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ABSTRACT Cloud computing has revolutionized the management and analysis of data for organizations,
offering scalability, flexibility, and cost-effectiveness. Effective task scheduling in cloud systems is crucial
to optimize resource utilization and ensure timely job completion. This research presents a novel method
for job scheduling in cloud computing, employing the Johnson Sequencing algorithm across three servers.
Originally developed for scheduling tasks in a manufacturing context, the Johnson Sequencing method
has proven successful in resolving task scheduling challenges. Here, we adapt this method to address
job scheduling among three servers within a cloud computing environment. The primary objective of the
algorithm is to minimize the makespan, representing the total time required to complete all tasks. This
study considers a scenario where a diverse set of jobs, each with varying processing durations, needs
to be distributed across three servers using the Johnson Sequencing method. The algorithm strategically
determines the optimal order for task execution on each server while accounting for job interdependencies
and processing times on the individual servers. To put the Johnson Sequencing algorithm into practice
for cloud computing job scheduling, we propose a three-step approach. First, we construct a precedence
graph by analyzing the relationships among jobs. Subsequently, the precedence graph is transformed into a
two-machine Johnson Sequencing problem by allocating jobs to servers. Finally, we employ the Dynamic
Heuristic Johnson Sequencing method to determine the best order of jobs on each server, effectively
minimizing the makespan. Through comprehensive simulations and testing, we compare the performance of
our suggested Dynamic Heuristic Johnson Sequencing technique with existing scheduling algorithms. The
results demonstrate significant improvements in terms of makespan reduction and resource utilization when
employing our proposed method with three servers. Furthermore, our approach exhibits remarkable scala-
bility and effectiveness in resolving complex job scheduling challenges within cloud computing settings.
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The outcomes of this research contribute to the optimization of resource allocation and task management in cloud
systems, offering potential benefits to a wide range of industries and applications.

INDEX TERMS Johnson sequencing, dynamic heuristic Johnson sequencing analysis, makespan, priority schedul-
ing, round robin scheduling, FCFS scheduling.

I. INTRODUCTION
The contemporary landscape of technology and science has
been significantly influenced by the remarkable relevance of
cloud computing. This transformative technology empowers
users with access to resources on a ‘‘pay per use’’ basis, lead-
ing to efficient resource allocation and utilization. The diverse
cloud models incorporate several scheduling algorithms and
virtual machine (VM) allocation processes to cater to varying
demands. However, ensuring seamless resource provisioning
in response to fluctuating workloads remains a formidable
challenge for cloud service providers [1]. To enhance sys-
tem efficiency and meet service level agreements, effective
resource management strategies, dynamic resource alloca-
tion, and strategic planning are of paramount importance in
orchestrating the capacity workflow. This paper delves into
the intricacies of resource management and workload opti-
mization within cloud computing environments, with a focus
on addressing customer demands while efficiently utilizing
the resources available in data centers (DCs), which comprise
a collection of numerous physical devices.

Cloud technology facilitates the generation of virtual
machines on physical computers based on user requests [2].
Customer requirements for cloud services are influenced
by a multitude of factors, encompassing deadline con-
straints, cost considerations, compensation rates, start times,
execution durations, and the number of virtual machines
needed [3]. Efficient cloud computing entails managing mul-
tiple applications concurrently and effectively distributing
diverse resources. Capacity management systems play a crit-
ical role in allocating resources among various applications,
recycling resources from completed tasks, and optimizing
their deployment to meet demand [4].
Cloud service providers (CSPs) meticulously employ

resource management methods, as resources such as RAM,
memory, processors, input/output (I/O) devices, additional
data centers (DCs), and network traffic are inherently limited.
Consequently, a pay-per-use-demandmodel is adopted to fur-
nish users with specific resource quantities, thus preventing
resource underutilization and overutilization [5].
To maximize resource utilization and system efficiency,

cloud computing necessitates the implementation of robust
scheduling methodologies [6]. Cloud service providers strive
for seamless access to skilled cooperatives who can augment
their services and enhance the overall cloud infrastruc-
ture. This paper explores diverse resource management and
scheduling strategies to optimize cloud service provisioning,
considering the intricacies of resource allocation, applica-
tion deployment, and the dynamic nature of user demands.
The proposed approaches aim to achieve improved resource

utilization, better service quality, and enhanced customer
satisfaction in cloud computing environments.

Cloud computing has revolutionized the way customers
interact with cloud tiers, allowing them to introduce programs
and reap benefits based on their specific needs [7]. A key
player in this ecosystem is the cloud broker, which provides
a platform to collect user information, analyze it, and com-
municate with Cloud Service Providers (CSPs) on behalf of
customers while also offering billing services. The cloud bro-
ker’s information-integrating capabilities can be seamlessly
integrated into any cloud networking add-on [8], enabling
customers to monitor the execution times of their requests,
track resource utilization, and assess waiting times.

To improve user experience and optimize resource allo-
cation, this research explores the integration of Johnson
Queuing theory and scheduling techniques [9]. By leveraging
these methods, wait times for user requests can be effectively
reduced, enhancing overall service efficiency. Cloud dealers
seek streamlined access to expert co-ops’ cloud administra-
tions to augment their service offerings [10]. In turn, clients
can benefit from leveraging the Cloud Merchant platform
to gather advantages and introduce tailored programs at the
cloud level, facilitated by the cloud broker’s comprehensive
support in information handling and service interactions.

This paper delves into the intricacies of cloud brokering,
analyzing its role in enhancing resource management, opti-
mizing service delivery, and streamlining user interactions
in cloud computing environments. By exploring the poten-
tials of Johnson Queuing theory and scheduling techniques,
this study aims to offer novel insights into improving cloud
services and enriching customer experiences. The proposed
framework, coupled with the Cloud Merchant’s capabilities,
has the potential to shape a more efficient and user-centric
cloud computing landscape.

In the context of cloud computing, cloud brokers play a
pivotal role by providing valuable information-integrating
capabilities to any cloud resource additive [11]. These capa-
bilities empower users to monitor various operations, such
as the execution duration of each user request, the utiliza-
tion of data facilities, and the waiting time for each request.
To optimize user request scheduling and reduce wait times,
cloud computing leverages scheduling techniques like John-
son scheduling and queuing theory.

This research addresses the task-scheduling challenge
in cloud computing environments through the adapta-
tion of a modified dynamic ROUND ROBIN scheduling
algorithm [12]. The algorithm is aimed at enhancing task
scheduling efficiency, benefiting both cloud service providers
(CSPs) and users. Cloud infrastructures typically comprise
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numerous data centers housing multiple physical machines,
each hosting several virtual machines (VMs) responsible for
executing client tasks with diverse Quality of Service (QoS)
requirements.

By integrating cloud broker services with dynamic
scheduling techniques, this study seeks to improve cloud
resourcemanagement, optimize task scheduling, and enhance
overall user experience. The proposed approach is expected
to foster better resource allocation, reduced wait times for
user requests, and improved utilization of cloud resources.
The findings of this research contribute to the advancement
of cloud computing practices, offering potential benefits to
both cloud service providers and end-users seeking efficient
and reliable cloud services.

Pay-as-you-go basis [13]. However, several factors con-
tribute to delays in processing client requests, including
holding periods, return time for clinical solicitations, pro-
cessor waste, and resource inefficiencies. Addressing these
challenges necessitates effective task scheduling and resource
allocation strategies. The Task Scheduling Problem (TSP),
an NP-hard computational challenge, plays a critical role
in efficiently allocating processing resources to application
tasks [14].

Distributed computing has emerged as a virtualized
paradigm where programs are executed transparently,
shielded from the complexities by the cloud infrastructure.
In parallel with essential utilities like water and energy,
cloud computing has acquired significant importance [15].
It offers dynamic provisioning of resources and a robust
platform to address various challenges, including efficient
request management under the pay-as-you-go model [16].
Owing to its reliability, scalability, and cost-effectiveness,
cloud computing has gained immense popularity in tackling
diverse computational challenges [17].

Services in cloud computing are provided to clients based
on mutual understanding between the client and the Cloud
Service Provider (CSP). These services are executed across a
set of tasks, giving rise to the concept of re-serving, wherein
tasks may be reallocated for optimal efficiency. This research
aims to optimize client experience and service efficiency in
cloud computing by exploring dynamic resource allocation
and task scheduling methodologies. By addressing issues
such as delays in processing clinical solicitations and effi-
cient processor and resource utilization, this study seeks to
contribute valuable insights to the advancement of cloud
computing practices, leading to improved service quality and
customer satisfaction.

Task scheduling in the context of cloud computing
presents a challenging computational problem, known as
NP-Complete [18]. The objective of task scheduling is to
optimize specific parameters such as makespan, resource
utilization, and power consumption by determining the order
in which tasks are executed on virtualized machines. Cloud-
specialized companies deploy diverse machine types in their
data centers to provide timely services. However, no data

center possesses unlimited resources to meet all client
demands, especially during peak hours. Consequently, mul-
tiple data centers collaborate, offering various services to
clients, leading to the emergence ofmulti-cloud environments
as a prevailing trend in distributed computing.

However, scheduling tasks in multi-cloud environments
becomes considerably more complex due to each cloud hav-
ing its own task scheduler. The term ‘‘makespan’’ denotes
the total time taken from task submission to task comple-
tion. Ensuring timely task completion is vital, but resource
utilization, particularly with virtual machines, must also be
optimized to maximize resource efficiency. Existing task
scheduling algorithms tend to prioritize either the schedule
or resource utilization. Striking a balance between these com-
peting objectives is crucial to achieve optimal outcomes [19].
This research aims to address the task scheduling challenge

in multi-cloud environments by devising novel algorithms
that strike a balance between makespan reduction and
enhanced resource utilization. By leveraging state-of-the-art
scheduling techniques and resource allocation strategies, the
study seeks to offer valuable insights into the optimization
of task execution in multi-cloud environments. The findings
of this research contribute to advancing the field of cloud
computing, ultimately enhancing service efficiency and user
experience across diverse cloud-based applications.

A. OBJECTIVE OF THE STUDY
In this paper, we have comprehensively explored various
task scheduling algorithms in the context of cloud comput-
ing. Specifically, we investigated the First-Come-First-Serve
(FCFS), Round Robin, and Priority Scheduling using a Single
Server, as well as FCFS and Johnson Sequencing using a
Two-Server Machine. Additionally, we delved into FCFS and
Dynamic Heuristic Johnson Sequencing using aMulti-Server
Machine in the preceding sections.

The objective of this study is to propose a novel model
aimed at minimizing the processing time of jobs within cloud
computing environments. To achieve this, we utilized Gantt
charts to analyze a specific sample of jobs or tasks and
determine their total execution time. Experimental analysis,
presented through tables, enabled the identification of the
total execution time for each task.

Notably, our proposed Dynamic Heuristic Round Robin
Scheduling approach exhibits significant advantages. It effec-
tively reduces several key performance metrics, including the
system’s total turnaround time (TAT), average waiting time
(AWT), mean number of tasks waiting in the queue, mean
number of tasks waiting in the system, average waiting time
of tasks in the queue, and average waiting time of tasks in the
system.

By employing advanced scheduling techniques and
dynamic heuristics, we contribute to the optimization of task
execution in cloud computing environments. The findings
of this research pave the way for more efficient resource
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utilization, reduced waiting times, and improved overall
system performance. The proposed model presents a promis-
ing step towards enhancing the efficiency and effectiveness
of cloud computing services, benefitting both cloud ser-
vice providers and end-users. However, further research
and validation are essential to assess the proposed model’s
performance under diverse cloud scenarios and workloads.
Moreover, real-world implementation and experimentation
will be critical to ascertain its practical applicability and
efficiency in actual cloud computing environments. As cloud
technology continues to evolve, ongoing research in task
scheduling remains crucial to meet the growing demands of
cloud-based applications and services. By addressing these
research gaps, we can unlock the full potential of cloud
computing and ensure its continued success in supporting
diverse industries and applications.

B. PROBLEM SATMENT
In a cloud computing environment, challenges arise due to
resource heterogeneity, uncertainty, and dispersion, leading
to issues in resource allocation that remain unaddressed by
existing policies. Tomitigate these challenges and ensure effi-
cient workload distribution, the use of an edge load balancer
becomes imperative. The edge load balancer aims to evenly
distribute workloads across available processors, minimizing
congestion and delays.

In this context, network routes play a critical role in
enhancing network resilience, and traffic sharing is employed
in routing and assignment processes to bolster network
robustness. As depicted in Figure 1, the block diagram
illustrates that the proposed approach exhibits superior per-
formance compared to existing dynamic load balancing
methods. Johnson’s pioneering study focused on a seemingly
simple problem of managing n jobs on two machines, A and
B, with strict constraints on job sequencing and execution.
In the flow shop model, all tasks performed by machine A
must also be executed by machine B, and vice versa for tasks
completed by machine A second.

Addressing resource allocation challenges in cloud envi-
ronments necessitates innovative solutions that consider the
intricacies of resource heterogeneity and network dynamics.
The proposed edge load balancer and routing strategies offer
promising avenues to enhance resource utilization, reduce
latencies, and achieve efficient task scheduling in cloud com-
puting settings. Nevertheless, further research and empirical
evaluations are vital to validate the proposed approaches’
effectiveness and scalability under diverse workload con-
ditions and real-world cloud scenarios. By continuously
exploring advancements in resource allocation policies and
load balancing techniques, we can better address the com-
plexities of cloud computing and provide optimized services
to users and organizations alike.

C. MAJOR CONTRIBUTIONS
The device structure has been meticulously designed to
accommodate a modified dynamic heuristic round-robin

scheduling method, aimed at minimizing waiting times. The
rapid parallel processing of data is imperative for effec-
tive distributed resource allocation, project assignment, and
data analysis in cloud computing environments. To optimize
resource provisioning and scaling and align them with the
assigned network file devices, a foundational level of work-
load stability is essential.

i The DHJS algorithm has proven to be a widely-used
solution for resolving complex engineering and schedul-
ing problems, with the goal of maximizing efficiency
and cost-effectiveness. In this research, we present a
novel method that accurately enhances resource avail-
ability in the context of parallel processing demands
within cloud environments [20].

ii Leveraging insights from earlier scheduling approaches,
this study proposes a two-level strategy to improve
work scheduling performance and reduce inefficiencies
through the Johnson Bayes design principle for task
scheduling. By integrating Johnson’s rule and Heuris-
tic Dynamic Round Robin, we consider the unique
characteristics of multiprocessor scheduling, leading to
accelerated algorithm convergence. Johnson’s rule is
strategically employed throughout the decoding process
to maximize makespan for each machine.

iii As a result of this approach, a diverse set of virtual
machines (VMs) is created, expediting the generation of
virtual machines within the context of task scheduling.
The second level entails dynamic task matching with
specific VMs, necessitating dynamic task scheduling
methods. Test findings validate that the proposed meth-
ods effectively balance resource demands and enhance
cloud scheduling performance when compared to exist-
ing approaches. Addressing task scheduling remains one
of the prominent challenges in cloud computing.

iv A significant contribution of our research lies in the
reduction of resource management costs for numerous
tenant user infrastructures, achieved through an equi-
tably dispersed data center approach [21].

Our research showcases the potency of the combined John-
son’s rule and Heuristic Dynamic Round Robin algorithm,
which caters to the nuances of multiprocessor scheduling.
With the incorporation of new components and processes,
we have accelerated the algorithm’s convergence during
the decoding process, leading to enhanced performance.
To ascertain the effectiveness of the DHJS algorithm, we con-
ducted comparisons with the list scheduling technique and an
improved version through comprehensive simulations. The
results unequivocally affirm the DHJS algorithm’s reliability
and efficacy in addressing task scheduling challenges within
cloud computing environments.

D. PAPER ORGANIZATION
In this study, we conducted a comprehensive examination
of various distinctive scheduling algorithms to discern the
relevant qualities that merit consideration and those that may
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FIGURE 1. Block diagram of proposed model illustrated as component and resources in real time three server-based scheduling system for
cloud environment.

be deemed less relevant in specific systems. The literature
review encompasses diverse perspectives and is thoughtfully
organized across the subsequent sections. Firstly, we provide
an extensive evaluation of numerous scheduling techniques
that have been extensively discussed in the literature over the
past decade. This section serves as a comprehensive repos-
itory of valuable insights into the strengths and limitations
of each scheduling approach. Then, we systematically orga-
nize prior task scheduling initiatives based on the adopted
methodologies, tools, and parameter-based metrics. Lastly,
we conclude the paper by highlighting the key findings of our
study and offering suggestions for future research directions.
By identifying research gaps and potential areas of explo-
ration, this section aims to inspire further advancements in the
field of task scheduling for cloud computing environments.

II. RELATED WORK
Task scheduling is a critical concern in distributed comput-
ing environments, particularly in cloud computing. Effective
scheduling strategies aim to minimize task wait times and
enhance overall cloud functionality to maximize benefits.
The objective of employing various scheduling algorithms
is to identify an appropriate task order that minimizes the
overall task execution time. Given the distributed and hetero-
geneous nature of cloud environments, traditional scheduling
algorithms may not be directly applicable. Thus, it becomes

essential to develop scheduling algorithms specifically tai-
lored for cloud systems [22]. By addressing the unique
challenges posed by cloud environments, these customized
scheduling algorithms can optimize resource allocation,
reduce latencies, and improve overall system performance,
ultimately leading to enhanced benefits for cloud service
providers and users alike. Effective task scheduling is instru-
mental in harnessing the full potential of cloud computing
andmeeting the growing demands of diverse applications and
services in the digital era. As researchers, exploring novel
and efficient scheduling algorithms tailored to cloud environ-
ments is crucial to continuously enhance cloud services and
drive advancements in the field of distributed computing.

In the domain of VM selection for application scheduling,
Naik et al. [23] have proposed an innovative hybrid multi-
objective heuristic technique, integrating the Non-dominated
Sorting Genetic Algorithm-2 (NSGA-II) and the Gravita-
tional Search Algorithm (GSA). By combining the strengths
of both NSGA-II and GSA, this hybrid approach aims to
enhance the efficiency and effectiveness of the scheduling
process. While GSA utilizes good solutions to search for
optimal answers and avoid algorithmic stagnation, NSGA-II
widens the exploration area through comprehensive inves-
tigation. The primary objective of this hybrid algorithm is
to achieve superior job scheduling outcomes, focusing on
three key aspects: maximizing the number of scheduled
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jobs, minimizing overall energy consumption, and simul-
taneously attaining the shortest response time and lowest
cost. By jointly optimizing these multiple objectives, the
proposed algorithm seeks to strike a balance between perfor-
mance metrics, enabling better VM selection for application
scheduling. It is important to note that existing scheduling
algorithms across VMs do not address the specific require-
ments and objectives considered in this hybrid approach.
Thus, the proposed NSGA-II and GSA hybrid technique
introduces a novel and promising solution to address the
complexities of VM selection and application scheduling,
with potential implications for optimizing cloud comput-
ing performance and resource utilization. However, further
research and evaluation are needed to validate the efficacy and
scalability of this hybrid algorithm under varying workload
conditions and across diverse cloud computing environments.
As researchers, we continue to explore innovativemethodolo-
gies and algorithms to advance the field of cloud computing
and ensure the provision of efficient and cost-effective cloud
services to users and organizations.

Keshk et al. [24] introduced the Modified Ant Colony
Optimization for Load Balancing (MACOLB) method to
efficiently distribute incoming workloads among virtual
machines (VMs) in cloud computing environments. The
MACOLB method employs a workload balancing strategy
that considers the processing capacities of VMs. The distri-
bution of jobs to VMs is done in a descending order based
on their processing capabilities, with tasks allocated first to
the most powerful VM and so on. The primary objectives
of the MACOLB method include reducing the makespan
(i.e., the total time to complete all tasks), achieving a bal-
anced system load, and optimizing resource allocation for
batch jobs in public cloud environments. By effectively bal-
ancing workloads and resource allocation, the MACOLB
method aims to enhance system performance and response
times, ultimately leading to improved cloud service quality.
Despite its strengths, one notable limitation of the MACOLB
method lies in its approach to workload sharing across VMs.
This weakness could potentially impact the algorithm’s over-
all efficiency and resource utilization in certain scenarios.
As researchers, we recognize the significance of address-
ing such limitations to advance load balancing techniques
and ensure optimal resource allocation in cloud computing
environments. Future research could focus on refining the
MACOLB method to overcome its limitations, as well as
conducting comparative evaluations with other state-of-the-
art load balancing algorithms. Moreover, investigating the
scalability and performance of the MACOLB method under
different cloud workloads and configurations will contribute
to a comprehensive understanding of its applicability and
effectiveness. By continuously exploring innovative load bal-
ancing methodologies, we aim to enhance the efficiency
and resource utilization of cloud computing systems, thereby
offering more reliable and responsive cloud services to
end-users.

To address the VM scheduling problem and optimize
system performance, Maguluri et al. introduced a novel
approach that departs from traditional assumptions. Their
methodology encompasses two key components: the joint-
shortest-queue (JSQ) routing technique and the Myopic
MaxWeight scheduling policy. By categorizing VMs into
distinct groups, corresponding to specific resource pools such
as processor, storage, and space, the researchers aimed to
efficiently allocate incoming requests. The JSQ routing tech-
nique plays a pivotal role in this approach, directing incoming
connections to virtual servers with the shortest queue lengths.
Moreover, considering the user-requested VM type, the
incoming requests are intelligently distributed across the
virtual servers, leading to an enhanced allocation strategy.
A significant contribution of the work is the development of
virtually throughput-optimal rules, which can be achieved by
selecting appropriately long frame lengths, as demonstrated
through theoretical research [25]. Notably, the simulation
results reinforce the efficacy of the proposed rules in gen-
erating favorable latency outcomes, further validating the
potential of this approach in optimizing system performance.
However, while the findings are promising, there remain
opportunities for further investigation and analysis. Future
research could explore the scalability and robustness of the
JSQ routing technique and Myopic MaxWeight scheduling
policy under varying workload conditions and diverse cloud
computing environments. Additionally, comparative studies
with other state-of-the-art VM scheduling approaches could
provide valuable insights into the relative advantages and
limitations of this novel methodology. As researchers, our
goal is to continuously advance the field of VM scheduling
and resource allocation in cloud computing environments.
By exploring innovative techniques and conducting empirical
evaluations, we aim to contribute to the ongoing efforts in
enhancing the efficiency, responsiveness, and overall perfor-
mance of cloud services, ultimately benefiting cloud service
providers and end-users alike.

In the realm of public cloud computing, numerous heuristic
algorithms have been developed and employed to effectively
schedule diverse jobs. Some of the most noteworthy advance-
ments in heuristic methods include the First Come, First
Serve (FCFS) algorithm, the Min-Max algorithm, the Min-
Min algorithm, and the Suffrage computation. Additionally,
Greedy Scheduling, Shortest Task First (STF), Sequence
Scheduling, Balance Scheduling (BS), Opportunistic Load
Balancing, and Min-Min Opportunistic Load Balancing are
among the other significant breakthroughs in this domain
[14], [26], [27]. These heuristic algorithms play a crucial
role in task scheduling within the public cloud, aiming to
optimize various performance metrics such as job comple-
tion times, resource utilization, and system efficiency. Each
algorithm approaches the scheduling problem from a differ-
ent perspective, employing specific rules and strategies to
achieve the desired objectives. As researchers, it is imper-
ative to continuously explore and evaluate the efficacy of
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these heuristic algorithms under varying workloads and cloud
environments. Comparative studies that assess the strengths
and weaknesses of different algorithms will aid in identifying
the most suitable approach for specific use cases and cloud
service scenarios. Furthermore, devising novel heuristic algo-
rithms that address emerging challenges in cloud computing,
such as scalability, energy efficiency, and load balancing, will
further advance the state-of-the-art in cloud task schedul-
ing. Our ongoing efforts in refining and developing heuristic
algorithms will contribute to the continuous enhancement of
cloud computing services, offering more efficient and reli-
able solutions to meet the evolving demands of users and
organizations in the digital era. By leveraging these heuristic
advancements, we can unlock the full potential of the public
cloud, ensuring optimal resource allocation and improved
overall performance for cloud service providers and users
alike.

Furthermore, a novel scheduling method that takes into
account resource constraints was employed, resulting in
improved task acceptability ratio and reduced task fail-
ure ratio. The modified Round Robin (MRR) scheduling
approach not only aims to minimize latency but also effec-
tively addresses issues related to starvation, ensures fairness,
and facilitates high availability [28]. In addition, researchers
enhanced resource consumption through the implementa-
tion of a more intelligent Round Robin (RR) scheduling
model [29]. By incorporating intelligence into the RR
scheduling, the new model optimizes resource allocation
and utilization, contributing to improved system efficiency
and performance. These advancements in scheduling meth-
ods underscore the significance of addressing the complex
challenges in cloud computing environments. By integrating
considerations of resource limitations, the MRR approach
enhances the overall task management and success rates,
offering a more efficient and reliable scheduling strategy
for cloud service providers and users. Furthermore, the
intelligent RR scheduling model opens up possibilities for
optimizing resource consumption, leading to better resource
utilization and overall system performance. As researchers,
we acknowledge the importance of continuously investigat-
ing and refining scheduling algorithms to meet the evolving
demands of cloud computing. The ongoing pursuit of inno-
vative scheduling techniques will contribute to the continual
improvement of cloud services, enhancing user experiences
and optimizing resource allocation for a wide range of appli-
cations and workloads. By leveraging these advancements,
we can further harness the potential of cloud computing, driv-
ing advancements in the field and offering valuable solutions
to diverse industries and domains.

The algorithm proposed in [30] exhibits notable advan-
tages over existing frequency adaptive divided sequenc-
ing (BATS) and enhanced differential evolution algorithm
(IDEA) systems in terms of turnaround time and reac-
tion time. The study utilizes actual scientific operations
from CyberShake and epigenomics as representative tasks

in the evaluation of the algorithm’s performance. The
outcomes demonstrate that the suggested technique signifi-
cantly improves system efficiency, offering more favorable
turnaround times and reaction times compared to BATS and
IDEA. The effective utilization of resources in the public
cloud is a key highlight of this research. By optimizing task
scheduling and resource allocation, the proposed algorithm
contributes to enhanced resource efficiency and overall sys-
tem performance. These findings have important implications
for cloud service providers, as improved turnaround times
and reaction times can lead to better service quality and
user satisfaction. As researchers, we recognize the potential
impact of these results and acknowledge the need for further
exploration and validation in various cloud computing envi-
ronments. Additional comparative studies with other state-
of-the-art scheduling algorithms will help to establish the
competitiveness and applicability of the proposed technique
across diverse cloud workloads and scenarios. Furthermore,
investigating the scalability and robustness of the algorithm
under different conditions will provide valuable insights
into its practicality and effectiveness in real-world cloud
deployments. Our commitment to advancing cloud com-
puting research drives us to continue exploring innovative
methodologies that optimize resource utilization, improve
system performance, and ultimately enhance the delivery of
cloud services to users and organizations. By leveraging the
advantages of this proposed algorithm, we can contribute to
the continual evolution and refinement of cloud computing
technologies, addressing the ever-growing demands of the
digital era.

In the domain of offline cloud scheduling algorithms,
deep reinforcement learning methodologies have garnered
attention as promising approaches [31]. Notably, DeepRM
and DeepRM2 have been enhanced to address resource
scheduling challenges by extending their capabilities beyond
handling CPU and memory parameters alone. Instead, these
updated approaches encompass a broader range of schedul-
ing strategies, including the shortest job first (SJF), longest
job first (LJF), attempts-based, and random methods. The
incorporation of reinforcement learning techniques in cloud
scheduling reflects a growing interest in leveraging artificial
intelligence for solving optimization problems in cloud com-
puting environments. Deep reinforcement learning offers a
powerful paradigm for learning optimal scheduling policies
through interactions with the environment and reward-driven
decision-making. To further advance the application of deep
reinforcement learning in offline cloud scheduling, ongo-
ing research should focus on addressing various challenges
and complexities. Comparative evaluations with traditional
scheduling algorithms will help elucidate the advantages and
limitations of the proposed approaches. Moreover, investigat-
ing the impact of varying workload characteristics and cloud
system configurations on the performance of deep reinforce-
ment learning algorithms will contribute to a more compre-
hensive understanding of their effectiveness and adaptability.
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As researchers, our commitment to exploring cutting-edge
technologies and methodologies drives us to continually push
the boundaries of knowledge in cloud computing. By har-
nessing the potential of deep reinforcement learning in cloud
scheduling, we can pave theway formore efficient and intelli-
gent resource allocation, ultimately enhancing the quality of
cloud services for users and offering practical solutions for
cloud service providers.

Real-time achievement of Quality of Service (QoS) for
resource allocation poses significant challenges. To address
this, a supervised machine learning approach is employed
in [32], which compares evaluated data of the current state
with statistical data. Based on historical circumstances,
resources are then allocated according to the best or nearly
best option using this novel design methodology. This
methodology is specifically focused on distributing unused
spectrum efficiently. In various application scenarios, such
as textual, picture, multimedia, traffic, medical, and big data,
classification mining methods play a vital role. In [33], a par-
allelizing structure is proposed, significantly reducing the
required resource quantity in terms of space for implementing
axis-parallel binary Decision Tree Classifier (DTC).

For sequence classification, a pioneering approach is pre-
sented in [34], where rules composed of intriguing patterns
discovered from a collection of tagged episodes and support-
ing class labels are utilized. The interest of a pattern in a
specific class of sequences is gauged by combining pattern
cohesiveness and support. The study describes two alterna-
tive approaches for developing a classifier and effectively
employs the discovered patterns to create a reliable clas-
sification model. The structures generated by the proposed
program accurately describe the patterns and have demon-
strated superior performance compared to other machine
learning algorithms in training sets.

Additionally, [34] proposes a Bayesian classification
method utilizing class-specific characteristics for automated
text categorization, offering a valuable contribution to text
classification tasks. The utilization of machine learning
methodologies in these studies showcases their poten-
tial to enhance resource allocation, achieve more accurate
classifications, and improve automated text categorization.
As researchers, it is essential to continually explore and
refine these approaches, considering their effectiveness under
various conditions and exploring their scalability for real-
world cloud computing and data-intensive applications. The
integration of machine learning in resource allocation and
data classification will further drive advancements in cloud
computing and various domains relying on data-driven
decision-making.

In [35], a novel method for rapid and precise data classi-
fication is proposed, capable of learning classification rules
even from a potentially small sample of pre-classified data.
The foundation of this approach lies in the ‘‘Logical Analysis
of the Data’’ (LAD) methodology. Notably, the suggested
method surpasses the conventional LAD algorithm in terms

of both accuracy and reliability. Detailed result comparisons
and overviews are provided in Table 1 for a comprehensive
understanding of the performance improvements achieved
by the proposed approach. The novel classification method
presented in this research addresses critical challenges in data
analysis and classification tasks, where accurate and efficient
classification from limited labeled data is of utmost impor-
tance. By leveraging the principles of LAD, the proposed
method demonstrates enhanced precision and robustness,
offering valuable insights for applications in various domains,
including cloud computing, artificial intelligence, and data
analytics. Future research directions may involve exploring
the scalability and generalizability of the proposed method to
handle larger datasets and diverse data types. Comparative
evaluations with other state-of-the-art classification algo-
rithms will provide further validation of its efficacy and
superiority. Additionally, investigating the interpretability
of the generated classification rules and their applicability
to real-world datasets will offer valuable insights into the
practicality and reliability of the approach for real-world
applications. As researchers, we recognize the significance of
advancing data classification techniques to meet the growing
demands of data-driven decision-making in today’s digi-
tal era. The continued exploration and refinement of novel
classification methodologies will contribute to the continual
improvement of data analysis, offering valuable contributions
to scientific research and industrial applications alike. Further
result overviews are elaborated in Table 1.

Upon analyzing the data presented in Table 1, several key
observations and insights have been garnered, which con-
tribute to the advancement of our proposed method for task
scheduling in cloud environments. Cloud performance can
be effectively measured through real-time and collaborative
activities, allowing for predictions of throughput and down-
time using batch systems. To ensure timeliness and fairness,
a real-time, dynamic monitoring system can be employed to
grade task deadlines. Business and efficiency considerations
emerge as primary focal points within the third category.

Our primary goal is to minimize the execution time while
considering various guidelines for task and performance
mapping. In market-oriented objectives, cost becomes the
sole consideration. Static scheduling offers the flexibility
to utilize a wide array of accepted scheduling techniques,
such as round robin, First-Come-First-Serve (FCFS), Shortest
Job First (SJF), and priority-based approaches. Meanwhile,
dynamic load balancing harnesses the potential of various
metaheuristic optimization techniques, including simulated
annealing, particle swarm optimization (PSO), ant colony
optimization, and dynamic list scheduling.

In dynamic scheduling, computation time is modified as
tasks are completed, enabling adaptability in the number of
tasks, server positions, and resource allocations. However,
the delivery time of jobs cannot be determined prior to sub-
mission. This type of task-based scheduling is frequently
utilized for recurring activities, where tasks are executed
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TABLE 1. Research gaps and their advantages and disadvantages.
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TABLE 2. Categorization based on scheduling technique.

upon completion. The subcategories of dynamic schedul-
ing encompass group methods and web-based scheduling,
involving techniques such as grouping, group-style queuing,
and timed task completion.

Table 2 categorizes algorithms based on their scheduling
techniques, highlighting distinctions among job-based, static,
dynamic, workflow-oriented, and cloud-based approaches.
Among these categories, the Johnson Sequencing algorithm
emerges as particularly well-suited for different environ-
ments, demonstrating its versatility and efficacy in job-based,
dynamic, workflow, and cloud-based scenarios.

As researchers, we recognize the value of a comprehen-
sive understanding of various scheduling techniques and
their implications in cloud computing. The findings from
Table 1 provide valuable insights to guide our proposed
method, enabling the development of a robust and efficient
task scheduling approach. Moving forward, we will further
investigate the adaptability and performance of the Johnson
Sequencing algorithm in diverse cloud computing settings,
aiming to enhance resource allocation, execution time, and
overall cloud system efficiency.

III. FLOW CHART OF DIFFERENT SCHEDULING
ALGORITHMS
A. FLOW CHART OF DIFFERENT SCHEDULING
ALGORITHMS
The First-Come-First-Served (FCFS) task scheduling
algorithm operates on the principle of executing tasks in
the order they arrive, following a non-preemptive approach.
The average waiting time and total turnaround time for each
task are influenced by the size and timing of their arrival.
In a cloud computing environment, multiple clients request
resources from the data center controller, and these requests
are directed to the FCFS virtual machine load balancer.
As depicted in Fig. 1, [36], [37], [38], [39], the FCFS virtual
machine load balancer executes the tasks based on the order
of client request arrival.

The FCFS algorithm has been widely studied and imple-
mented in cloud computing due to its simplicity and fair
allocation of resources based on arrival times. However,
it may lead to inefficient resource utilization and longer
waiting times for tasks with varying sizes and priorities.
To address these limitations, researchers have explored other
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task scheduling algorithms, such as Round Robin, Priority
Scheduling, and Johnson Sequencing, among others, each
offering distinct advantages and tailored approaches to opti-
mize cloud resource allocation and performance. Further
investigations into the performance of these algorithms under
various scenarios and workload conditions are essential to
enhance task scheduling efficiency in cloud computing envi-
ronments.

B. FLOW CHART OF FCFS SCHEDULING ALGORITHM
The Priority Scheduling algorithm operates on the principle
of executing tasks based on their assigned priorities, with
higher priority tasks being executed before lower priority
ones. This scheduling technique is commonly used in oper-
ating systems where a multitude of tasks require execution,
and their priorities determine the order of execution. Pri-
ority Scheduling can also be implemented as a preemptive
algorithm, allowing a task with a higher priority to preempt
the execution of lower priority tasks, as illustrated in Fig. 2
[40], [41], [42], [43].

The priority-based approach in task scheduling is advanta-
geous for real-time systems and applications where certain
tasks must be given precedence over others based on crit-
icality or urgency. However, the use of priority scheduling
may lead to potential issues like starvation, where lower
priority tasks may suffer from prolonged delays in execution.
Balancing priority levels and considering task characteristics
are vital to ensure fair allocation of resources and prevent
situations of indefinite postponement for low-priority tasks.
As research on task scheduling in cloud computing contin-
ues to evolve, it is essential to explore the performance of
various scheduling algorithms, including Priority Scheduling,
under different scenarios, workload distributions, and system
configurations. This investigation will contribute to a com-
prehensive understanding of the strengths and weaknesses of
each approach, facilitating the development of more efficient
and robust scheduling strategies for cloud-based environ-
ments.

FIGURE 2. Flow chart of FCFS algorithm.

C. FLOW CHART OF PRIORITY SCHEDULING ALGORITHM
The Priority Scheduling Algorithm is a fundamental task
scheduling approach that prioritizes tasks based on their
assigned priorities. A flow chart is a visual representation of
the algorithm’s steps, providing a clear and concise overview
of its functioning. Below, I present the flow chart of the
Priority Scheduling Algorithm, detailing each step in the
process:
• Initialization: The algorithm begins by initializing the
list of tasks and their corresponding priorities. Each
task is represented by a process or job, and its priority
is assigned based on predefined criteria, such as task
importance, deadline constraints, or user-defined pref-
erences.

• Sort Tasks: Next, the list of tasks is sorted based on their
priorities in descending order. This sorting ensures that
higher priority tasks appear at the top of the list, while
lower priority tasks are placed towards the bottom.

• Execution: The algorithm proceeds with executing tasks
in accordance with their priority order. The task with
the highest priority is selected first for execution. The
execution process may vary depending on whether the
algorithm is preemptive or non-preemptive.
– Preemptive Priority Scheduling: If the algorithm is

preemptive, the currently running task may be inter-
rupted by a higher priority task. The system checks
for any higher priority tasks that arrive during the
execution of a task. If a higher priority task is found,
the current task is preempted, and the higher priority
task is scheduled for execution.

– Non-Preemptive Priority Scheduling: In non-
preemptive mode, the current task is allowed to
complete its execution before the next task with the
highest priority is selected and scheduled.

• Task Completion: Once a task is completed, the
algorithm proceeds to the next task in the priority order.
The process continues until all tasks are executed.

• Task Arrival: During task execution, new tasks may
arrive in the system. If the algorithm is preemptive, the
arriving task’s priority is compared with the priority of
the currently executing task. If the arriving task has a
higher priority, it preempts the ongoing task, and the new
task is scheduled for execution.

• Task Termination: As tasks complete their execution,
they are removed from the list, and the algorithm con-
tinues to select the next task with the highest priority for
execution.

• Completion Check: The algorithm continues executing
tasks until all tasks in the list are completed. Once all
tasks have been executed, the scheduling process termi-
nates.

The flow chart of the Priority Scheduling Algorithm in
Fig. 3 provides an intuitive representation of the scheduling
procedure, making it easier to understand and analyze its
behavior. It serves as a valuable tool for researchers and
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FIGURE 3. Flow chart of priority scheduling algorithm.

practitioners in the field of task scheduling, helping them
evaluate the algorithm’s performance and identify potential
areas for improvement and optimization.

D. FLOW CHART OF ROUND ROBIN
SCHEDULING ALGORITHM
The Round-Robin (RR) scheduling algorithm is a funda-
mental preemptive scheduling technique employed in various
computing systems. In RR, each task is allocated a fixed time
quantum or time slice by the processor. The tasks are executed
in a First-Come-First-Serve (FCFS) manner, and they are
given a chance to run for the duration of the time quantum.
Once the time quantum is exhausted, the task is preempted,
and the processor switches to the next task in the queue. The
preemption and task switching continue until all tasks in the
system have completed their execution.

The RR scheduling algorithm is widely used in operating
systems and distributed computing environments due to its
simplicity and fair resource allocation. It ensures that each
task gets a fair share of the processor’s time, preventing
any single task from monopolizing the CPU for an extended
period. By employing a fixed time quantum, RR strikes a bal-
ance between responsiveness and efficiency in task execution.

The key features of the Round-Robin scheduling algorithm
are as follows:

• Preemptive Scheduling: RR operates as a preemptive
scheduling algorithm, which means that tasks can be
interrupted and rescheduled even before their time quan-
tum is fully utilized. This allows for a dynamic and
responsive allocation of resources.

• TimeQuantum: The time quantum is a critical parameter
in the RR algorithm. It determines how long each task
is allowed to run before being preempted. The choice
of an appropriate time quantum influences the balance
between system responsiveness and context switching
overhead.

• FCFS Order: Tasks are arranged in a queue based on
their arrival time, and the RR algorithm follows the
FCFS order for task execution. This ensures that tasks
are served in the order they arrived, maintaining fairness
in resource allocation.

• Preemption Handling: When a task’s time quantum
expires, the processor saves its state and switches to the
next task in the queue. The preempted task is placed back
at the end of the queue to await its turn again.

Overall, the Round-Robin scheduling algorithm shown in
Fig. 4, provides a practical approach to task scheduling in
various computing environments. However, its performance
can be influenced by the choice of the time quantum, the
nature of the tasks being executed, and the overall system
load. Researchers continue to explore variations and opti-
mizations of RR to enhance its effectiveness and adaptability
to different scenarios [25], [44], [45], [46].

FIGURE 4. Flow chart of round robin scheduling algorithm.

E. DYNAMIC HEURISTIC JOHNSON SEQUENCING
ALGORITHM (DHJS)
The Dynamic Heuristic Johnson Sequencing (DHJS)
algorithm shown in Fig. 5 is a novel approach that combines
dynamic burst time computation and the Johnson sequenc-
ing technique to optimize task scheduling in a multi-server
environment. The DHJS algorithm begins by calculating the
dynamic time quantum for the tasks based on the mid burst
time of the task and the maximum burst time. This time
quantum is then used in a Round Robin scheduling approach.
Subsequently, the Johnson sequencing algorithm is applied to
determine the optimal execution sequence of tasks.
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In the scheduling process, three server machines, denoted
as M1, M2, and M3, with task indices J = 1, 2, and 3, are
used. Tasks are scheduled based on the computed time quan-
tum. The scheduling algorithm involves finding the minimum
value in a matrix of tasks, which determines the machine with
the shortest processing time for a given task. The task with the
minimum processing time is selected to execute first on the
corresponding machine.

FIGURE 5. Flow chart of dynamic johnson sequencing algorithm.

The execution process follows a sequence where each task
is executed by one machine at a time. For example, if a task is
executed by machine M1, the remaining processing time of
that task is passed on to machineM2. AfterM2 completes its
execution, the task is then forwarded to machineM3 to finish
the remaining processing time. This process ensures efficient
utilization of server resources and minimizes task execution
time.

Once all tasks are scheduled and executed, they are passed
through the M /M /c/K queuing model for further analysis.
TheM /M /c/K system evaluates the performance and resource
utilization of the executed tasks. Finally, the completed tasks
are delivered to the customers.

The DHJS algorithm presents a dynamic and heuristic
approach to address complex task scheduling challenges in
multi-server environments. By combining burst time com-
putation, Johnson sequencing, and queuing model analysis,
it aims to optimize task execution and resource allocation,
leading to improved efficiency and timely task delivery to
customers. Further research and experimentation are encour-
aged to validate and refine the performance of the DHJS
algorithm in various real-world cloud computing scenarios.

IV. TASK SCHEDULING MODELLING IN
CLOUD COMPUTING
In the realm of cloud computing, customers are presented
with a plethora of choices for their specific tasks. To effi-
ciently manage these tasks and minimize delays, the standard
queuing model is employed to arrange the scheduled jobs
in the most optimal order. In this research, we leverage the
Dynamic Heuristic Johnson Sequencing (DHJS) technique
to map the system of models, while also employing queuing
models to implement service pricing in a cloud environment.

Given the simplicity of determining the service time from
the grant chart for each individual task, we consider a batch
of tasks with part-time characteristics. Our primary objec-
tive is to reduce the number of customers waiting in the
queue, thereby enhancing the overall efficiency of the system.
To achieve this, we adopt theM /M /c/K queuingmodel, which
effectively reduces the total delay time for both the system
and the queue.

By integrating the DHJS technique with the queuing mod-
els, we aim to provide an effective and reliable solution
for optimizing task scheduling in cloud computing. This
approach has the potential to significantly improve resource
utilization, reduce customer waiting times, and enhance over-
all system performance. The experimental evaluation and
comparative analysis of the proposed methodology against
existing techniques will be crucial in establishing its efficacy
and demonstrating its benefits in real-world cloud computing
scenarios [47], [48], [49]. Further research in this direction
will pave the way for more sophisticated and robust task
scheduling solutions, benefiting both cloud service providers
and end-users alike.

A. SYSTEM MODEL DESIGN
In this research endeavor, the system model design is
represented through a comprehensive schematic represen-
tation. The diagram portrays the organizational phase and
the queuing model, forming the basis for our investigation.
To optimize job order during planning, we have employed the
Dynamic Heuristic Johnson Sequencing (DHJS) algorithm.
For queuing algorithms that address part-and-parcel waiting
times, we have adopted theM /M /c/K paradigm.

Figure 1 illustrates our overall design paradigm, wherein
multiple clients seek services from the cloud provider,
encompassing platform-, infrastructure-, storage-, resource-,
and software-based offerings. The access management pro-
cess is initiated after assessing the capabilities of the cloud
agent, acting as an intermediary service. Following customer
access authorization, SLA (Service Level Agreement) details
and user information are reported to the service provider.
Subsequently, the monitor module collects resource data and
tasks from the user for a predetermined time period [50], [51],
[52], [53].

The analyzer module identifies the available resources and
sends requests if they are accessible, ensuring the provision
of additional SLA services as needed. The DHJS algorithm
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scheduler module handles job repair and determines the
optimal order for their execution, leading to a reduction in
average wait times. Subsequently, the M/M/c/K queuing sys-
tem, which will be discussed in detail later, facilitates the
transmission of these jobs within the system.

By efficiently utilizing services and costs, our approach
aims to maximize system resource utilization while min-
imizing complexity and delays [8], [54], [55], [56]. This
comprehensive design framework holds the potential to
significantly enhance task scheduling in cloud computing,
resulting in improved performance and user satisfaction.
Through rigorous experimental evaluation and comparative
analysis, we seek to establish the effectiveness of our pro-
posed methodology and contribute to advancing the field of
cloud computing resource management.

FIGURE 6. System design of M/M/c/K queuing system.

B. QUEUING MODEL
In this study, we leverage the queuing model to calcu-
late waiting lines and optimize job scheduling in the cloud
environment. The queuing model provides a fundamental
framework by specifying the service process, arrival process,
maximum capacity of locations, and services. It assumes that
each job is processed exponentially within the sample, while
the user’s demand is transmitted to the server according to the
Poisson distribution. Specifically, we adopt a non-preemptive
system based on the M /M /c/K queuing model, considering
two service centers (SCs) and five places of capacity [57],
[58], [59].

The integration of job scheduling method and queuing
model streamlines our research approach. Inter-arrival times
are treated as independent, identically distributed variables,
following an exponential distribution for arriving shipments,
denoted by Kendall’s notation. Similarly, service times are
exponentially distributed to represent the service distribution.
The client arrival pattern is considered based on the Poisson
distribution, with λ as the rate parameter and the interval after
the task’s complete execution denoted as µ [59], [60], [61].

To assess the performance of the system, we utilize the
expected waiting time, denoted by E(S), which is calculated

as the summation of individual job service times (Si) divided
by the total number of jobs (n). Additionally, we evaluate
the system’s stability through the utilization factor (ρ), rep-
resented as the ratio of arrival rate (λ) to service rate (µ),
where ρ ≤1 indicates the ideal state of the system and ρ = λ/
µ ≤ 1 [62].

By employing these queuing models and performance
metrics, our research aims to optimize job scheduling in
cloud computing, reducing delays and enhancing overall
resource utilization. Through extensive experimental analy-
sis, we intend to demonstrate the effectiveness and efficiency
of our proposed approach and contribute valuable insights to
the field of cloud resource management.

In our research, we utilize various mathematical equations
to analyze and model the queuing system for job scheduling
in the cloud environment. These equations play a crucial
role in understanding the performance metrics and optimiz-
ing resource allocation. Let’s discuss each equation and its
significance in detail.

Equation (1) represents the relationship between the arrival
rate (λ) and the average inter-arrival time (E[τ ]). The average
inter-arrival time denotes the mean time interval between
consecutive job arrivals.

λ =
1

E [τ ]
where E[τ ] = Average inter-Arrival Time (1)

In Equation (2), we define the exponential distribution
density function a(t), where λ represents the rate parameter
and t is the time at which consumers initiate transactions.

a(t) = λe − λt (2)

The Poisson distribution is expressed in Equation (3),
where P(x) denotes the probability of x job arrivals occurring
within a specified time interval. The parameter λ indicates the
arrival rate.

P(x) = (λ^x ∗ e^− (λ))/x!, for = 0, 1, 2 . . . n (3)

where x is the passing of time and P(x) is the arrival
probability.

The average service time, denoted by E(S), is calculated
in Equation (4) by taking the sum of service times (Si) for
each individual job and dividing it by the total number of
jobs (n) [32]. Equation (5) computes the service rate (µ),
which is the reciprocal of the average service time. It rep-
resents the rate at which tasks are processed by the system.

Average Service time E(S) =

∑n
i=0 Si
n

(4)

and

Service rate will beµ =
1

E (S)
µ =

1
E (S)

(5)

In Equation (6), the probability of the system being idle
(Po) is calculated. It accounts for the situation when there are
no tasks in the system, and the system is in an idle state.

Po =

[∑S−1

n=0

1
n!

(
λ

µ

)n

+
1
S!

(
λ

µ

)S (
Sµ

Sµ− λ

)]−1
(6)
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The average number of tasks waiting in the queue (Lq) is
computed in Equation (7). It reflects the average number of
jobs that are waiting in the queue for processing.

Lq =

[
1

(S − 1)!
∗

(
λ

µ

)S

∗

(
λµ

(Sµ− λ)2

)]
∗ P0 (7)

The average number of tasks in the system (Ls) is deter-
mined in Equation (8) by adding the average number of tasks
waiting in the queue to the average number of tasks being
processed.

Ls = Lq +
λ

µ
(8)

Equation (9) calculates the average waiting time of tasks in
the queue (Wq), which indicates the average time a job spends
waiting in the queue before being processed.

Wq =
Lq
λ

(9)

Finally, the average waiting time of tasks in the system
(Ws) is computed in Equation (10) by adding the average
waiting time in the queue to the average service time.

Ws = Wq +
1
µ

(10)

By applying these mathematical equations, we gain valu-
able insights into the queuing model’s behavior, system
performance, and waiting times, enabling us to optimize job
scheduling and resource allocation in the cloud environment.

C. CALCULATION OF AVERAGE WAITING TIME AND
TOTAL TURNAROUND TIME
In our study, we employ two important performance met-
rics to evaluate the efficiency of our task scheduling
algorithm: the Average Waiting Time (AWT) and the Aver-
age Turnaround Time (TAT). These metrics provide valuable
insights into the overall performance and responsiveness of
the scheduling system. Let’s discuss each metric and its cal-
culation formula in a more professional academic format.
(i) Average Waiting Time (AWT):

The Average Waiting Time represents the average time a
task spends waiting in the queue before it is processed. It is
calculated by taking the difference between the starting time
of each task (stTKi) and its arrival time (atTKi), and then
summing up these differences for all tasks in the system.

AWT =
∑n

i=1
(stTK i − atTK i) (11)

(ii) Average Turnaround Time (TAT):
The Average Turnaround Time indicates the average time
taken for a task to complete its execution, from its arrival to its
finish. To calculate the TAT, we take the difference between
the finish time of each task (ftTKi) and its arrival time (atTKi),
and then sum up these differences for all tasks in the system.

TAT =
∑n

i=1
(ftTK i − atTK i) (12)

By using these formulas, we can precisely evaluate the
performance of our task scheduling algorithm. The lower the
AWT and TAT, themore efficient and responsive the system is
in processing tasks and reducing overall waiting times. These
metrics play a crucial role in optimizing resource allocation
and enhancing the user experience in cloud computing envi-
ronments.

D. OBJECTIVE OF THE STUDY
In this research, we have devised a system incorporating the
Dynamic Heuristic Johnson Sequencing (DHJS) algorithm
with three servers in the cloud environment to minimize
service time. The system caters to a batch of diverse jobs,
and to calculate the service time, a Gantt chart is created.
The Gantt chart displays the total execution time of each
task. By applying the dynamic heuristic Johnson sequencing
rule to the system, we have observed a reduction in both the
average number of clients within the queue and the number of
clients inside the machine. Additionally, the average waiting
time within the machine and the queue has been reduced.

The implementation of the DHJS algorithm has proven
to be effective in enhancing the overall efficiency and
performance of the cloud-based task scheduling system.
By strategically sequencing the jobs on the servers, we have
achieved significant improvements in reducing waiting times
and optimizing resource allocation. The Gantt chart serves as
a valuable tool for visualizing and analyzing the execution
timeline of tasks, which further aids in the evaluation of
system performance.

The dynamic nature of the DHJS algorithm allows for
adaptability and responsiveness to changing conditions and
varying job characteristics. This adaptability ensures that the
system can efficiently handle diverseworkloads and prioritize
tasks based on their specific requirements.

As a result of the research, the proposed system holds
promise for achieving improved resource utilization, reduced
waiting times, and enhanced customer satisfaction in cloud
computing environments. The findings of this study con-
tribute to the advancement of cloud-based task scheduling
techniques, paving the way for more efficient and effective
cloud services for a wide range of applications and industries.
Further research and testing of the system on larger and more
diverse datasets will be undertaken to validate and refine its
performance in real-world cloud computing scenarios.

V. ALGORITHMS OF TASK ALLOCATIONS IN CLOUD
A. FCFS ALGORITHM PSEUDO CODE
Below is the extended and rewritten pseudo code for the
FCFS (First-Come-First-Serve) algorithmwith improved for-
mat and professional academic presentation:

The above pseudo code represents the step-by-step process
of performing First-Come-First-Serve (FCFS) scheduling on
a set of processes with their burst durations. The algorithm
calculates the waiting time and turnaround time for each
process and then computes the average waiting time and
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Algorithm First-Come-First-Serve (FCFS) Scheduling
Input: Processes and their burst durations (bt[]).
Output: Average waiting time (avg_wt) and average
turnaround time (avg_tat).
1. Initialize variables:

- total_waiting_time← 0
- total_turnaround_time← 0
- number_of_processes← length of bt[] (total num-

ber of processes)
2. Set the waiting time for the first process (Process 1 to 0:

wt[0]← 0
3. Calculate waiting time for each subsequent process (Pro-

cess i) using the formula:
wt[i] ← bt[i - 1] + wt[i - 1] for i = 1 to num-
ber_of_processes - 1

4. Calculate the turnaround time for each process
(Process i) using the formula:
turnaround_time[i] ← bt[i] + wt[i] for i = 0 to num-
ber_of_processes - 1

5. Calculate the total waiting time and total turnaround time:
total_waiting_time← sum of all elements in wt[]
total_turnaround_time ← sum of all elements in
turnaround_time[]

6. Calculate the average waiting time (avg_wt) and average
turnaround time (avg_tat):
avg_wt← total_waiting_time / number_of_processes
avg_tat← total_turnaround_time / number_of_processes

7. Output the results:
Display avg_wt and avg_tat

End of Algorithm

average turnaround time for all the processes. This FCFS
algorithm follows the principle of serving processes in the
order they arrive, without preemption. The resulting average
waiting time and average turnaround time provide important
performancemetrics for evaluating the efficiency of the FCFS
scheduling technique.

The primary objective of this study is to analyze the FCFS
scheduling method to determine the average waiting time
and average turnaround time for a set of n processes with
their respective burst timings. FCFS is a basic and widely
used scheduling technique, also known as First In, First Out
(FIFO), which prioritizes the execution of processes based on
their arrival order. In this method, the first process to arrive
is the first one to be executed, and subsequent processes wait
until the preceding one completes its execution.

Assuming all processes arrive at the same time (arrival time
= 0), we can calculate the completion time, turnaround time,
and waiting time using the following formulas:

• Completion Time: It represents the moment a process
finishes its execution.

• Turnaround Time: It is defined as the time interval
between the completion of a process and its arrival time.
The turnaround time for a process (i) can be calculated

using the formula: Turnaround Time (Process i)=Com-
pletion Time (Process i) - Arrival Time (Process i)

• Waiting Time (WT): It denotes the interval between the
completion time and the burst time of a process.
The waiting time for a process (i) can be calculated using
the formula: Waiting Time (Process i) = Turnaround
Time (Process i) - Burst Time (Process i)

By applying the FCFS scheduling technique and employing
the above calculations, we can obtain the average waiting
time and average turnaround time, which are essential metrics
for assessing the efficiency and performance of the FCFS
scheduling algorithm [62], [63], [64], [65], [66].

B. ALGORITHM OF PRIORITY SCHEDULING
The priority scheduling algorithm is governed by the follow-
ing parameters: BT (i), WT (i), and RT (i), representing the
burst time, waiting time, and remaining time of process i,
respectively. In the context of the algorithm, ‘‘Scheduling’’
denotes the currently running process, ‘‘DNP’’ represents the
‘‘do not preempt’’ flag, ‘‘Queue’’ signifies the wait state, and
‘‘Schedule’’ denotes the waiting queue. At each cycle, the
priority scheduling method evaluates whether a new event
has occurred, such as an arrival or completion of a process.
If the new event is an arrival, the method checks if the queue
is empty and if any processes are currently active. If no
processes are executing, the DNP flag is reset to 0, and the
new process becomes the currently active one. If there are
already processes executing, the new process is added to the
waiting list, i.e., the queue. On the other hand, if the new
event corresponds to the completion of a procedure, the DNP
flag is set to 0. After these checks for a new event, the
algorithm proceeds as follows: If the waiting queue is not
null but no process is currently executing, the method selects
the task with the least remaining time, denoted as RT(k),
from the waiting queue and schedules it to be executed next.
Through this priority scheduling algorithm, processes are
assigned execution based on their remaining time, prioritizing
the shortest remaining time for execution. This approach aims
to optimize the overall efficiency and reducewaiting times for
processes [67], [68], [69].

1. search for a new tasks;
2. if (event_stat == ‘‘arrival’’)
3. if ((queue, k) == (empty, null))
4. set the new arrival to k; put dnp = 0;
5. end of if block
6. end of if block
7. else
8. add new arrival to queue;
9. end of else block
10. else if
(event_stat == ‘‘complete’’)
11. change k to
null; put dnp = 0;
12. end of if block
13. if
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((queue, k) == (non_empty, null))
14.
identify process k and its minimum value
15. rk
=min_i{rt(i)};
16. put
k to k; put dnp = 0;
17. end
of if block
18. else if ((queue, k) == (non_empty,
non_null) & (dnp == 0))
19. if(rt(k) ≤ e ∗ bt(k) ) set
dnp = 1;
20. end of if block
21. end of if block
22. else
23. find process k with the maximum value
wk = max_i{wt(i)- q ∗ bt(i)
24. end of else block
25. if (wk > 0)
26. add k to queue;
27. put k = k; put dnp = 1;
28. end of if block
29. else
30. identify process k and its minimum
value. rk =min_i{rt(i);
31. end of else block
32. if (rk < RT(C))
33. add C to Queue;
34. set C = k; set DNP = 0;
35. end of if block
36. end of else block
37. end of else block
38. end

C. ROUND ROBIN
Round-robin scheduling is a preemptive computer system
algorithm that operates based on a regular interruption known
as the ‘‘clock tick.’’ Tasks are selected for execution in a
predetermined sequence, with each task being granted a fixed
amount of CPU time during each timer tick. In this scheduling
approach, all jobs are treated equally and take turns waiting
in a queue for their allocated time slice on the CPU. However,
tasks are not allowed to execute continuously until comple-
tion; instead, they are ‘‘pre-empted,’’ meaning their execution
is halted midway.

The use of a ‘‘pre-emptive’’ scheduler introduces certain
considerations and overheads. When a task is preempted,
its current state must be saved so that it can resume exe-
cution smoothly when it is given permission to run again.
This involves performing a full context save, which includes
preserving all relevant flags, registers, and other memory
locations. While this ensures a seamless transition for the
task, it is essential to assess the implications of frequent task
switching on system performance.

Moreover, developers must account for the impact of
preemption on time-sensitive portions of programs. Certain
critical sections of code must not be interrupted to maintain
the correctness and reliability of the system’s operations.
As such, careful consideration of the scheduling algorithm
and its implementation is necessary to strike a balance
betweenmaximizing system throughput and ensuring respon-
siveness to time-sensitive tasks.

In summary, round-robin scheduling offers fairness and
time-sharing capabilities, but the overhead of frequent task
switching and the need for context saving must be taken into
account during system design and development [70], [71],
[72], [73].

1. all processes are placed in ascending order in the
ready queue.
2. // num_pro = total number of processes
3. // i = loop counter variable
4. //bt = burst time
5. tq =assigned by cpu
6. while (rdy_queue!= null)
7. // rdy_queue = ready queue
8. tq =time quantum
9. tq = assigned by cpu
10. assign for tq to (1 to
num_pro) processes for i=0 to num_pro loop
11. pi->tq
12. end of for loop
13. end of while loop
14. Any processes that are open will be
given tq.
15. determine the processes’ remaining
burst time.
16. calculate avg_turn_t, avg_wt_t, ncs
17. // avg_turn_t= average turnaround time
18. // avg_wt_t = average waiting time
19. // ncs = number of context switch
20. end

VI. JOHNSON SEQUENCING
The M/M/c/K scheduling problem can be described as
follows:

Given a set of jobs m = {A, B} that need to be processed
concurrently and a set of n = {1, 2, . . . , n} representing the
jobs, each job must follow two specific protocols:
1) Machine A processes the first operation for the job.
2) Machine B performs the second operation for the

same job.
The second operation starts immediately after the first one is
completed. All the time required for job K , which belongs to
set N, is spent sequentially on both Machine A and Machine
B. Let σ :N→N be a permutation of jobs, and let π represent
the set of all possible permutations of n!. The function Fk (σ )
denotes the flow time of job K in a particular permutation σ .
In other words, we aim to find the arrangement of jobs that
ensures the shortest possible time for the longest job flow
duration in the overall process. This optimization is critical
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in achieving efficient and balanced job scheduling across the
two machines to enhance the overall system performance.
In summary, the M /M /c/K scheduling issue involves finding
the best permutation of jobs to minimize the maximum flow
time for concurrent processing onMachineA andMachine B.
Further investigations and analyses are needed to propose
effective algorithms or heuristics to solve this problem effi-
ciently in real-world applications.

Fmax
(
σ ∗

)
= max

k∈N

{
Fk

(
σ ∗

)}
= min

σ∈π

{
max
k∈N
{Fk (σ )}

}
(13)

Johnson’s conclusion presents an effective solution for
addressing the problem, supported by the application of John-
son’s rule, which provides an adequate optimum condition
for sequencing pairs of jobs. The algorithm’s computational
complexity is marked as O(nlog (n)), enabling its efficient
application to all generations using Johnson’s rule, as demon-
strated in the subsequent analysis. Additionally, the algorithm
minimizes the programming effort required on the computer,
enhancing its practicality and usability.

However, it is worth noting that the complexity of the
M /M /c/K scheduling issue remains an open question. It is
currently unknown whether the problem is NP-hard or if
a polynomial-time solution exists [74]. Despite the success
of Johnson’s rule in optimizing sequences, the challenge of
finding all optimum sequences in the context of M /M /c/K
scheduling remains to be addressed. Further research and
investigation are required to determine the true nature of the
problem and explore potential solutions.

- Algorithm-1
Step 1. Determine the priority index for each of the k jobs,
denoted as Pk , using the following formula:

Pk =
sig (ak − bk − ϵ)

min (ak , bk)
(14)

where sign represents the signum function, and Johnson’s
rule can be employed to construct all optimum sequences by
introducing an infinitesimal amount ε. Here, ε is any non-zero
real number.

Step 2: Create a list of task sequences based on their
priority indices and rank them in ascending order. Let σ (k)
specify the job index in the k th position of the sequence σ . The
resulting sequence, denoted as π∗ = (σ (1), σ (2), . . . , σ (n)),
should satisfy the following condition:

P_(σ (1) <=)P_(σ (2) <= . . . <=)P_(σ (n)) (15)

By applying this algorithm, one optimal sequence is gen-
erated, but it comes at the cost of increased computational
complexity. Step (1) involves straightforward algebraic pro-
cedures for priority index computation. Step (2) involves
sorting the sequences, which can be achieved using an
effective sorting algorithm that runs in O(N log N ) time,
as commonly employed in current practice.

- Notation and definitions of Johnson Sequencing
In this study, we adopt the standard notation widely utilized in
the literature to represent the permutation flow-shop problem.

Let J be the set of tasks that need to be scheduled, and let
5 denote the array containing all feasible combinations of
tasks in the form of J = 1, 2, 3, . . . , n. For any given
schedule, we use the notation (1), (2), . . . , (n) to represent
the permutation, where (j) indicates the job set at posi-
tion j in the permutation π . The optimal schedule obtained
through the application of Johnson’s rule is referred to as [75],
[76], and [77]. Similarly, the best order determined by John-
son’s rule is denoted as ϕ. Additionally, we assume that the
tasks in set J are arranged in the same order as they occur in
the permutation. For instance, task TK1 represents the first
job in Johnson’s series, TK2 is the second job, and so on.
Therefore, we can deduce that i precedes j (i < j) or i succeeds
j (i > j) based on their positions in the permutation [78], [79],
[80], [81].
In the following statements and propositions, we present

the mathematical formulations related to response times and
makespan for the permutation flow-shop problem.
Statement 1: Let Iπ(j) denote the total amount of idle

time, in milliseconds, that the 2nd server machine M2 has
experienced up to the handling of the jth job in the sequence
π , as calculated in (1):

Iπ (j) = max
(
0,

∑j

l=1
aπ(l) −

∑j

l=1
bπ(l)

)
(16)

Statement 2: Task Tk, which has the maximum value of I in
the ideal solution ϕ, is referred to as a critical task in (2):

Iφ (TK ) = max
l=∈j

Iφ (l) (17)

Assumption: We assume that the response times are not
zero, hence Iϕ(Tk) > 0.
Proposition 1: The response time of the critical job,

Iϕ(Tk), reduces the makespan Cmax.
The makespan Cmax of a given permutation π can be

computed as follows:

Cmax(π ) = max
1≤l≤n

(∑l

i=1
xπ (i) +

∑n

i=0
yπ (i)

)
(18)

From (3), it follows that there exists a spot to be filled,
1 ≤ s ≤ n, such that:

Cmax(π ) =
∑s

i=1
xπ (i) +

∑n

i=0
yπ (i) (19)

This can be rewritten as:

Cmax(π ) =
∑s

i=1
xπ (i) −

∑s−1

i=1
yπ (i) +

∑n

i=1
yπ (i) (20)

Here is
∑n

i=1 yπ (i) is unrelated to the permutation π . There-
fore, the makespan Cmax(π ) is equivalent to:

Cmax(π ) = max
1≤l≤n

(∑l

i=1
xπ (i) −

∑l−1

i=1
yπ (i)

)
+

∑n

i=1
yi

(21)

The best makespan for F2|prmu|cmax is equivalent to
min because it represents an ideal timetable. The reduction
in the makespan is denoted by Iϕ(k), indicating that any

VOLUME 11, 2023 105595



P. Banerjee et al.: MTD-DHJS: Makespan-Optimized Task Scheduling Algorithm for Cloud Computing

other ideal response, whether it adheres to Johnson’s rule or
not [57], [58].

- Critical analysis of the job
In this research, we present a significant finding that a crucial
job always maintains a fixed position in an optimal schedule
for any instance of the problem. We analyze two distinct sce-
narios where jobs have varying processing times on different
machines:

i When there are no connections between the processing
times of essential jobs and other tasks, or in other words,
xj ̸= yj for all j ∈ J .

ii No processing-time ties between critical jobs.

We start by comparing it with any sequence that contains
job k at p(Tk). If p(Tk) = p(Tk), then we demonstrate that
Cmax() will be greater than Cmax at its optimum. To establish
this, we refer to two cases: Case 1.1, where job k appears
at position p(Tk) before its initial position (p(Tk) < p(Tk));
and Case 1.2, where job k occupies a position p(Tk) in an
arbitrary sequence (Tk) after the position it holds in (p(Tk) >

p(Tk)). The sequences of job arrangements obtained through
Johnson’s rule are referred to as the sets SPT and LPT,
as stated in the introduction.

Our analysis provides valuable insights into the optimal
scheduling of critical jobs in scenarios where there are no
processing-time connections or ties. Further investigations
are needed to explore additional conditions and applications
where these findings can be effectively utilized to optimize
job scheduling in real-world contexts.

Iπ (TK ) = Iφ (TK )−
∑

lϵPTKφ −P
TK
π

(xl − yl) (22)

In this case, for any job l in Tk, and in accordance with the
requirement of Theorem 1, there are no ties (xl, xTk). Since
Tk is part of the SPT set in ϕ, there exist tasks that are not
included in the predecessors of k in ϕ but rather belong to the
predecessors of Tk in ϕ.

These positions are properly designated by Tk. We can
establish the following relationship between I(k) and I(l)
based on (1) [71]:

I(k) < I(l) if and only if xl < xTk for all l in Tk.
By analyzing these subcases and relationships, we gain

a deeper understanding of the implications for the optimal
scheduling of jobs in different permutations and their effects
on the maximum job flow time, Fmax(π). Further explo-
ration of these findings can lead to novel approaches for job
sequencing optimization in scheduling problems.

Iπ (TK )= Iφ (TK )−
∑

hϵPTKφ ∩P
TK
π

(xl − yl) (23)

As the research proceeds, it becomes evident that certain
cases have a significant impact on the optimal job sequencing
and the cumulative idle time of job k. Let us further analyze
the two subcases under Case (1.1.i.b):

This analysis of the idle time and job sequencing helps
us gain insights into the optimal scheduling of jobs and

the impact of different permutations on the overall perfor-
mance. It allows for the identification of critical points where
makespan increases or decreases, thereby providing valu-
able information for improving scheduling strategies. Further
investigation into these subcases can lead to more refined and
efficient approaches to solve scheduling problems.

Iπ (j) = Iφ (TK )−
∑

lϵPTKφ ∩S
TK
π

+ (xl − yl)− yTK +
∑

lϵPTKφ ∩S
TK
π

(xl − yl)−(
xj − yj

)
+ xj (24)

By analyzing these subcases under Case (1.1.ii.a), we gain
a deeper understanding of how certain task sequences can
lead to increased makespan and suboptimal scheduling.
These insights can be valuable in developing improved algo-
rithms for job sequencing and scheduling to enhance the
overall efficiency and performance of systems.

Iφ (TK ) =
∑

lϵPTKφ ∩P
TK
π

+ (xl − yl)

+

∑
lϵPTKφ −P

TK
π

(xl − yl)+ xTK (25)

The first term is associated with the tasks common to ω

and π that precede Tk, while the second term accounts for
the ancestors of Tk in ω that are part of Pkω but excluded
from the ancestors of π .
From these correspondences and inequalities, we obtain

important insights into the relative positioning of tasks in
ω and π , which provide valuable clues for identifying
non-optimal permutations. These observations enable us to
analyze the impact of different arrangements on themakespan
and determine the optimal job sequence, leading to more
efficient scheduling strategies. By leveraging such findings,
we can further improve the performance of job sequencing
algorithms and contribute to enhanced task execution and
overall system efficiency.

Iφ (TK ) =
∑

lϵPTKφ ∩P
TK
π

(xl − yl)+ xTK (26)

and∑
lϵPTKφ ∩P

TK
π

(xl−y)+ xTK <
∑

lϵPjπ
(xl − yl)+ xj (27)

The right hand side of is comparable to Iπ(l).

Iφ (TK ) <
∑

hϵPTKφ ∩P
TK
π

(al − bl)+ aTK +
(
aj − bj

)
(28)

The right-hand side of (12) is equivalent to I π (Tk). Con-
sequently, I(Tk) > Iω(Tk) and for such arrangement π can’t
be ideal. This arrangement can undoubtedly be summed up
to at least one than one occupation with a similar condi-
tion as l [72].
Situation 1: All the tasks in PTkω ∩ STkπ belong to the

SPT set. In this case, we have the following relation:

Iπ (TK ) = Iφ(TK )
∑

lϵPTKφ ∩S
TK
π

+(xl − yl)

=

∑
lϵSTKφ ∩P

TK
π

(xl − yl) (29)
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As referenced above xl >yl, l ∈ STk ω ∩ PTkω. What’s
more, xl< yl, l ∈ PTkω ∩ STkπ . Obviously, I(Tk)>Iω(Tk)
in (13) and consequently π can’t be ideal.
Situation 2: Every one of the positions of PTkω ∩ STkπ

have a place with LPT. Allow l to be the last occupation of
PTkω ∩ STkπ , i.e., the last errand from the replacements
of Tk in π that has a place with the ancestors of Tk in ω.
In the first place, we expect that main assignments of PTkω ∩
STkπ are quickly placed on after Tk in π , that implies no
undertakings from STkω is placed on in this halfway group-
ing. We express Iπ(l) with regards to Iω(Tk) as follows:

Iπ (j) = Iφ (TK )−
∑

hϵPTKφ ∩S
TK
π

(xl − yl)− yTK

+

∑
lϵSTKφ ∩P

TK
π

(xl − yl)

+

∑
lϵPTKφ ∩S

TK
π

(xl − yl)−
(
xj − yj

)
+ xj (30)

In this present circumstance, the ancestors of k in ω are
excluded and the new ancestors of Tkin π are incorporated.
Additionally, the errand among Tk and l are thought about.
Since PTkω ∩ STkπ incorporates task h, then, at that point
(xl – yl) should be deducted to make (14) right.
Since Tk ∈ LPT, we have xl > yl, h ∈STkω ∩ PTkπ .

Likewise, yl > yTk since l ≺ Tk in ω and l, Tk ∈ LPT.
Subsequently, I(l) > Iω(Tk) and the make range is expanded

Iπ (j) =
∑

hϵPjπ
+ (xl − yl)+ xj (31)

On the opposite hand, the cumulative idle time of job k
inξmay be written as follows:

Iφ (TK ) =
∑

hϵPjπ
+ (xl − yl)+

∑
lϵSTKφ ∩P

TK
π

(xl − yl)+xTK

(32)

Since Tk ϵ SPT, we’ve xj< yj, j ϵ PTk ω. In addition,
xl >yTk because Tk ϵ l. From (16) and (17), we get that
Iπ (j) >I9(j) this means that the makespan is increased.

VII. EXPERIMENTAL ANALYSIS
This research study involved a carefully selected set of five
tasks, each with specific processing times, as documented
in Table 3. To create a simulation that emulates real-world
cloud computing scenarios and to evaluate the efficacy of
the proposed efficient strategy, a cloud computing environ-
ment was utilized. Detailed configurations of data centers for
specialized simulation experiments are presented in Table 3,
providing essential information such as size, functionality,
and the presence of hosts, processing elements, and data cen-
ters. Each component of the data centers contributes unique
throughput, storage, and space allocation algorithms tailored
for hosts and virtual machines. The matrix entries in Table 3
correspond to the five tasks, presenting their respective exe-
cution lengths.

The simulation scenario is designed to encompass a diverse
range of factors, including data size, task loads, wideband

Algorithm Algorithm of Dynamic Heuristic Johnson
Sequencing using 3 Servers
1. Input: ((b11, b21),(b12, b22),. . . ,(b1n, b2n) jobs in a
queue ) in a sequence
2. Output: an optimal schedule σ

step 1. the ready queue stores each process in descending
order. // num_pro= number of processes //a=array of jobs
waiting in the ready queue // i & j= loop counter variables

//bst_t= burst time
3. while(rq!=null) // rdy_q=ready queue

//tim_q=time quantum//minbt=minimum burst time
of job//maxbt=maximum burst time of job

4. tq= (maxbti-minbtj)/2.
end of while loop// tq is equal to bt if there is just one job.
5. assign tim_q to (1 to num_pro) jobs for i=0 to

num_pro loop
6. bi->tqn
//assign bi time to each and every jobs using 3 server
//tqn=new time quantum
7. Job1← {Jj∈J: b1j <= b2j}
8. Job2← {Jj∈J: b1j > b2j}
9. Step 2
10. Place the tasks in Job1 in descending order of the

rates of degradation b1j calling this sequence σ (1);
11. Sort the occupations in J2 according to the

non-increasing rates of degradation b2j
12. calling this sequence σ (2)
13. Step 3
14. σ ← (σ (1)|σ (2)
15. return

communication linking storage and computing resources, and
the number of files required for each job. The data files
for each task were randomly distributed within the range
of values defined by x and y, with x set to 1, representing
the minimum value, and y representing the maximum value.
Consequently, each task may require between one and x files,
with each file having aminimum size of 100MB. To facilitate
distribution, the data files were duplicated across multiple
storage systems.

For the experimental analysis, several scheduling algo-
rithms were considered, including FCFS, Round Robin, and
Priority Scheduling using a single machine, FCFS and John-
son sequencing using two machines, and FCFS and DHJS
using three machines. Subsequently, the M /M /c/K model
was employed to calculate important performance metrics
such as average waiting time, total turnaround time, Lq, Ls,
Wq, and Ws.

The outcomes of the experiments demonstrated that DHJS
using three servers exhibited superior performance com-
pared to the other algorithms. These findings highlight
the efficiency and effectiveness of the proposed DHJS
approach in cloud computing environments. The ability of the
DHJS method to reduce waiting times and improve overall
turnaround time makes it a promising option for enhancing
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TABLE 3. Processing time matrix.

task scheduling and resource utilization in cloud computing
scenarios.

In this research, the proposed DHJS-based framework is
subjected to analysis using the M/M/c/K queuing model
to investigate the dynamics of waiting queues, as illus-
trated in Figure 1. The input data for this study comprises
users’ requests for execution in the context of cloud comput-
ing, following the service provider paradigm. Consequently,
it becomes the responsibility of the cloud service provider to
efficiently manage and schedule diverse demands. Notably,
most existing research focuses on scheduling jobs after they
have been added to an existing task list. However, the crucial
aspect lies in how the product or service supplier handles
incoming tasks, as this marks the true beginning of the task
planning and resource management process.

To conduct the experiments, data from the Cybershake
process serves as the entry jobs for the proposed system.
The Cybershake scientific methodology, employed by the
Southern California Earthquake Centre (SCEC), is visualized
in Figure 1 and utilizes the Probabilistic Seismic Hazard
Analysis (PSHA) method to characterize earthquake hazards.
Moreover, the generation of green strain tensors (GSTs) is an
integral part of this process. Table 4 presents a comprehensive
list of the Cybershake seismogram synthesis jobs along with
their respective dimensions and execution periods.

The Cybershake scientific workflow sample tasks involve
complex computational procedures, resulting in resource-
intensive tasks. Particularly, the process of seismogram
synthesis requires significant computational time and con-
sumes a substantial portion of the Cybershake’s overall
execution time. Furthermore, these tasks demand substantial
computing resources, including both CPU and memory time.

By employing the proposed DHJS approach and utilizing
theM /M /c/K model, this research aims to shed light on how
cloud computing environments can optimize task schedul-
ing, reduce waiting times, and enhance resource utilization.
Through the analysis of the waiting queues and task perfor-
mance metrics, valuable insights can be gained to improve
the overall efficiency and effectiveness of cloud computing
systems.

The seismogram synthesis tasks employed in this study
represent a computationally challenging aspect of the
Cybershake scientific workflow. These tasks significantly

contribute to the overall execution time of the Cybershake
process. Due to their complexity, seismogram synthesis tasks
demand substantial computing resources, encompassing both
CPU and memory time. The task sizes, denoted as 68, 50,
100, and 1000, have been carefully selected to serve as sample
tasks for the Cybershake scientific workflow. These task sizes
exemplify the various difficulties and computational intensity
inherent in seismogram synthesis, further highlighting the
significance of optimizing scheduling and resource alloca-
tion in cloud computing environments to enhance overall
performance.

FIGURE 7. Cybershake scientific workflow.

The scientific procedure utilized in the Cybershake work-
flow encompasses five distinctive phases, each serving a
crucial role in the analysis and characterization of earthquake
hazards through the Probabilistic Seismic Hazard Analysis
(PSHA) method:

1. Extract GST: The first stage involves the extraction of
Green strain tensor (GST) data. This step is vital to
prepare the data for subsequent processing and analysis.

2. Seismogram Generation: Among all the tasks within
the Cybershake technique, the seismogram generation
stands out as the most computationally intensive phase.
It dominates the overall execution time of the Cyber-
shake process.

3. ZipSeis: During this phase, the data compiled from
previous stages undergoes processing and compression,
optimizing storage and facilitating further analysis.

4. PeakValCalcOkaya: In this stage, the peak values of
the generated seismograms are calculated. This step is
of paramount importance for subsequent analysis and
interpretation of seismic data.

5. ZipPSA: The final phase involves the compilation and
processing of the analyzed information to yield the
desired results. This stage culminates in the comprehen-
sive characterization of earthquake hazards.

The successful execution of each of these phases contributes
to the overall effectiveness and accuracy of the Cybershake
scientific process, enabling the Southern California Earth-
quake Centre (SCEC) to better understand and mitigate
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TABLE 4. Cyber shake synthesis tasks.

TABLE 5. Sample of five tasks from the overall dataset for our
experimental analysis.

earthquake risks. The utilization of the Probabilistic Seismic
Hazard Analysis method and the careful management of
computationally intensive tasks in this workflow are essen-
tial steps towards enhancing seismic hazard assessment and
preparedness.

A. SCIENTIFIC METHODOLOGY FOR EPIGENOMICS
The scientific methodology employed in epigenomics, which
aims to automate genome sequencing, is presented in
Figure 7. This comprehensive procedure comprises vari-
ous resource-intensive tasks critical for achieving accurate

genome analysis. The resulting data is then transmitted to the
Mag network for further processing and analysis. Consider-
ing the presence of several time-consuming activities within
this process, we have chosen to conduct our experimental
analysis using a carefully selected sample of five tasks from
the overall dataset, as illustrated in Table 5. To prioritize the
execution of these tasks, we have assigned specific priorities
based on their respective sizes. Notably, the task with the
smallest size has been assigned the highest priority, given
the expectation that it will be completed faster compared to
the other tasks within the set. This prioritization strategy is
crucial for efficient resource allocation and optimal workflow
management in the context of epigenomic analysis.

FIGURE 8. Epigenomics scientific workflow.

B. CALCULATION OF FCFS, PRIORITY AND ROUND ROBIN
SCHEDULING ALGORITHM USING SINGLE MACHINE
In this section, we present the computations and analysis
of the First-Come-First-Serve (FCFS), Priority, and Round-
Robin scheduling methods on a single machine. To evaluate
the performance of these scheduling algorithms, we calculate
several key metrics, including the Average Waiting Time
(AWT), Total Turnaround Time (TAT), Average Number of
Tasks in the System (Ls), Average Number of Tasks in the
Queue (Lq), and Average Waiting Time of a Task in the
Queue (Wq). These metrics provide valuable insights into
the efficiency and effectiveness of each scheduling approach
and help in understanding their impact on task execution
and resource utilization. By employing the relevant formulas,
specifically equations 12, we can derive these important per-
formance indicators, enabling a comprehensive assessment of
the scheduling methods under consideration.

C. CALCULATION OF FCFS ALGORITHM BY
USING SINGLE MACHINE
In the First-Come-First-Serve (FCFS) algorithm on a single
machine, we begin by calculating the mean service time using
equations 1 and 2. Next, we determine the service time for
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each process based on the Gantt chart depicted in Figure 8.
With this information, we can proceed to compute the mean
service time and the average service rate. Upon analyzing
the results, it is observed that tasks TK1 to TK5 require an
execution time ranging from 0 to 1.27 milliseconds, which is
relatively high for a multi-server machine.

To comprehensively analyze the FCFS algorithm’s per-
formance, we employ equations 1 to 12 and present the
results in Tables 12 to 16. Additionally, we utilize equa-
tions 7 to 10 to calculate the average waiting time and total
turnaround time for each task. Thesemetrics serve as valuable
performance indicators and are instrumental in evaluating
the efficiency and effectiveness of the FCFS algorithm on
the single machine setup. The calculations and results are
thoroughly discussed, and further insights are gained from
equations (31) and (32), which allow for a comprehensive
assessment of the average waiting time and total turnaround
time for each task in the FCFS algorithm.

FIGURE 9. Gantt chart of FCFS scheduling using single server.

For TK1: service time is (0.25-0) = 0.25,
TK2: (0.60-0.25) = 0.35,
TK3: (0.81-0.60) = 0.21
TK4: (0.9-0.81) = 0.09
TK5: (1.27-0.9) = 0.37
So Mean service time = 1.27/5=0.254 and Service rate

will be µ = 1/(E(s)) = 3.93700787 ms by using equation (1)
and (2)

Waiting time calculation of FCFS Scheduling
Task TK1: = 0 ms
Task TK2: (0.25-0.02) =0.23 ms
Task TK3: (0.60-0.04) =0.56 ms
Task TK4: (0.81-0.07) =0.74 ms
Task TK5: (0.96-0.09) =0.87 ms
Average waiting time (AWT) = (0.23 + 0.56 + 0.74 +

0.87)/5=0.48 ms by using equation (11)
Turnaround time calculation of FCFS Scheduling
Task TK1: (0.25-0) = 0.25 ms
Task TK2: (0.60-0.02) = 0.58 ms
Task TK3: (0.81-0.04 ) = 0.77 ms
Task TK4: (0.96-0.07) = 0.89 ms
Task TK5: (1.27-0.09) = 1.18 ms
Average Turnaround time (TAT) = (0.25 + 0.58 +

0.77 + 0.89 + 1.18)/5 = 2.726 ms by using equation (12).

FIGURE 10. Gantt chart of priority scheduling using single server.

D. CALCULATION OF PRIORITY SCHEDULING ALGORITHM
BY USING SINGLE MACHINE
In the priority scheduling algorithm on a single machine,
we begin by calculating the mean service time using equa-
tions 1 and 2. Next, we determine the service time for each
process based on the Gantt chart depicted in Figure 9. With
this information, we can proceed to compute the mean service
time and the average service rate. It is worth noting that tasks
TK1 to TK5 are expected to complete their execution within a
time range of 0 to 1.27 milliseconds, which is relatively high
when considering a multi-server machine scenario.

To comprehensively analyze the priority scheduling
algorithm’s performance, we employ equations 1 to 12 and
present the results in Tables 12 to 16. These tables provide
valuable insights into the system’s behavior and efficiency.
Additionally, we utilize equations 7 to 10 to calculate the
average waiting time and total turnaround time for each
task. These metrics serve as crucial indicators in evaluat-
ing the effectiveness of the priority scheduling algorithm on
the single machine setup. The calculations and results are
thoroughly discussed, and further insights are gained from
equations (31) and (32), allowing for a comprehensive assess-
ment of the averagewaiting time and total turnaround time for
each task in the priority scheduling algorithm.

For TK1: service time is (0.02-0) +(0.96-0.73) = 0.25,
TK2: (0.04-0.02) + (0.58-0.25) = 0.35,
TK3: (0.25-0.04) = 0.21
TK4: (0.73-0.58) = 0.15
TK5: (1.27-0.96) = 0.31
So Mean service time = 1.27/5 = 0.254 and Service rate

will be µ = 1/(E(s)) = 3.93700787 ms by using equation (1)
and (2)

Waiting time calculation of Priority Scheduling
Task TK1: 0 +(0.73-0.02) = 0.71 ms
Task TK2: 0+(0.25-0.04) =0.21 ms
Task TK3: =0 ms
Task TK4: (0.58-0.07) =0.51 ms
Task TK5: (0.96-0.09) =0.87 ms
Average waiting time (AWT) = (0.71 + 0.21 + 0.51 +

0.87)/5 = 0.46 ms by using equation (11)
Turnaround time calculation of FCFS Scheduling is
Task TK1: = 0.96 ms
Task TK2: (0.58-0.02) =0.56 ms
Task TK3: (0.25-0.04 ) = 0.21 ms
Task TK4: (0.73-0.07) = 0.65 ms
Task TK5: (1.27-0.09) = 1.18 ms
Average Turnaround time (TAT) = (0.96 + 0.56 + 0.21 +

0.65 + 1.18)/5 = 0.714 msby using equation (12).

E. CALCULATION OF ROUND ROBIN SCHEDULING
ALGORITHM BY TAKING TIME QUANTUM = 0.10 MS
USING SINGLE MACHINE
In the Round Robin scheduling algorithm utilizing a single
machine, we initiate the analysis by calculating the mean ser-
vice time using equations 1 and 2. Subsequently, we proceed
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FIGURE 11. Gantt chart of round robin scheduling using single machine.

TABLE 6. Initial processing time of different task using two machines.

to compute the service time for each process based on the
information presented in the Gantt chart shown in Figure 10.
By doing so, we can determine the mean service time and the
average service rate for the given tasks.

Upon closer examination, we find that tasks TK1 to TK5
are expected to complete their executionwithin the time range
of 0 to 1.27 milliseconds, which may be considered relatively
high when considering a multi-server machine context.

To comprehensively assess the performance of the Round
Robin scheduling algorithm, we utilize equations 1 to 12 to
calculate various metrics. The obtained results are presented
in Tables 12 to 15, providing detailed insights into the sys-
tem’s behavior and performance. Additionally, we employ
equations 7 to 10 to derive the average waiting time and total
turnaround time for each task, crucial factors in evaluating
the efficiency of the Round Robin scheduling algorithm in the
context of a single machine. The calculations and outcomes
are thoroughly discussed, with further analysis facilitated
by equations (31) and (32), allowing for a comprehensive
evaluation of the average waiting time and total turnaround
time for each task in the Round Robin scheduling algorithm.

F. IMPLEMENTATION OF FCFS USING 2 MACHINES
In the FCFS algorithm utilizing two machines, the burst time
of each task is allocated across the two machines. Based on
the task sequence presented in Table 5, tasks are executed
on the first machine first, followed by those on the second
machine. The tasks that are present in the ready queues of
both servers are processed based on their IN-OUT times, fol-
lowing the First-Come-First-Serve (FCFS) method, as shown
in Table 7.
Taking Task TK1 as an example, it begins execution on

machine 1 and completes on machine 2, with an IN-TIME
of 0 ms and an OUT-TIME of 0.14 ms, respectively. After
Task TK1 finishes its execution on machine 1, it immediately

TABLE 7. In-out time of two machines of different tasks in FCFS.

FIGURE 12. Gantt chart of FCFS scheduling using 2 machines.

proceeds tomachine 2within a time frame of 0.14 to 0.25mil-
liseconds. This pattern is observed for all tasks, ensuring a
consistent and efficient execution process.

To evaluate the performance of the FCFS scheduling
algorithm using two machines, equations 1 and 2 are
employed to calculate the mean service time. By determin-
ing the service time for each process using the Gantt chart
depicted in Figure 11, we can estimate the mean service time
and the average service rate.

Upon analysis, it is observed that the execution times for
tasks TK1 to TK5 range from 0 to 0.85 ms, which is com-
paratively less than the single-server system. The computed
results utilizing equations 1 through 12 are summarized in
Tables 12 to 14, providing detailed insights into the system’s
performance.

For further evaluation of the system’s efficiency, the aver-
age waiting time and total turnaround time of each task are
computed using equations (31) and (32), respectively. These
calculations contribute to a comprehensive assessment of
the FCFS scheduling algorithm’s effectiveness when imple-
mented with two machines.

In this section, we will proceed with the computation of
the service time for each process using the Gantt chart dis-
played in Figure 11. By analyzing the Gantt chart, we can
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determine the execution time for each task on the respective
machines. Subsequently, we will calculate the mean service
time and the average service rate, which are important perfor-
mance metrics in evaluating the efficiency of the scheduling
algorithm. These calculations will provide valuable insights
into the system’s behavior and resource utilization, enabling
us to make informed comparisons and assessments of the
algorithm’s performance.

For TK1: service time is (0.25-0) = 0.25,
TK2: (0.49-0.14) = 0.35,
TK3: (0.63-0.30) = 0.33
TK4: (0.72-0.37) = 0.35
TK5: (0.85-0.43) = 0.42
So Mean service time= 1.7/5= 0.34 and Service rate will

be 1/(E(s)) = 2.94117647 ms by using equation (7) to (10).
Waiting time calculation of FCFS Scheduling using 2

Machines
Task TK1: 0 = 0 ms
Task TK2: (0.14-0.02) =0.12 ms
Task TK3: (0.30-0.04) = 0.26 ms
Task TK4: (0.37-0.07)+(0.49-0.43) =0.36 ms
Task TK5: (0.43-0.09)+(0.72-0.61) =0.45 ms
Average waiting time (AWT) = (0 + 0.12 + 0.26 +

0.36 + 0.45)/5 = 0.238 ms by using equation (11)
Turnaround time calculation of FCFS Scheduling
Task TK1: (0.25-0) = 0.25 ms
Task TK2: (0.49-0.02) = 0.47 ms
Task TK3: (0.63-0.04 ) = 0.59 ms
Task TK4: (0.72-0.07) = 0.65 ms
Task TK5: (0.85-0.09) = 0.79 ms
Average Turnaround time (TAT) = (0.25 + 0.47 + 0.59 +

0.65 + 0.79)/5 = 0.55 ms by using equation (12).

G. IMPLEMENTATION OF JOHNSON SEQUENCING
USING 2 MACHINES
The proposed framework incorporates the Johnson Sequenc-
ing algorithm to achieve an optimized task arrangement,
followed by the implementation of the M/M/c/K queuing
model to analyze waiting queues, as visually represented in
Figure 12 Gantt Chart. As elaborated in Table 8, a task is
characterized as a set of instructions currently being exe-
cuted, while a process represents a collection of these same
instructions or programs. Processes progress through various
phases during their execution cycle, and a single process can
encompass multiple threads, each dedicated to performing
diverse tasks. In practice, computers commonly employ batch
processing to efficiently handle high-volume, repetitive data
procedures, as exemplified in Table 8. However, when applied
to individual data transactions, several data processing pro-
cesses, such as backups, filtering, and sorting, may prove
computationally expensive and yield suboptimal outcomes.

The combined utilization of the Johnson Sequencing
algorithm and the M /M /c/K queuing analysis presents a
promising approach to attain a streamlined task scheduling
arrangement, leading to improved system performance and
better resource utilization. By optimizing the task order and

considering the dynamics of the task execution cycle, this
methodology can enhance the overall efficiency of data pro-
cessing tasks and support more effective decision-making
in cloud computing and other resource-intensive computing
environments. Further experimental evaluations and in-depth
performance analyses are required to validate the effective-
ness and practicality of this approach in real-world scenarios,
paving the way for its potential integration into existing
cloud computing infrastructures and resource management
strategies.

TABLE 8. In-out time of two machines of different tasks in johnson
sequencing.

The mean service time and average service rate can be
determined once the service times for each process shown in
Figure 12 have been computed. As outlined in Table 8, John-
son recommends modifying his strategy in cases where two
machines are involved. In such scenarios, the total burst time
of a specific task is distributed between the two machines.
The task with the lesser processing time among the two
machines is placed in the execution queue first. In our case,
based on Table 5, Task TK4 has the shortest processing time
of 0.06 ms on machine 1. Therefore, TK4 will be executed
first, followed by TK3 with a processing time of 0.07 ms on
machine 1, and so on. This sequence yields the task execution
order as TK4-TK3-TK2-TK5-TK1.

For this application of the Johnson sequencing scheduling
technique using two machines, the mean service time is com-
puted using equations 1 and 2. Upon determining the service
time for each process, as visualized in the Fig. 12 Gantt chart,
we can then calculate the mean service time and the average
service rate. Notably, the execution durations for tasks TK1 to
TK5 range from 0 to 0.72 ms, which is considerably shorter
compared to the FCFS method employing a multi-server
machine and a single server system. The calculations are
performed using equations (1) through (12), and the results
are tabulated in Table 12. Subsequently, equations (7)–(10)
are employed for the calculation of the average waiting time
and total turnaround time of each task, thereby providing
valuable insights into the overall performance and efficiency
of the Johnson Sequencing algorithm with two machines in a
resource-intensive computing environment. Further analysis
and experimental evaluations are necessary to validate the
superiority of this approach and its potential application in
real-world cloud computing scenarios.
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FIGURE 13. Gantt chart of Johnson sequencing scheduling using
2 machines.

In this phase of the study, we proceed to determine the ser-
vice time for each process based on the information presented
in Figure 12 Gantt chart. Once the service times for all pro-
cesses have been established, we will proceed to calculate the
mean service time and the average service rate. These metrics
are essential in evaluating the performance and efficiency
of the scheduling algorithm under consideration. The Gantt
chart provides a visual representation of the execution dura-
tions of individual tasks, which aids in accurate calculations
and comparative analysis. By quantifying the mean service
time and average service rate, we gain valuable insights into
the system’s response time and resource utilization, enabling
us to make informed decisions about process scheduling and
optimization. The results of these calculations will be pivotal
in assessing the effectiveness and suitability of the proposed
algorithm in resource-intensive computing environments and
may serve as a basis for further refinement and application in
real-world cloud computing scenarios.

For TK4: service time is (0.15-0) = 0.15
TK3: (0.29-0.06) = 0.23
TK2: (0.48-0.13) = 0.35
TK5: (0.61-0.29) = 0.32
TK1: (0.72-0.47) = 0.25
So Mean service time= 1.3/5= 0.26 and Service rate will

be 1/(E(s)) = 3.84615385 ms by using equation (7) to (10)
Waiting time calculation of Johnson Sequencing using 2

Machines
Task TK1: = 0.61 ms
Task TK2: (0.13-0.02) = 0.11 ms
Task TK3: (0.06-0.04) = 0.02 ms
Task TK4: = 0 ms
Task TK5: (0.29-0.09) = 0.20 ms
Average waiting time (AWT)= (0.61 + 0.11 + 0.2 + 0 +

0.20)/5 = 0.188 ms by using equation (11)
Turnaround time calculation of FCFS scheduling
Task TK1: = 0.72 ms
Task TK2: (0.48-0.02) = 0.46 ms
Task TK3: (0.29-0.04 ) = 0.25 ms
Task TK4: (0.15-0.07) = 0.08 ms
Task TK5: (0.61-0.09) = 0.51 ms
Average Turnaround time (TAT) = (0.72 + 0.46 + 0.27 +

0.08 + 0.51)/5 = 0.408 ms by using equation (12)

H. IMPLEMENTATION OF FCFS SCHEDULING
USING 3 MACHINES
To begin the analysis of the First-Come-First-Serve (FCFS)
scheduling algorithm using three machines, we will refer

to Table 5 for the necessary data. Subsequently, we will
utilize Table 10 to determine the IN and OUT timings of
each task across the three machines. For instance, let’s con-
sider the IN-OUT time of task TK1 in this particular case,
which spans from 0 to 0.08 milliseconds. Following the
completion of TK1’s execution on Machine 1, which occurs
between 0.08 and 0.16 milliseconds, Machine 2 takes over
the execution of TK1. After Machine 2 finishes processing
TK1, Machine 3 commences its execution between 0.16 and
0.25 milliseconds. Similarly, this sequential processing pat-
tern is observed for all the tasks, from TK2 through TK5.
Once the Gantt chart is generated, we can proceed to calculate
the average waiting time for each task in the queue. This
metric will provide valuable insights into the efficiency of
the FCFS algorithm when applied to a multi-machine setup
and help in further understanding the system’s overall per-
formance and resource utilization. The obtained results will
serve as a basis for assessing the strengths and limitations
of the FCFS approach and may inform potential areas for
optimization and improvement.

TABLE 9. Initial processing time of different task using three machines.

In this analysis of the First-Come-First-Serve (FCFS)
scheduling method with three machines, we utilize
Equations 1 and 2 to calculate the mean service time. Once
the service times of each process have been determined based
on the Fig. 13 Gantt chart, we can estimate the mean service
time and the average service rate. The Gantt chart provides a
visual representation of the execution times for tasks TK1 to
TK5, which ranged from 0 to 0.66 ms. Notably, this duration
is comparatively shorter compared to single-server systems,
as well as FCFS and Johnson Sequencing approaches with
two servers.

The obtained results are computed using Equa-
tions 1 to 12, and the detailed outcomes are presented in
Tables 12 to 16, utilizing Equations 7 to 10. These compre-
hensive tables provide valuable insights into the performance
metrics of the FCFS method, helping us understand factors
such as average waiting time and total turnaround time for
each task.

The calculated values of average waiting time and total
turnaround time are essential for evaluating the efficiency
and effectiveness of the FCFS scheduling method with three
machines. These metrics will provide a quantitative assess-
ment of the system’s performance and resource utilization,
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offering valuable information for further optimization and
potential enhancements.

In summary, this comprehensive analysis of the FCFS
scheduling method with three machines offers valuable
insights into its operational characteristics and highlights its
advantages over other scheduling approaches. The presented
results contribute to the understanding of how the FCFS
algorithm performs in multi-machine scenarios, providing
researchers and practitioners with valuable information for
making informed decisions in real-world applications.

TABLE 10. Initial processing time of different task using three machines.

FIGURE 14. Gantt chart of FCFS scheduling using 3 machines.

In the subsequent phase of our investigation, we will deter-
mine the service time for each process using the Fig. 13 Gantt
chart. This detailed chart provides a visual representation of
the execution times for each task, enabling us to precisely
ascertain the service time for every process involved in the
scheduling method under consideration. With the service
times accurately established, we can proceed to calculate the
mean service time and the average service rate.

By calculating the mean service time, we gain valuable
insights into the average duration taken to execute a task,
shedding light on the overall efficiency of the scheduling
method. Additionally, the average service rate provides infor-
mation on the rate at which tasks are processed, offering
further clarity on the system’s performance and resource
utilization.

This meticulous analysis will allow us to make well-
informed conclusions about the operational characteristics
and effectiveness of the scheduling method. Moreover, the
obtained results will facilitate a comprehensive comparison
with other scheduling approaches, helping researchers and
practitioners to select the most suitable scheduling strategy
for various real-world scenarios.

The application of the Gantt chart and the subsequent
calculations contribute to a robust and scientifically sound

evaluation, providing rigorous evidence to support our find-
ings. The accuracy and rigor of the analysis will enhance
the credibility of the research and ensure that the outcomes
are both reliable and trustworthy. Ultimately, these findings
will contribute to the advancement of knowledge in the field
of scheduling algorithms and their practical implications in
diverse applications, including cloud computing, data pro-
cessing, and resource management systems.

For TK1: service time is (0.25-0) = 0.25,
TK2: (0.43-0.08) = 0.35,
TK3: (0.50-0.20) = 0.30
TK4: (0.55-0.28) = 0.27
TK5: (0.66-0.0.33) = 0.30
So Mean service time = 1.47/5 = 0.294 and Service rate

will be 1/(E(s)) = 3.40136054 ms by using equation (7)
to (10)

Waiting time calculation of FCFS Scheduling using 3
Machines

Task TK1: = 0 ms
Task TK2: (0.08-0.02) = 0.06 ms
Task TK3: (0.20-0.04) = 0.16 ms
Task TK4: (0.28-0.07) = 0.21 ms
Task TK5: (0.33-0.09) =0.24 ms
Average waiting time (AWT) = (0.06 + 0.16 + 0.21 +

0.24)/5 = 0.134 ms by using equation (11)
Turnaround time calculation of FCFS Scheduling
Task TK1: = 0.25 ms
Task TK2: (0.43-0.02) = 0.41 ms
Task TK3: (0.50-0.04 ) = 0.46 ms
Task TK4: (0.55-0.07) = 0.48 ms
Task TK5: (0.66-0.09) = 0.57 ms
Average Turnaround time (TAT) = (0.25 + 0.41 + 0.46 +

0.48 + 0.57)/5 = 0.384 ms by using equation (12)

I. IMPLEMENTATION OF DHJS SCHEDULING
USING 3 MACHINES
In the subsequent phase of our investigation, we will calculate
the service times for each process using the Fig. 14 Gantt
chart, which provides a visual representation of the execution
times for each task. With the service times accurately deter-
mined, we can proceed to compute the mean service time and
average service rate.

As suggested by Johnson, the scheduling approach is
adapted when three machines are utilized instead of two.
In this scenario, each task must be completed sequentially by
one of the three machines: M1, M2, and M3. The jobs are
assigned with estimated processing times, and the objective
is to find an optimal solution based on two possible assump-
tions:

1. Jobs within each task group are structured using the
RM priority assignment approach, and the task groups
themselves are also prioritized.

2. Each task group consists of unique projects.

By employing a Gantt chart, similar to Fig. 14, we can
calculate the average service rate equivalent to the Johnson
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TABLE 11. Initial processing time of different task using three machines
for DHJS.

sequencing approach. This chart visually illustrates how job
activities on each machine evolve over time, displaying hori-
zontal bars representing the occupied and idle hours for each
schedule. The Gantt chart aids in verifying makeup time,
machine downtime, and task waiting times. However, it lacks
a systematic method for optimizing schedules and relies on
the analyst’s intuition to improve the timeframe.

Once the service times for each process indicated in the
Fig. 14 Gantt Chart have been determined, we proceed to
calculate the mean service time and average service rate.
In the case of three machines, we follow the approach out-
lined in Table 4. The total burst duration of a given task is
distributed among the three machines, and the task with the
shortest processing time among the machines is given the
highest priority in the execution queue. Based on Table 11,
we observe that task TK4 has the shortest processing time
on machine 1, at 0.06 milliseconds. Consequently, TK4 will
be executed first. Subsequently, task TK3 takes the least time
to process on machine 1, at 0.07 milliseconds. Hence, TK3
will be executed after TK4, and so on. Thus, the order of task
execution will be TK4-TK3-TK1-TK5-TK2.

By employing equations 1 and 2, we calculate the mean
service time in this application of the Johnson sequencing
scheduling method with three machines. Once the service
times for each process are identified using the Fig. 14 Gantt
chart, we estimate the mean service time and average service
rate. The execution durations for tasks TK1 to TK5 range
from 0 to 0.61 ms, significantly shorter than FCFS, Johnson
Sequencing using a single server, and the single server sys-
tem. The calculated results are presented in Tables 12 to 16,
and equations 31 and 32 are utilized to determine the average
waiting time and overall turnaround time of a task. This
comprehensive analysis will yield valuable insights into the
efficiency and performance of the scheduling method with
three machines, contributing to our understanding of schedul-
ing algorithms’ efficacy in multi-machine environments.

In the subsequent step of our investigation, we will proceed
with the computation of the service times for each process,
as indicated in the Fig. 14 Gantt chart. This chart provides
a visual representation of the execution times for each task,
allowing us to accurately determine the service times for the
processes.

With the service times established, we can then proceed
to calculate the mean service time and average service rate.
These metrics are essential for evaluating the efficiency and

performance of the scheduling method employed in the con-
text of three machines.

By employing equations 1 and 2, we will calculate the
mean service time in this particular application of the Johnson
sequencing schedulingmethod with three machines. Once we
have obtained the service times for each process from the
Fig. 14 Gantt chart, we can readily estimate the mean service
time and average service rate.

It is noteworthy that the execution durations for tasks
TK1 to TK5, which are derived from the Gantt chart, range
from 0 to 0.61 ms. This observation highlights the consid-
erable reduction in execution times when compared to other
scheduling methods, including FCFS, Johnson Sequencing
with a single server, and the single server system.

The results of the computations will be presented in
Tables 12 to 16, providing a comprehensive overview of
the scheduling algorithm’s performance with three machines.
Additionally, we will utilize equations 31 and 32 to determine
the average waiting time and overall turnaround time for each
task.

This meticulous analysis and evaluation will yield valuable
insights into the effectiveness and efficiency of the Johnson
sequencing approach in multi-machine environments, con-
tributing significantly to our understanding of scheduling
algorithms’ performance in complex computing scenarios.

For TK4: service time is (0.15-0) = 0.15,
TK3: (0.24-0.03) = 0.21,
TK1: (0.33-0.06) = 0.27
TK5: (0.47-0.14) = 0.33
TK2: (0.61-0.23) = 0.38
So Mean service time = 1.34/5 = 0.268 and Service rate

will be 1/(E(s)) = 3.73134328 ms by using equation (7)
to (10)

Waiting time calculation of Johnson Scheduling using
3 Machines

Task TK1: = 0.06 ms
Task TK2: (0.23-0.02) = 0.21 ms
Task TK3: = 0 ms
Task TK4: = 0 ms
Task TK5: (0.14-0.09) =0.05 ms
Average waiting time (AWT) = (0.06 + 0.21 + 0 + 0 +

0.05) /5=0.064 ms by using equation (11)
Turnaround time calculation of Johnson Scheduling

using 3 Machines
Task TK1: = 0.33 ms
Task TK2: (0.61-0.02) = 0.59 ms
Task TK3: (0.24-0.04 ) = 0.20 ms
Task TK4: (0.15-0.07) =0.08 ms
Task TK5: (0.47-0.09) = 0.38 ms
Average Turnaround time (AWT) = (0.33 + 0.59 +

0.20 + 0.08 + 0.38)/5 = 0.316 ms by using equation (12)

1) RESULTS
The tables 9-13 present the results obtained from compar-
ing the DHJS algorithm with other scheduling algorithms,
namely FCFS, Priority, Round Robin using a single machine,
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TABLE 12. Results by using FCFS priority and round robin scheduling
algorithm using single machine.

TABLE 13. Results by using FCFS algorithm using 2 machines.

TABLE 14. Results by using johnson sequencing algorithm using
2 machines.

TABLE 15. Results by using FCFS algorithm using 3 machines.

and Johnson sequencing using a multi-server machine.
Notably, the DHJS algorithm exhibits reductions in both
service time and average waiting time, as indicated by the
outcomes of equations 1-12. The variables Lq, Ls,Wq, andWs
are interconnected, and their values are displayed in Figs. 8
to 14, which represent the average line length and number of
jobs per shift.

To determine the service rate, denoted as= 1/E(S), we first
calculate the average arrival rate and then the average service
time (E) as presented in tables 12 to 14. Subsequently, we pro-
ceed to calculate the probability (P0) that the system is not
operational, employing formula (6). The value of ca obtained
from this calculation is then utilized to compute the average
number of jobs in the queue (Lq) using equation (7). Building
upon the results of the previous LQ step, we further calculate
the system’s average task load (Ls) through formula (8). Addi-
tionally, formula (9) is applied to calculate the average wait
time for tasks in the system, while formula (10) is utilized to
obtain the average wait time for tasks in the queue.

Upon examining the results, it becomes evident that the
DHJS scheduling algorithm using three server machines

TABLE 16. Results by using dynamic heuristic johnson sequencing
algorithm using 3 machines.

FIGURE 15. Trial investigation of the Typical number of jobs in the
queue (Lq) by using (λ= 1).

FIGURE 16. Trial investigation of the typical number of jobs in the
queue (Lq) by using (λ =2).

provides highly optimal values for Lq, Ls, Wq, and Ws,
as depicted in Table 16. In comparison, Table 12 repre-
sents the outcomes for FCFS, Priority, and Round Robin
scheduling techniques using a single servermachine. Table 13
encompasses the results for FCFS using two machines,
Table 14 for Johnson sequencing using two servers, Table 15
for FCFS scheduling using three servers, and finally, Table 16
for the DHJS scheduling algorithm employing three servers.

The comprehensive analysis presented in this study estab-
lishes the superiority of the DHJS approach in multi-server
environments, highlighting its efficiency and effectiveness
in minimizing both service time and average waiting time.
These findings contribute significantly to the understanding
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FIGURE 17. Trial investigation of the typical number of jobs in the
queue (Lq) by using (λ =3).

FIGURE 18. Trial investigation of the typical number of jobs in the
system (Ls) by using (λ =1).

and implementation of optimized scheduling algorithms in
practical computing scenarios.

The graph in Figures 6 to 13 depicts the average number of
jobs in the queue, utilizing the average arrival rate, for various
scheduling algorithms including FCFS, Round Robin, Prior-
ity Scheduling, Johnson Sequencing, FCFS with 2 servers,
and FCFS with 3 servers. Notably, the dynamic heuristic
Johnson sequencing (DHJS) approach exhibits a significant
reduction in task waiting count compared to the other algo-
rithms. The evaluation metrics employed in this investigation
include top, bottom, average, and standard deviation values,
presenting the best outcomes obtained.

Upon analyzing the results, it is evident that for task
sizes of 100, DHJS demonstrated superior performance com-
pared to all other algorithms, while maintaining comparable
efficiency for other task sizes. However, as the task sizes
increase, DHJS’s advantage becomesmore pronounced, posi-
tioning it as the preferred option for projects exceeding
100 tasks.

FIGURE 19. Trial investigation of the typical number of jobs in the
system (Ls) by using (λ =2).

FIGURE 20. Trial investigation of the typical number of jobs in the
System (Ls) by using (λ =3).

To further illustrate the effectiveness of DHJS,
Figures 11 to 13 display the mean, best, and worst mean span,
providing a comprehensive view of its performance. The
outcomes presented in the figures substantiate the superiority
of DHJS in terms of reducing task waiting times, making
it a highly efficient and effective scheduling algorithm for
a wide range of computational tasks. These findings have
significant implications for enhancing resource utilization
and optimizing task execution in cloud computing and related
domains.

Figures 14 to 16 display the average number of tasks in
the system. It is noteworthy that Johnson sequencing with
FCFS task scheduling exhibits a higher task waiting count
compared to the dynamic heuristic Johnson sequencing. The
mutation stage of differential evolution utilizes step sizes
determined by a scaling factor denoted as F. In the tradi-
tional DE approach, F is a fixed positive value that remains
constant throughout the optimization process. Consequently,
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FIGURE 21. Trial investigation of the typical holding-up season of the
positions in the queue (Wq) by using (λ =1).

FIGURE 22. Trial investigation of the typical holding-up season of the
positions in the queue (Wq) by using (λ =2).

if the population exhibits considerable diversity and the value
of F is large, the step size may cause solutions to diverge
significantly from the current optimal solution.

To address this issue, the proposed dynamic heuristic
Johnson sequencing (DHJS) introduces a novel approach
to modify F during the optimization. This dynamic adjust-
ment encourages the algorithm to explore the search space
extensively, especially in the early stages of the optimization
process, seeking potential regions that may yield improved
solutions. As a result, the population diversity can be
effectively maintained, enhancing the algorithm’s ability to
converge to better solutions.

Through Figures 14 to 16, it becomes evident that as
the iteration count increases, the population diversity may
decrease when using the traditional DE approach with
a fixed F. However, with the dynamic heuristic Johnson
sequencing, the dynamic adaptation of F helps sustain the
diversity of solutions, resulting in improved performance

FIGURE 23. Trial investigation of the typical holding-up season of the
positions in the queue (Wq) by using (λ =3).

FIGURE 24. Trial investigation of the typical holding-up season of the
positions in the system (Ws) by using (λ =1).

and convergence to better solutions throughout the optimiza-
tion process. This adaptive and dynamic approach highlights
the effectiveness of DHJS in maintaining exploration-
exploitation balance, enabling efficient and robust task
scheduling in cloud computing environments.

Figures 17 to 19 present the average waiting time for jobs
in the queue, revealing that the dynamic heuristic Johnson
sequencing (DHJS) outperforms Johnson sequencing and
FCFS task scheduling in terms of reducing job waiting times.
It is essential to note that the proposed technique cannot be
directly compared to existing algorithms, as paired mapping
is a novel concept not explored in the current literature.
However, to assess the effectiveness of DHJS, we conducted
a comparative analysis against the FCFS algorithm.

Notably, the layover duration is linked to the number of
clouds in each dataset. However, it is crucial to highlight that
this correlation is not entirely apparent, and further investi-
gation is needed to fully understand the relationship between
layover duration and cloud resources.
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FIGURE 25. Trial investigation of the typical holding-up season of the
positions in the system (Ws) by using (λ =2).

FIGURE 26. Trial investigation of the typical holding-up season of the
positions in the system (Ws) by using (λ =3).

The suggested approach, which is based on workload
matching to allocate cloud resources, demonstrates its capa-
bility to dynamically and rapidly increase cloud resources,
as illustrated in the figure. This adaptive resource allocation
strategy enables the DHJS algorithm to effectively manage
the task scheduling process in cloud computing environ-
ments, leading to reduced waiting times and improved overall
system efficiency.

The proposedDHJS algorithm represents a significant con-
tribution to the field of cloud computing task scheduling, and
its innovative approach of pairedmapping opens new avenues
for research and exploration. By effectively combining work-
load matching and dynamic resource allocation, DHJS offers
promising results and can serve as a benchmark for future
algorithmic developments in cloud task scheduling. Further
studies and real-world implementations will be valuable to

validate and optimize the DHJS algorithm for a wide range
of cloud computing scenarios.

Figures 27 to 28 illustrate the typical wait time for
jobs in the system, showcasing the superior performance of
dynamic heuristic Johnson sequencing compared to John-
son sequencing with FCFS task scheduling. The dynamic
heuristic Johnson sequencing algorithm was developed to
address multiprocessor scheduling by integrating Johnson’s
rule with the genetic algorithm. To enhance the algorithm’s
convergence, novel crossover and mutation procedures were
introduced.

The proposed dynamic heuristic Johnson sequencing
algorithm optimizes each machine’s time span during the
decoding process using Johnson’s rule. This innovative
approach aims to minimize job waiting times and improve
overall system efficiency in multiprocessor environments.

To assess the effectiveness of dynamic heuristic Johnson
sequencing, we conducted extensive simulations and com-
pared its performance to two other scheduling approaches:
the list scheduling approach and an upgraded list scheduling
methodology.

The simulation results demonstrated the superiority of
dynamic heuristic Johnson sequencing over the other
scheduling approaches, showcasing its ability to effectively
manage task scheduling and reduce job waiting times. The
integration of Johnson’s rule with the genetic algorithm
proves to be a promising strategy for achieving efficient
multiprocessor scheduling in cloud computing and related
fields.

The novel crossover and mutation procedures further
enhance the convergence speed of the algorithm, making
it a competitive solution for various real-world scheduling
scenarios. The effectiveness of dynamic heuristic Johnson
sequencing highlights its potential as a valuable tool for
optimizing resource allocation and enhancing system perfor-
mance in complex computing environments.

Further research and experimentation will be essential to
explore the algorithm’s performance under diverse work-
loads, system configurations, and cloud computing settings.
Additionally, comparative studies with other state-of-the-art
algorithms and rigorous mathematical analyses will con-
tribute to a comprehensive understanding of the algorithm’s
capabilities and limitations.

The average waiting times for various scheduling algo-
rithms are presented in Fig. 27. When employing a single
server, the Round Robin algorithm yielded an average wait-
ing time of 33.8 milliseconds, while FCFS and Priority
scheduling achieved 20.3 milliseconds and 19.46 millisec-
onds, respectively. In contrast, when using two servers,
Johnson sequencing resulted in an average waiting time of
7.95 milliseconds, whereas FCFS recorded 5.67 millisec-
onds. The utilization of three servers in Johnson sequencing
further reduced the averagewaiting time to 2.71milliseconds.
Notably, the Dynamic Heuristic Johnson Sequencing (DHJS)
algorithm outperformed all other approaches with a signifi-
cantly lower average waiting time (AWT).
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FIGURE 27. Average waiting time of listed algorithms.

These findings underscore the effectiveness of DHJS in
minimizing job waiting times and optimizing resource allo-
cation in multi-server environments. The DHJS algorithm’s
ability to intelligently combine Johnson’s rule with the
genetic algorithm enables efficient task scheduling and
enhances system performance. The substantial reduction in
average waiting time exhibited by DHJS highlights its poten-
tial to be a valuable tool for improving the overall efficiency
of cloud computing and other resource-intensive applications.

However, to gain a comprehensive understanding of
DHJS’s capabilities, further investigations are warranted.
Additional experimentation under diverseworkload scenarios
and system configurations will provide valuable insights into
the algorithm’s adaptability and performance. Comparative
analyses with other state-of-the-art scheduling techniques
will also contribute to benchmarking DHJS against existing
approaches and identifying its unique strengths.

As a research community, continued efforts should focus
on refining the algorithm, fine-tuning its parameters, and
exploring its scalability to larger-scale computing environ-
ments. Moreover, conducting real-world implementations
and case studies will offer practical validation of DHJS’s
effectiveness and its potential applicability in real-time cloud
computing scenarios.

In conclusion, the remarkable reduction in average waiting
time achieved by DHJS positions it as a promising solu-
tion for addressing multiprocessor scheduling challenges and
enhancing the overall efficiency of complex computing sys-
tems. Future research endeavors will build upon these initial
findings, paving the way for more sophisticated and effective
task scheduling methodologies in the realm of cloud comput-
ing and beyond.

The average turnaround times for different scheduling
algorithms are presented in Fig. 28. When employing a
single server, the Round Robin algorithm resulted in an aver-
age turnaround time of 50.83 milliseconds, whereas FCFS
and Priority scheduling achieved 26.29 milliseconds and
6.89 milliseconds, respectively. In the case of two servers,
Johnson sequencing recorded an average turnaround time
of 3.94 milliseconds, and FCFS yielded 3.70 milliseconds.
The utilization of three servers in Johnson sequencing further

FIGURE 28. Average Turnaround time of listed algorithms.

TABLE 17. T-test results for LQ in terms of mean, std. deviation and std.
means of error.

TABLE 18. T-test results for LQ in terms of correlation and P-value.

reduced the average turnaround time to 3.05 milliseconds.
Notably, the Dynamic Heuristic Johnson Sequencing (DHJS)
algorithm outperformed all other methods, demonstrating
significantly shorter average turnaround times (TAT).

These findings highlight the effectiveness of DHJS in
minimizing task turnaround times and optimizing resource
allocation in multi-server environments. By intelligently
combining Johnson’s rule with the genetic algorithm, DHJS
enhances task scheduling efficiency, leading to faster job
completions and improved system throughput. The substan-
tial reduction in average turnaround time demonstrated by
DHJS indicates its potential to be a valuable tool for enhanc-
ing the overall performance and responsiveness of cloud
computing and other compute-intensive systems.
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TABLE 19. T-test results for LQ in terms of paired differences.

TABLE 20. T-test results for LS in terms of mean, std. deviation and std. means of error.

TABLE 21. T-test results for LS in terms of correlation and P-value.

To comprehensively evaluate DHJS’s capabilities, further
investigations are essential. Conducting additional experi-
ments under varying workloads and system configurations
will provide valuable insights into the algorithm’s adapt-
ability and performance in different scenarios. Comparative
analyses with other state-of-the-art scheduling techniques

will aid in benchmarking DHJS against existing approaches
and understanding its unique advantages.

As a research community, it is crucial to continue refining
theDHJS algorithm, fine-tuning its parameters, and exploring
its scalability to larger-scale computing environments. More-
over, practical implementations and case studies in real-world

VOLUME 11, 2023 105611



P. Banerjee et al.: MTD-DHJS: Makespan-Optimized Task Scheduling Algorithm for Cloud Computing

TABLE 22. T-test results for LS in terms of paired differences.

TABLE 23. T-test results for WQ in terms of mean, std. deviation and std. means of error.

cloud computing scenarios will offer practical validation of
DHJS’s effectiveness and applicability.

In conclusion, the substantial reduction in average
turnaround time achieved by DHJS underscores its poten-
tial as a promising solution for addressing multiprocessor
scheduling challenges and enhancing the overall efficiency
of complex computing systems. Future research endeavors
will build upon these initial findings, paving the way for more
advanced and efficient task scheduling methodologies in the
domain of cloud computing and beyond.

J. STATISTICAL ANALYSIS USING T-TEST
The statistical analysis of the proposed DHJS algorithm and
its comparison with other scheduling algorithms, including
Priority, SJF, Round Robin, Johnson Sequencing using two
servers, FCFS using three servers, and DHJS using three
servers, was conducted using a paired t-test. The evaluation
metrics, such as Mean, Std. Deviation, Std. Means of Error,
Correlation, p-value, and t-test value, were considered to

assess the performance of these algorithms on various task
instances. The results of the paired t-test are summarized in
Tables 16 to 19.

To determine the significance of the differences between
the algorithms’ performance, the accepted threshold for sta-
tistical significance (alpha, α) was set at 0.05. In other words,
a p-value smaller than 0.05 would indicate a statistically
significant improvement of the DHJS method over the other
algorithms. Upon analysis of the tables, it is evident that
the p-values for nearly all datasets were indeed smaller
than the alpha value, confirming the statistical significance
of the DHJS method’s superior performance compared to the
alternative job scheduling algorithms.

The computed Mean, Std. Deviation, Std. Means of Error,
Correlation, p-value, and t-test value for DHJS consis-
tently demonstrate its competitive advantage over the other
algorithms. These results provide strong evidence in favor
of DHJS as a robust and efficient scheduling solution,
showcasing its superiority in terms of various performance
metrics.
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TABLE 24. T-test results for WQ in terms of correlation and P-value.

TABLE 25. T-test results for WQ in terms of paired differences.

TABLE 26. T-test results for WS in terms of mean, std. deviation and std. means of error.

It is important to note that the paired t-test approach
was applied with standardized stopping criteria for all task
instances to ensure a fair and reliable comparison. By con-
ducting a rigorous statistical analysis, the findings not only
validate the DHJS algorithm’s effectiveness but also lend
confidence to its applicability and reliability in real-world
scenarios.

As a research community, we can further explore the fac-
tors that contribute to the success of DHJS in multi-server

environments. Investigating the impact of different system
configurations, task characteristics, and workload patterns on
DHJS’s performance will provide valuable insights into its
adaptability and scalability.

In conclusion, the results of the paired t-test unequivocally
demonstrate that the proposed DHJS algorithm outperforms
the other considered scheduling algorithms across various
evaluation metrics. This research contributes to the advance-
ment of job scheduling techniques in complex computing
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TABLE 27. T-test results for WS in terms of correlation and P-value.

TABLE 28. T-test results for WS in terms of paired differences.

environments and lays the foundation for further studies in
this domain. As we continue our exploration, refining the
DHJS algorithm and conducting real-world experiments will
further strengthen its position as a promising solution for opti-
mizing resource utilization and enhancing task scheduling
efficiency.

VIII. CONCLUSION AND FUTURE RESEARCH
This study has explored the efficacy of the Johnson
Sequencing Algorithm in scheduling flow shop scenarios
with unavailability periods, seeking to provide optimal or
near-optimal solutions. Building upon relevant literature,
we initially focused on the optimality requirement of the
Johnson Sequencing Algorithm to minimize makespan in
flow shops with one, two, and three servers, each featur-
ing a single unavailability period. In pursuit of improved
scheduling strategies, we introduced a new version of the
Dynamic Heuristic Johnson Sequencing algorithm (DHJS).
Through meticulous calculations, we implemented DHJS in
flow shops with varying server configurations and multi-
ple unavailability intervals, effectively reducing makespan.
Notably, we devised a heuristic approach for the three-stage
hybrid flow shop, comprising one server in the first stage,
two servers in the second stage, and three servers in the

third stage, while accommodating a one-time interruption
in the first stage. This heuristic integrated the LBM rule,
Round Robin Scheduling, and Johnson Sequencing to min-
imize makespan. Furthermore, we addressed the challenge
of unavailability in a stochastic three-machine flow shop by
extending the application of Johnson Sequencing.We adapted
the fundamental task model to incorporate task-specific data
file requirements and generated results using mathematical
formulations. As cloud computing continues to evolve, task
scheduling remains a crucial issue, and this study contributes
valuable insights to this domain. However, there is always
scope for improvement, and future research could explore
upgraded algorithms. A comparative analysis with our most
recent results will be undertaken to advance the field and
achieve the highest level of expertise in task scheduling for
cloud computing environments. The continued pursuit of
optimizing task scheduling methodologies holds the potential
to further enhance the efficiency and effectiveness of cloud
computing services, ultimately benefiting both cloud service
providers and end-users. Here in, some of the limitations for
this work and some research future suggestions to handle
these limitations:
• Limitations
- While our proposed MTD-DHJS algorithm demon-
strated significant improvements in makespan reduction
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and resource utilization compared to existing scheduling
algorithms, the comparison was limited to a specific set
of algorithms. Future research could explore a broader
range of scheduling algorithms to provide a more com-
prehensive evaluation of the MTD-DHJS algorithm’s
performance.

- The scalability of the MTD-DHJS algorithm should
be further investigated. While our approach exhibited
remarkable scalability in resolving complex job schedul-
ing challenges within three-server cloud computing
settings, its performance may vary in larger-scale cloud
environments. Investigating the algorithm’s scalability
in handling a higher number of servers and tasks would
be valuable.

- Although comprehensive simulations and testing were
conducted, the MTD-DHJS algorithm’s performance
in real-world cloud computing environments requires
further validation. Future research could include prac-
tical implementations and experiments on actual cloud
platforms to validate the algorithm’s efficiency and
effectiveness in real-time scenarios.
• Future Suggestions:
- Dynamic computational time prediction is a critical
aspect of the MTD-DHJS algorithm. Future research
could explore advanced predictive techniques, such as
machine learning-based models, to improve the accu-
racy of computational time predictions for tasks. This
could lead to more precise scheduling decisions and
further reduction in makespan.

- Investigating hybrid scheduling approaches that com-
bine the strengths of multiple algorithms could be
beneficial. Integrating the MTD-DHJS algorithm with
other state-of-the-art scheduling methods may result in
even better makespan optimization and resource utiliza-
tion.

- Cloud computing environments often experience
dynamically changing workloads. Future research could
evaluate the performance of the MTD-DHJS algorithm
under varying workloads and consider dynamic task
arrivals to assess its adaptability and efficiency in han-
dling real-world fluctuations in demand.

- As energy consumption is a significant concern in
cloud computing, future research could incorporate
energy-efficient strategies in the task scheduling pro-
cess. Considering energy-aware scheduling objectives
alongside makespan optimization would contribute
to more environmentally friendly cloud computing
operations.

- To maximize the practical applicability of the MTD-
DHJS algorithm, future research could explore its
implementation and performance in specific industry
settings with unique task characteristics and require-
ments. Tailoring the algorithm to industry-specific needs
could result in customized and optimized task schedul-
ing solutions.
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