

high. Temperature control systems, as one part of industrial23

thermal processes, play a significant role in industrial24

applications, especially in semiconductor industrial and food25

processing such as water heating system temperature control,26

and hotplate baking temperature control. There are already27

many existing control methods, among them, the most28

popular and commonly applied of which is the proportional-29

integral-derivative (PID) control method, due to its simplicity30

and applicability [1], [2].31

For single phase hotplate temperature control systems,32

the temperature needs to keep constant in different level33

and remain for a certain period of time. Normally the main34

difficulties in providing a precise, controlled temperature35

are the non-linearity, long response time, and large time36

delay of the controlled objects [3]. Hence, the temperature37

control system is becoming more and more complex, and38

strict requirements cannot be met by only using conventional39

control methods [4], [5]. Thus, the precise temperature40

control system difficulty for the hotplate temperature heating41

system can be conclude as follows:42

• The controlled object has strong non-linearity, large43

response time and large time lag which results in44

uncontrollable feedback efficiency for precise control.45

• The temperature system with uncertainty parameters,46

which will cause the timely change response character-47

istics.48

• The hotplate temperature systems have strong distur-49

bance, the control system needs to have the robustness50

for disturbance and keep the plate at a constant51

temperature.52

In order to achieve precise temperature control, researchers53

prefer to build a mathematical model through a system54

identification method to analyze the response characteristics55

of the controlled system, and while they have proposed many56

identification methods, the most popular is the step-response57

method [6], [7], [8], [9].58

An improved compensation method of the temperature59

control system can be developed based on a mathemat-60

ical model. Ko has tried to introduce fuzzy logic into 61

the proportional-integral control method to improve the 62

conventional PI control efficiency [10]. Vicente and Raul 63

have introduced the Smith estimation methods for the dead 64

time compensation for a time delay plant [11]. Bai has 65

developed the self-adaption control method for the plant with 66

parameter disturbance [12]. Xu has proposed a predictive 67

control method for comparison between real-time output 68

and theoretical output [13]. Zhang performed the same 69

research as Ko by introducing the fuzzy control method to 70

improve control efficiency [14]. Afram introduced themodel- 71

predictive-control (MPC) which is suitable for systems with 72

a precise mathematical model [15]. 73

However, for the model-based advanced control method, 74

the typical problem is that, once the parameters are defined, 75

the control system cannot be changedwhile operating. For the 76

temperature control system, the drawbacks of the controlled 77

plant are very common and serious, and will lead to unstable 78

operating control systems. 79

Recently, the effectiveness of artificial neural networks 80

(ANNs), which are now widely used in industrial processes, 81

have been demonstrated in terms of computational proces- 82

sors for various associative operations, classification, data 83

compression, combination problem solving, adaptive control, 84

and so on. Recurrent neural networks (RNNs), as one type 85

of ANNs, which can represent temporal dynamic behavior 86

through their own feedback loops in neurons, have gained 87

increasing attention for application of industrial processes 88

[16], [17]. During the last two decades, the application 89

of neural network (NN) control methods to temperature 90

control systems has seen sustained growth, such as model 91

prediction [18], the improvement of comfort indices [19], 92

and data calculation and compression [20], [21], [22], [23], 93

[24]. For single phase temperature control systems, the 94

characteristics of strong non-linearity slow time response and 95

large time delay will make the system difficult to control, 96

and the control efficiency of the designed control method is 97

focused on the transient response and overshooting of the 98

controlled objects [25], [26], [27]. Furthermore, to improve 99

the performance of the NN controller, especially the 100

hyper-parameter training efficiency of the neural networks, 101

many optimization and initialization methods have been pro- 102

posed such as the Stochastic Gradient Descent (SGD) algo- 103

rithm, Nesterov′sacceleratedgradient (NAG)and the Adam 104

optimization algorithm [28], [29], [30]. Moreover, activation 105

functions such as Tanh, Sigmoid, Swvish,ReLu [31], [32], 106

[33], [34], have been developed and optimization methods for 107

the initial value of hyper-parameters have been introduced, 108

such as Zero initialization, Random initialization, He initial- 109

ization and Xavier initialization [35], [36], [37], [38]. 110

Moreover, based on the machine learning technologies, the 111

most latest researches have proposed different NN structure 112

for control, the cooperation control such as feed-through 113

Elman NN structure [39], Memory Recurrent Eman NN 114

structure [40], and ANN based PID control strategies [41]. 115

Although, there have existed a large amount research for 116
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FIGURE 1. Overview of proposed hotplate temperature control system.

efficiency control method [42], the application for those117

method in hotplate temperature control system still remains118

the following challenges.119

• How to ensure the dynamic control stability of the NN120

controller for temperature system with large response121

time, big time lag and non-linearity characteristics.122

• The proper hyper parameters of the NN controller123

suitable for the controlled object need to be trained.124

• Due to the uncertainty of the hotplate parameters, the125

fast learning and model free ability of the NN controlled126

still need to be improved.127

In view of the temperature control difficulties for hotplate128

system and challenges of the AI technology application.129

This manuscript, in order to realize precision temperature130

control, focused on improving the system response speed and131

reduce the overshoot of the single phase hotplate temperature132

control system which has the characteristics of strong non-133

linearity, long response time and large time delay, a recurrent134

neural network using Adam optimization method driven by a135

reference model is proposed. The RNN controller learns by136

using the squared error signal between the reference model137

output and the real system output. The Adam optimization138

algorithm is applied to improve the performance of the RNN,139

and a feed forward controller is introduced to provide an extra140

input for the RNN to learn and adjust the hyper parameters141

itself. The control input of the controlled object is obtained by142

the sum of the RNN controller output and the PID controller143

(IPD structure) output. The main contributions of this brief144

are summarized as follows:145

• Cooperative RNN and IPD control structure using a146

normative model in which the NN learning satisfies the147

causal relationship (learning does not start before the148

input / output signal) even for the dead time control149

target.150

• The proposed control structure realizes model free151

design, the IPD controller parameters are obtained by152

ZN method also the RNN hyper parameters can be153

designed without considering the controlled model.154

• The proposed RNN controller is driven by reference155

model, also feed-forward compensation provides better156

learning reference for the RNN network and thus the157

RNN fast learning can be realized.158

The rest of this paper is structured as follows: Section II159

details the structure of the proposed RNN control system160

part by part. Section III introduces the identification results161

FIGURE 2. Block diagram of proposed reference-model-based recurrent
neural network(RNN) control system.

of the controlled object and the simulation results, which 162

are quantitatively compared with an IPD system. Section IV 163

explains the experimental results of the control system, and 164

quantitatively compares them with the results obtained from 165

an IPD control system. Lastly, Section V contains a brief 166

conclusion to this paper. 167

II. COOPERATIVE RNN CONTROL SYSTEM 168

CONFIGURATION 169

Figure 1 shows the overview of the proposed hotplate 170

temperature control system, where the whole system includes 171

three parts indicated by control unit, power control unit and 172

hotplate with temperature feedback, the hotplate is heating by 173

two resistance heaters which is driven by solid state switching 174

unit, and the solid state switching unit is controlled by PWM 175

duty cycle generated by the control unit which implements 176

the proposed cooperative RNN with PID control system. 177

As shown in Figure 1 the control unit is constructed by 178

our proposed cooperative RNN control system, the block 179

diagram of the proposed single phase hotplate tempera- 180

ture contol system which is driven by reference model 181

obtained from a real hotplate temperature plant is shown in 182

Figure 2. 183

For simplicity, the controlled object is expressed as a 184

first order plus time delay(FOPTD) model. In Figure 2, 185

CNN indicates the recurrent neural network controller, while 186

C is the conventional PID controller(IPD structure). yref 187

is the set reference value for the system, ey is calculated 188

as the error between the output of reference model Rm and 189

the real output temperature, and the squared error ey2 is 190

used as the self-learning signal for the RNN controller, FF 191

is the feed forward compensator that provides a reference 192

control input of proportional-derivative (PD) or two-degree- 193

of-freedom(2DOF) controllers for the RNN control to 194

increase the learning efficiency of the RNN controller, C 195

is a conventional PID controller (in this paper, an IPD 196

configuration is employed), and x is the control input, which 197

is the sum of the RNN controller output xN and PID output xC . 198

Rm is the reference model which is used to provide a precise 199

teaching signal for the RNN controller and is calculated based 200

on the control object P(s). 201
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FIGURE 3. Step response of first order plus time delay (FOPTD) plant.

FIGURE 4. Block diagram of conventional proportional-integral-derivative
(PID) control.

A. PLANT WITH PURE DELAY TIME202

For single phase hotplate temperature control system in203

this proposal, the controlled object always has a large time204

constant and delay time. Thus, the object can be defined as a205

FOPTD system as in equation (28), where K is the steady206

state gain, T is the time constant, and τ is the pure delay207

time (also called dead time). The time response of the plant208

is shown in Figure 3.209

P(s) =
k

Ts+ 1
e−τ s. (1)210

B. CONVENTIONAL PID CONTROLLER211

Considering that the hyper parameters of the RNN controller212

need to be trained before the RNN controller works, the initial213

state of the SISO temperature system should be controlled,214

which is why the conventional PID controller is added for215

this purpose. The PID block diagram is presented in Figure 4,216

where Ti is the integral time constant, Td is the differential217

time constant, η is the gain of the low-pass filter (LPF) used218

to control the differential part, and Kp is the proportional gain219

of the controller.220

Stability is one of themost important factors of a controller.221

Several methods have been proposed for controller stability222

analysis [43], [44]. Because the parameters of the PID223

controller are designed based on the Ziegler-Nichols rule224

(step responsemethod), stability is ensured [45]. These values225

are determined by τ , K and T in equation (1). The PID226

parameters Kp, Ti and Td can be calculated as equations227

(2),(3) and (4), respectively.228

Moreover, another important factor of a controlled system229

is the saturation of the actuator x. This proposal, the saturation230

is handled by setting saturation for the sum of PID output and231

FIGURE 5. Structure of multi-layer recurrent neural network controller.

NN output, and adding the saturation by subtracting it from 232

the input of the PID controller (PID type normal anti-windup 233

method). So that the actuator saturation can be avoided. 234

KP = 1.2
T
τ

(2) 235

Ti = 0.5T (3) 236

Td = 2τ (4) 237

C. RNN WITH ADAM OPTIMIZATION ALGORITHM 238

In this paper, the multi-layer RNN controller is applied and 239

the sumof the outputs of RNNand PID controllers is provided 240

as the control input of the plant. In the proposed system, 241

the RNN controller has three layers: one input layer, one 242

hidden layer, and one output layer, as shown in Figure 5. The 243

hidden layer has 10 neurons, and the structure of applied RNN 244

controller is 3-10-1. 245

In this system, the reference value of the system yref , 246

output temperature y, and the output of the feedforward 247

compensator Fout are set as the input signals of the RNN. 248

xN is the output value of the RNN. The calculation process, 249

from the input Nin to the output Nout , is shown in Figure 6, 250

where U is the weight of input neurons, V is the weight 251

of output neurons and W is state memory neurons’ weight, 252

and f (·) indicates the activation function of each neurons 253

in the RNN controller. The output of RNN controller can 254

be expressed as equation (5), where Nin is the input which 255

includes output temperaturey, temperature reference yref , and 256

the feedforward compensator’s output Fout . Nout is the output 257

of the RNN controller, b indicates the offset value of the 258

neurons in hidden layer, and c represents the bias of the 259

neurons in the output layer. 260

Nout = V ∗ f (f (U ∗ Nin) +W ∗ h(t − 1) + b) + c (5) 261

Regarding self-learning of the RNN controller, the Back 262

Propagation Through Time (BPTT) calculation method is 263
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FIGURE 6. Calculation process for RNN controller.

FIGURE 7. Back propagation through time (BPTT).

introduced for training and updating the weight and bias264

of each neuron, as seen in Figure 7. This is assuming265

that the RNN is working at the nth calculation iterations266

(nthsamplingperiod) and the state memory layer has stored267

z steps of the previous calculation data.268

The BPTT propagation starts from the output neuron269

of RNN controller. The learning signal of the neurons is270

provided by the error signal; thus, the gradient error at nth271

calculation iteration can be represented as equation (6), where272

m indicates the number of output layer neurons.273

E =
1
2

m∑
i=1

(yr (n) − y(n))2. (6)274

Based on the gradient error, the local gradient for the output275

layer and hidden layer can be calculated as equations (7) and276

(8), respectively, where u(n) and o(n) are the induced local277

domain of the hidden layer and output layer, as represented278

in equations (9) and (10), respectively. 279

δh(n) =
∂E

∂u(n)
= f ′(u(n)) ∗ V T δo(n) (7) 280

δo(n) =
∂E

∂o(n)
= f ′(o(n)) ∗ (y(n) − t(n)) (8) 281

u(n) = U ∗ Nin(n) +W ∗ h(n− 1) + b(n) (9) 282

o(n) = V ∗ h(n) + c(n) (10) 283

Thus, for the z step stored calculation neurons, the local 284

gradient from the nth iteration to the (n− z)th iteration can be 285

calculated as equation (11). 286

δh(n− z− 1) = δh(n− z) ∗ (W ∗ f ′(u(n− z− 1))) (11) 287

According to the BPTT algorithm, the corrections of U of 288

the input layer can be expressed as equation (12), while the 289

update of the weight V of the output layer can be calculated 290

as equation (13), the weight correctness of the hidden layer 291

as well as the memory neurons W is expressed in equation 292

(14), α is the gain of weight training and updating, and can be 293

optimized by the Adam algorithm which will be introduced 294

later. 295

U (n+ 1) = U (n) − △U = U (n) 296

− α

z∑
i=0

δh(n− i) ∗ Nin(n− i) (12) 297

V (n+ 1) = V (n) − △V = V (n) 298

− α

z∑
i=0

δo(n) ∗ h(n) (13) 299

W (n+ 1) = W (n) − △W = W (n) 300

− α

z∑
i=0

δh(n− z) ∗ h(n− z− 1) (14) 301

Weights aside, the bias of the neurons also needs to be 302

updated for RNN performance. The updating of the hidden 303

layer neuron bias b and output layer neuron bias c are 304

determined by the local gradient of hidden layer δh(n) and 305

output layer δo(n), respectively, which can be expressed as 306

equations (15) and (16), respectively, where β represents the 307

ratio of bias training and updating. 308

b(n+ 1) = b(n) − β△b = b(n) − β

z∑
i=0

δh(n− z) (15) 309

c(n+ 1) = c(n) − β△c = c(n) − β

z∑
i=0

δo(n) (16) 310

Based on the BPTT neuron weights and bias update 311

obtained from above, to improve the learning efficiency of 312

the RNN, Adam optimization is introduced to hold the term 313

which is the exponentially damped average of the past slop 314

square υ(n) and the slop m(n) at nth iteration. Assuming that 315

g(n) is the gradients of the neuron at at the nth iteration (this 316

situation is replaced by the teaching signal ey2)as expressed 317

by equation (17), the calculation of the updating biased first 318
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FIGURE 8. Structures of feedforward (FF) compensator: (a) PD structure,
(b) 2DOF structure.

moment and second rawmoment estimation can be expressed319

as equations (18) and (19), respectively, where β1 and β2 are320

the hyper-parameters of Adam.321

g(n) = e2y (17)322

m(n) = β1 ∗ m(n− 1) + (1 − β1) ∗ g(n) (18)323

υ(n) = β2 ∗ υ(n− 1) + (1 − β2) ∗ g2(n) (19)324

Thus, the calculated bias-corrected first moment and325

second rawmoment estimation can be expressed as equations326

(20) and (21), respectively. The final correction of the △w(n)327

can be expressed as equation (22), where w(n) represents the328

weight matrix of one layer, αad is the step size of Adam329

calculation, and ε is the hyper-parameter of Adam. This330

correction will be applied to the weights U , V andW .331

m̂(n) =
m(n)
1 − βn1

(20)332

υ̂(n) =
υ(n)

1 − βn2
(21)333

△w(n) = −
αad

sqrtυ̂(n) + ε
∗ m̂(n) (22)334

By comparing different neuron activation functions, the335

ReLu function is applied as shown in equation (23), while its336

derivative function is expressed in equation (24).337

f (x) =

{
x, x > 0
0, x ≤ 0

(23)338

f ′(x) =

{
1, x > 0
0, x ≤ 0

(24)339

D. FEED-FORWARD COMPENSATOR340

In order to improve the performance of the RNN control341

and provide one kind of reference output for the RNN, the342

feedforward compensator FF is introduced to provide an343

extra input of the RNN controller. In this proposal, the type344

of PD and 2DOF(two degrees of freedom) compensators345

are considered, as presented in Figures 8(a,b), respectively.346

The parameters Kp, Td are the same as those of the PID347

controllers’ introduced above, and γ is the time constant gain348

of first order low pass filter(LPF) in the differential part of349

the PD controller, in this case, γ = 0.5.350

E. REFERENCE MODEL351

The reference model is calculated according to the identified352

real system mathematical transfer function and is introduced353

for providing a precise learning signal for the RNN controller.354

To ensure that the reference model can have exactly the same 355

output characteristics as the real system, the pure time delay 356

part of the plant needs to be approximated. There already 357

exist several approximation methods, in this paper, the Padé 358

approximation method is considered, shown as equation (25). 359

e−τ s
≈

1
( τ
2 s+ 1)2

(25) 360

In this proposal, to improve the reference model response 361

time, a gain R (smaller than 1) is introduced to the time 362

constant component to shorten the response time of the 363

reference model, as in equation (26). Approximation of 364

dead time as a 2nd order transfer function makes controller 365

realization easy, i.e., it reduces the memory required to store 366

the output. 367

R(s) ≈
K

T ∗ R ∗ s+ 1
×

1
( τ s
2 + 1)2

(26) 368

Further more, in this proposal, the reference model R(s) 369

is the ideal closed-loop transfer function the system want 370

to achieve.Since it is not possible to achieve a response 371

faster than the dead time of the controlled objects, R(s) is 372

set by adding (approximately) the dead time of the plant 373

to a 2nd order transfer function. Then, the NN controller 374

compensates for the error between the actual output and the 375

output from R(s), by this way the efficiency of NN controller 376

quick learning progress and system time response has been 377

improved. 378

III. SIMULATION RESULTS 379

A. SYSTEM IDENTIFICATION BASED ON REAL 380

EXPERIMENTAL PLATFORM 381

To evaluate the control effectiveness of the presented RNN 382

control method, the controlled hotplate plant model should 383

be calculated from a real temperature system. Thus, the 384

system identification(step response method) experiments 385

were carried out for the mathematical plant of the controlled 386

single phase heating system. Figure 9 shows the platform 387

of a 4-channel hotplate temperature control system. It is 388

controlled by a digital signal processor (DSP) and has 389

four hotplate temperature channels, while each channel is 390

equipped with two semiconductor heaters and one wide 391

range temperature sensor. The transfer ratio between input 392

temperature and output voltage of the temperature sensor 393

is 0.025 (the sensor can transfer 0-400 ◦C temperature 394

to 0-10 VDC voltage). The heaters are driven by pulse 395

width modulation(PWM) signals. The temperature can be 396

controlled through the duty ratio of the PWM signals. 397

In this proposal, the single phase hotplate temperature 398

control system is defined as the input channel being Ch1 and 399

the output channel being Ch4. The SISO temperature system 400

control object transfer function can be identified as equation 401

(27). 402

P(s) =
2.854

2395s+ 1
e−444.74s (27) 403
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FIGURE 9. Experimental platform.

B. SIMULATIONS AND RESULTS ANALYSIS404

The model of system simulation was developed using405

MATLAB software. In simulations, the transfer function406

of the controlled object was the same as that expressed407

in equation (27). Thus, the calculated and approximated408

reference model can be obtained as equation (28), where, R409

is set as 0.01.410

R(s) ≈
2.854

0.01 ∗ 2395s+ 1
×

1

( 444.742 s+ 1)2
(28)411

The traditional IPD controller parameters are obtained412

using the Z-N method. Here, the controller parameters were413

calculated as Kp = 2.264, Ti = 889.48, and Td = 222.37.414

In addition, the RNN parameters were defined by testing415

method as α = 1×10−9 and β = 1× 10−3. The initial neuron416

weight was determined under random and limitation rule to417

be an optimal (random) value. Thememory store steps z= 10,418

the hyper parameters of the Adam calculation were defaulted419

as β1 = 0.99, β2 = 0.99958, ε = 1 × 10−20.420

The simulation comprises two phases. Phase 1 was the421

reference value tracking response. Phase 2 was the reference422

value response with disturbance variation. Both phases423

have two parts: Part 1 is RNN training and initial state424

control; Part 2 is bidirectional reference tracking (positive425

and negative direction temperature control). In Part 1, the426

output temperature rises from 0 ◦C to 100 ◦C , and the main427

control action switches from PID to RNN controller. In Part428

2, the reference value of the output temperature is given as a429

repetitive step signal with an amplitude of 5◦C , and the offset430

of the reference is 100◦C . The positive direction temperature431

control is defined by controlling output temperature from432

100◦C to 105◦C , while the negative direction temperature433

control is defined by controlling output temperature from434

105◦C to 100◦C . For disturbance variation in Phase 2, a435

20% disturbance was added to the control input of the plant436

when the system reached a steady state in the bidirectional437

control period. The RNN controller with PD feedforward438

compensator (define as PD3INN) and a 2DOF feedforward439

compensator (2DOF3INN) was simulated and the results440

were against those of traditional IPD temperature control441

system in terms of quantity.442

1) PHASE 1: REFERENCE TRACK SIMULATION RESULTS443

Figures 10 (a,b) respectively show the output temperature444

reference tracking response of the controlled system and445

FIGURE 10. Simulation results.(a) Full time response for PD3INN
controlled system and (b) positive temperature output results
(temperature increase from 100◦C to 105◦C) and negative temperature
output results (temperature decrease from 105◦C to 100◦C) direction of
presented PD3INN control system and traditional IPD temperature
system.

both positive temperature tracking (temperature increase 446

from 100◦C to 105◦C) and negative temperature tracking 447

(temperature decrease from 105◦C to 100◦C) results of the 448

PD3INN system, and are compared with the results obtained 449

by only equipping a traditional IPD control system. 450

From the simulation results, for the positive direction 451

temperature response, the rising time of the IPD control 452

system is about 1101s, while that of the PD3INN control 453

system is only 598.5s; therefore, the temperature rising time 454

has been shortened by 46%. The traditional IPD system has a 455

settling time of around 3587s but only 993.0s for the PD3INN 456

control system; thus, the system settling time has been 457

increased by 73%. Furthermore, the traditional IPD system 458

has an overshoot of around 0.5◦C(10% of the reference 459

value), while the PD3INN has no overshoot. For the negative 460

direction temperature tracking, the dropping time of the 461

traditional IPD system is around 1100s and the dropping time 462
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of PD3INN control system is only 598s, so the temperature463

dropping time has been shortened by 46%; the settling time464

for the IPD control system is around 3587s, where as for465

the PD3INN control system the settling time is only 993.0s,466

representing a decrease of 73%. Furthermore, the traditional467

IPD control system has an undershoot of around 0.5◦C(10%468

of the temperature reference value), while the PD3INN has469

no undershoot. In addition, from the results of temperature470

tracking for repetitive reference value, for both temperature471

rising and dropping steps, the last rising and dropping step472

are almost the same as the first rising and dropping step.473

We can conclude that the RNN controller has finished its474

self-learning progress before the first rising and dropping475

step, and quick training of RNN has been realized. These476

comparison results successfully confirmed that the system477

performance was enhanced by the PD3INN control system.478

Figures 11 (a,b) respectively show the output temperature479

reference tracking response of the controlled system and both480

positive temperature tracking (temperature rise from 100◦C481

to 105◦C)and negative temperature tracking (temperature482

drop from 105◦C to 100◦C) results of the 2DOF3INN483

system, and a comparison with the results obtained by only484

equipping a traditional IPD control system.485

From the simulation results, for the positive direction486

temperature response, the rising time of the IPD control487

system is about 1101s, while that of the 2DOF3INN control488

system is only 645.5s; so, the temperature rising time has489

been reduced by 41%. The conventional IPD system has a490

settling time of around 3587s but 2526.5s for the 2DOF3INN491

control system; thus, the system settling time has been492

increased by 30%. Furthermore, the traditional IPD system493

has an overshoot of around 0.5◦C(10% of the reference494

value), while the 2DOF3INN has no overshoot. For the495

negative direction temperature tracking, the dropping time of496

the traditional IPD system is around 1100s and the dropping497

time of 2DOF3INN control system is only 645s, so the498

temperature dropping time has been reduced by 41%; the499

settling time of the IPD control system is around 3587s, where500

for the 2DOF3INN control system it is only 2526s, so the501

settling time has been shortened by 30%. The traditional IPD502

control system has an undershoot of around 0.5◦C(10% of503

the temperature reference value), while the 2DOF3INN has504

no undershoot.505

In addition, from the results of temperature tracking for506

repetitive reference value, for both temperature rising and507

dropping steps, the last rising and dropping step are almost508

the same as the first rising and dropping step. We can509

thus conclude that the RNN controller has finished its510

self-learning progress before the first rising and dropping511

step, and quick training of RNN has been realized. These512

comparison results successfully confirmed that the system513

performance has been enhanced by the 2DOF3INN control514

system.515

A full comparison of the positive direction reference516

tracking efficiency of these three control systems is shown in517

Table 1, and a comparison of the negative direction reference518

FIGURE 11. Simulation results.(a) Full time response for 2DOF3INN
controlled system and (b) positive temperature output results
(temperature rising from 100◦C to 105◦C) and negative temperature
output results (temperature dropping from 105◦C to 100◦C) direction of
presented 2DOF3INN control system and traditional IPD temperature
system.

TABLE 1. Efficiency comparison of temperature rising from 100◦C to
105◦C . (Source: after own calculation.)

tracking efficiency of the systems is shown in Table 2. As a 519

result, the improvement is the same in both positive direction 520

control and negative direction control, and the performance 521

of the PD3INN control system is better than that of the 522

2DOF3INN control system. 523

2) PHASE 2: DISTURBANCE VARIATION SIMULATION 524

RESULTS 525

In this case, an amplitude of 20% disturbance was added to 526

the control input after the system reached a steady-state in 527
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TABLE 2. Efficiency comparison of temperature dropping from 105◦C to
100◦C .(Source: after own calculation.)

FIGURE 12. Bidirectional disturbance response simulation results.
(a) Bidirectional disturbance response of PD3INN control system and
(b) Bidirectional disturbance response of 2DOF3INN control system.

both positive and negative direction controls. The bidirec-528

tional disturbance response of the PD3INN and 2DOF3INN529

control systems is shown in Figures 12(a,b), respectively.The530

results of the traditional IPD control system are also shown531

for comparison in both kinds of direction tracking.532

From the simulation results, the 20% disturbance is533

added at the time 5000s. The analysis of the simulation534

results focused on the temperature drop for positive direction535

state and the temperature increase for negative direction536

state. We also added the settling time of the system after537

disturbance and the overshoot for positive and undershoot538

TABLE 3. Disturbance response comparison of temperature rising from
100◦C to 105◦C . (Source: after own calculation.)

TABLE 4. Disturbance response comparison of temperature rising from
105◦C to 100◦C . (Source: after own calculation.)

for negative response to the disturbance. For the positive 539

direction control, after the disturbance was added, the 540

temperature drop of the conventional I-PD control system 541

was 2.12◦C , while that of the PD3INN and 2DOF3INN 542

control systems was 1.9◦C and 2.08◦C , respectively. Thus 543

the dropping temperature caused by the disturbance has 544

been decreased with PD3INN and 2DOF3INN systems by 545

around 11% and 2%, respectively. The settling time after 546

the disturbance added to the IPD system is about 4235.5s, 547

and that of the PD3INN and 2DOF3INNcontrol systems 548

are 3500s and 2998.5s, respectively. The settling time was 549

respectively improved by17.4% and 29.2%. Moreover, the 550

IPD has an overshoot of 1.25◦C , while only 0.87◦C for 551

the PD3INNcontrol system and 1.23◦C for the 2DOF3INN 552

control system. 553

For the negative direction control, after the disturbance 554

was added, the temperature increase of the conventional 555

IPD control system was 2.12◦C , while that of the PD3INN 556

and 2DOF3INNcontrol systems was 1.86◦C and 2.05◦C , 557

respectively. Thus the dropping temperature caused bythe 558

disturbance was decreased with the PD3INN and 2DOF3INN 559

systems by around 11% and 2%, respectively. The setting 560

time after the disturbance was added to the I-PD system 561

was about 4235 s, and that of the PD3INN and 2DOF3INN 562

control systems was 3498.5 s and 3000.5 s, respectively. 563

The setting time was respectively improved by 17.4% and 564

29.2%.Moreover, the I-PD has an overshoot of 1.25◦C , while 565

only 0.85◦C for the PD3INN control system and 1.22◦C 566

for the 2DOF3INN control system,respectively. Thus, the 567

disturbance of the positive direction control is almost the 568

same as the negative direction control, and both PD3INN and 569

2DOF3INN control systems improved the control efficiency 570

of the disturbance response. A full comparison of the positive 571

direction disturbance responses of these three control systems 572

is shown in Table 3, and a comparison of the negative 573

direction disturbance responses is shown in Table 4. 574

IV. EXPERIMENTS AND RESULTS ANALYSIS 575

To further evaluate the RNN with the Adam optimization 576

control method for the single phase hotplate temperature 577

system, experiments needed to be carried out. The parameters 578

(including controller parameters and model parameters) were 579
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FIGURE 13. (a) Full time response for PD3INN controlled system and
(b) positive temperature output results (temperature increase from 100◦C
to 105◦C) and negative temperature output results (temperature decrease
from 105◦C to 100◦C) of presented PD3INN system with the traditional
IPD temperature system).

exactly the same as those applied in simulations.The platform580

for experiments was the same as the system identification581

experiment platform as shown in Figure 8. According to582

the comparative results of the simulation, the PD3INN has583

better performance both in reference tracking and disturbance584

response; thus, experiments were carried using the PD3INN585

control structure. As with the simulations, the experiments586

were divided into two phases: Phase 1 was reference tracking587

experiments; Phase 2 was disturbance response experiments.588

The results had to be compared with a traditional IPD control589

system to evaluate the control performance and effectiveness590

of the PD3INN system.591

A. PHASE 1: REFERENCE TRACKING EXPERIMENTS592

In the case of these experiments, the temperature was first593

controlled from room temperature(about 20◦C) to initial594

state (100◦C); this stage is called RNN self-learning and595

initial state control. After this initial state, the reference596

TABLE 5. Efficiency comparison of temperature rising from 100◦C to
105◦C . (Source: after own calculation.)

TABLE 6. Efficiency comparison of temperature rising from 105◦C to
100◦C . (Source: after own calculation.)

was changed as a repetitive step signal with an amplitude 597

of 5◦C , and the offset of the reference was 100◦C . The 598

positive temperature control is defined by the controlling 599

output temperature rising from 100◦C to 105◦C , while the 600

negative temperature control is defined by the controlling 601

output temperature dropping from 105◦C to 100◦C . Figures 602

13(a,b) show the full time response of the controlled 603

system and the results of both positive (temperature rising 604

from 100◦C to 105◦C) and negative (temperature dropping 605

from 105◦C to 100◦C) direction control of the PD3INN 606

system, respectively. These results were compared with those 607

obtained from a traditional IPD control system with the same 608

control parameters. 609

From the experiment results, for the positive direction 610

temperature response, the rising time of the IPD control 611

system is about 1098s, while that of the PD3INN control 612

system is only 743s; thus, the temperature rising time has 613

been shortened by 32%. The traditional IPD system has a 614

settling time of around 3036s while only 1050s for PD3INN 615

control system, thus the system settling time has been 616

increased by 66%. Further more, the traditional IPD system 617

has an overshoot of around 0.6◦C(10% of the reference value) 618

while the PD3INN system has no overshoot. 619

For the negative direction temperature tracking, the 620

dropping time of the traditional IPD system is around 1097s 621

and the dropping time of PD3INN control system is only 622

744s, so the temperature dropping time has been reduced 623

by 33%; the settling time for the IPD control system is 624

around 3036s, where as for the PD3INN control system it 625

is only 1050s, so the settling time has been reduced by 626

63.3%. The traditional IPD control system has an undershoot 627

of around 0.6◦C (12% of the temperature reference value), 628

while the PD3INN has no undershoot. The comparative 629

results of positive and negative direction control are shown 630

in Tables 5 and 6, respectively. Thus, the simulation and 631

experimental results both verify the proposed PD3INN 632

control method. 633

B. PHASE 2: DISTURBANCE RESPONSE EXPERIMENTS 634

In this case, an amplitude of 20% disturbance was added to 635

the control input after the system reached a steady-state in 636
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FIGURE 14. Experimental results. (a) Full time response for PD3INN
controlled system and (b)Bidirectional disturbance response of PD3INN
system and traditional IPD system.

both positive and negative direction control. Figures 14 (a,b)637

respectively show the full time response of the controlled638

system and the disturbance response results in positive and639

negative direction control and compared to those results640

obtained from the conventional IPD control system.641

From the experimental results, the 20% disturbance was642

added at time 5000s. For the positive direction control, after643

the disturbance was added, the temperature drop of the644

traditional IPD control system was 1.9◦C , while that of the645

PD3INN was 1.7◦C ; thus, the temperature dropping value646

decreased by 10%. The settling time after the disturbance647

was added to the IPD system was around 2930s, while that of648

PD3INN was 2815s. The setting time was increased by 4%.649

Furthermore, the IPD has an overshoot of 1.3◦C , but 0.7◦C650

for the PD3INN control system, so the overshoot successfully651

decreased by 12%.652

For the negative direction control, after the disturbance653

was added, the temperature increase of the conventional654

IPD control system is 1.9◦C , while that of the PD3INN655

TABLE 7. Disturbance response comparison of temperature increase
from 100◦C to 105◦C .(Source: after own calculation.)

TABLE 8. Disturbance response comparison of temperature increase
from 105◦C to 100◦C . (Source: after own calculation.)

is 1.68◦C ; thus,the temperature decreased with PD3INN 656

by about 12%. The settling time after the disturbance was 657

added to the IPD system was about 2940s, while that of 658

PD3INN was 2810.5s. The setting time increased by 4.4%. 659

The IPD had an undershoot of 1.3◦C , but only 0.7◦C for 660

the PD3INN control system, so the undershoot decreased 661

by 12%. The comparative results are shown in Table 6. 662

Thus, the disturbance of the positive direction control is 663

almost the same as the negative direction control, and 664

both simulation and experimental results have successfully 665

verified the control efficiency of the introduced RNN with 666

the Adam optimization control method. 667

V. CONCLUSION 668

In this brief, an RNN controller with an Adam optimization 669

algorithm suitable for single phase hotplate temperature 670

control systems was proposed. The control system is driven 671

by the error signal between the system output and the 672

reference model output. The RNN system was combined 673

with PID control.Two types of feedforward compensators 674

(PD and 2DOF) were introduced to improve the performance 675

of the RNN controller. The proposed design was applied to 676

a FOPTD plant. Simulations of both reference tracking and 677

disturbance response were run in a MATLAB environment. 678

Simulation results of reference tracking and disturbance 679

response in both directions were presented and compared 680

with those obtained from a traditional IPD control system 681

using the same parameters. Experiments for the PD3INN 682

system were performed on a digital controlled temperature 683

platform. The comparative results with a traditional IPD 684

control system allowed for a successfully evaluation of 685

improvements in reference tracking time, system settling 686

time, overshoot, and disturbance response of the single phase 687

hotplate temperature control system.Due to the limitations of 688

the proposed system, in that it depends on the adjustment of 689

hyper parameters, and the versatility and control performance 690

of the control system are restricted, the future work of this 691

research will focus on a pruning optimization method and 692

verification of generalization for parameter fluctuations of 693

controlled objects. 694
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