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ABSTRACT Coverage is a prominent indicator for measuring the quality of service in directional sensor
networks. From the perspective of energy and deployment costs, full coverage may be expensive or
unrealistic, partial coverage can operate more energy-efficient by scheduling working status of sensors.
In certain practical application scenarios, irregular obstacles like trees, mountains, buildings, and vehicles,
which have adverse influence on QoC, often exist in the field of interest (FoI). Meanwhile, due to sensors
may fall near the border of the FoI, it also has effect on the coverage contribution. In this paper, we assume
that sensors are randomly deployed in a square FoI with irregular shape obstacles existence, and introduce
the concept of occlusion coverage of partial targets. Afterwards, we take the border effects into account
and derive the critical sensor density for achieving an expected coverage ratio with a high probability.
Finally, we conduct a series of simulation experiments to verify the accuracy between simulation results
and numerical results, and take analysis of mean absolute error between them. The results show that our
method has good performance on estimating critical sensor density.

INDEX TERMS Directional sensor networks, target coverage, critical sensor density, irregular obstacles,
border effects.

I. INTRODUCTION
As a derivative of wireless sensor networks (WSNs), a typical
directional sensor network (DSN) is composed of several
battery-powered directional sensors (sensors) which own
sector-disk sensing regions, it has witnessed a vigorous devel-
opment. Specially, DSN monitoring some targets located in
a field of Interest (FoI) usually encountered in many applica-
tions such as smart cities, smart industrial monitoring, smart
agriculture, wildlife protection and underwater monitoring
[1], [2], [3], [4], [5]. In general, target coverage is also a
prominent metric for measuring the quality of monitoring
of DSN, which reflects how well the targets in the FoI are
monitored. Any target in the FoI can be detected if it is located
in the sensing region of at least one sensor, we call it full target
coverage, its coverage ratio is approximate to 1.

The associate editor coordinating the review of this manuscript and

approving it for publication was Rakesh Matam .

In certain applications like wildlife protection and under-
water monitoring, full target coverage may be unrealistic or
costly. The partial target coverage problem refers to ensure
that a part of targets should be covered to achieve an expected
quality of coverage (QoC). In this case, DSN can operate
more energy-efficient by scheduling redundant sensors to
sleep or not sleep so that the network service lifetime can be
prolonged. Typically, the coverage ratio of partial targetsmust
be less than a predefined threshold.

In DSN, the random deployment strategy is favored in
such scenario where the FoI is hostile or unreachable. In this
case, the sensors are typically deployed in random by aircraft
rather than manually deterministic deployment so that the
QoC may not be predetermined, and it also be unrealistic
to achieve full target coverage without a large density of
sensors. Meanwhile, 3D irregular shape obstacles like trees,
mountains, buildings, vehicles and walls often exist in the
FoI, the 3D visual occlusion may be formed which would

107160

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-3172-0724
https://orcid.org/0009-0001-3999-5119
https://orcid.org/0000-0003-2544-7493
https://orcid.org/0000-0001-7525-6359
https://orcid.org/0000-0002-1825-2914


Z. Liu et al.: Unraveling Impact of Critical Sensor Density on Occlusion Coverage of Partial Targets

FIGURE 1. Illustration of 3D irregular shape obstacle and its visual
occlusion.

FIGURE 2. Illustration of 2D projection obstacle and its visual occlusion
on plane, gray rectangle is the 2D irregular obstacle and dot line region is
the 2D visual occlusion.

cause a negative impact on the QoC, as shown in Fig.1.
Meanwhile, aiming to obtain the 2D irregular shape obstacle
and its 2D visual occlusion, we project the 3D irregular shape
obstacle and 3D visual occlusion onto 2D plane, respectively,
as illustrated in Fig.2. Since the randomness of deployment
of sensors and the obstacles existence result in that the
estimation of critical sensor density becomes an important
issue to be addressed inDSN. In this paper, we derive the CSD
for achieving an expected coverage ratio of partial targets in
a square FoI with irregular shape obstacles existence.

Intuitively, if a sensor lies near the border of the FoI, its
effective sensing region could be less than its sensing region,
which leads to border effects. It is obvious that the estimated
CSD for a pre-defined coverage ratio of targets without
considering border effects would be less than the actual value.
In this paper, we address the problem: by considering a
square FoI where irregular shape obstacles are scattered
at random and the border effects, what is the CSD for
achieving an expected coverage ratio of partial targets with
a high probability. The results also can be applied to other
regular shape obstacles like rectangle, circle, etc. To the best
of our knowledge, there is no relevant work on this issue.

The main contributions of this paper are summarized as
follows

• We present 2D projection model of 3D irregular
shape obstacle, and introduce the concept of occlusion
coverage of target.

• We estimate the expected value of effective possible
sensing region with considering border effects, and
introduce the expected occlusion zone between target
and sensor. Then, we derive the expression of CSD
required to achieve an expected occlusion coverage ratio
of targets with a high probability.

• We present the simulation results to take analysis of the
influence of border effects and obstacles on CSD.

The rest of this paper is organized as follows: Section II
briefly introduce the related works. In Section III, we present
system model and definitions. The expected value of the
effective possible sensing region with considering border
effects is derived in Section IV. Section V presents the
expression of CSD for an expected occlusion coverage ratio
of targets. A series of simulation experiments are conducted
to verify the accuracy of numerical results in Section VI.
Finally, Section VII is the conclusion and the possible future
works are presented.

II. RELATED WORKS
Currently, the coverage issue has attracted widespread atten-
tion from academia and industry. In this section, we briefly
review important contributions in the literatures on coverage
and critical sensor density estimation.

In conventional WSNs, Ammari and Das [6] proposed
an integrated-concentric-sphere model to address coverage
and connectivity in 3D WSNs, authors first derived λcov and
λcon to ensure that coverage percolation and connectivity
percolation almost surely occur, respectively. Then, a critical
density λcov−con is presented to ensure that coverage and
connectivity percolation simultaneously occur with a high
probability. The authors in [7] assumed that the FoI is a
convex polygon-shaped, and taken the border effects into
account. Then, they derived the critical sensor density for
achieving an expected coverage ratio. Wang et al. [8] studied
the critical sensor density issue of achieving full coverage in
WSNs, and derived the upper and lower bound for the average
vacancy as critical sensor density to achieve full coverage.
Yoon and Kim [9] derived the upper and lower bounds on
the coverage of a 2D deployment of static sensors. In [10],
authors assumed that the sensors, which may not have the
same sensing radius, are deployed at random uniformly in a
three-dimensional FoI, and derived the critical condition for
the expected level of coverage of the FoI using a probabilistic
model. Saha et al. [11] proposed a fast and nearly-accurate
method of estimating the area covered by a set of n identical
sensors randomly deployed in a 2D FoI.

Due to the sensing region of sensor in DSNs is a
sector-disk region, the existing works in WSNs cannot be
directly applied to solve such issues in DSNs. Karakaya
and Qi [12] taken the radius and the visual occlusion
of target into account in crowded targets environment,
authors derived the closed-form solution for the estimation
of the visual coverage probability based on certainty-based
target detection model, but they did not consider that the
irregular shape obstacles (such as tree, building, mountain
and wall etc) may be exist between the sensor and the
target. Literatures [13] and [14] proposed a critical sensor
density approach to ensure coverage and connectivity for
field-of-view angles between 0 and π by using continuum
percolation. However, visual occlusion and border effects
issues were not considered. Attar et al. [15] also studied
the coverage estimation issue in visual sensor networks,
and validated the proposed mathematical solution. In [16],
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FIGURE 3. Illustration of sensing model.

authors first proposed full-view coverage model, and derived
a necessary and sufficient condition on sensor density for
complete full-view coverage ratio. Following that, Wang and
Cao [17] also analyzed that condition to achieve complete
full-view coverage ratio, besides, they introduce verification
problems of weak/strong full-view barrier and their detection
methods. Aiming to mobile camera sensor networks, authors
in literature [18] taken the initiative to address the critical
condition to achieve asymptotic full-view coverage in mobile
DSN, and proposed equivalent sensing radius (ESR) to
unravel the critical requirement for asymptotic full-view
coverage by ignoring border effects. Liu and Jiang [19]
assumed that the sensors are randomly deployed in an
irregular bounded region, and derived the sensor parameter
estimation model for the expected full-view coverage ratio
with a high probability. Yu et al. [20] proposed a novel local
face-view coverage model, and derived coverage estimation
model under deterministic deployment. Kang et al. [21]
proposed an approach to compute critical density to ensure
entire coverage and full connectivity.

Most literatures do not take the border effects and irregular
shape obstacles into account. Although some of works
consider the target radius and target visual occlusion in
crowded targets environment, but they assume that none of
obstacles exist in the FoI.

III. MODELS AND PROBLEM DEFINITION
In this section, we present the sensing model of directional
sensor (sensor), 2D projectionmodel of 3D irregular obstacle,
system model and relevant definitions.

A. SENSING MODEL OF SENSOR
A binary sector model is commonly used in many literatures
[13], [14], [15], [16], [17], [18], [19]. In general, the sensing
model is represented as a 4-tuple < s, r, θ,

−→
f >, where s

denotes a sensor and its position, r denotes its sensing radius,
−→
f denotes its working direction, θ denotes the field of view
(FoV) angle of a sensor. As illustrated in Fig.3, it is obvious
that the sensor’s sensing region is a sector-disk.

B. 2D PROJECTION MODEL OF OBSTACLE
We take the exact geometric shape of an obstacle into account.
The 2D projection of a 3D irregular shape obstacle on a plane
is usually an irregular polygon which can be categorized
as convex polygon and concave polygon. In literature [22],

FIGURE 4. Illustration of 2D projection model of an obstacle.

authors proved that any concave polygon can be composed
by multiple convex polygons. Therefore, we can conclude
that the 2D projection of an obstacle consists of one or more
convex polygon.

To simplify the issue we studied, as illustrated in Fig.4,
the 2D projection model of an obstacle is represented as a
6-tuple < rec, c, v, l,w, β >, where rec denotes the convex
polygon’s minimum bounding rectangle which can be found
by using algorithm in literature [23], c is the center point
of rec, we also let it denote the obstacle and the convex
polygon, l and w respectively denote the length and width of
rec, v = {vj}j=1···J denotes all vertices of the convex polygon
c, β represents the rotation angle of the straight line formed
by these two vertices with maximum Euler distance.

C. SYSTEM MODEL
In this paper, the FoI, where is hostile or unreachable,
is assumed to be a 2D square area � with edge length
of L. Thus, we often adopt a random deployment strategy,
which inevitably leads to border effects. Besides, the 2D
projection convex polygon of a 3D irregular shape obstacle
lies inside the FoI would lead to an adverse impact on
the QoC. Unlike the previous literatures, we simultaneously
consider the border effects and the heterogeneous obstacles.

As illustrated in Fig.5, we assume that n homogeneous
sensors s1, s2, · · · , sn are randomly and uniformly deployed
in the FoI, and independent of each other. Moreover,m targets
t1, t2, · · · , tm are randomly distributed in the FoI, we ignore
the radius of target. According to the convex polygon
c introduced in above section, we divide the obstacles
randomly and independently located in the FoI into u groups
g1, g2, · · · , gu, it is obvious that the corresponding convex
polygons have the same grouping. Let ϖi be the number of
obstacles in group gi. Clearly, the total number of obstacles
is represented as ϖ = ϖ1 + ϖ2 + · · · + ϖu. each obstacle
in group gi has identical convex polygon ci, but either ci ̸= cj
will hold if i ̸= j. On the basis of the system model studied
in this paper, we use convex polygon to denote any obstacle
projected onto 2D plane.

D. DEFINITIONS
To better evaluate the sensing performance of a sensor in
DSN, we give the following definitions.
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FIGURE 5. Illustration of system model.

FIGURE 6. Illustration of border zone and center zone.

FIGURE 7. Illustration of possible sensing region and effective possible
sensing region.

1) BORDER ZONE AND CENTER ZONE
As illustrated in Fig.6, It can be seen that the FoI can be
categorized by two disjoint regions: the border zone B, and
the center zone C . It is easy to infer that the border zone is a
strip with width of r which denotes the sensing radius. Then,
we get C = � − B.

2) POSSIBLE SENSING REGION (PSR)
For a sensor s, the circle region centered at it with radius r is
called as the possible sensing region denoted as φ, as shown
in Fig.7. Clearly, its area can be expressed as |φ|

.
= πr2.

3) EFFECTIVE POSSIBLE SENSING REGION (EPSR)
From Fig.7, we conclude that the intersection of the PSR and
the FoI is called effective possible sensing region which is
denoted as 8 = φ ∩ �. Obviously, when a sensor lies inside
the center zone C , its EPSR is the PSR itself. However, if the

FIGURE 8. Illustration of a target being occluded by an obstacle, p1 and
p2 are the two intersections of line segment st and edges of 2D
projection convex polygon of the obstacle.

sensor lies inside the border zone B, its EPSR is not greater
than PSR, we get |8| ≤ πr2.

4) OCCLUSION COVERAGE
As illustrated in Fig.8, for a target t , if the target is covered
by at least one sensor s and the line segment st is not
intersect with the edges of the convex polygon of any
obstacle, we conclude that the target achieves occlusion
coverage which can be verified by checking the following
three mathematical conditions.

• dist(s, t) ≤ r .
• α(

−→
f ,

−→st ) ≤ θ/2
• For any convex polygon ci, if ∃pj(xij, yij) = st ∩

edgeof (ci), and (xs − xij)(x t − xij) > 0. Where j = 1, 2,
and xs, x t represent the X -axis coordinates of the sensor
s and the target t , respectively.

The condition 1 and condition 2 indicate that the target t
must be located inside the sensing region of the sensor s. The
condition 3 indicates that the line segment st is not intersect
with the edges of any convex polygon ci.

E. MAIN SYMBOLS
In order to describe the problem more clearly, the main
symbols used in this paper are summarized in Table 1.

IV. ESTIMATION OF EXPECTED EPSR WITH
CONSIDERING BORDER EFFECTS
In this section, for a sensor s lies in the FoI, we start with
estimating the expected value of its EPSR.

As we mentioned in Definition 3, it is obvious that the
expected EPSR depends on the location of the sensor s. Let
E[8c] denote the expected EPSR of the sensor lies inside
center zone C , and E[8b] denote that of it lies inside the
border zone B, we obtain E[8c] = πr2, but E[8b] is
unknown. Due to the sensor randomly lies in either C or B,
the expected EPSR of it in the FoI, denoted as E[8], can be
given by

E[8] =
|C|

|�|
E[8c] +

|B|

|�|
E[8b] (1)

where |�| denotes the area of the FoI. In the rest of this
section, we derive E[8b] by approximating the border zone
B to be an equivalent rectangle zone. Specially, if we do
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TABLE 1. Description of symbols.

FIGURE 9. Illustration of the rectangle zone R approximating to the
border zone B.

not take the border effects into account, we easily obtain
E[8b] = E[8c] = πr2.

Intuitively, if the sensor s lies inside the border zone B,
its PSR will intersect with the external region of the FoI,
resulting in border effects. Then, we consider the border
effects and derive the formula of E[8b]. Before derivation,
we have the following lemma.
Lemma 1: The area of the border zone B is equal to the

area of a rectangle zone R with a length of 4(L − r) and a
width of r .
Proof: From Fig.3, clearly, we obtain |�| = L2 and |C| =

L2 − 4Lr − 4r2. Thus, the area of the border zone B can be
calculated by |B| = |�| − |C| = 4(L − r)r , this value is
exactly equal to the area of the rectangle zone R in Lemma 1.
The Lemma 1 is proved.

According toLemma1, the rectangle zoneR can be used to
approximate the border zone B. Thus if the sensor s lies inside
the border zone, it can be approximated that it lies inside the
rectangle zone. From Fig.9, let (x, y) be the coordinates of the
sensor in the rectangle zone, thus, the area of the EPSR can
be calculated by the following formula

|8b| = πr2 −

(
Sŝabc − Sa

sac

)
=

1
2
r2
(
2π − 2 arccos

( y
r

)
+ sin

(
2 arccos

( y
r

)))
(2)

Therefore, the expected EPSR of the sensor s lies inside
border zone B can be simply integrated |8b| over R, its value
can be approximately given by

E[8b] =

∫ ∫
|8b|dR
|R|

=

∫ r
0

∫ 4(L−r)
0 |8b|dydx

4r(L − r)
(3)

By combining Equations (1)(2)(3), we obtain that the
expected EPSR of the sensor s in the FoI can be expressed
as

E[8] =
(L2 − 4Lr − 4r2)πr2 +

∫ r
0

∫ 4(L−r)
0 |8b|dydx

L2
(4)

V. CRITICAL SENSOR DENSITY
In the previous section, we estimated the expected EPSR of
a sensor lies anywhere in the FoI. In this section, we start
with the analysis of partial target coverage with obstacles
existence, and derive the critical sensor density for an
expected target coverage ratiowith a high probability.Wefirst
have the following lemma.
Lemma 2: Given any subarea A′ of area A and N number

of random points in area A. Let XA′ be a random variable
representing the number of points in the subarea A′. The
probability of the event {XA′ = k} is expressed as

P(XA′ = k) = e−λ|A′
|
(λ|A′

|)k

k!
(5)

where k ≥ 0, |A′
| is the area of A′ and λ =

N
|A|

is the point
density per unit area.
Proof: Let H be the random variable representing if a

point lies in subarea A′ or not, its value is 1 or 0. We get
the probability of event {H = 1} is calculated by P(H =

1) =
|A′

|

|A|
. Event {XA′ = k} follows Binomial Distribution, its

probability can be expressed as

P (XA′ = k) =

(
N
k

)
(P(H = 1))k(1 − P(H = 1))N−k

Let λ =
N
|A|

, we get

lim
N→∞

P (XA′ = k)

= lim
N→∞

(
N
k

)
(P(H = 1))k(1 − P(H = 1))N−k

= lim
N→∞

N !

(N − k)!k!

(
|A′

|

|A|

)k (
1 −

|A′
|

|A|

)N−k

= lim
N→∞

N !

(N − k)!k!

(
λ|A′

|

N

)k(
1 −

λ|A′
|

N

)N(
1 −

λ|A′
|

N

)−k

= e−λ|A′
|
(λ|A′

|)k

k!

The Lemma 2 is proved.
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FIGURE 10. Illustration of expected occlusion zone, gray region denotes
the expected occlusion zone.

A. PROBABILITY OF NO VISUAL OCCLUSION BETWEEN
TARGET AND SENSOR
According to the system model we studied, ϖ number
of irregular obstacles, which classified into u groups, are
randomly located in the FoI, and independent of each other.
These obstacles may generate visual occlusion exist between
a target t and a sensor s. In this section, we assume that the
target t lies inside the sensing region of the sensor s. Let
x ∈ [0, r] be the Euler distance between them. Then we
randomly take an obstacle in group gi into account, and derive
the probability of the event that there is no visual occlusion
between the target and the sensor.

When the minimum bound rectangle reci of the obstacle is
tangent to the line segment st , let di be the vertical distance
from the center point of reci to the line segment st , we can

obtain di ∈

[
wi
2 ,

√
l2i +w

2
i

2

]
. In this situation, an occlusion zone

denoted is formed. Due to the rotation angle βi of the obstacle
is randomly and uniformly distributed, we know that the di
also follows unform random distribution, and its expected

value di =
wi+

√
l2i +w

2
i

4 . Thus the expected occlusion zone
denoted as A′

i can be approximately calculated by |A′
i| =

πdi
2
+ 2dix, as illustrated Fig.10. Each obstacle in the same

group forms identical expected occlusion zone, but either
A′
i ̸= A′

j will hold if i ̸= j.
In order to make the line segment st to be not occluded by

any obstacle in group gi, it must be satisfied that there is no
such obstacle lies inside the expected occlusion zone A′

i. Let
XA′

i
be the random variable representing the number of group

gi obstacles located inside the expected occlusion zone A′
i.

Base on the Lemma 2, the probability of the event XA′
i
= 0 is

approximately expressed as

P(XA′
i
= 0) = e−µi|A′

i|

(
λ|A′

i|
)0

0!

= e
−µi

(
πdi

2
+2dix

)
(6)

where µi =
ϖi
|�|

is the density of group gi obstacles per unit
area.

Let X =
∑u

i=1 XA′
i
be the random variable represent-

ing the number of obstacles in all groups g1, g2, · · · , gu

located in their corresponding expected occlusion zones
A′

1,A
′

2, · · · ,A′
u. Due to these obstacles are independent of

each other and the value of random variable XA′
i
must not

be less than zero, we know that the probability of the event
{X = 0} is expressed as

P(X = 0) = P

(
u∑
i=1

XA′
i
= 0

)

=

u⋂
i=1

P
(
XA′

i
= 0

)
= e

∑u
i=1 µi

(
πdi

2
+2dix

)
(7)

Due to P(X = 0) is the function of x ∈ [0, r] which is
a random value about distance from the sensor to the target,
we can get that the expected value ofP(X = 0) is often used to
describe probability of the event {X = 0}more accurately. Let
E[X = 0] be the expected value of that probability. Clearly,
E[X = 0] can be obtained by simply integrating P(X = 0)
over [0, r], it can be expressed as

E[X = 0] =

∫ r
0 P(X = 0)dx

r

=

∫ r
0 e

∑u
i=1 µi

(
πdi

2
+2dix

)
dx

r
(8)

B. PROBABILITY OF TARGET TO BE COVERED WITH
CONSIDERING VISUAL OCCLUSION
In the previous derivation, we assume that the target t is
always located inside the sensing region of the sensor s, but do
not consider how to estimate the probability of the event that
at least one sensor covers the target t . In this section, we take
analysis of this issue with considering visual occlusion.

Let Y be the random variable representing if the target
t is exactly covered by one sensor s or not, its values is
1 or 0. Event {Y = 1} represents that the target t lies
inside the sensing region of one sensor. We assume that all
sensors follow a uniform distribution, it is easy to get that the
probability of the event {Y = 1} is expressed as

P(Y = 1) =
E[8]
|�|

θ

2π
(9)

where E[8] is given by Equation (4), E[8]
|�|

represents that
the probability of the target lies inside the expected EPSR of
the sensor, θ

2π represents that the probability of the target is
located within the FoV angle of the sensor.

Let Z be an event to represent that the target t is
exactly covered by one sensor s and the line segment st
is not occluded by any obstacle. According to the previous
derivations, the probability of this event can be expressed as

P(Z) = P(Y = 1)E(X = 0)

=
E[8]
|�|

θ

2π
E(X = 0)

=
E[8]
|�|

θ

2π

∫ r
0 e

∑u
i=1 µi

(
πdi

2
+2dix

)
dx

r
(10)
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Then, we conduct the above-mentioned random experi-
ment n times (n also denotes the number of sensors), and let
F be a random variable representing the number of sensors
exactly occlusion covering the target t . It is obvious that the
event {F = 0} represents that the event Z is not happened in
each experiment, we get that its probability can be expressed
as

P(F = 0) = (1 − P(Z))n

=

1 −
E[8]
|�|

θ

2π

∫ r
0 e

∑u
i=1 µi

(
πdi

2
+2dix

)
dx

r

n

(11)

Base on the knowledge of probability, the probability of
the event {F ≥ 1} denoting that at least one sensor occlusion
covers the target t is given by

P(F ≥ 1) = 1 − P(F = 0)

= 1 −

1 −
E[8]
|�|

θ

2π

∫ r
0 e

∑u
i=1 µi

(
πdi

2
+2dix

)
dx

r

n

(12)

The expected value of the occlusion coverage ratio of
targets with considering visual occlusion, denoted by E [T ],
is the ratio of the number of the targets t occlusion covered
by at least one sensor to the total targets. Therefore

E [T ] =
mP(F ≥ 1)

m
= P(F ≥ 1) (13)

where m denotes the number of targets located in the FoI.

C. CRITICAL SENSOR DENSITY WITH CONSIDERING
VISUAL OCCLUSION
In this section, we derive the critical sensor density for
achieving an expected occlusion coverage ratio of partial
targets with a high probability.
Theorem 1: Given a square FoI � where sensors, targets

and irregular shape obstacles are uniformly scattered, and
an expected value of occlusion coverage ratio E [T ], where
E [T ] ∈ [0, 1]. The critical sensor density ρ which is needed
to ensure E [T ] with a high probability is expressed as

ρ =
ln (1 − E [T ])

|�|ln

(
1 −

E[8]
|�|

θ
2π

∫ r
0 e

∑u
i=1 µi

(
πdi

2
+2dix

)
dx

r

) (14)

where E[8] is given by Equation (4), and E [X = 0] is given
by Equation (8). |�| = L2 is the area of the FoI.
Proof: From Equations (12)(13), the number of sensors

required to achieving an expected occlusion coverage ratio
is calculated by n =

ln(1−E[T ])

ln

1− E[8]
|�|

θ
2π

∫ r
0 e

∑u
i=1 µi

(
πdi

2
+2dix

)
dx

r

 . The
critical sensor density is the minimum number of sensors per

FIGURE 11. Illustration of system model in example 1. Four obstacles and
60 targets are located in the FoI.

unit area of the FoI, i.e., ρ =
n

|�|
which the Theorem 1 is

proved.
Besides, theTheorem 1 can be used to estimate the critical

sensor density in traditional WSNs deployed in the FoI with
irregular shape obstacles existence, at this time, the FoV angle
of sensor θ = 2π substituting into Equation (14), we get the
CSD model on occlusion coverage of partial target in WSNs.
Example 1: Given an square FoI with length of 100m as

illustrated in Fig.11, in which 60 number of targets and some
homogeneous sensors with r = 15m and θ =

π
2 are scattered

at random, respectively. In addition, four obstacles in group
g1 are randomly and uniformly located inside the FoI. In this
case, the area of the 2D projection convex of each obstacle
is set to 63.2864m2. Obviously, the other relevant parameters
are calculated as: l1 = 9.1445,w1 = 8.9788. Then, we want
to calculate the CSD in the FoI that the occlusion coverage
ratio of targets is E[H] = 90% with a high probability.
Using Equation (4)(8) we obtain E[8] ≈ 630.3583 m2,
E[X = 0] ≈ 0.0.9326. Substituting these parameters into
Equation (14) in Theorem 1, we get ρ ≈ 0.0153 and
n ≈ 153. That is, if we deploy 153 sensors in the FoI, we can
ensure that 90% of targets are occlusion covered with a high
probability.

VI. ANALYSIS OF NUMERICAL RESULTS
In this section, we take analysis of the numerical results of the
expression derived in this paper. First, we take analysis of the
influence of sensor density, sensing radius and FoV angle on
the expected occlusion coverage ratio. Besides, we take the
border effects into account and verified that the numerical
results considering border effects have better performance
than those without considering border effects.

For simplicity, we consider that the FoI is a square
with length of L = 100m as illustrated in Fig.12,
in which 60 targets and homogeneous sensors are randomly
scattered, respectively. Meanwhile, two groups (g1 and g2) of
obstacles, independent of each other, are located in the FoI at
random, and their area are respectively set to 63.2863m2 and
21.7653m2. The number of obstacles in g1 and g2 are fixed
and equal, ϖ1 = ϖ2 = 4.
In order to get more accurate simulation results, we con-

duct each experiment m = 100 times to calculate the
mean result representing the final simulation result. Besides,
to better analyze the accuracy of the numerical results,
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FIGURE 12. Illustration of system model in out simulation. Four g1 and
Four g2 obstacles and 60 targets are located in the square FoI.

FIGURE 13. Impact of sensor densities on occlusion coverage ratio of
targets, (a) Expected occlusion coverage ratio, (b) Mean absolute error.

we propose mean absolute error (MAE) expressed as

MAE =

∑m
i=1 |Ci − E [T ]|

m
(15)

where Ci denote the ith simulation result of a experiment, and
E [T ] is the numerical result calculated by Equation (13).

A. IMPACT OF SENSOR DENSITY
Fig.13(a) and Fig.13(b) report the results of the expected
occlusion coverage ratio and MAE under different sensor
density. The results in the two figures are obtained in
the case where sensing radius r = 15m and FoV angle
θ =

2π
3 . Fig.13(a) indicates that the expected occlusion

coverage ratio increases as the sensor density increases.
Clearly, it can be seen that the numerical results approxi-
mately match the simulation results. The results show that
the expected occlusion coverage ratio with no border effects
almost exceeds that obtained by Equation (13), due to the
PSR under no border effects is considered fully available
for coverage contribution. An interesting observation is that
for lower or higher sensor densities, the border efforts are
not prominent, due to the expected occlusion coverage ratio
approaches to 0 or 1.Moreover, From Fig.13(a), it is observed
that the MAE is not greater than 0.07 under different sensor
densities, and the MAE under border effects is almost less
than that under no border effects.

B. IMPACT OF SENSING RADIUS
Here, we continue to analyze the influence of the sensing
radii on the expected occlusion coverage ration under a fixed
sensor density ρ = 150 × 10−4 and a fixed FoV angle
θ =

2π
3 . Fig.14(a) illustrates trend of expected occlusion

coverage ratio under different sensing radii. Similar to the

FIGURE 14. Impact of sensing radii on occlusion coverage ratio of targets,
(a) Expected occlusion coverage ratio, (b) Mean absolute error.

FIGURE 15. Impact of Fov angles on occlusion coverage ratio of targets,
(a) Expected occlusion coverage ratio, (b) Mean absolute error.

results in the previous section, it can be observed that the
expected occlusion coverage ratio increases as the sensing
radius increases, and the border effects are not significant for
lower or higher sensing radii. When the sensing radii are in
the range [7, 17], the border effects are prominent due to the
more EPSR of a sensor close to the border will fall outside
of the FoI. Fig.14(a) also shows that the numerical results
obtained by Equation (13) have better fitting than those under
no border effects. Meanwhile, Fig.14(b) shows that the MAE
results are also controlled less than 0.07. When the border
effects is not taken into account, the MAE results are almost
greater than those under border effects.

C. IMPACT OF FoV ANGLE
Next, we study the influence of the FoV angles on the
expected occlusion coverage ratio under a fixed sensor
density ρ = 150× 10−4 and a fixed sensing radius r = 15m.
Fig.15(a) and 15(a) illustrate the trend like previous sections.
It is easily concluded that the numerical results under border
effects have better fitting than those under no border effects,
and the MAE results have always been smaller and are
controlled less than 0.052.

VII. CONCLUSION
This paper studied the target coverage problem in DSN with
considering irregular shape obstacles existence. We defined
the concept of occlusion coverage of partial targets and
proposed the 2D projection model of a 3D obstacle.
Furthermore, we introduced the expected occlusion zone to
estimate the probability of none of obstacles occluding target.
Then, we derived the critical sensor density for an expected
occlusion coverage ratio of partial targets considering border
effects, which has better accuracy compared with that
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under no border efforts. In the end, a series of simulation
experiments are carried out to verify the simulation results
and numerical results. The research of this work would
motivate further research on target coverage problem in DSN,
such as targets coverage in rechargeable IoT networks with
irregular obstacles existence.

REFERENCES
[1] N. Tekin, H. E. Erdem, and V. C. Gungor, ‘‘Analyzing lifetime of energy

harvesting wireless multimedia sensor nodes in industrial environments,’’
Comput. Standards Interfaces, vol. 58, pp. 109–117, May 2018.

[2] X. Yang, L. Shu, J. Chen, M. A. Ferrag, J. Wu, E. Nurellari, and K. Huang,
‘‘A survey on smart agriculture: Development modes, technologies, and
security and privacy challenges,’’ IEEE/CAA J. Autom. Sinica, vol. 8, no. 2,
pp. 273–302, Feb. 2021.

[3] M. Naeem, W. Ejaz, M. Iqbal, F. Iqbal, A. Anpalagan, and
J. J. P. C. Rodrigues, ‘‘Efficient scheduling of video camera sensor
networks for IoT systems in smart cities,’’ Trans. Emerg. Telecommun.
Technol., vol. 31, no. 5, May 2020, Art. no. e3798.

[4] V. Dyo, S. A. Ellwood, D. W. Macdonald, A. Markham, N. Trigoni,
R. Wohlers, C. Mascolo, B. Pásztor, S. Scellato, and K. Yousef, ‘‘WILD-
SENSING: Design and deployment of a sustainable sensor network for
wildlife monitoring,’’ ACM Trans. Sensor Netw., vol. 8, no. 4, pp. 1–33,
Sep. 2012.

[5] Z. Chen, H. Gao, Z. Zhang, H. Zhou, X. Wang, and Y. Tian, ‘‘Underwater
salient object detection by combining 2D and 3D visual features,’’
Neurocomputing, vol. 391, pp. 249–259, May 2020.

[6] H. M. Ammari and S. K. Das, ‘‘Critical density for coverage and
connectivity in three-dimensional wireless sensor networks using con-
tinuum percolation,’’ IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 6,
pp. 872–885, Jun. 2009.

[7] H. P. Gupta, S. V. Rao, and T. Venkatesh, ‘‘Critical sensor density for partial
coverage under border effects in wireless sensor networks,’’ IEEE Trans.
Wireless Commun., vol. 13, no. 5, pp. 2374–2382, May 2014.

[8] B. Wang, J. Zhu, L. T. Yang, and Y. Mo, ‘‘Sensor density for confident
information coverage in randomly deployed sensor networks,’’ IEEE
Trans. Wireless Commun., vol. 15, no. 5, pp. 3238–3250, May 2016.

[9] Y. Yoon and Y.-H. Kim, ‘‘Maximizing the coverage of sensor deployments
using a memetic algorithm and fast coverage estimation,’’ IEEE Trans.
Cybern., vol. 52, no. 7, pp. 6531–6542, Jul. 2022.

[10] H. P. Gupta, S. V. Rao, and T. Venkatesh, ‘‘Critical sensor density for fault-
tolerant coverage in 3D heterogeneous wireless sensor networks,’’ in Proc.
IEEE Int. Conf. Adv. Netw. Telecommun. Syst. (ANTS), Kattankulathur,
India, Dec. 2013, pp. 1–6.

[11] D. Saha, S. Pal, N. Das, and B. B. Bhattacharya, ‘‘Fast estimation of area-
coverage for wireless sensor networks based on digital geometry,’’ IEEE
Trans. Multi-Scale Comput. Syst., vol. 3, no. 3, pp. 166–180, Jul. 2017.

[12] M. Karakaya and H. Qi, ‘‘Coverage estimation for crowded targets in
visual sensor networks,’’ ACM Trans. Sensor Netw., vol. 8, no. 3, pp. 1–22,
Jul. 2012.

[13] M. Khanjary, M. Sabaei, and M. R. Meybodi, ‘‘Critical density for cov-
erage and connectivity in two-dimensional aligned-orientation directional
sensor networks using continuum percolation,’’ IEEE Sensors J., vol. 14,
no. 8, pp. 2856–2863, Aug. 2014.

[14] M. Khanjary, M. Sabaei, and M. R. Meybodi, ‘‘Critical density in
adjustable-orientation directional sensor networks using continuum perco-
lation,’’ Proc. Comput. Sci., vol. 116, pp. 548–555, Dec. 1017.

[15] A. M. Attar, S. Yarahmadian, and S. Samavi, ‘‘Coverage estimation in
heterogenous floorplan visual sensor networks,’’ in Proc. IEEE Sensors,
Baltimore, MD, USA, Nov. 2013, pp. 1–4.

[16] Y. Wang and G. Cao, ‘‘On full-view coverage in camera sensor networks,’’
in Proc. IEEE INFOCOM, Apr. 2011, pp. 1781–1789.

[17] Y. Wang and G. Cao, ‘‘Achieving full-view coverage in camera sensor
networks,’’ ACM Trans. Sensor Netw., vol. 10, no. 1, pp. 1–31, Nov. 2013.

[18] X. Gan, Z. Zhang, L. Fu, X. Wu, and X. Wang, ‘‘Unraveling impact of
critical sensing range on mobile camera sensor networks,’’ IEEE Trans.
Mobile Comput., vol. 19, no. 4, pp. 982–996, Apr. 2020.

[19] Z. Liu and G. Jiang, ‘‘Sensor parameter estimation for full-view coverage
of camera sensor networks based on bounded convex region deployment,’’
IEEE Access, vol. 9, pp. 97129–97137, 2021.

[20] Z. Yu, F. Yang, J. Teng, A. C. Champion, and D. Xuan, ‘‘Local face-view
barrier coverage in camera sensor networks,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Hong Kong, Apr. 2015, pp. 684–692.

[21] L. Kang, Y. Qi, W. Gao, A. Wang, and Z. Dong, ‘‘A percolation
based approach for critical density in non-orientation directional sensor
network,’’ in Proc. IEEE Int. Conf. Ubiquitous Comput. Commun.
(IUCC), Data Sci. Comput. Intell. (DSCI), Smart Comput., Netw. Services
(SmartCNS), Oct. 2019, pp. 89–94.

[22] J.-M. Lien and N. M. Amato, ‘‘Approximate convex decomposition
of polyhedra,’’ in Proc. ACM SIGGRAPH Posters (SIGGRAPH), 2004,
pp. 121–131.

[23] J. R. Kala, S. Viriri, and J. R. Tapamo, ‘‘An approximation based algorithm
for minimum bounding rectangle computation,’’ in Proc. IEEE 6th Int.
Conf. Adapt. Sci. Technol. (ICAST), Ota, Nigeria, Oct. 2014, pp. 1–6.

ZHIMIN LIU was born in Chenzhou, China.
He received the B.E. degree from Northeastern
University, in 2006, the M.E. degree from South
China Agricultural University, in 2010, and the
Ph.D. degree from Central South University,
in 2017. He is currently a Lecturer with the
School of Mathematics and Computational Sci-
ence, Hunan First Normal University. His current
interests include wireless camera sensor networks,
sensor clouds, and crowd sensing.

ZUOQING CAO was born in Chenzhou, China.
He received the B.E. degree from Central South
University, in 2007. Currently, he is a Lecturer
with the School of Mapping and Geography,
Hunan Engineering Vocational and Technical
College. His current research interests include
wireless camera sensor networks, sensor clouds,
and unmanned aerial vehicles.

SHUKUN LIU (Member, IEEE) was born in
Cangzhou, Hebei, China. He received the Ph.D.
degree in computer science and technology
from Central South University, Changsha, China,
in 2016. From 2013 to 2019, he was an associate
professor. Since 2020, he has been a Professor
of computer science and technology with Hunan
Women’s University. His current research interests
include cloud computing, computer networks, vir-
tualization technology, database technology, data

mining, and software engineering. He has published more than 30 technical
articles and books in the above areas. His research is supported by the Hunan
Provincial Natural Science Foundation and the Hunan Provincial Education
Department Scientific Research Foundation. He is a member of CCF.

PINIAL KHAN BUTT received the master’s
degree in telecommunication technology from the
University of Sindh, Pakistan, in 2002, and the
Ph.D. degree in computer science and technology
from the School of Information Science and
Engineering, Central South University, Changsha,
Hunan, China, in 2017. He is currently a Professor
with the Information Technology Center, Sindh
Agricultural University, Tando Jam, Pakistan. His
current research interests include e-commerce

telecommunication technology and energy-efficient mobile computing.

107168 VOLUME 11, 2023


