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ABSTRACT Vehicle localization plays a crucial role in ensuring the safe operation of autonomous vehicles
and the development of intelligent transportation systems (ITS). However, there is insufficient effort to
compare the performance and challenges of different vehicle localization algorithms. This paper aims to
address this gap by analyzing the comprehensive performance of existing advanced vehicle localization
techniques and discussing their challenges. Firstly, we analyze the self-localization methods based on active
and passive sensors. The results show that, the light detection and ranging (LiDAR) and vision-based
localization techniques can reach high accuracy. However, they have high computational complexity.
Only using the inertial measurement unit (IMU), global positioning system (GPS), radar, and ultrasonic
sensors may not realize localization result with high accuracy. Then, we discuss V2X-based cooperative
localizationmethods, analyze themulti-sensor based localization techniques and compare the comprehensive
performance among all methods. Although the artificial intelligence (AI) techniques can effectively enhance
the efficiency of vision-based localization algorithms, the high computational complexity still should be
considered. In addition, since the IMU, GPS, radar, and ultrasonic sensors have good performance in terms
of the availability, reliability, scalability, and cost-effectiveness, they can be used as auxiliary sensors to
achieve good comprehensive performance through data fusion techniques. Finally, we propose the challenges
of different techniques and look forward to future work.

INDEX TERMS Active sensor-based self-localization, cooperative localization, data fusion, ITS,
localization, multi-sensors based vehicle localization, passive sensor-based self-localizaion, V2X based
cooperative localization.

LIST OF ABBREVIATIONS
Abbreviations Description
5G 5th generation mobile network.
6-DoF Six degrees of freedom.
AI Artificial intelligence.
A-SMGCS Advanced-surface movement guidance

and control system.
CL Cooperative localization.
CIF Covariance intersection filter.
CMAD Cross mean absolute difference.
DMR Drivable moving search region.
DOA Direction-of-arrival.
DR Dead reckoning.
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EKF Extended Kalman filter.
FRPDM Free-resolution probability distributions map.
GNSS Global navigation satellite system.
GPS Global positioning system.
HD High-definition.
IMU Inertial measurement unit.
IoT Internet of things.
IoV Internet of vehicle.
ITS Intelligent transportation system.
KF Kalman filter.
LiDAR Light detection and ranging.
MCL Monte Carlo localization.
MSMV Multi-sensor multi-vehicle.
NCC Normalized cross-correlation.
NLOS Non-line-of-sight.
OBU Onboard unit.
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PF Particle filter.
RAM Random access memory.
RANSAC Random sample consensus algorithm.
RMSE Root mean square error.
RSSI Received signal strength indication.
RSUs Roadside units.
SBL Sparse Bayesian learning.
SLAM Simultaneous localization and mapping.
SCIF Split covariance intersection filter.
TDOA Time difference of arrival.
TPSM Third party sparse maps.
UAV Unmanned aerial vehicle.
UKF Unscented Kalman filter.
V2I Vehicle-to-infrastructure.
V2V Vehicle-to-vehicle.
V2X Vehicle-to-everything.
VANETs Vehicular ad hoc networks.
vSLAM Vision SLAM.

I. INTRODUCTION
The continuous increase in the number of vehicles has a neg-
ative impact on the people’s daily lives. The large number of
vehicles regularly causes traffic jams and slowdowns, leading
to excessive energy consumption and significant emissions
of greenhouse gases. These emissions directly impact air
quality, contributing to an increase of the carbon footprint.
In order to solve these kind of problems, the intelligent trans-
portation systems (ITS) can be built. ITS takes cutting-edge
techniques such as information communication, automatic
and intelligently control technique, which can enable vehicles
to run automatically according to the environment and their
conditions by comprehensively managing vehicles. ITS has
four layers: the physical layer, the communication layer, the
operation layer, and the service layer. The physical layer com-
prises various sensors and information-receiving equipment
in the system, primarily responsible for detecting systems’
environment and collecting data. The communication layer
has the function of realizing information sharing among
vehicles and other devices in the system. Meanwhile, the
operation layer formulates the running route of vehicles and
controls their operating modes. Moreover, the service layer
enables automatic and intelligent system operation.

Vehicle localization methods with high comprehensive
performance is one of the key functions of the ITS, not
only vehicle localization accuracy but also robustness and
real-time performance during the localization process should
be considered. Time delays can affect vehicle scheduling
decisions and thus impact the system’s efficiency. Although
the global navigation satellite system (GNSS) [1], [2], [3],
[4] is widely used in vehicle localization, they are susceptible
to interferences from severe weather conditions and high
buildings.Moreover, in some special environments withweak
signals, named GNSS-denied environment [5], [6], [7], [8]
(such as tunnels, underground parking lots, and forests), the
accuracy of GNSS cannot be guaranteed. Therefore, it is

necessary to use multiple sensors to achieve high precision
localization. Multi-sensor-based localization methods use
a variety of sensors (including active sensors and passive
sensors) to collect diverse and effective data, which can make
up for the shortcomings of using GNSS technique alone.
By taking advantage of artificial intelligence (AI) [9], [10]
[11], [12] and data fusion technique (such as Kalman filter
(KF) [13], extended Kalman filter (EKF) [14], unscented
Kalman filter (UKF) [15], [16], [17], particle filter (PF)
[18], [19], [20], etc.), the data collected by various sensors
(such as LiDAR and different types of cameras) can be
processed, which improves the accuracy and robustness of
vehicle localization.

Furthermore, the architecture of the data fusion process
mainly includes three manners: the centralized, decen-
tralized, and distributed. For centralized architecture, all
collected data of each vehicle is transmitted to the central
workstation where the localization process of each vehicle
is accomplished. The centralized architecture can achieve
real-time localization when the communication bandwidth
and calculation ability of the central workstation is high
enough. However, it is difficult to deploy this kind of
system on a large scale in the real world since it requires
huge economic expenses. Moreover, in the distributed
architecture, there is no central workstation, each vehicle
realizes the localization on their own processors. Compared
with centralized architecture, the distributed manner requires
lower communication bandwidth, which is more suitable to
achieve high real-time performance localization.

Moreover, cooperative and collaborative localizationmeth-
ods can improve the efficiency of localization by using
available information shared by other vehicles or infras-
tructures. With the improvement of the communication
techniques, such as vehicle-to-vehicle (V2V) [21], vehicle-
to-infrastructure (V2I) [22], and vehicle-to-everything (V2X)
[23], [24] in the internet of things (IoT) [25] and internet of
vehicle (IoV) [26] domain, data sharing among objects in the
system becomes more convenient. Cooperative localization
enhances the cooperation among vehicles and infrastructures
by making full use of the information in the system.

A survey of vehicle localization based on visual and point
cloud odometry methods has been proposed in [27]. Another
related work for investigating the hardware architectures for
camera and LiDAR SLAM is proposed in [28], and the
authors develop the possible fusion approach for increasing
the localization accuracy and robustness. At the same time,
the authors of [29] propose the possible potentials and limita-
tions for map-based vehicle localization method. However,
the cooperative vehicle localization by using V2X com-
munication is ignored in these papers. Moreover, although
the vehicle accuracy as the most important performance of
vehicle localization has been discussed in these papers, there
is a lack of the comprehensive performance like the reliability,
availability, scalability and real-time performance, which are
also indispensable performances of robust vehicle positioning
system.
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Therefore, the aim of this paper is to survey the state-of-
the-art localization techniques (including active and passive
sensors based self-localization methods, V2X based cooper-
ative vehicle localization methods, and so on.), analyze their
comprehensive performances, and present the challenges
in vehicle localization domain. We will comprehensively
discuss the state-of-the-art vehicle localizationmethods in the
following main criterion and co-criteria:

Main criterion: Accuracy. The definition of the vehicle
localization accuracy can be regarded as ‘how close’ the
estimated or measured position result is to the true position.
The vehicle localization accuracy validating methods are
proposed in [30]. In the 2-D vehicle localization scenario,
the accuracy can be evaluated by calculating the mean
along-track errorElat and across-track errorElong (Lateral and
longitudinal errors). As shown in equation (1).

Elat =
1
N

N∑
i=1

(x ti − xei )

Elong =
1
N

N∑
i=1

(yti − yei ) (1)

where the x ti and y
t
i are the true position of vehicle at time

i on x and y coordinate, respectively. The xei and yei are the
estimated position of vehicle at time i on x and y coordinate,
respectively.

Moreover, the positioning mean error Ep can be repre-
sented by calculating the mean Euclidean distance between
the true point (x ti , y

t
i ) and the estimated or measured position

result (xei , y
e
i ), as represented in equation (2). In addition,

the root mean square error (RMSE) is also an indicator
of localization accuracy, which can be calculated by the
equation (3).

Ep =
1
N

N∑
i=1

√
(x ti − xei )

2 + (yti − yei )
2 (2)

RMSE =

√√√√ 1
N

N∑
i=1

[(x ti − xei )
2 + (yti − yei )

2] (3)

Localization accuracy can be affected by the precision of
the sensor data, which is affected by the environment, the
distance between targets, the view angle and other factors.
In addition, the standard of accuracy requirement for different
vehicle localization system is different. For collision warning
applications, the positioning accuracy of 1 meter can meet the
basic application requirements. If the positioning accuracy
can reach 0.5 meters, the application will have good accuracy
performance [31]. Furthermore, since autonomous vehicles
(AVs) require higher localization accuracy, a localization
accuracy criterion for AVs in the United States is defined in
[32]. Both the lateral and longitudinal errors should be less
than 0.1 m at 95 percent confidence with the alert limit is
0.29 m in local street scenario. Additionally, another standard
(The maximum positioning error is 0.3 m) is proposed by

the 5G PPP (5G infrastructure public private partnership) in
Europe. So, the state-of-the-art methods selected in our paper
need to meet the localization accuracy standard in different
applications.

The co-criteria include the availability, reliability, scalabil-
ity, and real-time performance.

Availability [31]: Availability refers to the capacity of
vehicle localization method can be realized in different
environments (including the GNSS-denied environment,
weather extremes, and so on.). In addition, in coop-
erative vehicle localization domain, the standard of infor-
mation sharing is defined in the in-vehicle navigation
systems–communications message set requirements standard
(ISO 15075).

Reliability [31]: Reliability is an important factor for the
safety of a localization system. The safety of the intended
functionality standard (ISO 21448) provides the guidance
on requirement of data collection. Moreover, the standard
ISO/TR 21707 provides the quality requirement of data being
shared in the system.

Scalability [33]: Scalability is the ability to realize
localization in large-scale vehicles localization system.
To evaluate the scalability performance, the economic
expenses and overall system performance after the expansion
of vehicle localization system should be considered. The
ISO/DIS 23150 standard can provide a guidance for the
communication among sensors and data fusion units when
expanding the vehicle localization system in the future
ITS.

Real-time Performance [34]: Real-time performance can
be evaluated by the system response time or the time delay of
the result refresh in the process. For the cooperative vehicle
localization, the communication delay can affect the real-time
performance, the standard of communication delay is defined
in IEEE 802.11 p.

Based on the both main criterion and co-criteria, by using
the reference selection method proposed in the appendix, the
references with competitive results are determined to survey
in our paper.

The process of vehicle localization is shown in figure 1.
It mainly includes the data collection and processing stage,
and the output result is the estimation of the vehicle’s position
and direction.

In addition, the coordinate system in the localization
domain mainly includes earth-centred inertial (ECI) coor-
dinate system, earth-centred earth-fixed (ECEF) coordinate
system, and the geographical coordinate system.

The remaining sections of this paper are structured as
follows: Section II discusses the active sensor-based vehicle
localization algorithms. Section III describes the passive
sensor-based methods. Section IV analyzes the V2X-based
cooperative localization algorithms. Section V discusses
the multi-sensor based methods. Section VI gives the
comprehensive performance analysis of different methods
and proposes their challenges. Finally, the conclusion and
future work are presented in the last section.
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FIGURE 1. Vehicle localization process.

II. ACTIVE SENSOR-BASED SELF-LOCALIZATION
In this section, we analyze and compare the state-of-the-
art vehicle self-localization methods which use the on-board
active sensors in the data collection step. Active sensors,
including LiDAR, radar, and ultrasonic sensors, they can
emit energy to the environment and the data is collected by
measuring the scattered or reflected signal. In the following
sections, we illustrate the advantages and disadvantages
of each data collection method. Additionally, we compare
the economic cost of each sensor and analyze its latency,
which affects the scalability and real-time performance
during vehicle self-localization.Moreover, we discuss the
advantages and disadvantages of each algorithm, further
analyze the accuracy and other co-criteria performance of
each technique. The current main methods for the vehicle
self-localization algorithm will be described in detail in the
following subsections.

A. LIDAR-BASED SELF-LOCALIZATION METHOD
Light detection and ranging (LiDAR) can collect emitted
laser light and calculate the distance to the target based on
the intensity and time of the received laser, which can provide
accurate data for vehicle localization. By processing the data
collected by LiDAR through the use of filters, mapping,
artificial intelligence (AI), and multi-method techniques, the
excellent accuracy performance can be achieved in the vehi-
cle localization domain. For a LiDAR-based method, a map
(including planar and point-cloud maps [35]) is generally
required to match with the point cloud data collected by
LiDAR. If there is no prior map, the simultaneous localization
and mapping (SLAM) method can be used to create a real-
time map. Then, the position of the vehicle can be determined
by map matching methods.

To address the problem that the traditional map matching
process is easily affected by the resolution, the authors
of [36] proposed an algorithm based on a free-resolution
probability distributions map (FRPDM) using 3D LiDAR.
The FRPDM stores the probability distribution converted
by the Gaussian mixture modeling (GMM) method, which
effectively reduces space complexity. The size of the FRPDM

is about 0.061 MB/km, which is smaller than the extended
line map in [37] (0.134 MB/km), the binary grid map in [38]
(0.901 MB/km), and the multi-resolution Gaussian mixture
map in [39] (44.3 MB/km). The authors also proposed a data
association method for the point-to-probability distribution
scan matching method. The RMSE on the lateral and
longitudinal directions are 0.057m and 0.178m, respectively.
Although this method can reach an average map matching
time in 37 ms, the extraction time is 146 ms, which results in
a higher total data processing time (183 ms). Therefore, this
method is not sufficient for applications that require high real-
time performance. To increase the real-time performance,
the authors of [40] proposed a localization method based on
mapping and UKF techniques, using a distance-weight map
(DWM) in an underground mine environment. The spatial
localization error is 4 cm, and the processing time per frame
is 60 ms. In order to further improve the availability of
localization algorithms in mountainous rural environments,
an algorithm exploiting multi-layer LiDAR was proposed
in [41]. A 3D normal distribution map is built at first. Then,
the normal distribution transform (NDT) scan matching
method and the EKF technique are employed to estimate
the position. The average absolute error on longitudinal and
lateral are 0.38 m and 0.08 m with the average velocity
45 km/h, respectively. However, it is not reliable enough for
autonomous driving because it may cause the traffic accident
during demonstrations. Additionally, another work which can
reach high accuracy localization is proposed in [42]. This
method includes the mapping and localization phase. In the
mapping phase, the pole detector is designed, and the pole
landmarks are extracted by the pole detector from LiDAR
scans. Then, the extracted pole landmarks are registered in
a global map which is provided by the true trajectory. In the
localization phase, the PF technique is implemented to realize
position estimation by matching the pole landmarks provided
by sensors with that in the map. The advantage of this
algorithm is that the positioning RMSE is about 0.1 m, which
can meet the accuracy requirement of AVs.

Furthermore, in recent years, the AI technique is employed
in the localization domain to reach high real-time perfor-
mance. The authors of [43] designed an improved lightweight
deep neural network to realize the deep local feature
extraction in day-night changed environment. A prior map
is built by using aligned dense LiDAR point clouds and
imagery provided by a portable camera-LiDAR sensor.
Meanwhile, the ground truth point cloud dataset with 5 cm
accuracy is employed to evaluate the localization accuracy
and robustness in vision-changed conditions. The extraction
speed of the feature in this method is 92 frames per second,
and this work focus on the day-night changed environment,
which has high availability performance. Another work was
proposed in [44], the authors designed a siamese neural
network-based algorithm by using a global prior map. The
reduced dimension scan representations learned from neural
networks are utilized to realize place recognition, and the
global prior map is employed to determine the vehicles’
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position. The advantage of this algorithm is that the storage
space for sensor data is reduced. Moreover, another work
based on deep learning is proposed in [45]. In order to
achieve fast and accurate information interaction during
vehicle localization, only a few LiDAR points are used in
the proposed framework. In addition, a clustering algorithm
is employed to realize the non-semantic features extraction
from the information collected by LiDAR and the data
smoothing process occurs in the convolutional layers. In order
to enhance the reliability of the algorithm, both the north
campus long-term (NCLT) and Kitti dataset are used to
evaluate the accuracy performance in the short and long
term trajectory. Experimental results show that a reasonable
accuracy (Mean positioning error is below 1 m) can be
achieved.

In addition, a LiDAR-based road sign perception system
using third-party sparse maps (TPSM) was proposed to
improve the accuracy of traditional GNSS-based vehicle
localization algorithms [46]. This system uses LiDAR to
detect road and lane sign features and employs the PF
technique to estimate the position of vehicle. This algorithm
increases the accuracy by using TPSM road features (0.31 m
for the constrained update). However, the TPSM is not
suitable for all sensors, limiting its scalability. To address
the issue that the traditional normalized cross-correlation
(NCC) algorithm requires sufficient feature points, a cross
means absolute difference (CMAD) algorithm based on
known map information using 3D LiDAR is proposed in
[47]. This method includes offline and online parts. In the
offline part, the map is built, calibrated, and segmented.
The 3D map is then transformed into a 2D grid map and
feature extraction is performed. In the online part, the same
procedure is used for LiDAR scanning. The mean energy and
feature registration method are used to initialize location and
orientation of the vehicle, and the drivable moving search
region (DMR) method is designed during feature registration
during the process. The RMSE is about 0.1-0.3 m in outdoor
environments and it has good real-time performance.

B. RADAR-BASED SELF-LOCALIZATION METHOD
While the LiDAR-based and vision-based method can
provide more precise data, radar-based methods cannot
be easily replaced at the moment. Because radar is the
only sensor capable of accurately measuring the speed
of objects under long distance conditions, as supported
by Zhou et al. [48]. Moreover, radar-based methods can
offer good real-time performance due to their low latency
during data collection, as highlighted by Lu et al. [34].
Additionally, radar-based methods are capable of functioning
effectively in adverse weather conditions, further enhancing
their reliability. There are some popular types of radar used in
vehicle localization, includingmultiple-input multiple-output
radar [49], millimeter wave automotive radar [50], and so on.

In order to enhance the availability of localizationmethods,
the authors of [51] proposed an improved algorithm by using

a 76 GHz omnidirectional millimeter-wave radar (MWR).
They develop a novel error propagation model to calculate
the unique noise characteristics of sensors operating in
snowy environments. The process consists of four steps:
image generation of objects, template matching, probability
updating, and offset updating. The lateral RMSE with 0.25 m
can be achieved, regardless of the presence or absence of
snowfall. Since radar sensors have strong reliability and
availability, especially in extreme weather conditions, the
authors in [52] used ground penetrating radar to realize
vehicle localization in inclement weathers. The positioning
results show that the total mean positioning error (the sum
of along-track and cross-track error) are 0.34 m, 0.39 m,
and 0.77 m, in the clear, snow, and rain weather scenario,
respectively. To improve the accuracy of radar based vehicle
localizationmethods in urban environments, the accuracy that
less than 0.5 m with 95-percentile is achieved in [53].
In addition, the authors of [54] proposed a machine

learning-based algorithm by using mmWave radars operating
in the frequency range of 77 GHz-81 GHz. This algorithm
includes two steps: range estimation and angle estimation.
For range estimation, unwanted clutter is removed based
on the properties of mainlobe clutter and sidelobe clutter,
followed by estimating the average range in a certain
frame. To improve angle estimation accuracy, a polynomial
regression model is proposed, achieving the RMSE with
2.56 degrees. Another work which utilizes artificial intelli-
gence (AI) techniques was presented in [55]. The authors
design a deep radar object detection network (RODNet)
which uses range-azimuth frequency heatmaps (RAMaps).
RODNet increases the availability by incorporating three
architectures, namely 3D convolution deconvolution, 3D
stacked hourglass, and 3D stacked hourglass with temporal
inception. Additionally, a new method for learning step is
proposed by leveraging cross-model supervision. The latency
is less than 100 ms for real-time performance.

C. ULTRASONIC-BASED SELF-LOCALIZATION METHOD
Ultrasonic-based sensors are commonly used in low-cost
curb detection and localization systems due to their afford-
ability. Additionally, the ultrasonic sensor is widely used
in indoor positioning algorithms [56]. Nevertheless, the
limited detection range of ultrasonic sensors (approximately
3 m) makes them unsuitable for long distance measurement
scenarios. In other words, the scalability performance is
insufficient. To increase accuracy and real-time performance
of ultrasonic-based localization methods, the authors of [57]
designed a low-cost curb detection and localization system
utilizing multiple ultrasonic sensors. Initially, a ground
reflection elimination filter is proposed to eliminate obvious
reflections caused by ground reflections. Subsequently, the
reliability of the measurement data is calculated, and a
distance estimation algorithm is proposed by analyzing the
obtained reliability. The complexity of this algorithm is
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O(N 2), and when four ultrasonic sensors are implemented,
the system achieves the accuracy with 13.5 cm on the RMSE.

Additionally, the execution time for processing raw
sensor data (collected over 100 seconds) is 0.58 seconds,
demonstrating good real-time performance. Another method
with excellent real-time performance is reported in [58].
To enhance the availability of ultrasonic-based methods in
GPS-denied environments, a navigation estimation system
is designed. The raw data from the ultrasonic sensors is
preprocessed to reduce the effects caused by sensor noise.
The EKF technique is employed to estimate the vehicle’s
position. Moreover, the result refresh rate is 92 Hz, achieving
excellent real-time performance.

D. DISCUSSION
Although LiDAR-based localization methods can provide
high accuracy compared to other active sensor-based
methods, they have higher computation requirements and
economic expenses. In terms of 1D, 2D and 3Dmapmatching
method in LiDAR-based methods, the 3D map matching
method can get the most accuracy and robustness localization
result since the 3D maps have rich type of features, and
it especially has good performance in complex scenarios.
However, compared with 1D and 2D map-based methods,
the storage requirement of map and the computation power
increase dramatically compared with 1D and 2D map-based
methods, which has bad influence on the performance of
scalability. AI techniques can be employed to enhance the
accuracy and real-time performance of 3D map matching
methods [59], which could be beneficial for applications
where accuracy and real-time performance are crucial, such
as autonomous driving, in the future.

Furthermore, although radar-based localization meth-
ods may not always meet the accuracy requirements of
autonomous driving or ITS, the radar still plays an irre-
placeable role in the field of object detection [60]. On the
one hand, the radar-based localization system has excellent
performance in extreme weather scenarios. On the other
hand, ultrasonic sensor-based methods offer excellent real-
time performance, as reported in [58], which can serve as
auxiliary sensors in certain scenarios.

III. PASSIVE SENSOR-BASED SELF-LOCALIZATION
For passive sensors, such as IMU, GPS, and vision-based
sensors, only the radiation or emission in the nature or from
the target can be detected. In this section, we analyze the accu-
racy, real-time performance, and complexity performance of
self-localizationmethods based on passive sensors that utilize
popular data processing techniques, such as filters, AI, and
mapping methods.

A. IMU-BASED SELF-LOCALIZATION METHOD
IMU sensors are widely used for dead reckoning (DR)
[61] and inertial navigation system (INS) [62]. However,
a disadvantage of IMU sensors is that when they are applied
to long-distance positioning system, the accumulated error

can significantly decrease the accuracy of the final result.
One approach which can mitigate this issue is to use
multiple IMUs simultaneously to increase the accuracy of the
localization system.

In [63], the authors proposed an algorithm based on
multiple IMUs. They employ least-square and probabilistic
marginalization methods to map measurements from all
IMU sensors onto a virtual IMU, and the probabilistic
estimators are used to estimate the location of the vehicle.
This algorithm achieves a localization refresh time of about
10 ms, based on sensor measurement rates of 200 Hz.
However, the RMSE of this approach is 0.6 m. Another
multi-IMU based system called real-time multi-IMU visual-
inertial navigation system (mi-VINS) was proposed in [64].
In this system, in order to enhance the real-time performance,
a tightly-coupled EKF based estimation method is proposed
to fuse asynchronous measurements from multiple sensors.
Moreover, the propagation method of the joint covariance
and state estimation of each IMU are defined. Furthermore,
to ensure the consistency in the data fusion process, all the
spatial and temporal calibration parameters are processed
online for the calibration refinement of sensors, which can
reduce the space complexity caused by offline steps. The
RMSE of this approach is about 0.2 m with an average data
processing time of 23 ms (43 Hz), and mi-VINS can increase
the robustness in cases where one of the IMUs in the system
does not work.

To further increase the robustness of IMU-based methods,
the authors of [61] proposed an algorithm based on KF
and deep neural networks. The deep neural networks are
utilized to optimize and provide noise estimates during
the KF algorithm. The raw data of the IMU is refreshed
at a rate of 100 Hz, and the translational error is about
1.1 percent. Additionally, in certain special environments,
such as GPS-denied environments, IMU can play a crucial
role in the localization system.Another work based on solely
the commercial-of-the-shelf (COTS) IMU in GPS-denied
environment is proposed in [65]. In this work, a new
developed Bayesian filter is proposed which can achieve the
position error of less than 0.5 m.

B. GPS-BASED SELF-LOCALIZATION METHOD
GNSS, including GPS [66], Beidou [67], and Galileo [68],
can provide convenient and low-cost global localization
services by using four or more satellites. The accuracy
of GPS is about from a few meters to twenty meters
[35]. In order to increase the accuracy of GPS, various
techniques such as real-time kinematic (RTK) [69], have been
proposed. However, the accuracy of GPS is easily affected by
factors such as obstacles, atmospheric conditions and signal
blockage. And GPS signals are easily lost in many scenarios
in real-world. So, the vehicle localization in GPS-denied
environment is a popular research topic [70], [71].

In order to improve the accuracy of GPS-based localization
by GNSS signal reception state detection, the authors of
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[72] designed a multi-path detection system based on support
vector machines (SVM). To enhance the effectiveness of the
map-matching method, the authors of [73] proposed a spatio-
temporal-based matching algorithm (STD matching) which
considers the spatial features of roads (including road topol-
ogy and detailed road information), vehicle speed constraints
on different roads, and real-time vehicle movement during
low-sampling rate GPS trajectories. Furthermore, the authors
employ GPS clustering, GPS smoothing, and A∗ algorithms
to reduce the computational costs and improve the accuracy.
The experimental results, obtained from a road network
comprising 200,236 vertices and 90,709 road segments,
indicate a matching accuracy of over 80%, which is higher
and more stable than the results obtained by the HMM-RCM
algorithm proposed in [74]. However, the running time when
there are 3-10 candidate points is about 11 seconds, under
low-sampling rate conditions.

Furthermore, to enhance the scalability of GPS-based
localization methods, the authors of [75] designed a system
which is intended for global-scale deployment. This system
involves an offline map building step and an online query
step. In the offline map building step, they design a structure-
from-motionmodel and congas descriptors. The structure and
appearance compression methods are employed to reduce
data storage space, and the data is stored using a tiled
model. In the online query step, congas extraction and
projection, 2D-3D matching and voting, pose recovery, and
pose refinement are included. The query latency of this
system is about 200 ms, demonstrating excellent real-time
performance. Additionally, this system is robust compared to
previous methods, as it delivers significantly stable results.
Unlike previous methods, aiming at improving the GPS local-
ization accuracy in non-line of sight (NLOS) scenario, the
authors of [76] employed 3D mapping techniques to improve
the conventional ranging-based GNSS localization methods.
Specifically, they utilize terrain height-aiding techniques to
achieve additional virtual ranging measurements, and the
NLOS reception is predicted by using 3D city models.

C. VISION-BASED SELF-LOCALIZATION METHOD
Vision-based data collection methods capture target images
through vision devices such as monocular cameras [77],
binocular cameras [78], or panoramic thermal cameras [79].
Then, the effective feature data can be extracted from
the images. The SLAM algorithms [80], [81], [82], [83],
which are a basic vehicle localization algorithm using vision
sensors, are widely implemented in urban environment.
SLAM algorithms include visual SLAM (vSLAM) [84],
centralized collaborative monocular SLAM [85], and so on.
The vSLAM technique is widely used in vehicle local-

ization and it mainly includes three modules: initialization,
tracking, and mapping [86]. The initialization module is
responsible for establishing the coordinate system, and the
tracking and mapping modules have the function of building
and updating the map. The authors of [87] proposed a

method which utilizes the LiDAR-based map, which can
achieve the real-time performance with 0.06 s and the RMSE
is about 0.1 m. In order to further enhance the real-time
performance, a topview system based on real-time capable
image processing pipeline is designed in [88], the estimation
of position is realized by processing data collected by four
fisheye cameras. The accuracy of this algorithm is about
0.33 m on the worst condition, and the result refresh time is
0.04 s. Furthermore, another work with high accuracy and
real-time performance based on visual sensor is proposed
in [89]. In the developed method, the back lane markings
registry (BLMR) and data matching method with light-weigh
are used. The visual lane marking is detected by sensors and
matched with map, for the purpose of estimating the position
of vehicle in the map reference. Additionally, the proposed
algorithm has high reliability and availability, which can
realize data processing and positioning even if the lane
markings can not be observed by a short distance detection.
The positioning mean error of this method is 0.06 m, for the
real-time performance, the result refresh time is 7.66 ms.

Meanwhile, another work called high-speed pavement
visual odometry (HSP-VO) method based on two cameras
is proposed in [90]. The data collected by the lateral
camera is used to match with the sparse visual map (noting
that the sparse visual map is created in the offline step),
which includes GPS coordinates, visual features, and the
3D information. Another down-view high-speed camera is
used to increase the efficiency of feature extraction during
the vehicle’s movement at high speed. Moreover, the KF
technique is employed to fuse the data provided by the two
cameras. The accuracy of this method is 0.19 m on mean
error. In addition, the mean time consumption of the feature
extraction andmatching process by using raw images is about
14.1 ms, which is an excellent real-time performance.

D. DISCUSSION
Although passive sensors can achieve low-cost localization,
their accuracy, robustness, and availability may not meet
the high-performance requirements of ITS applications. The
accuracy of GPS positioning is easily affected by the
NLOS and multi-path effect, and the GPS is completely
ineffective in signal-denied environments. Nowadays, a more
popular approach is to use GPS as an aid equipment,
combining it with other sensors through data fusion methods
to achieve higher-performance localization. For example,
in low-cost sensor localization systems with excellent
scalability performance, GPS receivers are important sensors.
Additionally, only using an IMU sensor cannot achieve
accurate result because the cumulative error grows rapidly
over time. However, it can achieve localization with excellent
real-time performance, as shown in [63]. Moreover, vision
sensors play an irreplaceable role in the positioning domain,
particularly in SLAM algorithms, and reasonable accuracy
can be achieved. However, vision sensors depend on light
intensity and weather conditions. In order to increase
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real-time performance, a graphics processing unit (GPU)with
high-performance should be equipped, which increases eco-
nomic expenses. Furthermore, vision sensor-based methods
using maps require additional computation power to process
and store the maps. With the development of AI techniques
in the field of image processing, applying AI techniques to
vision-based methods has great potential to enhance accuracy
and real-time performance. AI techniques for localization and
mapping have recently been reported in [91].

IV. V2X BASED COOPERATIVE LOCALIZATION
Unlike self-vehicle localization methods, cooperative or
collaborative vehicle localization methods use the V2X
technique to share their state data (such as velocity, heading,
location, and environment information) among vehicles or
infrastructures, achieving the purpose of enhancing the
localization efficiency through data sharing. V2X technique
enables the data communication capability among vehicles
and other objects (such as base stations) [92]. It includes V2V,
V2I, vehicle-to-cloud (V2C), vehicle-to-road-signs (V2RS),
vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P).
The V2X standards are DSRC (IEEE 802.11p) and C-V2X
(3GPP LTE/5G NR) [93]. The 802.11p band is 5.9 GHz
(5.85-5.925 GHz) [94]. The details of cellular-based V2X
communications are in [95]. Combining main communica-
tion techniques such as UWB (802.15.4a) [96], Wi-Fi (IEEE
802.11) [97], RFID [98], and cellular-based (5G) [99] with
AOA [100], TDOA [101], and RSS [102], [103] methods,
the range estimation and cooperative vehicle localization can
be achieved. In this section, we analyze the state-of-the-art
vehicle localization based on V2V and V2I communication
techniques.

A. V2V-BASED LOCALIZATION METHOD
The V2V-based localization method refers to the method
which utilizes the data shared between connected vehicles.
By using the shared state of other vehicles, such as
their speed, position, and orientation angle data in V2V
networks, vehicles in the system can achieve localization
with reasonable accuracy [104]. The main protocol of
V2V is IEEE 802.11p, and the communication data mainly
includes three kinds of messages: cooperative awareness
messages (CAMs), decentralized environmental notification
messages (DENMs), and service announcement messages
(SAMs) [35]. One work based on V2V communication
technique named implicit cooperative positioning with data
association (ICPDA) is proposed in [105]. Two algorithms
named ICP-DA-PF and ICP-DA-LC are proposed for vehicle
localization in urban environment. Additionally, a new
distributed Bayesian framework is designed and a belief prop-
agation algorithm is proposed to solve the data association
problem over the framework in a distribute way. Considering
the communication/processing overhead in the cooperative
vehicle system, the distributed KF is employed to solve
the trade-off between positioning accuracy and algorithm

complexity. The experiment results show that the RMSE of
vehicle localization in real urban scenario is about 0.8 m.

Meanwhile, the authors of [106] proposed an algorithm
which uses the chain branch leaf (CBL) clustering method
in VAENTs, which can improve the adaptability to different
data transfer rates during the V2V communication process.
Additionally, they propose the multi-point relaying tech-
nique to reduce time delay and optimize network routing.
Experimental results show that in real scenarios, the latency
is less than 250 ms, and the average time delay is about
180 ms, which has good real-time performance. In the real
world, radio-based cooperative vehicle localization methods
are susceptible to the influence of multi-path signals provided
by different types of objects in the process of information
transmission, thereby reducing the accuracy of positioning.
A work on mitigating the effects of multi-path signals on
localization accuracy is proposed in [107]. Firstly, in order
to make better use of the localization information provided
by different objects, a radio map is established to store the
number of objects, object type, and object state. Then, the
probability hypothesis density filter and a map fusion routine
are proposed to integrate the available information provided
by multi-path signals to enhance the accuracy of vehicle
localization. The RMSE of localization result is less than
0.3 m, which shows that this method can effectively utilize
information generated from different types of objects and the
high reliability. However, map matching based localization
methods need to create and maintain a large-scale map which
causes expensive calculation and data storage cost.

B. V2I-BASED LOCALIZATION METHOD
The V2I technique can realize data sharing and commu-
nication between vehicles and roadside units (RSUs)/ base
stations (BSs), and the protocol for V2I is IEEE 802.11p.
Compared to V2V-based methods, V2I-based methods have
more effective information (such as the position of fixed
RSUs and BSs). To increase the accuracy by making full
use of the position of fixed BSs, the authors of [108] and
[109] proposed the V2I-based method by using data-fusion
technique to realize vehicle localization in the IoV system,
and the GPS data correction technique is also employed.
In the systemmodel, the RSU is equippedwith aGPS receiver
that can provide the difference of received GPS data from
the real position, which is utilized to correct the real-time
position collected by on-board GPS receivers. In the data
processing stage, a data fusion system consisting of KF and
EKF techniques is designed to fuse the corrected GPS data
and IMU data to obtain the position of the vehicle. The
advantage of this algorithm is that only one single RSU
is used to collect data from multiple vehicles, making the
economic expense low. When the vehicle passes the toll gate
ramp, the error is less than 0.1 m, which is accurate. However,
if the GPS signal is not available or has high time delay during
transmission, the real-time performance and accuracy will be
seriously affected. To improve the accuracy when the GPS
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FIGURE 2. Model based on RFID.

signal strength is insufficient, the authors of [110] proposed a
DOA and V2I technique-based algorithm. The system model
consists of three cooperating BSs, and the sparse Bayesian
learning (SBL) robust technique is used to enhance the
stability and effectiveness of DOA data. Finally, the vehicle
position is estimated by processing the location data of BSs
and DOAmeasurement data generated in different situations.
The advantage of this algorithm is its high robustness, and it
can be used in non-uniform noise scenes. The disadvantage
is that it requires high hardware facilities (three BSs are
required), and it is difficult to realize vehicle localization in
an environment with insufficient BSs in the real world.

The radio frequency identification (RFID) technique is
commonly used for indoor localization, where the tag reader
reads data on the tag through radio signals to collect data.
The communication diameter of the tag reader is shown
in Figure 2. Tags are deployed on the roadside, and the
tag reader is equipped on the vehicle. When the distance
between tags and the car is less than the communication
range, the reader can get the information provided by the
tags. The international standards organization (ISO) has
three standards for RFID: ISO 14443, ISO 15693, and
ISO 18000. Tags include active tags and passive tags. The
authors of [111] utilized ultrahigh frequency (UHF) RFID
to achieve accurate localization in a GPS-less environment.
They use the robust Chinese remainder theorem (CRT)
and the levenberg-mlarquardt (LM) method to estimate the
position of the vehicle. The frequency band of the reader
is between 902.75 and 927.75 MHz, and the protocol is
ISO/IEC 18000-6CClass1Gen2. The error is less than 0.27m
with 90% probability. Since this method has excellent real-
time performance, the error caused by the time delay is less
than 0.1 m.Moreover, this algorithm’s complexity is made up
of two parts: CRT (O(nN 2)) and LM (O(Kk3)), where n and
N are the number of tags and signal frequencies, respectively,
and K and k are the number of iterations of the LM method
and the dimensions of the matrix, respectively.

Furthermore, related work concerning unmanned aerial
vehicle (UAV) accurate localization, a system which realizes
six degrees of freedom (6-DoF) localization is proposed
in [112]. Each UAV is equipped with three or more RFID
tags, and the Bayesian filter method is implemented to
estimate the location of the UAVs. The mean error and
orientation estimation result is 0.04 m and 2.5 degrees,

respectively. Meanwhile, for the purpose of enhancing the
real-time performance, the authors of [113] designed a
real-time localization system (RTLS) based on RFID and
UWB technique. This system includes the real-time data
acquisition layer, the data processing layer, the holographic
workshop map layer, and the application service layer. The
response time is less than 0.5 s, the average accuracy of RFID
and UWB based localization method are 0.39 m and 0.18 m,
respectively.

C. V2V AND V2I-BASED LOCALIZATION METHOD
For a localization method that takes advantage of both V2V
and V2I communication techniques, the authors in [114]
designed a generic stochastic localization framework which
can process different type of data collected by sensors.
A PF based algorithm is designed to fuse the relative
positioning provided by neighbor vehicles, which can achieve
a reasonable localization error with about 1 m. However, the
data transmission delay and the relative data association is not
considered, which may have a bad influence on the real-time
performance.

Moreover, in order to realize vehicle localization in weak
GPS signal environments, the authors of [115] designed
an error-cognitive localization system that uses both the
V2V and V2I technique. This system includes a tag-reading
model, a tag deployment model, and a position correction
model, etc. The roadside tag deployment method is obtained
through matrix analysis, and data such as vehicle speed,
tag distance, and correction parameters are used to increase
the accuracy. This algorithm can realize vehicle localization
in scenarios where there is no GPS signal or the GPS
signal is weak, and the proposed tag deployment method
reduces the number of tags utilized in the system, further
reducing economic expenses. Additionally, the RMSE is
less than 0.5 m. At the same time, the authors of [116]
proposed a cooperative localization algorithm by using GPS
pseudorange errors in the V2X network. V2V and V2I
communication techniques are employed to share positions,
pseudorange estimated errors, and DR data, while set
inversion and constraint propagation (CP) techniques are
used to design the distributed estimation algorithm. Highly
reliable confidence domains can be calculated without the
need for direct range measurements, and the latency is less
than 0.1 s.

D. DISCUSSION
The V2X-based vehicle localization method can enhance
the cooperative interaction ability of the whole system by
realizing information sharing, thereby further enhancing
the information utilization effectiveness in the system.
In addition, fault detection and exclusion methods can also
enhance the efficiency, which can also benefit from V2X
communication techniques [117]. With the development
of the 5G, the communication efficiency can be further
enhanced, which can enhance the performance of V2X-based
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methods. Compared to V2I-based methods, the V2V-based
method has better scalability performance since it does not
require infrastructure deployment, such as base stations.
However, the V2I-based localization can increase accuracy
since the position of infrastructure is fixed, which can realize
the correction of positioning errors. The disadvantages of
V2X-based methods include the need of communication
resources and time delay during communication process,
especially in the large number vehicles scenarios. So, the
time delay during data transmission should be considered in
order to increase the accuracy. Additionally, the RFID-based
method can provide excellent positioning performance in
special application scenarios, such as highway toll gates
or parking lots. In summary, V2X-based localization has
excellent potential for high-precision vehicle positioning
applications (such as autonomous driving).

V. MULTI-SENSORS BASED VEHICLE LOCALIZATION
From the above discussion, no single sensor can meet the
availability, scalability, computational complexity, economic
expenses, accuracy and real-time performances at the same
time. So, taking advantages of multiple sensors has the
substantial potential to achieve vehicle localization with more
comprehensive performance. In this section, we analyze the
multi-sensor based localization methods.

A. MAP-BASED MULTI-SENSOR LOCALIZATION
The authors of [118] proposed a method based on an
improved Monte Carlo localization (MCL) technique that
utilizes both GNSS and LiDAR data to achieve robust
localization in different environments. The GNSS data
increases accuracy in feature-poor scenarios, and the LiDAR
data can enhance accuracy in feature-rich scenarios. This
method can achieve high accuracy in complex environments
(0.566 m position mean without GNSS and 0.3895 m on
average position mean with GNSS). However, the sensor cost
is high, which hinders large-scale implementation. Another
algorithm that uses radar and camera is proposed in [119].
Meanwhile, to enhance the real-time performance of multi-

sensor-based consistent localization methods using mapping,
the authors of [120] proposed a global map based algorithm
which achieves a result refresh rate of 25 Hz with an average
error which is less than 0.1 m. To get the position of
vehicle in underground parking lots, a method based onWi-Fi
and computer vision techniques is proposed in [121]. This
algorithm uses dead-reckoning (DR), the random sample
consensus (RANSAC) method, and complementary filter
to realize data fusion and correct errors in offline maps,
achieving the accuracy of less than 1 meter. The advantage
of this algorithm is that it can achieve reasonable accuracy
when GPS is unavailable, but the requirements for the
various modules of the localization system can lead to high
complexity. In addition, another map based multi-sensor data
fusion vehicle localization method is proposed in [122]. The
authors use images sequence and wheel-inertial ego-motion
data to create a semantic local map at first. The position

estimated by camera data is provided by matching the local
map with the online map database. The map matching
process is simplified by using the developed supervised
neural network, which can reduce computational overhead.
The mean absolute errors of positioning result are 0.04 m and
0.17 m in the lateral and longitudinal directions, respectively.
However, the map matching process requires online map,
which may cause positioning time delay.

B. DATA FUSION-BASED MULTI-SENSOR LOCALIZATION
The authors of [123] proposed an algorithm named fuzzy
adaptive Kalman filter, which can increase the performance
of the conventional UKF by verifying and correcting the
real-time noise of sensors. The proposed fuzzy adaptive
Kalman filter can increase the accuracy by about 40 percent
compared to the conventional UKF.

In order to increase the localization real-time performance
and accuracy of AVs, the authors in [16] proposed a
real-time localization method based on UKF and PF. The
main contribution of this paper is that both the real-time
performance and the accuracy is balanced by the proposed
optimization method. The data collected by IMU, LiDAR,
and GPS is fused to estimate the position. The result refresh
time is about 8.2 ms, with the localization error that is less
than 0.3 m. However, the computational complexity is not
considered since the PF method has high complexity when
the number of particles is large.

Furthermore, to further improve the accuracy, the authors
of [124] proposed an IMM-UKF-GNN (grey neural network)
algorithm, where the IMM method can achieve a soft
switching among three different UKFs (noting that these
UKFs have different noise). In this work, the GNN is
employed to further increase the accuracy by training.
Moreover, the bio-inspired technique has been implemented
in data fusion methods. For example, the authors of [125]
proposed an integrated robot localization method named
particle swarm optimization enhanced particle filter (POF)
based on PF and PSO techniques. The pose tracking of robots
is realized by the particle set update, evolutionary search
and normalization, and re-sampling steps. The mean error
of the result is less than 0.05 m, and the position refresh
rate is 96 ms. In addition, another work considering low-cost
multiple sensors (gyroscopes, acceleration, magnetic, and
mileage sensors) data fusion method is proposed in [126]. For
the purpose of reducing the error of result outputted by the
EKF, the authors propose an adaptive error correction EKF
algorithm that uses the evolutionary iteration mechanism of
genetic methods to optimize the noise covariances in the
traditional EKF.

Focusing on the vehicle localization in GPS-denied envi-
ronment, the authors of [127] propose an adaptive continuum
shape constraint analysis (ACSCA) method. First of all, one
novel identifiable specific target named icosahedron target
is defined and detected by LiDAR sensor along the vehicle
moving trajectories. The ACSCA algorithm can recognize
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the icosahedron target and get the relative position data for
calculating the position of vehicle automatically. The RMSE
of the localization result is less than 0.05 m. However,
the time and economic requirements for preparation, data
processing and data postprocessing is high. At the same
time, another work focusing on both real-time and accuracy
performance is proposed in [128]. This method includes two
parts, at the first part, the wheel odometry, IMU, and tightly
coupled visual-inertial odometry are employed to collect
data. And the data fusion of these different kinds of data is
realized by EKF technique. At the second part, the dense 3D
point cloud mapping is implemented, which can process data
in real-time based on a standard CPU. The average RMSE of
the positioning based on six different experiment scenarios is
less than 0.3 m. Moreover, these two algorithms have good
performance in GPS-denied environments, which increases
the reliability of the localization system. To increase real-time
performance, a data fusion-based multi-sensor algorithm is
proposed in [129], which has an excellent result refresh time
(3 ms).

Additionally, another algorithm based on deep learning
and PF is proposed in [119]. A deep learning-based scoring
mechanism is designed to detect the position of the rear
corner of the vehicle at first. Then, the authors use the PF
to output the estimated vehicle position, and the output data
is fused with the radar data to obtain the final position of
vehicle, which can achieving an accuracy of 0.18 m. The
advantage of this algorithm is that this system is robust.
However, the requirements for the first-acquainted vehicle
picture are strict because the picture needs to be applied to
extract the rear corner location information, and the final
result will be inaccurate if the radar data is inaccurate.
At the same time, the authors of [130] utilize the graded
KF technique to fuse the data collected by IMU and GPS.
This algorithm satisfies the advanced-surface movement
guidance and control system (A-SMGCS) standard, and it can
achieve comprehensive utilization of sensor data. However,
the performance of the result is not analyzed when the
vehicle is moving in a non-linear motion, and the impact of
changes in road conditions on the accuracy needs to be further
considered.

In addition, another algorithm based on multi-sensor
data fusion is proposed in [131]. The sensors in the data
collection stage include GPS and camera. The geographic
information databases are employed to reduce the impact of
accumulated errors on the accuracy due to time change. The
error correction process depends on geography information
database, if the data information in the database cannot be
obtained or the information has big errors, the accuracy
performance will be affected. Another work is proposed
in [132], which uses the data collected by camera, GPS,
and inertial navigation system to achieve lane-level vehicle
localization. The authors utilize the information collected by
the camera to match the high-definition (HD) map. And they
propose the method based on the iterative closest point (ICP)
to deal with errors. The advantage of this algorithm is that

it can achieve lane-level localization and does not employ
expensive sensors (such as LiDAR), which is conducive to
large-scale promotion.

C. DATA FUSION-BASED MULTI-SENSOR COOPERATIVE
LOCALIZATION
V2V communication technique can realize data sharing in
the IoV, which can enhance the positioning performance
through a cooperative or collaborative way. The authors
of [133] propose a mathematical framework for cooperative
vehicle localization by using GNSS, IMU, and UWB sensors.
This framework can work in the centralized and distributed
manner. The positioning error in both centralized and
distributed manner are less than 0.08 m. In addition, based on
the conclusion of this paper, we can conclude that compared
with the centralized manner, the distributed manner has
higher scalability and reliability. Because each vehicle in the
system can realize data processing in an independent way.
However, the accuracy is lower than that in the centralized
manner, since the more precise computation of correlations
among the states of vehicles can be processed in the data
fusion center.

Moreover, the authors of [134] proposed a cooperative
localization method based on GPS receiver and radar by
using DSRC technique. The multiple pieces of information
are fused by KF technique. When more than three neighbor
vehicles communicate with the ego-vehicle, the RMSE is less
than 0.5 m. Additionally, another work based on data fusion
for cooperative vehicle localization is proposed in [135].
An adaptive ant colony optimization PF (AACOPF) method
is proposed, which does not need any prior information. This
method includes six steps: particles initialization, importance
sampling, adaptive cooperative localization, update weights,
ant colony optimization resampling, and output state estima-
tion. Furthermore, the particle propagation model is designed
and the weight updating method is developed by analysing
range data provided by UWB sensors. The positioning error
is about 0.66 m.

For data fusion for non-linear systems with multiple
sensors with correlated noise, the authors of [136] use the
adaptive and robust UKF (ARUKF) to design a two-layer
data fusion structure named ARUKF-MSIF (multi-sensor
information filters). In the first layer, the redundant mea-
surement noise covariance estimation (RMNCE) method is
employed to process the unknown noise at each time at first.
Then, the chi-square test and indicator calculation and the
proposed Q-adaption algorithm are used to further reduce the
error. Finally, the final estimation is determined in the fusion
center in the second layer. In addition, the author of [137]
proposed a data fusion method named covariance intersection
(CI), which can solve the data fusion problem with unknown
correlation between input data and yield consistent estimates.
However, the CI method has pessimistic estimate results
since the source data is treated as totally correlated, and the
independent part is not considered. Therefore, the author of
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[138] proposed the split covariance intersection filter (SCIF),
which can estimate the source data in both correlated and
independent parts. Moreover, the authors of [139] use the
SCIF to fuse the data from GNSS, camera, LiDAR, and HD
maps, which achieves an accuracy with an RMSE of 0.27 m.

D. DISCUSSION
The analysis above shows that multi-sensor-based vehicle
localization methods have a good performances since they
combine the advantages of different sensors and communi-
cation methods. However, in order to obtain better algorithm
performance, there are still many factors that need to be
considered. The first factor is the independence of the
data to be fused. When each input information source can
be expressed as a random variable with a known mean,
covariance, and cross-correlation with the other sources,
rigorous estimate results can be achieved by traditional
KF, EKF, UKF, and PF. However, the fusion result is not
consistent when there is correlation between input estimates.
Meanwhile, the CIF can yield consistent fusion results
even when facing an unknown degree of source estimate
correlation, but it neglects the independent information,
which yields pessimistic estimate results. The SCIF can
increase the accuracy of the estimated result because both
known independent information and unknown correlated
information in source data are considered. The second factor
is the redundancy of the input data, and the constraint
propagation techniques on interval can realize a reliable
result when facing redundant data. Moreover, the authenticity
of the input data should also be considered. Since a large
number of sensors are used in large-scale vehicle localization
systems, fault detection and identification techniques need to
be utilized to increase the robustness of the system. For an
efficient data fusion structure, since the two-layer structure is
easily affected by communication delay, high-efficiency data
fusion algorithms for error correlation should be developed.

VI. LOCALIZATION METHODS PERFORMANCE ANALYSIS
AND CHALLENGES
A. METHODS PERFORMANCE ANALYSIS
In this section, we analyze the comprehensive performance
proposed in the introduction and identify the challenges
of state-of-the-art vehicle localization methods. We present
the characteristics of different data collection methods in
table 1, including their deployment strategy, the precision
of collected data, ability to work without light, ability to
capture color information, cost of the sensors, and ability to
work in bad weather conditions. We analyze and compare
the comprehensive performance of different localization
algorithms, as illustrated in table 2. The data is based on
the details of traditional active and passive sensors based
methods, as shown in table 3, the details of cooperative
localization method, as illustrated in table 4, and the details
of multi-sensor based algorithms, as shown in table 5.

FIGURE 3. The flow chart of AI.

The LiDAR can provide the distance and angle data that
between the vehicle and the object by receiving information
such as the intensity and angle of the reflected light wave
after the laser reaches the object. The data collected by
LiDAR has high accuracy, strong stability, which is very
suitable for applications with high localization accuracy
requirements. The disadvantage is that it is susceptible to
interference from natural weather such as rain, snow, and
fog, and its accuracy will decrease under severe weather
conditions.Meanwhile, the vision sensors can provide precise
data for localization by processing images and extracting
feature points. However, the quality of collected data can
be impacted by the light intensity. Based on the precise
collected data, the LiDAR-based and vision-based methods
can achieve reasonable accuracy with high reliability because
the high precision collected data. However, they have high
computational complexity, the reason is that the picture and
map generated by LiDAR (especially 3D maps) need large
amount of computing and storage resources. One of the
effective solution is that applying AI technique to vehicle
localization [72], [140], which has great potential since the AI
technique has outstanding performance in image processing
domain. The flowchart of AI technique is shown in Figure 3.
It mainly includes the data collection, data preprocessing,
data features selection, model training, optimization and
analysis steps. In addition, the LiDAR-based and vision-
based methods have low scalability, because their high
economic expenses.

Although GPS-based, IMU-based, radar-based, and
ultrasonic-based methods cannot meet the high accuracy
requirement, these sensors play a key role in the data fusion
system, especially in low-cost data fusion systems, because
they have high scalability and availability. Moreover, these
sensors can also effectively collect data in extreme weather
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TABLE 1. The comparison of different sensor-based localization methods.

TABLE 2. Performances of different methods.

while vision-based and LiDAR-based methods may not work
well. For instance, compared to other data collection methods
like LiDAR, the IMU sensor has better cost-saving perfor-
mance and stronger anti-interference ability. Additionally,
the data collected by the IMU is relatively stable and has
strong continuity for different weather and environmental
conditions. However, the disadvantage is that the localization
data error accumulates with time, affecting the accuracy of
localization, and it is not suitable for scenes requiring high
vehicle localization accuracy and localization applications
with long time and distance requirements. As for GPS
technique, its advantages include low economic cost, easy
deployment, and wide coverage of GPS signals. Therefore,
as an auxiliary sensor, GPS is suitable for most localization
scenarios since it is not easily affected by badweather or light.
Furthermore, data fusion-based methods can also achieve
highly accurate localization results by making full use of
resources collected by various sensors. By using certain
optimization criteria, to obtain a reasonable fusion result
[141], [142], [143]. Popular filter techniques include KF,
EKF, UKF, PF, etc., and compared with LiDAR-based and
vision-based methods, the data fusion-based method has
better scalability, reliability, and computational complexity
performance. Multiple sensors can provide more options
for realizing vehicle localization, thereby increasing the
robustness of localization system.

Moreover, the V2I and V2V based methods can reach a
middle accuracy. And the V2X communication technique
also plays an irreplaceable role in cooperative localization
because it can realize data sharing in the IoV system.
Compared with V2V-based methods, the V2I-based has a
better performance on accuracy and reliability. The reason is
that the position of infrastructure is fixed while the position
of other vehicles has a certain error. For example, the RFID
technique uses tags and readers to cooperate with each
other to realize data transmission and collection. Generally
speaking, in the process of vehicle localization, the reader
is equipped on the vehicle, and the tags are equipped on
the roadside or buildings with obvious signs to provide
location information or other data. The advantages of this
technique for data collection can realize fast data reading

speed, which can efficiently collect data. Moreover, the RFID
tag is small in size and its deployment is not easily restricted
by environmental conditions. However, its communication
distance is limited, and if the distance between the reader
and the tag is too long, it will affect the efficiency and
accuracy of data collection seriously. Compared with the
V2I, the V2V has the better performance on the scalability
and availability, since the deployment of the infrastructure
will cause additional economic costs. However, the V2X-
based methods have higher computational complexity than
data fusion-based methods. Because the time delay during
data transmission in both V2I and V2V can not be neglected.
In addition, by utilizing the distance measurement methods
(TOA, TDOA, RSSI), the location of vehicles can be
calculated by geometric method (The trilateration algorithm)
[144], [145], [146], [147].

In addition, compared to vehicle localization methods
that are not based on cooperation, the advantage of the
cooperative vehicle localization algorithm is the utilization
of information interaction and data sharing between vehicles
and infrastructures, which enhances the data and resources
(such as data storage, data computing, and communication
resources) utilization rates. Moreover, most cooperative
localization algorithms have distributed data processing
capabilities, which greatly increases the parallelism of the
localization process, reduces the centralized data processing
burden on the server, and improves data processing efficiency.
However, if there are a large number of vehicles in the ITS
or the amount of collected sensor data is massive, the data
transmission process may cause system channel congestion,
resulting in additional time delays and affecting vehicle
localization efficiency. Additionally, the computing power of
the vehicle is limited, and if the data requires high computing
power, the data processing efficiency may decrease.

B. CHALLENGES
We propose challenges for vehicle localization in the data
collection and data processing steps. The challenges for data
collection are illustrated in Figure 4. The main challenges
faced in the data collection stage of vehicle localization in
ITS are three aspects: sensor selection, deployment method,
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FIGURE 4. Challenges for data collection.

and security. For the sensor selection problem, it is necessary
to consider the comprehensive performance (analyzed in the
last section) of different sensors. For example, The LiDAR
collects data with the highest accuracy, the IMU is suitable
for data collection in extreme weather, and the LiDAR has
high economic costs. Moreover, the environment should also
be considered, such as GPS-denied environments [148]. For
the deployment method, it is necessary to comprehensively
consider the deployment method and density of the sensor.
The IMU, LiDAR, GPS receiver, and some cameras belong
to the onboard equipment, and their deployment method is
simple. However, RFID requires the deployment of tags on
the road or in the external environment, so it is necessary
to make a decision on the deployment method based on
economic costs and data collection efficiency factors. For the
security of sensor data collection, it is necessary to consider
two aspects: anomaly detection and data protection. Anomaly
detection techniques can ensure the safety, effectively operate
sensors and avoid malicious node intrusion. Data protection
techniques can ensure data integrity and security and prevent
data leakage.

The challenges at present of data processing method
are shown in figure 5. For the data fusion technique, the
challenges are seven aspects: coordinate system selection,
kinematics model establishment, observation model estab-
lishment, system state estimate, independence analysis, noise
processing, and data incest problem during data fusion. For
coordinate system selection, especially in relative position
estimation, the coordinate system transformation must be
implemented.Moreover, the vehicle kinematicsmodel should
be determined. For example, the IMM filter technique can
realize high accuracy localization since it considers the
interaction among different models. And for the observation
model establishment, we should consider the conversion
of partial observation. At the same time, the influence of
noise on the observations should also be considered. And
regarding the system state estimation, not only a priori
estimate is required, but also a posteriori estimation should
be calculated. So, reducing algorithm complexity brought
by the matrix inversion calculation is also a challenge. And
the process has a certain time delay, it is also necessary to
consider the influence of the time delay on the subsequent
system state estimate results to obtain the best estimation
value. Furthermore, the independence analysis is a key step

during data fusion, the CIF, SCIF has excellent performance
when facing the uncertain independence between input data.
For noise processing, the unbiased estimation and biased
estimation technique should be selected reasonable. Finally,
the data incest problem can not be ignored especially in
multi-sensor multi-vehicle localization system, the constraint
propagation on intervals technique can be implemented to
solve this kind of problem.

Moreover, using AI techniques to achieve vehicle local-
ization can improve the utilization rate of data during the
localization process and enhance the accuracy of localization
results, especially in applications that require high localiza-
tion accuracy, such as autonomous driving. Exploiting AI
techniques such as neural networks and deep learning can
obtain precise localization results and improve the robustness
of the system. For example, in a certain period when the data
collected by sensors is lost or the data is inaccurate due to data
transmission errors, the performance of traditional algorithms
will inevitably be affected because their decision-making
is very dependent on the accuracy of data collected by
sensors. However, compared with traditional algorithms,
AI techniques require a larger amount of different types
of data, which increases the pressure in the data collection
process. In terms of computational cost, the time and energy
costs are greater than that in traditional algorithms, because
it requires more time for data training, and regarding the
neural network technique, its computational cost is affected
by the depth of the neural network designed. Therefore, in the
process of constructing a neural network, we not only need
to consider its impact on the accuracy of the output result
but also its complexity. For AI techniques, the challenges of
applying them to vehicle localization are the establishment
of mathematical model representative data selection, data
feature selection, model training and optimization, and model
diagnosis and fusion.

First of all, for the mathematical model establishment,
the problem and expected result should be divided and
determined based on the existing data, and the field such
as clustering or regression should be determined because it
takes a lot of time to realize a certain function through AI
techniques. Therefore, it is very important to determine the
appropriatemathematicalmodel. Then the representative data
selection step is considered, because the amount of data that
needs to be processed is huge. If all the data is processed,
not only a lot of time and computing resources are wasted,
but also the redundancy or wrong data in the data set will
cause a bad influence on the results. So, it is necessary to
select representative data for analysis and processing. And
the possible solution to this type of problem is to evaluate the
magnitude of the data in advance and use existing computing
resources to estimate it. If the amount of data is too large
and the existing computing resources cannot support its
calculations, the dimensionality reduction method should
be employed or the calculation method should be changed,
such as using distributed computing instead of centralized
computing or improving the complexity performance of
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FIGURE 5. Challenges for data processing method.

the algorithm. Therefore, the representative data selection
method can achieve the effect of enhancing the efficiency of
the algorithm and reducing the computational burden.

For data feature selection, the main function of this step
is to reduce the bad influence caused by erroneous or
redundant data. This process requires feature preprocessing
and validity analysis of the data. For data feature prepro-
cessing, the effective methods are the removal of collinearity
and normalization, etc. For feature validity analysis, the
main methods includes the Chi-square test and correlation
coefficient calculation. An effective data feature selection
method can enhance the credibility of the results and reduce
the waste of computing resources. For the model training and
optimization stage, the main problem is that the parameter
tuning problem. Excellent parameters are a necessary factor
to enhance the efficiency of the algorithm, and therefore, it is
necessary to have a deeper understanding of the algorithm
and more attempts to discover the inherent laws. For model
diagnosis and fusion, the first step is to perform the error
analysis method on the output results, in order to obtain the
reasons for the error such as model selection or parameter
selection error, and then using cross-validation or other
methods to diagnose the model. In addition, if the model
is overfitted, the eliminate overfitting techniques should be
developed. The recent work for AI-based localization has
been reported in [149].

In addition, the algorithm that takes advantage of geomet-
ric methods to achieve vehicle localization exploits data such
as the position data, angle data, and communication time
on a two-dimensional plane. The advantages of this type of
algorithm are that the complexity is low. The disadvantage
of this type of algorithm is that the accuracy of vehicle
localization is lower than that of using AI technique and
data fusion-based technique. And the time delay in the data
transmission process, which is not conducive to real-time

vehicle localization. The challenges of using geometric
methods to process data are the distance measurement,
the localization estimate model establishment, the data
transmission delay, and the roadside unit deploymentmethod.
For distance measurement, such as wireless communication
scenarios, using TOA, TDOA, and RSSI methods to calculate
distance, the challenge is that the influence caused by time
delay and noise interference on distance accuracy during data
transmission. And the solution is to implement the noise
reduction method on the signal and optimize the transmission
time delay to obtain a more accurate distance measurement
result. For localization estimate model establishment, it is
necessary to comprehensively consider the influence of
various data on location results, and establishing an effective
mathematical model to operate on the data. Furthermore, its
computational complexity and parameter optimization are
also factors that must be considered. For data transmission
delay, the solution is to increase the channel bandwidth and
optimize the channel method used for data transmission.
Finally, with regard to the roadside unit deployment method,
it is necessary to comprehensively consider the impact of
roadside deployment location and density on the localization
results, and also to determine the optimal deployment method
based on economic cost.

Furthermore, the challenges for vehicle cooperative local-
ization mainly includes three aspects: network selection,
algorithm design, and software design, as illustrated in
Figure 6. For network selection, the main communication
methods are the V2V and V2I, and the challenges are similar,
namely data transmission, quality of service, and security
issues. For the data transmission process, if the number of
vehicles and sensors in the communication range is large
or the amount of data that needs to be exchanged is huge,
it is easy to cause the channel congestion and data backlog,
which can have a negative impact on the quality of service
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FIGURE 6. Challenges for cooperative localization.

and network time delays. This issue can also affect the
efficiency of data transmission and processing. Furthermore,
network security issues can not be ignored too. Due to the
openness of the network, when nodes or vehicles frequently
exchange data by the network, they may give malicious
programs the opportunity to implant and cause the data
leakage. In addition, attacks on data storage databases are
also an important reason for data leakage and loss. Possible
solutions include improving and strengthening the identity
authentication technique, effectively managing the nodes and
vehicles that utilize the network, and reducing the possibility
of malicious nodes joining the network. Recent encryption
techniques can also be used to encrypt and save data in the
database, and the key can be changed regularly to prevent
the database from being used maliciously and to ensure the
confidentiality, integrity, and authenticity of the data. Finally,
the fault detection method [150] can be employed to increase
the robustness of the multi-sensor multi-vehicle cooperative
localization system.

Moreover, the algorithm design mainly includes three
aspects: algorithm complexity, algorithm efficiency, and
robustness. Algorithm complexity mainly includes time
complexity and space complexity, which together determine
the efficiency of the algorithm. The time complexity of
the algorithm mainly depends on the running time of the
algorithm, and the space complexity is limited by the random
access memory (RAM) requirements of the algorithm.
When the localization algorithm is applied to a large-scale
system, the data calculation time can be reduced and the
algorithm efficiency can be enhanced by sacrificing the

space complexity to reduce the algorithm time complexity,
because the RAM and hardware in large-scale system are
sufficient to meet the algorithm data processing require-
ments, and large-scale system has higher requirements for
time performance and algorithm efficiency than small-scale
system. For a small-scale system, the RAM and hardware
in the system can be reduced by sacrificing the time
complexity of the algorithm to achieve the purpose of
reducing economic expenses. For algorithm efficiency, the
main challenge in localization is accuracy and time delay
performance. Additionally, the real-time performance mainly
depends on the selection of the communication model and
channel width, and the proper communication scheduling
can also reduce the time delay. The recent work for real
time performance analysis has been reported in [34]. For
the robustness performance of the algorithm, since there will
be sudden changes caused by the change of environment,
such as weather and road conditions, the implementation
of the localization algorithm should consider the response
strategy for emergencies, to avoid the occurrence of invalid
localization result due to external factors.

In addition, in terms of software design, the challenges
facing the implementation of localization algorithms are
human-machine interaction, sensor management, and soft-
ware privacy protection. For the needs of human-computer
interaction, the software augmented reality function should
be considered. The user customization technique can be
implemented since it bases on user needs which can
minimize economic expenses. Moreover, the augmented
reality function can better enhance the users’ feeling of
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TABLE 3. Details of traditional algorithms.

TABLE 4. Details of cooperative algorithms.

utilizing the software and enhance the human-computer
interaction. In addition, methods based on knowledge-driven
and embedded computation to enhance computing power

should be used to enhance the practicability of the software.
For sensor management, it includes sensor deployment
and sensor control methods. Sensor deployment methods
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TABLE 5. Details of multi-sensor based algorithms.

include the selection of sensor deployment locations and
the deployment density required by the system. Efficient
sensor deployment methods can effectively provide the data
required for localization and appropriately reduce economic
costs. Sensor control methods include sensor data collection
time and frequency control, and a reasonable sensor control
method can enhance the interaction between sensors and
vehicles, while can effectively collect data and increase
the accuracy of localization while enhancing the robustness
of the system. For software privacy protection, it mainly
includes two aspects: data storage management and account
management. For data management, the current challenges
are database security and data access security, because if
the database and data access process is maliciously invaded,
it will affect the privacy of the software. In order to response
to this problem, possible countermeasures include updating
the software operating system in real-time, reducing software
vulnerabilities, and making the system more secure can
be employed. At the same time, implementing encrypted
passwords method can reduce the possibility of malicious
users damage the software security. In addition, real-time
system backup method can be used to ensure the integrity
of data when the software is unavailability. For account
management, the system can employ a privacy database
to protect the security of user accounts and passwords.
Users should be vigilant about personal privacy, frequently
changing account passwords, avoiding virus intrusion, and
at the same time taking advantage of device lock and other
device management software to manage the device to prevent
malicious users from destroying the system.

VII. CONCLUSION AND FUTURE WORK
This paper briefly analyzes and summarizes the state-
of-the-art vehicle localization methods, and presents their
comprehensive performance analysis and challenges. To sum

up, the LiDAR-based method has excellent data collection
performance because it collects data with high accuracy and
less time delay. So, LiDAR is more suitable for applications
with high accuracy requirements. However, since it is difficult
to popularize due to its expensive cost, one feasible method
is to share LiDAR between multiple vehicles by using com-
munication techniques. Through data sharing, the number
of LiDAR deployed in the system can be reduced, thereby
reducing economic expenditure. Although methods based on
the IMU, GPS, radar, and ultrasonic sensors cannot meet the
high accuracy requirements, they have excellent performance
in terms of availability and scalability as auxiliary sensors.
By using data fusion based methods, excellent compre-
hensive performance can be achieved. However, challenges
still remain in terms of fault tolerance and data fusion
process. Since the AI technique can effectively improve the
performance of vision-based and LiDAR-based localization
methods, the high time and computational overhead problems
caused by image processing should be effectively solved.
In addition, considering the many types of sensors and data
in the future ITS, the redundancy of collected data needs to
be considered. Moreover, for cooperative localization algo-
rithms, data sharing can effectively enhance the cooperation
among various objects in the system. However, when the
number of vehicles or the amount of data collected by sensors
is large, the network performance requirements are high. The
current 5G communication technique can greatly enhance
network performance and the efficiency of data transmission,
providing reliable communication for the vehicle localization
system. Meanwhile, when there are a large number of sensors
in the system, fault detection and security still face big
challenges. Therefore, it is necessary to design an efficient
fault detection and network protection mechanism.

Furthermore, challenges for data collection and data
processing are highlighted. As previously discussed, since
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the multi-sensor cooperative vehicle localization methods
have excellent comprehensive performance, they have great
potential for the establishment of future large-scale ITS. For
data collection, the first step is to select effective sensors
based on different environments (such as road conditions and
weather). For example, the GPS is not effective in forests
or tunnels, and the vision-based sensors are not suitable
in day-night changed scenarios. In addition, the cost of
the sensors selected and deployed in the system can not
be ignored. For data processing, the data fusion method
is an indispensable technique for realizing multi-sensor
cooperative vehicle localization. Designing an effective data
fusion method needs to consider the correlation between
resource data, in order to reduce the impact of data incest
problems on positioning accuracy. In MSMV system, data
redundancy cannot be ignored since it has bad influence
on localization efficiency. For example, the redundant data
can cause unnecessary overhead in computing resources. For
data fusion structure, decentralized and distributed manner
have more potential than centralized manner, because they
don’t need a central data fusion center. Another issue
to consider is data transmission and sharing, as V2X
communication technique relies on vehicle networks and
infrastructure. Therefore, when implementing cooperative
vehicle localization system, the availability of the vehicle
network must first be considered. Additionally, security
issues cannot be ignored, including data storage security, data
sharing security, etc.

In future work, the performance of localization algorithms
in centralized, decentralized, and distributed structures will
be researched and conducted. Additionally, the vehicle local-
ization algorithm for applications with weak GPS signals,
such as urban canyons, will be investigated, focusing on the
deployment of sensors in this scenario and the influence of the
surrounding environment characteristics on the performance
of vehicle localization. Moreover, the security of vehicle
communication networks has always been a serious topic.
In the future, the impact of network attack methods, such as
replay attacks, on the localization performance of vehicles in
the localization system will be investigated. Finally, specific
research on the impact of time delay and energy consumption
on localization performance during data transmission and
processing in the future ITS will be proposed.

APPENDIX A
METHOD OF SELECTING THE COMPETITIVE REFERENCES
In our work, the ‘Google scholar’ is used to search related
literature. We first use the keyword ‘Vehicle localization’ and
select the publication year from 2017 to 2023. We obtained
about 16900 results. Then, other keywords are added to find
more precise methods, which is shown in the table 6.

Moreover, based on the searching result provided by
‘Google scholar’, we read the reference title, year of
publication, publisher, and number of citations, and selected
the most relevant literature for reading.

TABLE 6. Number of publications with different keywords.

FIGURE 7. The number of our cited references in different year.

FIGURE 8. The number of citations of the cited references.

We have selected references published in the most recent
year possible, and publications from excellent publishers,
such as IEEE Transaction on intelligent transportation
systems, IEEE Transaction on vehicular technology, IEEE
Access, and so on. Please note that the journal papers are
preferred over conference papers.

In addition, the publication year of references that we cite
in our paper is shown in the figure 7.

Furthermore, the citations of the references we used
is shown in the figure 8. We sorted the citations of all
references in descending order, and then we plotted this
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figure. Please note that about 60 percent of the references are
cited over 20 times. However, some of them not have reached
20 citations yet, because they were published in the last two
years.
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