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ABSTRACT Human activity recognition (HAR) has applications ranging from security to healthcare.
Typically these systems are composed of data acquisition and activity recognition models. In this work,
we compared the accuracy of two acquisition systems: Inertial Measurement Units (IMUs) vs Movement
Analysis Systems (MAS). We trained models to recognize arm exercises using state-of-the-art deep learning
architectures and compared their accuracy. MAS uses a camera array and reflective markers. IMU uses
accelerometers, gyroscopes, andmagnetometers. Sensors of both systemswere attached to different locations
of the upper limb. We captured and annotated 3 datasets, each one using both systems simultaneously. For
activity recognition, we trained 8 architectures, each one with different operations and layers configurations.
The best architectures were a combination of CNN, LSTM, and Transformer achieving test accuracy from
89% to 99% on average. We evaluated how feature selection reduced the sensors required. We found IMU
and MAS data were able to distinguish correctly the arm exercises. CNN layers at the beginning produced
better accuracy on challenging datasets. IMU had advantages over other acquisition systems for activity
recognition. We analyzed the relations between models accuracy, signal waveforms, signals correlation,
sampling rate, exercise duration, and window size. Finally, we proposed the use of a single IMU located at
the wrist and a variable-size window extraction.

INDEX TERMS Human activity recognition, IMU, movement analysis system, visual marker, CNN, LSTM,
Transformer, arm exercises.

I. INTRODUCTION
Human activity recognition (HAR) studies the capture
systems and algorithms to recognize activities performed
by people in any situation. Data for this task can be
captured by inertial sensors, cameras with visual markers,
and cameras using human pose estimation, EEG, or EMG.
All these sensors produce time series data, in consequence,
the computer algorithms able to classify these activities are:
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Recurrent neural networks, Convolutional neural networks,
Long Short Term Memory networks, and Transformer
networks [1], [2]. HAR is an essential field of study in
computer vision and artificial intelligence. It has many
potential applications in various industries including security,
surveillance, and healthcare [3], [4]. HAR systems are used to
monitor themovements of elderly individuals in care facilities
and to alert caregivers if they fall or exhibit other signs of
distress [5], [6], [7], [8], [9]. HAR technology is being used
in sports training to help athletes measure their performance
by providing real-time feedback on their exercises [10].
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One of the key challenges in human activity recognition is
the high variability of human movements and activities. Due
to this variability, traditional machine learning algorithms
often struggle to accurately classify movements and activities
[11]. To overcome this challenge, researchers have developed
a range of techniques and approaches, including deep
learning and other advanced machine learning methods. Our
work aims to identify deep learning architectures that achieve
higher accuracies.

One capture system is the Movement Analysis System
(MAS) which detects the movement of human joints and
limbs. MAS uses infrared cameras and visual markers to
measure the physical world and obtain the dimensions and
positions of objects. Data is generated using specialized
software to analyze images taken from different angles and
positions to create a 3D model of the object [12]. MAS takes
the video streaming as input and estimates the positions of the
visual markers worn by a person [13].
Another capture system is the use of inertial measurement

units (IMUs). An IMU is a system of sensors that measures
three axes acceleration, angular velocity, and magnetic field
[14]. IMUs are attached to different parts of the human body
to identify activities such as walking, running, or jumping.
Making IMU suitable for healthcare applications such as
rehabilitation programs to provide feedback on movements
and monitor progress during therapy sessions [15]. Our work
aims to identify the advantages and disadvantages of IMU and
MAS capture methods.

HAR has three levels of abstraction in exercise recognition:
full body exercise, single limb exercise, and stages inside
a single exercise. We captured data and built models to
classify upper limb exercises and to distinguish the flexion
or extension stage inside an exercise. Most HAR studies [7],
[10], [16], [17], [18], [19], [20], and [21], perform exercises
that involve the entire human body and differ one from
each other such as walking, climbing stairs, sitting, jumping,
or running. Our work studies 6 specific exercises of the upper
limb where they share common behavior making them harder
to distinguish.

In this work, we compared the accuracies of two
acquisition systems: Inertial Measurement Unit (IMU) vs
Movement Analysis System (MAS). Studied the time series
data using plots and labeling the signal according to each
exercise. Understand graphically which sensor discriminates
exercises better (acc, gyro, mag, visual marker). We trained 8
SOA deep learning architectures to recognize arm exercises
and compared their accuracy. Designed 8 deep learning
architectures using different layers and operations. Compared
the performance for every architecture and capturing method
to identify the best combination. Applied feature selection
to identify minimum sensors and locations to correctly
recognize exercises. We studied the effect of different
sampling rates, exercise duration, and window size. Finally,
we proposed the use of a single IMU located at the wrist and
a variable-size window extraction.

II. RELATED WORKS
A. ACTIVITY RECOGNITION USING IMU
The use of IMUs for human activity recognition has become
popular in recent years due to the widespread availability
of sensors in wearable devices such as smartphones, wrist
watches, and fitness trackers. Advances in machine learning
and deep learning allowed the development of sophisticated
algorithms for recognizing human activities from IMU data.
These algorithms involve all kinds of architectures from
artificial neural networks which process data with spatial
and temporal characteristics. Neural networks are effective
in recognizing complex patterns in time series data and can
be trained on large datasets to achieve high accuracy.

Monitoring and analyzing humanmotion can provide valu-
able information for various applications. In 2014, Ronao and
Cho [16] proposed a multi-task learning approach for human
activity recognition. Using accelerometer data, the system
uses a single CNN to learn multiple tasks, including activity
recognition and pose estimation. The authors found that
this approach improved the overall accuracy of the activity
recognition system. Then, in 2017 Yarnan et al. proposed
a framework for detecting arm and human activities based
on data fusion from inertial measurement units (IMUs) and
surface electromyography (EMG) sensors [22]. Supervised
and unsupervised machine learning algorithms were used
to train the models and obtain evaluation indicators. The
combined IMU and EMG data outperformed the IMU data
alone and the EMG data alone, significantly reducing the
error in determining activities for supervised algorithms.

In 2018, Xiong et al. [17] proposed a two-stage model
for recognizing activities from accelerometer data. The first
stage of the model uses a CNN to extract spatial and temporal
features from the data. The second stage then uses a recurrent
neural network (RNN) to combine features from the CNN
with contextual information to recognize the activity.

In 2019, Sarcevic et al. developed a system to detect
arm and body movements using wrist sensors that contained
an accelerometer, a gyroscope, and a magnetometer [6].
Multiple datasets were tested using various feature extrac-
tive approaches, sampling frequencies, processing window
widths, and sensor combinations. The authors achieved
almost 90% accuracy on validation data.

Lu and Tong [18] worked on HAR using a single
3-axis accelerometer, focused onmovementmonitoring using
wearable sensors and devices. Their method consists of
encoding 3-axis signals as 3-channel images using a modified
recurrence plot. Then, residual neural networks were used to
classify images and, thus, signals. As a result, the authors
obtained highly competitive accuracies and good efficiencies
on the ASTRI motion dataset, which contains data on human
hand movements, and the ADL Dataset from wrist-worn
accelerometer data.

The work of Avilés et al. presented a framework to
recognize user movement using a smartphone equipped with
a tri-axial accelerometer and a tri-axial gyroscope sensor.
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The framework used three parallel CNNs for local feature
extractive, later fused in the classification stage. The whole
CNN scheme is based on a feature fusion of a fine CNN,
a medium CNN, and a coarse CNN [10]. The algorithm
successfully classified six human activities: walking, walking
upstairs, walking downstairs, sitting, standing, and laying.

Yen et al. proposed a wearable device capable of recog-
nizing six basic activities using deep learning and data from
a gyroscope and an accelerometer [19]. They used waist
devices worn by dialysis patients, whose activities could not
be accurately determined using wrist devices. The model
achieved recognition rates of 95.99% and 93.77%. That
same year, Lemieux and Noumeir proposed a hierarchical
CNN model for human activity recognition [23]. The model
consists of two levels of CNNs. The first level extracts spatial
features from the accelerometer data and the second level
combines the spatial features with temporal information to
recognize the activity.

In 2020, Clouthier et al. analyzed the movement of athletes
[20]. They collected optical motion data on 417 athletes
performing 13 athletic movements. The authors trained an
existing deep neural network architecture that combines con-
volutional and recurrent layers. They obtained classification
accuracies of 90.1 and 90.2% for full body measurements.
The authors concluded that classifying athletic movements
using wearable sensors was feasible.

More recent research is the work of Uddin and Soylu
[7], focused on the well-being of elderly people using
wearable sensors to detect unprecedented events such as
falls or other health risks. The authors proposed a ‘‘body
sensor-based activity modeling and recognition system using
time-sequential information-based deep Neural Structured
Learning (NSL)’’ [7]. The algorithm is powered by data from
multiple wearable sensors, which then undergo statistical
feature processing. The framework is powered by kernel
discriminant analysis (KDA) and long short-term memory
(LSTM) based models. The authors achieved around 99%
recall on the mobile health application dataset (MHEALTH)
[24]. The framework also surpassed the recall rate of other
algorithms, such as deep belief networks, convolutional
neural networks, and recurrent neural networks.

Another recent research work is the paper of Han et al.
which focused on enhancing the convolution capacities of
CNNs instead of modifying the architectures [25]. The
authors proposed the idea of heterogeneous convolution
for activity recognition tasks. All filters within a specific
convolutional layer are separated into two uneven groups.
The authors examined the effectiveness of the framework on
several benchmark HAR datasets, finding that the heteroge-
neous convolution is simple to integrate into convolutional
layers without increasing extra parameters and computational
overhead. In the same year, Luwe et al. proposed a ‘‘hybrid
deep learning model that amalgamates a one-dimensional
Convolutional Neural Network with a bidirectional long
short-term memory (1D-CNN-BiLSTM) model for wear-
able sensor-based human activity recognition’’ [26]. This

one-dimensional neural network transforms the time series
information from the sensor into representative features,
which are then encoded by the bidirectional LSTM. The
authors found the approach outperformed the existing
methods, obtaining a recognition rate of 95.48% on the UCI-
HAR dataset, 94.17% on theMotion Sense dataset, and 100%
on the Single Accelerometer dataset.

B. ACTIVITY RECOGNITION USING MOVEMENT
ANALYSIS SYSTEM
In 1999, Ramsey and Wretenberg published a research paper
reporting on the use of intracortical pins to measure knee
movement as an alternative to the use of reflective markers
[27]. The authors found that their method allowed them to
take more precise readings with low error.

In 2005, Cutti et al. proposed an experiment to test the
error when using reflective markers for photogrammetric
measurements [28]. The authors put the markers on different
subjects and made them execute different movements. Then,
the readings affected by the error were compared with normal
readings. The authors concluded that the error has a strong
influence and should not be ignored, opening the way for new
research that could compensate for this error.

Tokarczyk and Mazur compiled different Movement
Analysis System techniques and methods [8]. They presented
the advancements of two Movement Analysis System tech-
niques. The first is Moiré’s method of stripes, which involves
overlaying two sets of parallel stripes with slightly different
spacings to create a moiré pattern, which can be used in
the human body to detect conditions such as scoliosis. The
second method uses multiple video cameras around the body,
in conjunction with physical markers, that the camera system
can easily detect and read.

In 2008, Van Andel et al. carried out research to determine
a standardization protocol for the clinical application of upper
extremity movement analysis [9]. The authors developed
measurement methods for hand orientation in different
movements, using a stereophotogrammetric recording of
active LED markers with a camera system. The wrist,
elbow, shoulder, and scapula joint angles were analyzed,
and minimum/maximum angles were determined. This way,
the authors determined the trajectories and angles of all the
movements, cementing the basis for developing more precise
and standardized reports on movements that would allow for
future comparisons with pediatric and/or pathologic move-
ment patterns. MAS generates easy-to-understand reports on
movements because it outputs markers position [9].
Jaén-Vargas et al. used wearable sensors and two reflective

markers (mocap) to recognize the activities of walking,
sit-to-stand, and squatting [21]. The authors evaluated the
performance of four deep learning networks: deep neural
network, CNN, LSTM, and a combination of CNN and
LSTM. The authors found that a hybrid network (CNN-
LSTM) was better than an individual network. The hybrid
approach accounted for class imbalance, making it more
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versatile, obtaining 99% accuracy in both datasets and an F1
score of 99% and 87% with wearable sensors and reflective
markers, respectively. The authors also find that the use of
wearable sensors yielded better results.

Jaén-Vargas et al. 2022 analyzed the performance of
deep neural networks, CNN, LSTM, and CNN-LSTM when
variating the sliding window size [29]. The sliding window
is a technique in which a fixed-size window is moved over
a time series, processing the information in divided sections.
The intention was to find an optimal window size for HAR
using a sampling rate of 100 Hz. Windows of small sizes 5,
10, 15, 20, and 25 frames and long ones of sizes 50, 75,
100, and 200 frames were compared. The results showed that
windows from 20 to 25 frames were optimal, obtaining an
accuracy of 99,07% and an F1-score of 87,08% on sensor
data and an accuracy of 98,8% and an F1-score of 82,80%
on MOCAP data.

A particular field of research that involves the use of
cameras for movement recognition is the study of human gait
using silhouettes and skeletons. In this field, an important
work is the paper of Cicirelli et al. [30], which is a review
of human gait analysis with application in neurodegenerative
diseases. They compared sensors, features, and processing
methodologies where deep networks such CNNs or LSTMs
achieved the best results. In another gait-related work
[31], the authors performed gait analysis classification for
neurodegenerative diseases using support vector machines
(SVMs) in optical motion capture data and achieved 99.1%
accuracy. This year, three relevant works in gait analysis were
published. The first one is the paper of Shayestegan et al.
[32], in which they implemented Dual-Head Attentional
Transformer-LSTM (DHAT-LSTM) in kinetic data to classify
stages of gait disorders and achieved an accuracy of 81%.
In the work of Cheriet et al. [33], they applied a Multi-Speed
Transformer Network in video data to classify stages of
neurodegenerative diseases and achieved an accuracy of
96.9%. Finally, Cosma, Catruna, and Radoi [34] published a
paper where they used Self-Supervised Vision Transformers
in human gait video data as a biometric authentication
method.

A summary of the papers considered in the Related Works
section is presented in Table 1.

III. EQUIPMENT AND DATASETS ACQUISITION
A. EQUIPMENT
Three different Inertial Measurement Units were used. Dif-
ferent sensor manufacturers were used to capture variability
in the sensor’s sensitivity and sampling rate. The first two
devices, the MPU9250, and Trigno Avanti [35] inertial
sensors are composed of an accelerometer, gyroscope, and
magnetometer, each one with 3 axes. The third IMU device
used was the Metawear, composed of a 3D accelerometer
and a 3D gyroscope. The three systems send data to a
PC using Bluetooth communication, using their software to
capture data simultaneously from all devices at all locations.

FIGURE 1. IMU sensors distribution.

FIGURE 2. Visual markers and cameras distribution.

The sensors were mounted in the shoulder, forearm, arm,
and hand, as described in Figure 1 and in the work of
Tobar et al. [36].

The equipment used for movement analysis was a Kines-
can/IBV. It is a movement analysis system based on visual
markers that use rigid segment models. It captures PAL video
at 25 frames per second. The system has 10 cameras located
at a height of 2.4 m and distributed around the person. The
analysis of object movement is performed by tracking the
position of markers. These markers are small spheres covered
with reflective material attached to the subject. The system
provides position and speed for all markers. The markers are
placed as follows: one on the shoulder, three on the forearm,
two on the elbow, three on the arm, two on the wrist, and one
on the hand. Figure 2 shows the distribution of the markers
and the cameras used.

B. ARM EXERCISES DESCRIPTION
The datasets were recorded while the subjects performed the
follow-arm exercises. Each exercise is described as:

• Elbow Flexion-Extension: During elbow flexion the
angle formed by the elbow joint decreases. The forearm
approaches the arm. During elbow extension the angle
formed by the elbow joint increases. The arm separates
the forearm. Figure 3.a shows the exercise.
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TABLE 1. Summary of related works on HAR.

• Hand Pronation-Supination Starts with the hand and
forearm aligned, the palm facing upwards with the
thumb facing outwards. A rotation results in the palm
facing downward with the thumb facing inwards. The
exercise is shown in Figure 3.b.

• ShoulderAbduction-Adduction:Abduction is a lateral
movement of the entire upper limb away from the
trunk until the arm forms a 90-degree angle with the

trunk. Adduction is the lateral movement that brings
the upper limb closer to the trunk. Figure 4 shows the
exercise.

• Horizontal Shoulder flexion-extension: Begins with
the entire upper limb forming 90◦ with the trunk and
located laterally. During extension, the arm moves
horizontally forward and in flexion, it returns to its
starting position. Figure 5 shows the exercise.
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FIGURE 3. Exercises (a) flexion-extension [37], (b) pronation-supination.

FIGURE 4. Shoulder Abduction-Adduction. (a) neutral position,
(b) abduction from 0◦ to 60◦ [37].

FIGURE 5. Horizontal Shoulder Flexion-extension. (a) flexion with an
adduction of 140◦, (b) 90◦ abduction in the frontal plane [37].

• Vertical Shoulder flexion-extension: This movement
begins with the upper limb close to the trunk. During
flexion, the arm moves frontally in a vertical manner
until the upper limb reaches a horizontal position.
In extension, it returns to the starting position. Figure 6
shows the exercise.

• Internal and External Shoulder Rotation: This exer-
cise begins with the arm next to the trunk, arm, and
forearm making a 90-degree angle in a L shape. The
forearm begins next to the stomach and thenmoves away
horizontally from the body. Figure 7 shows the exercise.

C. DATASET ACQUISITION
A group of 10 people without arm diseases, between
20 and 25 years old, were involved in the data acquisition.
The acquisition was separated into 3 sessions of people
performing arm exercises. For each session, a person starts

FIGURE 6. Vertical Shoulder Flexion-extension. (a) low amplitude
(45◦ - 50◦), (b) high amplitude (180◦) [37].

FIGURE 7. Internal and external rotation of the shoulder. (a) internal
rotation of 30◦, (b) external rotation of 80◦ [37].

TABLE 2. Datasets and instruments.

in a neutral position and performs 10 repetitions of each
exercise. At the end of the exercise, they return to a neutral
position and repeat the process for the next exercise.

Each session was recorded with Movement Analysis Sys-
tem (MAS) and IMU instruments simultaneously. Exercises
were performed one after the other, and data for each exercise
was recorded and labeled as a whole. Within the 3 sessions,
7 sub-datasets were created: 3 for MAS and 4 for IMU.
Within the last session, 2 different IMU equipment were used.
Dataset 1 has 2 elbow exercises, dataset 2 has 3 shoulder
exercises, and Dataset 3 has 3 elbow and 3 shoulder exercises.

Table 2 shows the names of the datasets, instruments
used, and their capture frequencies. Tables 3 and 4 describe
the features captured from IMUs and Movement Analysis
System. Each feature is described by its type (Acc, Gyro,
Mag, Visual marker), location, and sensor axis. For IMU data
sensors were located at the shoulder, forearm, arm, and hand.
For Movement Analysis System data, markers were located
as follows: one on the shoulder, three on the forearm, two on
the elbow, three on the arm, two on the wrist, and one on the
hand.

D. DATASET DESCRIPTION
Each sample was built as a matrix where the columns
represent the features and rows represent the length given
by the window size. The label for the sample was the most
common label from the array of data points.

IMU data was captured at frequencies of 1, 25, and 50 Hz
with 18, 24, and 27 features. IMU data used window sizes of
10, 20, 40, and 200 data points. A single IMU dataset has at
most 500k timesteps and at most 4500 samples. According to
the window size, we have data tensors e.g. 2511 × 200 ×

24 (samples × window size × features). The acquisition
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TABLE 3. IMU features.

TABLE 4. Movement analysis system features.

sampling rate determines the amount of data for an exercise
duration. A lower sampling rate will generate less data, the
movement will not be correctly captured, and the exercisewill
not be correctly recognized.

Visual markers data was captured at frequencies of 50,
and 200 Hz with 18, 24, and 36 features. Visual Markers data
usedwindow sizes of 100 and 200 data points. A single Visual
Marker dataset has at most 545k timesteps and 5450 samples.
According to the window size, we have data tensors e.g.
1350 × 200 × 24 (samples × window size × features).

For training, we used 100 epochs and a batch size of
64 samples for both acquisition systems. Available data was
split using 75% for training, 10% for validation, and 15% for
testing. All information related to datasets is shown in table 5.

E. TIME SERIES SIGNALS
The dataset is amultichannel time series. Each channel relates
to a location, sensor, and axis. The first row in Fig 8 is from
the arm, gyroscope, and x-axis.

IMU signals are shown on the left of Figure 8 and visual
markers signals on the right. Signals from both sensors are
pseudo-periodic with square-like waveforms. Some channels
allow us to distinguish movements easily. Some channels are
highly correlated. All channels are height limited and do not
show outliers.

Different exercises show responses on different sensors,
locations, and axis. During elbow flexion-extension, the arm
remains locked, and the forearm moves. The sensors located
at the forearm show themostmovement while the arm sensors

remain still. To recognize different kinds of movements, it is
important to have independent information sources, e.g., gyro
and accelerometer, located in at least two different positions.
The datasets can be accessed through the GitHub repository
of this work.1

Each exercise repetition depicts a square-like waveform
and builds up a pseudo periodic signal as in figure 9. All
studied arm exercises have two stages: flexion and extension.
These two stages are reflected in a square-like waveformwith
two levels. A low-level signal for extension and an upper level
for flexion. When the limb moves from flexion to extension a
slope is visible in the signal. The two levels and the slope are
easily recognizable in the signals of IMU and visual markers.

Given the square-like waveform, we can identify the
movement duration. For example, in dataset 1 the time needed
to perform an exercise was 90 seconds while in dataset 2 the
time was 2 seconds. The window size has to be chosen
correctly according to the movement duration and sampling
rate.

Figure 10, shows IMU signals of ten repetitions of elbow
flexion-extension. The imu is located at the arm with a
gyro, accelerometer, and magnetometer. Each movement
repetition depicts a square-like waveform in the gyro and
magnetometer. The square-like waveform has a lower level
for flexion and an upper level for extension. Gyro and
magnetometer data are easily interpretable to recognize an
exercise. The accelerometer shows peaks going up and down,
being harder to distinguish the movement being performed.

X and z arm gyroscope axes are highly correlated.
Y and z arm magnetometer axes are correlated. X and y arm
accelerometer axes are correlated.

The IMU signals show fewer amplitude differences than
visual markers, presented in figures 10 and 11. Gyroscope
and magnetometer data show a cleaner square than the visual
marker data. Accelerometer data is centered at zero.

Figure 11, shows arm markers signals of ten repetitions
of elbow flexion-extension. There are three markers located
at the arm, each one with three axes. Position signals from
markers at the X axis at the lower, middle, and upper arm
are highly correlated. The same behavior happens for y and
z-axis markers at the lower, middle, and upper arm.

Position signals have different offsets at each repetition,
and the offset behaves as a moving offset. It is harder to
distinguish the exercises vs the IMU signals. The offsets
describe the relative position of the person to the camera
system. When the person moves inside the measured area,
the position signal will be different. The height and arm size
of the person will affect the signal values.

Similar to IMU data, markers data show two levels. We can
observe a signal higher level when the forearm is up and a
lower level when the arm is down.

Markers signals are affected by occlusion, the angle and
distance to the cameras, and the posture and height of the
person. IMU is not affected by these variables.

1https://github.com/StadynR/HAR-imu-photogrammetry
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TABLE 5. Summary of datasets capture conditions.

TABLE 6. Summary of sampling rate, exercise duration, and window size.

FIGURE 8. Signals from dataset 1 MPU9250 and visual markers.

We can observe that lower, middle, and upper markers
signals at the arm and forearm are similar because it is the
same solid section. To show the signal correlation of IMU and
markers data, we computed the correlation matrices using all
the available features. From the figure 12, we note that MAS
signals are highly correlated.

IV. METHODOLOGY
A. PREPROCESSING
Before training, all datasets were preprocessed following
these steps: normalization, reshaping into 3D arrays with
dimensions (window size, samples, features), and label
encoding. Additionally, in every training process, the dataset
was split into 5 parts using k-fold cross validation [38] to
alleviate the effects of small datasets and class imbalance.

B. ARCHITECTURES
For training and testing, eight neural network architectures
were considered and evaluated. The main components of
the architectures are LSTM, 1D convolutional layers, and
transformer encoders. All architectures used categorical cross
entropy as their loss function and Adam as their optimizer.

Long Short-Term Memory (LSTM) is a recurrent neural
network layer used in deep learning architectures. It com-
prises memory cells and gates that allow the network to store
or discard information over time selectively [39]. The basic
LSTM cell consists of three gates. The input gate determines
how much new information is added to the memory cell,
the forget gate decides how much old information should
be removed, and the output gate regulates the amount of
information outputted from the cell. Additionally, each gate
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FIGURE 9. Visual marker at the forearm. A single period of elbow
flexion-extension movement. The blue line is the flexion state, and the
red line is the extension state.

has its own set of learnable parameters, allowing the network
to adaptively adjust the amount of information stored or
discarded based on the input data, making LSTM effective
in processing sequential data [40].

One-dimensional (1D) convolution is a mathematical
operation frequently used in signal processing and deep
learning, which involves sliding a small window or kernel
over a one-dimensional input signal, computing the dot
product between the kernel and the signal at each position,
and generating a new output signal. The output signal is a
compressed representation of the input signal, highlighting
patterns and features relevant to the task at hand [41]. 1D
convolutional layers can also be used to process sequential
data by learning a set of filters [42].

The Transformer architecture is a framework used typically
for natural language processing (NLP), but can also be used
for sequential data because of its attention mechanism. The
attention mechanism functions by extracting information
from the entire sequence, by using a weighted sum of all
the past states of the encoder, generating a matrix. This
means that all parts of the sequence are treated by their real
importance, and the overall context is considered, prioritizing
words with higher weight, allowing the model to focus on
the right element of the input to predict the next element of
the output [43], [44]. This attention mechanism is improved
by using multi-head attention, which applies self-attention
to different segments of the input, allowing the transformer
to have better discrimination capabilities. As each head will
produce its resulting matrix, all matrices are concatenated
and multiplied by an additional weight matrix, generating
an output matrix that contains information from all the
heads [43], [45]. The code can be found in our GitHub
repository. The summary of the structures of the architectures
is presented in Figure 13. The architectural description used
in this work is presented below.

• Architecture 1 (LSTM + Dropout + Dense +

Dense): This architecture was taken from the web article

‘‘Implementing LSTM for Human Activity Recogni-
tion using Smartphone Accelerometer data’’ [46]. The
architecture comprises an LSTM layer of 128 neurons,
a dropout layer, and two fully connected layers. The
LSTM layer allows for time series data analysis due
to its ability to handle variable-length input sequences,
noisy data, and missing data. Thus, the network can
make accurate predictions based on past observations.
This network was originally evaluated with the Wireless
Sensor Data Mining (WISDM) dataset, obtaining an
accuracy of 96.20%.

• Architecture 2 (LSTM + Dropout + LSTM +

Dropout + Dense): This architecture was based on
the GitHub repository ‘‘Human-Activity-Recognition’’
[47]. This architecture is an extension of the last one,
adding the LSTM layer after the first dropout layer,
adding another dropout, and then a fully connected layer.
This network was originally evaluated with the UCI-
HAR dataset, obtaining an accuracy of 93.17%.

• Architecture 3 (Conv1D + Conv1D + Dropout +

Max Pooling + Flatten + Dense + Dense): This
architecture was taken from the GitHub repository
‘‘ETFA-Workshop’’ [48]. In contrast to the previous
architectures, this network focuses on using convo-
lutional layers. The architecture comprises two 1D
convolutional layers of 64 neurons, a dropout layer
to avoid overfitting, a max pooling layer to reduce
dimensionality, and a final section of a flatten and two
fully connected layers. Convolutional networks can be
effective for time series analysis, as they are good at
extracting features from the input data, which can be
useful for identifying patterns and trends in the data.
Also, convolution allows downsampling data, reducing
the computational complexity of the model and making
it easier to train and run. This network was originally
evaluated with the UCI-HAR dataset, obtaining an
accuracy of 89.89%.

• Architecture 4 (Conv1D + Max Pooling + LSTM +

Dropout + Dense + Dense): This architecture was
assembled empirically as a combination of convolution
and LSTM, to analyze the effectiveness of putting
convolutional layers at the start of an LSTM network.
As mentioned previously, convolution is useful for
extracting features and reducing the complexity of the
data, along with helping to reduce the amount of noise
and irrelevant information. This way, the LSTM layer
can work with more refined data, and get better results.

• Architecture 5 (Conv1D+Conv1D+Max Pooling+

Bidirectional LSTM + Dropout + Dense + Dense):
This architecture was based on the proposed model and
findings of the paper ‘‘Wearable sensor-based human
activity recognition with hybrid deep learning model’’
[26], which used 1D convolution and bidirectional
LSTM as an improvement for HAR. The network
is composed of two convolutional networks, a max
pooling layer, a bidirectional LSTM layer, and a
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FIGURE 10. Dataset 1. MPU9250 is located at the arm during elbow flexion-extension. Plot of accelerometer, gyro,
and mag signal with x,y, and z axes.

dropout and two dense layers. Additionally, from the
benefits of using convolutional layers at the start of the
architecture, the bidirectional LSTM allows the network
to capture information from past and future inputs,
helping it better capture dependencies and relationships
between different parts of the sequence. This network
was originally evaluated with the UCI-HAR dataset,
obtaining an accuracy of 95.48%.

• Architecture 6 (LSTM + Dropout + Reshape +

Conv1D + Dropout + Dense + Dense + Dense):
This architecture was assembled empirically to test the
performance and effects of placing convolutional layers
at the end of the architecture instead of at the start.

• Architecture 7 (LSTM + Dropout + Dense +

Dense + Dense): A simple LSTM architecture with
64 neurons in the first layer, a dropout layer, and three
dense layers. The purpose of this network is to test how
LSTM performs singlehandedly, without any particular
enhancements.

• Architecture 8 (Normalization + Position Embed-
ding + Transformer Encoder + Normalization +

Dense): This architecture was based on the pro-
posed model and findings of the paper ‘‘Wearable
Sensor-Based Human Activity Recognition with Trans-
former Model’’ [49], which used a unidirectional
Transformer-based architecture as an improvement for

HAR. The network is composed of a normalization
layer, a positional embedding layer coupled with a
sum of weights, a transformer encoder, another nor-
malization layer, and a fully connected layer. The
encoder itself contains more layers: first, there is
a normalization layer, then a multi-head attention
layer that does the main work, and a dropout layer.
Then, a sum of weights processes the results obtained
previously, which go to a normalization layer, a feed-
forward network, and a dropout layer. Before exiting
the encoder, a final sum of weights is performed.
Using this architecture, the authors take advantage of
the benefits of using multi-head attention, described
previously. This network was originally evaluated
with the KU-HAR dataset, obtaining an accuracy
of 99.20%.

C. FEATURE SELECTION
Due to multiple correlated features available, at most
36 features, we propose to find the most important features
using random forest feature selection. After the feature
selection, we evaluated the 8 architectures with the reduced
number of features. It is relevant to find the most important
features for IMU and MAS because it allows to reduce
the computational complexity, reduce the physical sen-
sors required, sensor information redundancy, and possible
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FIGURE 11. Dataset 1. Visual markers located at the lower, middle, and upper arm during elbow flexion extension.
The plot of marker position signal in the x,y, and z axes.

FIGURE 12. Correlation matrices between features of Dataset 1.

overfitting. Figure 12 shows a higher correlation inMAS than
in IMU signals because of the three markers located at each
position.

The algorithm used for feature selection, random forest
(RF) [50], [51], is an ensemble learning method combining
multiple decision trees to improve the accuracy of the model.
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FIGURE 13. Graphical representation of the eight architectures.

The algorithm creates an ensemble of decision trees during
training, where each tree is trained on a different subset of
data and features, i.e., bootstrap and bagging. The majority
vote of the individual trees determines the final output of
the algorithm. Each node in a tree makes a binary decision
according to a single feature. RF identifies the features which
were the best to split the data, then are organized as most
important features according to their score [52].

Random forest was trained on every dataset. Feature
selection was based on the importance score from a random
forest. To select the amount number of important features for
training, we began with a small number of features according
to their importance. Then, we added features until the model
no longer demonstrated any enhancement in accuracy or
showed signs of overfitting. Tables 8 to 10 show the best
sensors and locations found and their score for each dataset.
Figure 15 shows the training curves of the best architectures
for every dataset using only the best features.

V. RESULTS
We trained models using the 8 architectures and the 7 sub-
datasets. Our metrics were: test accuracy, precision, recall,
and F1 score. Each metric was the average of 5 repetitions

using k-fold cross validation. The result analysis needs to
consider the exercise duration, sampling rate, and window
size.

Table 7 shows the summary of the test accuracy. Confusion
matrices figure 12. Training curves on figures 14, 15. Best
features in tables 8 to 10. Best architectures for each dataset
in table 11, and best architectures using only best features in
table 12.

VI. DISCUSSION
In this section, we present the most relevant results and how
they relate to previous works.
Test accuracy summary: Table 7 includes the capture con-

ditions and test accuracy for all the experiments. We discuss
how the sampling rate, window size, and exercise duration
affect the test accuracy.

In Dataset 1, we have IMU sampling at 1 Hz and MAS
at 200 Hz. IMU data at 1 Hz can distinguish exercises
because the people took 90 seconds to complete each exercise
repetition. Approximately 40 seconds stay at flexion and
40 seconds at extension. The change fromflexion to extension
took 3 seconds. The exercises are elbow flexion-extension
and elbow pronation-supination. These exercises involve
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TABLE 7. Mean test accuracy for all models. All features and best features. Datasets description.

principally the movement of the hand and forearm. The
best features were accelerometers located at the hand. This
suggests we only need a wrist smartwatch equipped with an
accelerometer and gyroscope as in [26] where they suggest
using a single accelerometer.

Dataset 1 IMU has 27 features and 4 selected features, both
with 97% acc. Dataset 1 MAS has 36 features and 15 selected
features, both with 89% acc. Reduced accuracy in MAS
is related to occlusion during pronation-supination exercise.

MAS system cannot correctly detect small movements.
There is no improvement in using fewer features because
of the problems with occlusion and small movements. More
features were needed from MAS than from IMU because
MAS do not have enough information to distinguish the
exercises.

In Dataset 2, we have IMU sampling at 370 Hz and
MAS at 200 Hz. Both rates achieve a test accuracy of 99%.
We have a good amount of data and used a window size
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FIGURE 14. Plot of best training curves for every dataset using all features.

FIGURE 15. Plot of best architectures for every dataset using best features.

of 200 points. The exercises in dataset 2 performs fully
extended arm exercises, which are easily distinguished due
to visible markers and large movements. This is the only
dataset with acceleration estimated from the MAS system.
Using only 3 position features we achieve 99% accuracy, the

good performance is related to the exercise but not the use of
acceleration from MAS. MAS data could be augmented with
the velocity markers as an additional feature. IMU data could
be augmented with additional features from the accumulation
and derivative.

VOLUME 11, 2023 106663



M. F. Trujillo-Guerrero et al.: Accuracy Comparison of CNN, LSTM, and Transformer for Activity Recognition

FIGURE 16. Confusion matrix of the best-performing architecture of every dataset (best features).

TABLE 8. Best features for dataset 1, ordered by score.

Dataset 2 IMU has 24 features and 6 selected features,
both with 99% acc. Dataset 2 MAS has 24 features and
3 selected features, both with 99% acc. The selected
features were located at the arm, forearm, and shoulder.
IMU at hand features were not selected because those
sensors were affected by large accelerations and were not
able to distinguish the exercises. Hand acceleration due to

different arm lengths didn’t show any effect on the exercise
classification.

In Dataset 3, we have MPU9250 sampling at 1 Hz,
Metawear at 50 Hz, andMAS at 50 Hz. This dataset performs
the same exercises from Dataset 1 plus Dataset 2. D3
MPU9250 at 1 Hz is the first dataset that shows overall bad
performance, 13% to 85% accuracy. This is because sampling
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TABLE 9. Best features for dataset 2, ordered by score.

TABLE 10. Best features for dataset 3, ordered by score.

at 1 Hz is too low for a movement that takes 4 seconds to
complete. We used a window size of 40 points capturing
multiple exercise repetitions, which produced bad accuracy.
Metawear showed low performance, 68% to 92% because the
system presented data transmission problems. MAS system
did not show any problems with a sampling of 50 Hz and a
window size of 100 points. This result shows we can have low
sampling rates around 50 Hz.

Dataset 3 MPU9250 has 27 features with 84% acc and
5 selected features with 89%. D3 Metawear has 18 features
and 12 selected features with 92% acc. D3 MAS has
36 features with 99% acc and 15 selected features with 98%
acc. MAS requires more features than IMU because of the
complexity of the exercises, markers occlusion, and difficulty
in detecting small movements.
Training curves: During training, it takes at most

100 epochs to achieve a steady state of accuracy and loss.
All datasets show loss reduction and accuracy increase over
time.
Failure cases: The most challenging datasets were

D2-Trigno and D3-MPU9250. D3-MPU9250 showed bad
test accuracy, this is related to a sampling rate of 1 Hz and
a window size of 40 points. The sampling rate is slow for
a movement that takes 4 seconds to complete. The window
size is too long, capturing multiple repetitions in a single
window. Having multiple exercise repetitions captured in a
single window show bad performance because it is ideal to

have aligned signals to recognize them. The accuracy of the
challenging datasets increased using selected features. The
best architectures stand out by achieving better performance
on challenging datasets.
Confusion Matrices: Reflects the correct and incorrect

classification for each dataset using the best features and the
best model. We can see the hardest exercise to recognize was
elbow pronation-supination for the MAS dataset.
Effect of window size, sampling rate, and exercise dura-

tion: We found the window size should be variable because
it is proportional to the sampling rate and exercise duration.
For example, D1-MPU9250 with a window size of 10 points
is enough to recognize an exercise sampled at 1 Hz with a
duration of 90 points. In this case, the ratio from window
size to exercise duration is 10/90=0,11. From D3-MPU9250,
a window size of 40 points was too big to recognize an
exercise sampled at 1 Hz with a duration of 4 points.
In this case, the ratio from window size to exercise duration
is 40/4=10. A window should capture less than a single
repetition to achieve good accuracy. From our results, ratios
less than 50% achieved high accuracy.

We found the sampling rate should be proportional to
the exercise duration. In daily activities, a muscular-focused
exercise or a full-body exercise takes around 2 seconds to
perform. To capture a well-defined shape of the movement,
we found the sampling rate should be around 60 Hz.
A sampling rate of 1 Hz was insufficient to correctly
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TABLE 11. Results for all datasets using all features.

TABLE 12. Best results for all datasets using best features.

recognize exercises. The sampling rate of 200 and 370 Hz
didn’t show any improvement and generated too much
information.
Best models architectures: The best architectures were the

same using all and selected features. The 3 best architectures
were: 2LayerConv 93.8% acc, 2LayerConv+BiLSTM 92.3%
acc, Conv+LSTM 90% acc. The networks analyzed are
divided into LSTM first, CNN first, and Transformer.

Best architectures have two convolutional layers at the
beginning. The networks are learning filters with the shape
of the multiple-channel signals. During the signals analysis
performed in the time series section, we noted the exercises
show well-defined shapes for each exercise.

LSTM first networks achieved lower test accuracy on the
challenging datasets.

Convolution + BiLSTM has good performance showing
the importance of convolution and the importance of bidirec-
tional learning on LSTM. Transformer didn’t achieve good
performance alone. The transformer was a unidirectional
encoder. Accuracy could be improved using a bidirectional
decoder architecture.
Feature reduction: Using as low as 4 features, IMU and

MAS systems achieved high accuracy above 89%. Feature
reduction was feasible without affecting accuracy.

To achieve good accuracy with few features, a single
IMU with accelerometer and gyroscope should be located
in the wrist. Therefore we recommend a single IMU in a
smartwatch. Feature selection shows the IMU acceleration
variable is the most representative similar to [16], [17], [18],
[23], and [26]. The test accuracies above 89% found for our
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datasets using the 8 models were similar to the accuracies
found in [26], [46], [48], [53], and [49].

VII. CONCLUSION
The duration of daily exercises is variable, then we need a
variable window size. The window size is proportional to
the equipment sampling rate and exercise duration. From our
experiments sampling rate of 60 Hz is able to distinguish arm
movements.

State of the art deep learning models was able to correctly
classify exercises. Best architectures were 2LConv 93.8%,
2LConv+BiLSTM 92.3%, Conv+LSTM 90%. Selected
features lead to a reduction of 4 features for IMU or MAS,
with accuracies higher than 89%.

IMU allows measuring the activity of people simultane-
ously in any environment, even on water. IMU is portable
and can be used in all kinds of daily activities. MAS
needs an equipment room and complex video capture system
and wearable markers. The use of cameras interferes with
people’s privacy inside the everyday environment.

The IMUs achieve high accuracy, low cost, and noise
reduction compared to other instruments such as EEG or
EMG where the signals are naturally mixed from the source.
The accuracy improves using independent sources, such
as independent axes in accelerometers and gyroscopes [6],
[22]. In MAS, the visual markers have problems related
to occlusion, distance, size of movements, and out-of-plane
movements [36], e.g. pronation-supination, shoulder rotation.
From our experiments detailed in table 7, we found a

relation to estimating the window size given by equation 1.
Two-second exercises captured at 60Hz will require window
sizes between 30 and 60 points.

window size
exercise duration points

< 0.5 (1)

window size
exercise duration seconds × sampling rate

< 0.5 (2)

VIII. FUTURE WORK
A limitation of this work was the number of persons involved
which do not reflect the behavior of the signals for a sample
of population. The 10 persons chosen for this study represent
only a test group to validate the capture methodology and
evaluate the performance of deep learning architectures.
The people involved had different arm lengths and the
differences in acceleration didn’t show misclassifications.
A limitation of this work was the reduced number of
samples captured, at most 540k timesteps for an exercise.
It is important to capture data about elderly in their daily
lives. The data needs to have multiple people and data
for several weeks. To evaluate overfitting and to perform
robust statistical accuracy tests, we need larger datasets with
more people, more exercises, and include full-body exercises.
With larger datasets, we can identify better algorithms for
data extraction and models to recognize a wider range of
movements. To achieve robust models we need to perform

data augmentation adding noise, scaling, offset in time, and
random signal erase. To have a better window extraction we
propose replacing the fixed sliding window with dynamic
time warping, wavelet transform, and spectrogram for scale
and location, anchors like in image segmentation (different
sized sliding windows), sliding window align by regression
as in image segmentation. Feature reduction suggested it
is possible to achieve high accuracy with few sensors.
We propose to use a single IMU located at the wrist being
worn as a smartwatch. The challenge is to recognize exercises
with a single IMU and implement variable window size.
To classify exercises with a single IMU we need to capture
the variations in signal amplitudes, shapes, and durations.
A single IMU smartwatch solution with HAR capabilities
is interesting for elderly care, athletes, and healthcare. The
solution involves a smartwatch to capture and send data to a
processing unit. The data necessary would be at 60 Hz and
6 features, making this solution feasible.

Our main contributions were:

• Capture methodology and comparison for IMU and
MAS acquisition systems.

• We analyzed the relations between 8 architectures accu-
racies, signal waveforms, signals correlation, sampling
rate, exercise duration, and window size.

• Feature reduction analysis.
• Deep learning models were able to recognize human
exercises. The next challenge is to classify using a single
IMU and use variable window size.
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