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ABSTRACT Recently, advanced ground-to-air missiles are developed to defend against a targeted aircraft.
A conventional ground-to-air missile has infrared (IR) seekers or radar sensors. However, an anti-aircraft
missile based on infrared images is easily distracted by flares, thus an aircraft deploys flares when an
incoming missile is detected. In this paper, we propose a missile seeker that complements the weakness
of the existing IR sensors, by switching to camera sensors in the case where IR sensors are disturbed. As we
switch to camera sensors, we generate the initial bounding box by applying simple line detection algorithms
on the target image. Once a bounding box is generated at the target aircraft, the box is tracked continuously
using object trackers, which are based on camera images. Themissile then uses the bounding box for tracking
the target continuously. The object tracker is based on the camera image and is not disturbed by flares or
chaffs. To the best of our knowledge, our paper is unique in proposing a missile seeker that complements
the weakness of the existing IR sensors, by switching to camera sensors in the case where IR sensors are
disturbed. The proposed tracking algorithm is simple and computationally efficient, thus is suitable for real
time applications. As far as we know, our tracking algorithm is novel in using simple line detection algorithms
for tracking a target aircraft. Using experiments, we show that the proposed tracking method outperforms
the-state-of-the-art on object detector considering both time efficiency and tracking accuracy.

INDEX TERMS Military aircraft, infrared image, flare, channel and spatial reliability tracking filter, camera
image, chaffs, computationally efficient target tracking, ground-to-air missile.

I. INTRODUCTION
Nowadays, advanced ground-to-air missiles have been
invented to defend against an enemy aircraft. A conventional
ground-to-air missile has infrared (IR) seekers. The missile
chases a targeted aircraft based on infrared images. Infrared
homing uses an infrared sensor to detect infrared rays, i.e.,
heat, emitted from the targeted aircraft, and track the target.

A targeted aircraft, such as fighter jets, deploys flares,
in order to defend against a missile approaching the aircraft.
Flares are used to distract the on-board IR sensors of the
missile. The flare emits high-temperature heat and emits
infrared light similar to that of an aircraft. Furthermore, flares
blur the infrared image, in order to distract the IR sensor
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measurements. The aircraft drops flares when it confirms
that a missile has been launched using the missile approach
warning (MAW). Fig. 1 shows a missile that hits the flare,
instead of the target aircraft.

IR sensors have been widely used for tracking objects,
such as an aircraft [1]. However, in contrast to visual
images, infrared images generally have low spatial resolution,
poor signal-to-noise ratios (SNR), and lack of textural
information [1], [2]. In [2], an aircraft-tracking algorithm
based on regional distribution in the case of interference
was presented. For handing frequent occlusion caused by
decoys, [2] addressed a mechanism of occlusion detection for
ensuring the accuracy of the target model. The authors of [3]
proposed an automatic target recognition architecture suitable
for anti-ship missiles with IR capabilities. Reference [4] used
convolutional neural network (CNN) to extract IR features
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FIGURE 1. A missile hits the flare, instead of the target aircraft.

of an aircraft and achieve target detection under interference
environment. Recently, avionics devices such as the Directed
infrared countermeasures system (DIRCM) is used, and a
smoke-type flare is launched for disabling the IR sensor on
the missile [5]. Thus, relying on IR sensor only can disable
the missile’s ability for tracking an aircraft.

There are many papers on object detection using camera
measurements. Due to the advance in artificial intelligence,
object detect-classification algorithms based on CNN can be
utilized for processing camera image measurements. Fast R-
CNN [6] classified object proposals using deep CNN. Fast
R-CNN employed several innovations to improve training
and testing speed, while increasing detection accuracy. You
only look once (YOLO) [7], [8] outperforms Fast R-CNN,
by framing object detection as a regression problem to
spatially separated bounding boxes and associated class
probabilities. YOLOv4 [9] and YOLOv4-tiny [10] were
recently developed as variants of YOLO models. However,
computational load of CNN-based algorithms is rather heavy,
thus CNN-based algorithms may not be suitable for tracking
a fast moving missile, which needs to process the image
measurements in real time.

Our tracking method is used to support IR sensors, only in
the case where flairs are deployed. In the case where flairs
are not deployed, IR sensors are used until hitting the target.
IR sensors are used for tracking the target before the target
deploys flairs.

Once flairs are deployed, IR sensors detect light sources
that are dispersed widely. At this moment, the target
image can be clearly measured by cameras, since flairs
provide light sources even in dark environments. Hence, our
camera-based tracking approach can be used even in dark
environments. To further enhance low light images in dark
environments, we can apply neural network methods, such as
[11], [12], and [13].

At the moment when flairs are deployed, we switch to
camera sensors. Then, we generate the initial bounding box
by applying simple line detection algorithms on the image of
the target aircraft. Once a bounding box is generated at the
target aircraft, the box is tracked continuously using object

trackers, such as the channel and spatial reliability tracking
(CSRT) filters [14], [15], which are based on camera images.
We acknowledge that other tracking filters [16], [17], [18],
[19] can be used for tracking a bounding box. We use the
CSRT filter, since it runs fast while showing good tracking
performance in our experiments. This CSRTfilter uses spatial
reliability maps for adjusting the filter support to the part
of the selected region from the frame for tracking, which
gives an ability to increase the search area and track arbitrary
objects.

The missile then uses the bounding box of the CSRT filter
for tracking the target continuously. Note that the CSRT filter
is based on the camera image and is not disturbed by flares or
chaffs.

To the best of our knowledge, our article is unique in
proposing a missile seeker that complements the weakness
of the existing IR sensors, by switching to camera sensors
in the case where IR sensors are disturbed. Since a missile
moves fast, time efficiency for target tracking is an important
factor. The proposed tracking algorithm is simple and
computationally efficient, thus is suitable for real time
applications. As far as we know, our tracking algorithm is
novel in using simple line detection algorithms, in order to
track a target aircraft in a time-efficient manner.

The performance of the proposed tracking method is veri-
fied by comparing it with the-state-of-the-art object detectors
(YOLOv4 [9] and YOLOv4-tiny [10]) using experiments.
Using experiments, we show that the proposed tracking
method outperforms the-state-of-the-art object detectors
considering both time efficiency and tracking accuracy.

The remainder of this paper is organized as follows.
Section II presents the background information of this paper.
Section III presents the proposed aircraft tracker using camera
images. Section IV addresses the experiment results of this
paper. Section V presents the conclusions of this paper.

II. BACKGROUND INFORMATION
The proposed camera seeker complements the existing IR
tracker. How to determine the location of the camera is not
within the scope of our paper. The camera can be installed
at any place on the missile, as long as the camera can
detect a target in front of the missile. The proposed camera
image processing applies to every image frame in the video.
Hence, the rolling of the missile does not disturb the image
processing.

In the case the aircraft has not deployed a flair, existing IR
tracker can track the target aircraft. At the moment when the
target deploys a flair, we switch to camera sensors. Then one
generates the initial bounding box by applying simple edge
detectors on the image of the target aircraft.

We address how to generate the initial bounding box based
on the camera image. We assume that the target aircraft is
far from the missile initially. Also, assume that the target
image exists in the sky, not in mountains or buildings. These
assumptions are feasible considering ground-to-air missiles.
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An aircraft image has a straight line segment, such as
an aircraft’s wing. We thus use line segments of the target
aircraft for generating the initial bounding box. We apply the
canny edge detector [20] to generate the edge image from
the image of the camera seeker. Then, the probabilistic hough
line transform [21] detects straight line segments in the edge
image. This transform detects long straight line segments in
the image. Detected line segments are used to set a target
point, and we generate a bounding box centered at the point.
Once a bounding box is generated at the target, the box is
tracked robustly using the CSRT filter [14], [15].
In practice, there may be a case where the image of the

camera seeker cannot detect a line segment. For instance,
a stealthy aircraft may exist behind the cloud, so that it is
not detected by neither the camera seeker nor the IR sensor.
In this case, we skip the frame which does not contain a line
segment. We iteratively skip frames until we find a frame
which contains a line segment. Once we detect a frame with
a line segment, detected line segments are used to set a target
point, and we generate a bounding box centered at the point.
Once a bounding box is generated at the target aircraft, the
box is tracked robustly using the CSRT filter [14], [15].

III. THE MISSILE TRACKER USING CAMERA IMAGES
A. GENERATE A BOUNDING BOX AT THE TARGET
For detecting the target aircraft’s body in the camera image,
we first apply the canny edge detector to the image. Then, the
probabilistic hough line transform is applied to find straight
line segments in the edge image.

The purpose of the probabilistic hough line transform
is to find straight line segments in the edge image by a
voting procedure. The efficiency of the probabilistic hough
line transform is dependent on the quality of the input data.
It is desirable to apply a denoising stage before we apply
the probabilistic hough line transform on a noisy image.
In the case where the image is corrupted by speckle, as is the
case in radar images, the Radon transform [22] is sometimes
preferred to detect lines, because it attenuates the noise
through summation.

Using the probabilistic hough line transform, we find a
set of edges in the image. Suppose that we find N edges
in the image. Let ei = {pi, qi} where i ∈ {1, 2, . . . ,N }

denote the i-th edge detected by the probabilistic hough line
transform. In the image plane, pi ∈ R2 and qi ∈ R2 denote
the coordinates of two end points of ei. The coordinates of the
center of an edge ei is

pi+qi
2 ∈ R2.

The center of end points of all line segments is set as

t =

N∑
i=1

pi + qi
2N

(1)

For instance, Fig. 2 shows a target aircraft. This figure
is an image from Video 1 in experiments. The straight
line segments detected using the probabilistic hough line
transform are depicted with green line segments. See that

FIGURE 2. Considering Video 1 in experiments, this figure shows a target
aircraft. The straight line segments detected using the probabilistic hough
line transform are depicted with green line segments. A bounding box
(blue box) is generated at the aircraft.

multiple line segments are found, since the aircraft is close
to the camera.

In practice, outlier line segments can be generated on
clutter, such as cloud, but not on the aircraft. To reduce the
effect of outlier line segments, we detect line segments which
are too far from t in (1).
K-means clustering [23] can be used to detect outlier line

segments which are too far from t. We set K = 2 in K-means
clustering. This implies that the distance from t is used to
distinguish outlier line segments from other line segments.
Suppose that we haveM ≤ N remaining line segments, other
than the outlier line segments. This implies that N − M line
segments and M line segments form two clusters, as a result
of applying K-means clustering.

Let Ei = {Pi,Qi} where i ∈ {1, 2, . . . ,M} denote the i-th
edge inM remaining line segments. The center of end points
of all M line segments is set as the target point, which is
derived as

T =

M∑
i=1

Pi + Qi
2M

(2)

We then generate a bounding box centered at the point
T ∈ R2.

The bounding box has the following size:

width = maxi∈{1,2,...,M}(max(Pi[1],Qi[1]))

− mini∈{1,2,...,M}(min(Pi[1],Qi[1])),

height = maxi∈{1,2,...,M}(max(Pi[2],Qi[2]))

− mini∈{1,2,...,M}(min(Pi[2],Qi[2])). (3)

Here, considering an arbitrary set s, max(s) denotes the
maximum value in the set s. Also, min(s) denotes the
minimum value in the set s. For an arbitrary vector v, v[j]
denote the j-th element in v.

Let δ denote the minimum side length (in pixels) of the
bounding box. Here, δ > 0 is a tuning parameter. In our
experiments, we use δ = 150 pixels. In the case where width
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FIGURE 3. Considering Video 2 in experiments, a bounding box is
generated at a target aircraft which is far from the camera. The straight
line segments detected are depicted with green line segments.

in (3) is less than δ, we setwidth = δ. In the case where height
in (3) is less than δ, we set height = δ.

B. TRACKING THE BOUNDING BOX USING OBJECT
TRACKERS
Once a bounding box is formed at the aircraft, the box is
tracked using object trackers, such as the CSRT filter [14],
[15]. For instance, Fig. 2 plots a bounding box (blue box),
which is generated at the aircraft.

As another example, Fig. 3 shows the case where a
bounding box is generated at a target aircraft. This figure is
an image from Video 2 in experiments. The blue rectangle
presents the generated bounding box. The straight line
segments detected using both the canny edge detector
and the probabilistic hough line transform are depicted with
green line segments.

While the CSRT filter runs, its bounding box may lose
tracking the target. For handling the case where the filter loses
track of the target, we re-generate a bounding box at the target
in the case where the box side length is bigger than a certain
threshold, say Th. We use Th = 300 pixels. For re-generation
of a bounding box, we use the approach in Section III-A.
The effectiveness of this re-generation of a bounding box is
verified using experiments in Section IV.

C. THE EFFECT OF USING THE CANNY EDGE DETECTOR
For detecting an aircraft’s body in the first image of the
camera seeker, we first apply the canny edge detector to the
first image of the camera seeker. This subsection presents the
effect of using the canny edge detector.

Fig. 4 shows the edge image under the canny edge detector.
Considering Video 1 in experiments, Fig. 4 shows the edge
image of the aircraft in Fig. 2. We then apply the probabilistic
hough line transform to the edge image. This transform
detects long straight line segments in the edge image,
as plotted in Fig. 2. K-means clustering in Section III-A is
further used to cancel outlier line segments, which exists at
the upper part of Fig. 4. Detected line segments are used to
set a target point, and we generate a bounding box centered
at the point. Once a bounding box is generated at the aircraft,
the box is tracked robustly using the CSRT filter [14], [15].

FIGURE 4. Considering Video 1 in experiments, this figure shows the edge
image of the aircraft in Fig. 2. For detecting an aircraft’s body in the first
image of the camera seeker, we first apply the canny edge detector to the
first image of the seeker. This plot shows the edge image derived under
the canny edge detector. K-means clustering in Section III-A is further
used to cancel outlier line segments, which exists at the upper part of
this figure.

FIGURE 5. Considering Video 1 in experiments, this figure shows the case
where we apply the probabilistic hough line transform to the first image
of the camera seeker, not to the edge image. The straight line segments
detected using the probabilistic hough line transform are depicted with
green line segments. Compared to Fig. 2, many false line segments are
generated outside the aircraft. This shows the effect of applying the canny
edge detector before applying the probabilistic hough line transform.

Next, Fig. 5 presents the case where we apply the
probabilistic hough line transform to the first image of the
camera seeker, not to the edge image. In other words, Fig. 5
presents the case where the canny edge detector is not used.
The straight line segments detected using the probabilistic
hough line transform are depicted with green line segments.
Compared to Fig. 2, many false line segments are generated
outside the aircraft in Fig. 5. This shows the effect of applying
the canny edge detector before applying the probabilistic
hough line transform.

IV. EXPERIMENTS
Using both the canny edge detector and the probabilistic
hough line transform, we find a set of edges in the image.
In the canny edge detector, several parameters must be set. If a
pixel intensity gradient is higher than the upper threshold 100,
the pixel is accepted as an edge. If a pixel intensity gradient
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FIGURE 6. This plot shows the examples of a bounding box generated at
various target aircrafts (Section III-A). The straight line segments detected
using the probabilistic hough line transform are depicted with green line
segments. See that our bounding box is generated on various kinds of
aircrafts, including helicopters.

value is below the lower threshold 50, then it is rejected. If the
pixel intensity gradient is between the two thresholds, then it
will be accepted only if it is connected to a pixel that is above
the upper threshold.

In the probabilistic hough line transform [21], several
parameters must be set. In the probabilistic hough line
transform, ρ presents the resolution of the parameter ρ in
pixels. We use 1 pixel. In addition, θ presents the resolution
of the parameter θ in radians. We use 1 degree. Let threshold
present the minimum number of intersections to detect a
line. We use 10 for threshold . Let minLineLength denote the
minimum number of points that can form a line. Lines with
less than this number of points are disregarded. We use 20 for
minLineLength. Let maxLineGap denote the maximum gap
between two points to be considered in the same line. We use
10 for maxLineGap.
We use various aircrafts for testing the generation of a

bounding box in Section III-A. Fig. 6 shows the examples
of a bounding box generated at various target aircraft. The
straight line segments detected using the probabilistic hough
line transform are depicted with green line segments. See that
our bounding box is generated on various kinds of aircrafts,
including helicopters.

For verification of our tracking system, the hardware
specifications are limited to low-power CPUs for laptops
without external GPUs. Our system was tested with various
video files. Each video shows a scene of a flying aircraft
in 1052 ∗ 502 resolution. Our videos are available upon the
request of readers.

Video 1 considers a target aircraft as plotted in Fig. 2.
In Video 1, the aircraft deploys flares while it flies. Video 2
considers a far target aircraft as plotted in Fig. 3. In Video 2,
the aircraft does not deploy flares while it flies. Video 5 is
a blurred video of Video 2, by applying blurring to every
image in Video 2. Considering Video 3 in experiments, Fig. 7
shows the bounding box generated at the target aircraft. The
straight line segments detected using the probabilistic hough
line transform are depicted with green line segments. See
Section III-A for generation of a bounding box at the target.

FIGURE 7. Considering Video 3 in experiments, this plot shows the
bounding box formed at the target aircraft. The straight line segments
detected using the probabilistic hough line transform are depicted with
green line segments.

FIGURE 8. Considering Video 3 in experiments, a bounding box is
maintained to track the far target aircraft which deploys flares.

Considering Video 3, Fig. 8 depicts the video image
where a bounding box is maintained to track the far target
aircraft which deploys flares. See that the bounding box
is not disturbed by flares. We use the tracking method in
Section III-B, for tracking the target while not losing the
target.

A. COMPARISON WITH THE-STATE-OF-THE-ART OBJECT
DETECTION METHODS
We evaluate the proposed tracker by the following metrics,
(i) success rate (SuccessRate), which shows the percentage
of frames where the tracking succeeds (generated bounding
box contains the tracked aircraft); (ii) FPS (FPS), which
shows howmany frames are processed within a second. Thus,
a tracker with large FPS runs fast and is suitable for real-time
applications.

We compare the proposed detection system with the-
state-of-the-art object detectors (YOLOv4 [9] and YOLOv4
tiny algorithms [10]). These Yolo-based algorithms use
CNN transfer learning in [10]. The algorithm’s weighted
model is pre-trained with COCO dataset [24]. Note that the
proposed tracker based on line detection does not require
the learning process, which is required for CNN-based
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TABLE 1. Comparison results.

detection algorithms, such as YOLOv4 [9] and YOLOv4 tiny
algorithms [10].

Using Yolo-based algorithms, the aircraft was misclas-
sified as birds or kites occasionally. We consider this
misclassification as success in SuccessRate, since generated
bounding box still contains the tracked aircraft. In other
words, classification error of the aircraft was not considered,
as long as the bounding box contains the tracked aircraft.

In Table 1, we use four video clips for comparison among
filters. In Table 1, [Y ] denotes the YOLOv4 [9], and [T ]
denotes the YOLOv4 tiny algorithm [10]. In addition, [Pro]
denotes the proposed tracker.

While the CSRT filter runs, its bounding box may lose
tracking the target. For handling the case where the filter loses
track of the target, we re-generate a bounding box at the target
in the case where the box side length is bigger than Th.We use
Th = 300 pixels. Let [Proc] denote the proposed tracker,
in the case where the proposed bounding box re-generation
in Section III-B is not used.

See that the proposed tracker outperforms other algorithms
considering both FPS and SuccessRate. Table 1 shows that
flares disturb the image detection efficiency SuccessRate
in other state-of-the-art tracking methods ([Y ] and [T ]).
However, flares do not disturb SuccessRate in the proposed
tracker [Pro].

Among all video clips, only Video 2 considers the case
where the target does not generate flares. In Video 2,
[Y ] provides the success rate of 98 percents. However,
its computational load is much heavier than the proposed
tracking filter. On the other hand, [T ] runs fast, while its
accuracy is not satisfactory.

Table 1 shows that [Pro] outperforms [Proc] considering
the success rate. This verifies that the re-generation of a
bounding box (Section III-B) is effective for tracking the
target without losing the target.

Video 5 is a blurred video of Video 2. Thus, [Proc]
of Video 5 shows worse SuccessRate compared to [Proc] of
Video 2. However, [Pro] of Video 5 shows equal SuccessRate
compared to [Pro] of Video 2. This shows the effectiveness
of using the proposed bounding box re-generation approach
in Section III-B.

V. CONCLUSION
A conventional ground-to-air missile chases an enemy
aircraft based on infrared images. This article addresses a
missile seeker that complements the defects of existing IR
sensors by switching to camera sensors if necessary. If IR
sensors are disturbed by flairs, then one generates the initial
bounding box by applying simple edge detectors on the image
of the target aircraft. Once a bounding box is generated at
the aircraft, the box is tracked continuously using the CSRT
filter, which is based on camera images. For handling the
case where the filter loses track of the target, we re-generate
a bounding box at the target in the case where the box side
length is bigger than a certain threshold.

The proposed tracking algorithm is computationally effi-
cient, thus is applicable for real time tracking scenarios.
To the best of our knowledge, our tracking algorithm is
unique in applying simple line detection algorithms for
tracking a target aircraft in a time-efficient manner. The per-
formance of the proposed tracking method is demonstrated
by comparing with the-state-of-the-art tracking algorithms
using experiments. Using experiments, we show that the
proposed tracking method outperforms the-state-of-the-art
object detectors considering both time efficiency and tracking
accuracy.
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