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ABSTRACT Smooth variable Structure Filter (SVSF) is a model-based robust nonlinear filtering technique,
based on the variable structure concept formulated in a predictor-corrector form. It is used for estimating
the states of a system and is robust against noise and modeling uncertainties. It ensures stability in the face
of model mismatch resulting from a poor model or fault, at the expense of corrective actions, which cause
chattering. The chattering contains mismatch footprints that can be exploited to identify system faults and
determine their severity. In this paper, information extraction from chattering is investigated to identifymodel
mismatch based on the spectral contents of the chattering signal. To verify the effectiveness of the developed
framework for chattering analysis, two case studies are considered. First, the power spectrum of the chattering
signal has been employed to identify mismatch and the potential of recovering the temporal information of
the model mismatch from the spectrogram is studied, using Short Time Fourier Transform (STFT) for an
underdamped second-order system. Then, the proposed strategy is applied to detect and measure the severity
of leakage and friction faults as well as the bulk modulus mismatch in an electro-hydraulic actuator.

INDEX TERMS Fault detection, information extraction, smooth variable structure filter, spectral analysis,
STFT.

I. INTRODUCTION
Estimation is a process to obtain the states or parameters of
interest using partial, noisy, and inaccurate measurements.
It can be applied in areas such as tracking, control, system
identification, statistical inference, signal processing, system
monitoring, and fault management [1]. Kalman Filter (KF)
is the best-known optimal state estimation strategy that
minimizes the mean square error of the estimation for a
stochastic linear system with zero-mean Gaussian noise.
To overcome the requirement of linearity, gaussian noise
distribution, and a fairly known model, different versions
of KF such as the Extended Kalman Filter (EKF) and the
Unscented Kalman Filter (UKF) have been proposed [2].
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Later, a more computationally demanding recursive Bayesian
estimator was proposed referred to as Particle Filter (PF)
[3], also known as the sequential Monte Carlo method [4].
Particle Filters are applicable to general nonlinear systems
with non-Gaussian Probability Density Functions (PDFs), but
their performance is determined by the number of particles,
which reflects the computational demand. Conceptually,
when the number of particles approaches infinity, the
estimation error for a particle filter will converge to zero [5].

State estimation is the cornerstone of model-based Fault
Detection and Diagnosis (FDD) strategies, be it online or
offline. Model-based FDD methods involve the development
of a system model through either a fundamental com-
prehension of the system’s underlying physics or system
identification. This model serves as a benchmark to create
mathematical links between inputs and measurements and
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generate residuals that contain fault signatures using the
concept of analytical redundancy. These residuals are then
processed through a decision-making tool for diagnos-
tic purposes. The benefit of this approach compared to
data-driven methods lies in the meaningful interpretation
of each physical state and parameter of the model, which
significantly enhances the diagnostic process. The major
model-based FDD approaches proposed in literature [6]
can be classified into observer-based methods like full-state
observers [7], [8] and unknown input observers [9], [10],
parity relation [11], [12], [13], [14], optimization-based [15],
[16], [17], stochastic filter-based methods like Kalman filters
[18], [19], [20] and SVSF [21], [22], adaptive multiple
model estimation [23], [24], [25], [26], [27], and parameter
estimation [28], [29], [30], [31]. Isolability and robustness
(especially for online FDD) play an important role in the FDD
process. Adaptive multiple model estimation can resolve the
isolability problem, where perfect decoupling of estimation
error residual is not possible, or the parameter estimation
problem is not observable [32]. Fault or any other source
of uncertainty will cause a model mismatch. Therefore, the
robustness of the estimation is an important property of FDD
problems.

The KF becomes sub-optimal and potentially unstable
when the model used is not matching the real system [33].
The same problem exists in other Bayesian filters such as
UKF and PF, designed under the assumption that the system
model is largely known [34]. The numerical instability of
the KF, due to round-off error, can be resolved with square
root forms such as the Cholesky and UD factorizations
[kaminski1971discrete, bierman2006factorization], or using
a larger process noise [5]. Variable Structure Filter (VSF)
is a robust estimation method based on the sliding mode
concept, in a predictor-corrector form [35]. The Smooth
Variable Structure Filter (SVSF) is an extension of VSF,
applicable to non-linear systems. Using SVSF, it is desired
that the estimated state trajectory converges to an existence
subspace around the ground truth and remains within this
subspace. A large a priori error due to model mismatch or
fault condition leads to chattering. SVSF uses a smoothing
boundary layer to eliminate the chattering typical to sliding
mode concept. If the smoothing boundary is larger than the
width of the existence subspace, the estimated state trajectory
will be smoothened, and chattering will not occur [36].
An optimal version of the SVSF has been proposed for
linear systems and uses a Variable Boundary Layer (VBL)
to minimize the estimation error for zero-mean Gaussian
additive noise [37]. However, when it comes to FDD,
choosing the smoothing boundary layer is a delicate matter.
On one hand, model mismatch or fault condition may lead
to chattering by reducing the effectiveness of the smoothing
boundary layer [33]. Therefore, the chattering signal can be
used as an indication of model mismatch or fault. On the
other hand, increasing the width of the smoothing boundary
layer smoothens the estimated state trajectory, which in turn,

increases the chance of missing a fault by the deployed FDD
algorithm.

This paper proposes a framework for model mismatch
identification and fault detection based on the information
content of the chattering signal obtained from the SVSF algo-
rithm. The proposed framework relies on spectral analysis of
the chattering in the estimated state trajectory. To verify the
effectiveness of the proposed strategy, it is applied to a linear
stochastic dynamic system as well as an Electro-Hydraulic
Actuator (EHA). It is shown that typical fault conditions
seen in hydraulic systems involving bulk modulus mismatch,
leakage, and friction faults can be identified using the
chattering signal of the SVSF. Contributions of the paper can
be summarized as follows:

• Exploration of the novel concept of utilizing chattering
signals of the SVSF for fault diagnosis.

• Information extraction from spectral analysis of the
chattering using the probability distribution of the
chattering power spectrum.

• Examination of the ability to capture fault-related
temporal details from chattering spectrogram using
short-time Fourier transform.

• Implementation of the developed approach to detect and
measure the severity of leakage and friction faults as
well as the bulk modulus mismatch within an electro-
hydraulic actuator.

The organization of this paper is as follows. In section II,
the chattering signal of the smooth variable structure filter
is defined while briefly outlining the filtering strategy. The
development of the chattering equation based on model
mismatch, process noise, and measurement noise is covered
in Section III. The section considers the information content
in chattering for systems with both full and partial state
measurements. In a case study for a second-order system,
the potential of applying the chattering equation to derive
information about model mismatch is then demonstrated.
Section IV focuses on spectral analysis of the chattering
signal using the Fast Fourier Transform (FFT) and spectro-
gram. The proposed approach is applied to an EHA system to
detect bulk modulus, leakage, and friction faults in section V.
Concluding remarks are provided in section VI.

II. THE CHATTERING SIGNAL OF THE SMOOTH
VARIABLE STRUCTURE FILTER
Consider a general linear stochastic dynamic system with
zero-mean Gaussian process and measurement noise denoted
by v(k) and w(k), which are characterized by the covariance
matrices Q(k) and R(k), respectively.

x(k + 1) = Ax(k) + Bu + v(k), (1)

z(k) = Cx(k) + w(k). (2)

Assuming the modeling uncertainties to be1A(k),1B(k),
and 1C(k) as follows:

1A(k) = A − Â,
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1B(k) = B − B̂,

1C(k) = C − Ĉ, (3)

where Â, B̂, and Ĉ contain the nominal parameters of the
model. The SVSF then iteratively repeats the following four
steps to estimate the states of the system [36].
1) The states are predicted according to the system model

and a priori estimates are obtained.

x̂(k + 1|k) = Âx̂(k|k) + B̂û(k|k), (4)

ẑ(k + 1|k) = Ĉx̂(k + 1|k). (5)

2) A priori and a posterior output error estimates are
obtained.

ez(k + 1|1) = z(k + 1) − ẑ(k + 1|k), (6)

ez(k|k) = z(k) − ẑ(k|k). (7)

3) The corrective term is calculated.
• If measurements are available for all states:

K(k + 1) = Ĉ−1 (|ez(k + 1|k)| + γ |ez(k|k)|)

⊙ sat (ez(k + 1|k), 9) , (8)

where γ is the convergence rate, 9 is the
smoothing boundary layer, ⊙ is the Schur product,
and sat(·, 9) stands for saturation function.

• If measurements are not available for some states
but the system is observable, then the corrective
term will be calculated based on Luenberger’s
reduced-order observer. For states with associated
measurements, the corrective term is the same as
above.

Ku(k + 1) = Ĉ−1
1 (|ez(k + 1|k)| + γ |ez(k|k)|)

⊙ sat (ez(k + 1|k), 9) , (9)

Kl(k + 1) =

(∣∣∣8̂228̂
−1
12 ez(k + 1|k)

∣∣∣
+ γ

∣∣∣8̂−1
12 ez(k|k)

∣∣∣)
⊙ sat

(
8̂228̂

−1
12 ez(k + 1|k), 9

)
,

(10)

K(k + 1) =

[
Ku(k + 1)
Kl(k + 1)

]
. (11)

Assuming the system has n states and m outputs,
the measurement matrix will have two blocks:C =[
C1 C2

]
, where C1 is a full rank m × m matrix

associated with measured states and C1 is an m ×

(n − m) matrix corresponding to the unmeasured
states. Subscript u is used for state vectors directly
linked to measurements, while subscript l refers
to the states without corresponding measurements.

Matrix 8̂ = T−1ÂT =

[
8̂11 8̂12

8̂21 8̂22

]
is calculated

using transformation T, which rearranges the state
vector based on the mentioned two subsets of
states [36].

4) The a posteriori state estimate is then updated by
refining the a priori estimate using the corrective term.

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1). (12)

The chattering occurs when a priori estimation error is
larger than the boundary layer as shown below:

Chatteringi(k) =


0, if |ei(k|k − 1)| < 9i

(|ei(k|k − 1)| −9i)
sgn(ei(k|k − 1)), otherwise

(13)

where Chatteringi(k) denotes the chattering, ei(k|k−1) is the
a priori estimation error, and 9i is the smoothing boundary
layer for state i. To avoid chattering under the normal
condition, the smoothing boundary layer should be larger
than the upper bound of the uncertain dynamics associated
with the a priori state estimate (β). This upper bound is
obtained based on system uncertainties and noise as [36]:

β = sup
(
C

(
1A

(
C−1z(k) − w(k)

))
+1Bu(k)

+ v(k)) + w(k + 1)
)
. (14)

For an observable system with fewer measurements, states
should be transformed, then β can be calculated as explained
in [36].[

d1(k)
d2(k)

]
= 18

[
z(k)
y(k)

]
+1Gu(k) +

[
v̄1(k)
v̄2(k)

]
, (15)

β = max
(
(I − γ )−1

∣∣∣8̂22

∣∣∣ , γ−1
∣∣∣8̂22

∣∣∣ , γ−1, I
)

× sup
(∣∣∣d2(k) − 8̂228̂

−1
12 d1(k)

∣∣∣
+

∣∣∣8̂−1
12 d1(k − 1)

∣∣∣) . (16)

The existence boundary can be determined based on an
upper bound on d(k) due to uncertain dynamics, 8 =

T−1AT =

[
811 812
821 822

]
, G = T−1B, and

[
v̄1(k)
v̄2(k)

]
=

T−1v(k) −

[
811
822

]
w(k + 1).

To avoid chattering, 9 should be larger than β. However,
choosing a very large smoothing boundary layer (ψi ≫ βi for
all i) reduces the robustness of the filter. The SVSF estimation
inside the smoothing boundary layer can be improved by
finding an optimal variable boundary layer [37].

To detect fault conditions from the chattering effect
in the SVSF (or SVSF-VBL), the upper bound on the
smoothing boundary layer should be chosen based on
system uncertainties (Fig.1a). As shown in Fig.1c, when the
smoothing boundary layer is smaller than, chattering occurs
even during normal system conditions. On the other hand,
as shown in Fig.1b, if the smoothing boundary layer is larger
than β, fault cannot be detected. Assuming that matrix C is
exactly known, the existence boundary layer obtained from
(14) can be considered as an approximate value for the
smoothing boundary layer [36].
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FIGURE 1. Fault detection from chattering signal of SVSF for different
relative values of existence and smoothing boundary layers.

III. INFORMATION EXTRACTION FROM CHATTERING
SIGNAL
When a model mismatch or fault is detected from the
chattering signal of the SVSF-VBL, an auxiliary filter is run
in parallel to extract information from the chattering signal.
This auxiliary filter is a variant of the mentioned SVSF that
has the same recursive steps with one exception. In (8), (9),
and (10), the saturation function, sat(·, 9), is replaced with
the sign function, sgn(·). In other words, the auxiliary filter
does not use any smoothing boundary layer.

A. CHATTERING SIGNAL FOR FULL MEASUREMENT OF
THE STATE VARIABLES
According to (13), the chattering for the auxiliary filter that
uses the sign function is equal to the a priori error:

chattering(k + 1) = ez(k + 1|k)

= z(k + 1) − ẑ(k + 1|k)

= z(k + 1) − Ĉx̂(k + 1|k). (17)

Substituting (4) and (2) into (17) yields:

chattering(k + 1) = Cx(k + 1) + w(k + 1)

− Ĉ
(
Âx̂(k|k) + B̂u(k)

)
. (18)

Substituting the states from (1) gives:

chattering(k + 1) = CAx(k) + CBu(k) + Cv(k)

+ w(k + 1) − Ĉ
(
Âx̂(k|k) + B̂u(k)

)
.

(19)

The a posteriori state estimate obtained by the auxiliary
filter is calculated as follows:

ẑ(k|k) = x̂(k|k − 1) + K(k) = x̂(k|k − 1)

+ Ĉ−1 (|ez(k|k − 1)| + γ |ez(k − 1|k − 1)|)

⊙ sgn (ez(k|k − 1)) = x̂(k|k − 1)

+ Ĉ−1 (ez(k − 1|k) + γ |ez(k − 1|k − 1)|

⊙sgn (ez(k|k − 1))) , (20)

where the estimation error decays with rate γ [36].

|ez(k − 1|k − 1)| = γ |ez(k − 2|k − 2)|

= γ k−1
|ez(0|0)| . (21)

Substituting (21) into (20) and further simplifying it using
(6), (5), and (2) yields:

x̂(k|k) = x̂(k|k − 1) + Ĉ−1 (
z(k) − ẑ(k|k − 1)

)
× Ĉ−1γ k−1

|ez(0|0)| ⊙ sgn (ez(k|k − 1))

= Ĉ−1z(k) + γ k−1
|ez(0|0)| ⊙ sgn (ez(k|k − 1))

= Ĉ−1Cx(k) + Ĉ−1w(k) + γ k−1
|ez(0|0)|

⊙ sgn (ez(k|k − 1)) . (22)

By substituting (22) into (19) and rearranging it, the
chattering can be formulated as a function of model mismatch
and system noise:

chattering(k + 1) =

(
CA − ĈÂĈ−1C

)
x(k)

+

(
CB − ĈB̂

)
u(k) + Cv(k)

− ĈÂĈ−1w(k) + w(k + 1)

+ ĈÂĈ−1γ k−1
|ez(0|0)|

⊙ sgn (ez(k|k − 1)) . (23)

B. CHATTERING SIGNAL FOR FEWER MEASUREMENTS
THAN STATE VARIABLES
For an observable system, the chattering of the state
estimates of the auxiliary filter can be obtained based
on Luenberger’s reduced order observer [36]. Applying
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Luenberger’s transformation, equation (19) can be written as
follows:

chatteringu(k + 1) = C18Tx(k) − Ĉ18̂Tx̂(k|k)

+

(
C1G − Ĉ1Ĝ

)
u(k) + v̄1(k),

(24)

where subscript ‘‘u’’ refers to the states that are measured.
The a posteriori state estimate can be obtained from (9), (10),
and (11) as in (25), shown at the bottom of the next page.
Then, the chattering can be obtained by substituting (25) into
(24) as shown in (26), at the bottom of the next page.

Ignoring the impact of the initial error, assuming Ĉ1 =

C1 and T being identity, which can be achieved by
rearranging the states, equation (26) can be simplified as
follows:

chatteringu(k + 1)

= C118x(k) + C11Gu(k) + v̄1(k)

− Ĉ1

[
8̂128̂228̂

−1
12 d1(k − 1) + 8̂12d2(k − 1)

8̂2
228̂

−1
12 d1(k − 1) + 8̂22d2(k − 1)

]
. (27)

The chattering of the states without an associated measure-
ment can be obtained based on the chattering of the measured
states, using Luenberger’s transformation [36]:

chatteringl(k + 1) = 8̂228̂
−1
12 chatteringu(k + 1)

− 8̂228̂
−1
12 d1(k) + d2(k), (28)

where subscript ‘‘l’’ refers to the states without an associated
measurement.

The modified upper bound of the uncertain dynamics
associated with the a priori state estimate can be calculated
from the following equation:

βestimated = sup (chattering(k)) . (29)

To avoid chattering, the smoothing boundary layer (9)
should be larger than βestimated .

C. MODEL MISMATCH DETECTION FROM CHATTERING
SIGNAL OF THE SVSF
In this section, the model mismatch detection for a
second-order system from the chattering signal of the SVSF
is investigated. The discretized state-space model of a general
second-order system with damping ratio ζ , natural frequency
ω0, measurement noise w(k), and process noise v1(k) and
v2(k) is given in (30), assuming only the first state has been
measured.

x1(k + 1) = x1(k) + Tsx2(k) + v1(k)
x2(k + 1) = −Tsω2

0x1(k) + (1 − 2Tsζω0) x2(k)
+Tsbu(k) + v2(k)

z(k) = x1(k) + w(k) (30)

where Ts denotes the time-step and u is the system input.
Under the normal condition let us assume an undamped

(ζ = 0) system with ω0 = 2Hz, b = 100, uncorrelated
process noise v1(k) ∼ N

(
0, 10−10

)
and v2(k) ∼

N
(
0, 10−8

)
, measurement noise w(k) ∼ N

(
0, 10−8

)
, and

Ts = 0.001s. For the estimated parameters being equal to the
normal condition, model matrices are obtained as follows:

Â = A =

[
1 0.001

−0.0125 1

]
, B̂ = B =

[
0
0.1

]
,

Ĉ = C =
[
0 1

]
. (31)

If the smoothing boundary layer is chosen to be larger than
the SVSF chattering under normal conditions, then chattering
in the SVSF indicates a model mismatch. For state x1, which
is directly measured, the width of the smoothing boundary
layer can be calculated by substituting (31) and (27) into (29).
Ignoring the effect of the initial error, we obtain:

ψ1 ≥ β1,estimated = sup
(
v̄1(k) − 8̂128̂228̂

−1
12 d1(k − 1)

+ 8̂12d2(k − 1)
)

(32)

Let us denote the argument of the supremum function in
the above equation by δ1. Substituting the numerical values
of the parameters, we have:

δ1 = v1(k) − v1(k − 1) − 0.001v2(k − 1) − w(k)

+

(
1 − 1.25 × 10−5

)
w(k − 1) (33)

Considering that the measurement noise and process noise
are independent and white, the distribution of δ1 is obtained
as:

δ1 ∼ N
(
µv1(k) − µv1(k−1) − 0.001µv2(k−1) − µw(k)

+ µw(k−1), σ
2
v1(k) + σ 2

v1(k−1) + 10−6σ 2
v2(k)

+ σ 2
w(k) + σ 2

w(k−1)

)
≈ N

(
0, 2.02 × 10−8

)
(34)

Since δ1 has a zero-mean normal distribution if the assigned
value to the smoothing boundary layer is between 3σδ1(k) and
4σδ1(k), then chattering will occur with a probability of 0.2%
to 0.01%. Therefore, it would not be necessary to consider a
larger smoothing boundary layer. As mentioned previously,
choosing a large smoothing boundary layer suppresses the
chattering in effect, therefore, decreases the sensitivity for
model mismatch detection. This increases the chance of
missing faults. On the other hand, choosing a small boundary
layer increases the probability of chattering occurrence even
under normal conditions. This will lead to false alarms.
Hence, the smoothing boundary layer must be chosen based
on a trade-off between reducing the probability of missing
faults and reducing the probability of false alarms. Choosing
ψ1 = 5 × 10−4

≈ 3.5σδ1(k), the probability of the chattering
is calculated as follows according to the normal distribution
table:

Pr
(
ψ1 < β1,estimated

)
= Pr

(
5 × 10−4 < |δ1(k)|

)
≈ 0.067

(35)
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This means that chattering is almost impossible during
normal operation and any chattering reflects a fault or model
mismatch in the system. For the unmeasured state x2, the
smoothing boundary is obtained by substituting (32), (28),
and (21) into (29):

ψ2 ≥ β2,estimated

= sup
(
1000

(
v̄1(k)

− 8̂128̂228̂
−1
12 d1(k − 1) + 8̂12d2(k − 1)

)
− 1000v1(k) + 1000w(k) + v2(k) − 12.5w(k)

)
. (36)

Similarly, denoting the argument of the supremum function
in the above equation by δ1, the distribution of δ2 is calculated
as:

δ2(k) ∼ N
(
0, 3.0135 × 10−2

)
. (37)

The sensitivity of the chattering signal to fault or model
mismatch depends on the smoothing boundary layer, which
is determined by process and measurement noise. A higher
noise level needs a larger smoothing boundary layer, which
will overshadow the fault or model mismatch. Comparing
(34) with (37), δ1 has a sharper distribution than δ2 due
to its lower variance, which reflects a lower level of
uncertainty. This is rational because x2 is not measured
directly. Therefore, the chattering signal of themeasured state
x1 is used to detect the model mismatch here.

The state-space model of the second-order system
described in (30) includes two parameters: damping ratio
and natural frequency. Hence, in this case, model mismatch
refers to any difference between the values of these two
parameters in the system whose states are estimated and the
model of this system, which is used by the filter that estimates
the states. To evaluate the capability of the proposed model
mismatch detection method based on the chattering signal of
the SVSF, the following scenario is considered for creating
a model mismatch. While the model used by SVSF remains
unchanged, for the system whose states are estimated, during
the time interval [1s, 2s], the natural frequency is changed

FIGURE 2. Model mismatch detection from chattering signal of SVSF for a
second order system. Normalized estimation error for (a) measured and
(b) unmeasured states. (c) Chattering signal of the measured state for
three different smoothing boundary values. For a small smoothing
boundary layer (black), chattering occurs even during normal conditions.
For a large smoothing boundary layer (red), chattering does not occur
when there is model mismatch. Only for a medium smoothing boundary
layer (blue), chattering signal is helpful for model-mismatch-detection.

from 2Hz to 3Hz, and during the time interval [3s, 4s], the
damping ratio is changed from zero to 0.1. Three different
smoothing boundary layers are selected for the measured
state based on δ1, while keeping the smoothing boundary
layer of the unmeasured state the same for comparison.
As shown in Fig.2, when the smoothing boundary layer is too
large (ψ1 = 0.002 ≫ σδ1(k)), chattering does not occur. Since
the chattering signal is used as a secondary indicator along
with the innovation vector as the primary indicator of model
mismatch, in the absence of chattering in this case, there is not
any extra information that can be used for detecting model
mismatch. Conversely, when the smoothing boundary layer
is too small (ψ1 = 0.0001 < σδ1(k)), chattering occurs even
under normal conditions, and again analysis of the chattering
signal is not helpful for model-mismatch detection. Hence,
the value of ψ1 must be selected carefully. This figure also
shows that the estimation error increases when there is a
model mismatch in the system. It is more severe for x2, which

x̂(k|k) = x̂(k|k − 1) +

[
Ku(k)
Kl(k)

]
=

[
x̂u(k|k − 1) + Ĉ−1

1

(
z(k) − ẑ(k|k − 1)

)
+ Ĉ−1

1 γ k−1 |ez(0|0)| ⊙ sgn (ez(k|k − 1))

x̂l(k|k − 1) + 8̂228̂
−1
12

(
z(k) − ẑ(k|k − 1)

)
+ γ k−1

∣∣∣8̂−1
12 ez(0|0)

∣∣∣ ⊙ sgn
(
8̂−1

12 ez(k|k − 1)
)]

=

[
Ĉ−1
1 C1xu(k) + Ĉ−1

1 γ k−1 |ez(0|0)| ⊙ sgn (ez(k|k − 1))

x̂l(k) + 8̂228̂
−1
12 d1(k − 1) + d2(k − 1) + γ k−1

∣∣∣8̂−1
12 ez(0|0)

∣∣∣ ⊙ sgn
(
8̂−1

12 ez(k|k − 1)
)]
, (25)

chatteringu(k + 1) = C18Tx(k) +

(
C1G − Ĉ1Ĝ

)
u(k) + v̄1(k) − Ĉ18̂T[

Ĉ−1
1 C1xu(k) + Ĉ−1

1 γ k−1 |ez(0|0)| ⊙ sgn (ez(k|k − 1))

x̂l(k) + 8̂228̂
−1
12 d1(k − 1) + d2(k − 1) + γ k−1

∣∣∣8̂−1
12 ez(0|0)

∣∣∣ ⊙ sgn
(
8̂−1

12 ez(k|k − 1)
)]
. (26)
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is not measured directly and relies more on a correct model.
This error is larger for a smaller boundary layer because it
means that SVSF has more confidence in the model, which is
not correct anymore.

IV. SPECTRAL ANALYSIS OF THE CHATTERING SIGNAL
In state estimation, it is not straightforward to distinguish
between noise and model mismatch based on their effects on
the innovation vector. Deploying SVSF for state estimation,
the corresponding chattering signals provide a secondary
set of indicators that can be used for model-mismatch
detection. To extract information from the chattering signal,
an auxiliary SVSF without a smoothing boundary layer is
used. As indicated in (23), (27), and (28), the chattering signal
contains information about the severity of mismatch between
the state-space model used by the SVSF and the dynamics
of the actual system whose states are estimated by the filter.
Spectral analysis provides a powerful tool for extracting this
information from the noisy chattering signal using strategies
such as Fast Fourier Transform (FFT) and Short-Time Fourier
Transform (STFT). In this regard, looking at the spectrogram
of the chattering signal will be very revealing. Spectrogram
represents the frequency content of the chattering signal as
it varies over time. Hence, it provides clues on occurrence
of events such as faults that change the system and lead to
model mismatch. Power spectrum is defined as the squared
modulus of the Fourier transform. For a random signal, the
power spectrum will similarly exhibit randomness. In certain
contexts, when studying random signals, the expected power
spectrum (or the expected value of squared modulus of
the Fourier transform) is simply referred to as the power
spectrum. In this study, the power spectrum shown by S, is a
random variable, and when needed, we explicitly denote the
expected power spectrum using the notation E[S]. Sources
of randomness in the system dynamics are process noise
andmeasurement noise, which are zero-mean white Gaussian
processes. To lay the groundwork for deriving mathematical
expressions for power spectrum of the chattering signal, first,
Lemma 1 presents the probability distribution of the real and
imaginary parts of the discrete Fourier transform coefficients
for zero-mean white Gaussian processes, emphasizing the
orthogonality of these real and imaginary parts. Building on
the results of Lemma 1, Lemma 2 expresses that the power
spectrum of a stationary zero-mean white Gaussian noise at
each frequency follows a chi-squared distribution. The result
of Lemma 2 is then used to find the distribution of the power
spectrum of the chattering signal. This distribution is needed
to calculate the confidence interval for model mismatch
detection.
Lemma 1: The discrete Fourier transform coefficients of

a stationary zero-mean white Gaussian noise, v(k) ∼

N
(
0, σ 2

)
, with N samples are independent and zero-mean

white Gaussian with the variance of Nσ
2

2 .

ℜ

{
V (N )(ωn)

}
∼ N

(
0,
Nσ 2

2

)
,

ℑ

{
V (N )(ωn)

}
∼ N

(
0,
Nσ 2

2

)
,

ℜ

{
V (N )(ωn)

}
⊥ ℑ

{
V (N )(ωn)

}
, (38)

for ωn =
2π
N n, where −⌊

N−1
2 ⌋ ≤ n ≤ ⌊

N
2 ⌋. V (N )(ωn)

is the discrete Fourier transform of the noise signal v at
nth frequency, ℜ and ℑ denote real and imaginary parts
respectively, and ⌊x⌋ denotes the floor function (the largest
integer, which is less than or equal to x).

Proof:Let us define the normalizedV (N )(ωn) as follows:

Ṽ (N )(ωn) =
1

√
2πN

V (N )(ωn) =
1

√
2πN

n∑
i=1

v(k)e−iωnk .

(39)

According to [38], Ṽ (N )(ωn) is a zero-mean complex
Gaussian random variable with the following distribution:

Ṽ (N )(ωn) ∼ Nc (0, f (ωn)) , (40)

where f is the spectral density function. For white noise, it is
flat and equal to σ 2

2π . Since the family of normal distributions
is closed under linear transformation, the distribution of
V (N )(ωn) can be obtained from (40) as:

V (N )(ωn) ∼ Nc (0, 2πNf (ωn)) ⇒ V (N )(ωn) ∼ Nc

(
0,Nσ 2

)
(41)

Real and imaginary parts are obtained as a direct conse-
quence of (41):

Nc

(
0,Nσ 2

)
⇔



ℜ

{
V (N )(ωn)

}
∼ N

(
0,
Nσ 2

2

)
ℑ

{
V (N )(ωn)

}
∼ N

(
0,
Nσ 2

2

)
ℜ

{
V (N )(ωn)

}
⊥ ℑ

{
V (N )(ωn)

}
(42)

□
Lemma 2: The power spectrum of a stationary zero-mean

white Gaussian noise, v(k) ∼ N
(
0, σ 2

)
, with N evenly

spaced samples, follows a central chi-squared distribution of
order 2 with the expected value of σ 2:

2S(N )
n (ωn)
σ 2 ∼ χ2

2 and E
[
S(N )
n (ωn)

]
= σ 2,

for ωn =
2π
N
n,

where: 0 ≤ n ≤ ⌊
N
2

⌋ − 1, (43)

where S(N )
n (ωn) is the power spectrum of noise signal v at nth

frequency.
Proof: Based on the power spectrum definition, the

following equation holds:

S(N )
n (ωn) =

1
N

∣∣∣V (N )
n (ωn)

∣∣∣2
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=
1
N

(
ℜ

{
V (N )(ωn)

}2
+ ℑ

{
V (N )(ωn)

}2)
(44)

The following is valid because the family of normal
distributions is closed under the linear transformation:

ℜ

{
V (N )(ωn)

}
∼ N

(
0,
Nσ 2

2

)
⇒

√
2ℜ

{
V (N )(ωn)

}
σ
√
N

∼ N (0, 1) , (45)

ℑ

{
V (N )(ωn)

}
∼ N

(
0,
Nσ 2

2

)
⇒

√
2ℑ

{
V (N )(ωn)

}
σ
√
N

∼ N (0, 1) , (46)

Knowing that ℜ
{
V (N )(ωn)

}
⊥ ℑ

{
V (N )(ωn)

}
from

lemma 1, definition of chi-squared distribution yields:

2ℜ
{
V (N )(ωn)

}2
Nσ 2 +

2ℑ
{
V (N )(ωn)

}2
Nσ 2 ∼ χ2

2

⇒
2
σ 2

(
1
N

(
ℜ

{
V (N )(ωn)

}2
+ ℑ

{
V (N )(ωn)

}2))
∼ χ2

2

⇒
2S(N )

n (ωn)
σ 2 ∼ χ2

2 . (47)

Knowing that the expected value of central chi-squared
distribution is equal to the degrees of freedom, the expected
value of the power spectrum is obtained as:

E

[
2S(N )

n (ωn)
σ 2

]
= 2 ⇒ E

[
S(N )
n (ωn)

]
= σ 2. (48)

□
The power spectrum of the chattering signal for each

frequency is defined as follows:

SchatteringN (ωn) =
1
N

∣∣F (
chatteringk

)
n

∣∣⊙2

=
1
N

∣∣∣∣∣
N∑
k=1

chattering(k)e−iωnk
∣∣∣∣∣
⊙2

,

for ωn =
2π
N
n,

where: 0 ≤ n ≤ ⌊
N
2

⌋ − 1, (49)

where, Schatteringi is the power spectrum (only for half of the
frequencies because it is symmetric) of the chattering signal
of the state i at nth frequency, F denotes the discrete Fourier
transform, N is the number of samples, chatteringk :=

chattering(1), chattering(2) . . . chattering(N ) is a sequence
of chattering vectors, ⊙ is element-wise also known as Schur
operation (B = A⊙2

⇒ bij = a2ij), t is signal duration, and
Ts is sampling time. To obtain frequency in Hz, the following
transformation is applied on ωn:

ω = Fsωn where:
1
Ts
, (50)

where, ω is the frequency in Hz and Fs is the sampling
rate. As shown in (49) and (50) the resolution and upper
bound of ω depend on the signal duration and sampling
frequency, respectively. Hence, the sampling size, N , is a
crucial parameter that affects the spectrogram. Hereafter,
the superscript N is removed since it is considered that the
number of samples is fixed. Substituting (23) into (49) and
ignoring the impact of the initial error, the power spectrum
of chattering signal is obtained as follows using the linearity
property of the discrete Fourier transform:

Schattering(ωn) =
1
N

∣∣∣(CA − ĈÂĈ−1C
)
F(xk )n

+

(
CB − ĈB̂

)
F(uk )n + CF(vk )n

−ĈÂĈ−1F(wk )n + F(wk+1)n
∣∣∣⊙2

. (51)

Under the normal condition with no model mismatch,
equation (51) can be rewritten as:

Schattering(ωn) =
1
N

∣∣∣CF(vk )n −
ˆCOOC−1F(wk )n

+ F(wk+1)n
∣∣∣⊙2
. (52)

Using the shift theorem for discrete Fourier transform, (52) is
further simplified as:

Schattering(ωn) =
1
N

∣∣∣CF(vk )n

+

(
eiωnI − ĈÂĈ−1

)
F(wk )n

∣∣∣⊙2
. (53)

Let us consider independent stationary white process and
measurement noise with zero mean Gaussian distributions as:

Q(k) = v(k)v(k)⊺ = diag
(
σ v

2
)
, (54)

R(k) = w(k)w(k)⊺ = diag
(
σw

2
)
, (55)

where, Q(k) and R(k) are the covariance matrices of
the process and measurement noise respectively, σ 2

vi is
the variance of the process noise for state i, and σ 2

wj is the
variance of measurement noise for measurement j.

Regarding the predictor-corrector form of the SVSF,
at each time instant, chattering depends on measurement
noise for both prediction, w(k − 1), and correction, w(k).
Therefore, as shown in (53), the chattering signal exhibits
autocorrelation due to the implicit accumulation of the effect
of delayed measurement noise terms over time. The expected
value of the power spectrum of the chattering signal is
obtained using lemmas 1 and 2 (all the cross-correlation terms
become zero due to independence and zero mean condition of
discrete Fourier transform from lemma 1):

E
[
Schattering(ωn)

]
= C⊙2E

[
1
N

|F(vk )n|⊙2
]

+

∣∣∣eiωnI − ĈÂĈ−1
∣∣∣⊙2

E
[
1
N

|F(wk )n|⊙2
]
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= C⊙2E [Sv] +

∣∣∣eiωnI − ĈÂĈ−1
∣∣∣⊙2

E [Sw]

= C⊙2σ v
2
+

∣∣∣eiωnI − ĈÂĈ−1
∣∣∣⊙2

σw
2. (56)

Due to the exponential term in equation (56), which
depends on frequency, it can be concluded that in general,
the expected value of the power spectrum of the chattering
signal is not flat under normal conditions (Fig.4).

A. FIND THE THRESHOLD FOR SPECTRAL DENSITY OF
THE CHATTERING SIGNAL UNDER NORMAL CONDITION
To identify model mismatch, a threshold must be determined
for the spectral density of the chattering signal that reflects
normal conditions. This threshold should be intelligently
specified in a way to decrease the chance of missing any
model mismatch while avoiding false alarms. According
to (52), there is an element of randomness in the power
spectrum of the chattering signal. Therefore, the threshold
should be obtained by taking account of the probability
distribution of the power spectrum of the chattering signal,
using a confidence interval. To be more precise, the following
equation must hold to ensure that the probability of a false
alarm is smaller or equal to α%:

Pr
(
Schatteringi > threholdi|Normal Condition

)
≤ α% (57)

where Schatteringi is the power spectrum of the chattering
signal for measured state i, and thresholdi is its corresponding
threshold. Let us define the matricesM and 3 as follows:

M := −ĈÂĈ−1,

λij :=


mij for i ̸= j,
mij + 1 for i = j and mij ≥ 0,
mij − 1 for i = j and mij < 0.

(58)

Given that −1 ≤ eiωn ≤ 1, the above definition leads
to 0 >

(
eiωnI − ĈÂĈ−1

)
. This inequality and (53) along

with the independence of process and measurement noise,
will lead to the following inequality:

Schattering(ωn) ≤
1
N

|CF(vk )n + 0F(wk )n|⊙2 . (59)

Based on the linearity property of the DFT, equation (59)
can be rewritten as:

Schattering(ωn) ≤
1
N

∣∣F (Cvk + 0wk)n
∣∣⊙2

. (60)

Since vk andwk are mutually independent stationary white
zero-mean Gaussian vectors, their linear combination is also
a stationary white zero-mean Gaussian vector:

0k = Cvk + 0k where: 0k ∼ N (0, 60(k))

and 60(k) = CQ(k)C⊺
+ 0R(k)0⊺. (61)

Substituting (61) into (60), and using lemma 2, we have:

Schattering(ωn) ≤
1
N

∣∣F (0k)n∣∣⊙2
= S0,

FIGURE 3. PDF of the chattering’s power spectrum for normal and
mismatched conditions.

where:
2S0i
60ii

∼ χ2
2 . (62)

where S0i is the power spectrum of the random signal
associated with state i, which has a chi-squared distribution.
Therefore, a threshold for the chattering signal under normal
conditions will be obtained based on equation (57), using
the chi-squared distribution table. When there is a model
mismatch, a spike in the chattering power spectrum is
expected according to the frequency content of the states and
input signals as shown in (51). Higher peaks will result from
a larger model mismatch, which can be used to evaluate the
severity of the fault. If the chattering signal’s power spectrum
exceeds the threshold, it indicates a model mismatch in the
system. Additionally, it is possible to acquire the frequency
content of system states (such as natural frequencies) to be
used for mismatch identification.

Since the threshold plays a key role in correctly detecting
mismatch, it must be selected by taking account of system’s
measurement and process noise levels as well as the required
confidence interval based on the probability distribution
of the power spectrum of the chattering signal. Fig.3
conceptually illustrates how the threshold is chosen based on
a trade-off between reducing the chance of missing model
mismatches and avoiding false alarms regarding the PDF
of the chattering’s power spectrum for both normal and
mismatch conditions. Under normal conditions, a higher level
of noise leads to a heavier tail in the PDF, which in turn,
increases the likelihood of missed detection and false alarm.
However, a higher level of mismatch corresponds to a larger
shift in the PDF, which makes detection easier. The same
approach can be employed to analyze the chattering signal
of the system with partial state measurement by substituting
(26) and (28) into (49).
In the case study that follows, this approach is investigated

for a second-order system.

B. MISMATCH IDENTIFICATION IN A SECOND-ORDER
SYSTEM USING SPECTRAL ANALYSIS OF THE
CHATTERING SIGNAL
Let us consider a second-order system as (30), with the
natural frequency of ω0 = 10Hz, damping ratio ζ = 0.1,
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b = 100, and Ts = 0.001s. The process and measurement
noise are assumed to be independent white zero-mean
Gaussian with the following covariance matrices: Q =

diag
(
10−8, 10−6

)
,Rlow = diag

(
10−8, 10−6

)
,Rhigh =

diag
(
10−6, 10−4

)
.

In order to study the impact of noise level on mismatch
identification, two levels of measurement noise are consid-
ered with one being 10 times higher than the other. Under
normal conditions, system matrices are obtained as below:

Â = A =

[
1 0.001

−3.1978 0.9887

]
, B̂ = B =

[
0
0.1

]
,

Ĉ = C =

[
1 0
0 1

]
. (63)

A unit step is applied as the input, and system’s behavior
is observed for 4 seconds. Since Ts = 0.001s, simulation
generates 4000 data points over 4 seconds. Fig.4 displays the
power spectrum of the chattering signal for both states under
normal conditions. As shown, the higher noise level requires
a higher threshold. Higher measurement noise skews the
power spectrum more, increasing the power density in high
frequencies. The shift property in equation (53) is the cause
of skewness. The power spectrum of the chattering signal
remains below the threshold for the 0.1% false alarm level
(99.9% confidence interval from chi-squared distribution),
but for the 1% level, there are several false alarms in high
frequencies, which is acceptable for 500 samples. To avoid
false alarms completely, the number of samples (N ) should
be taken into account when selecting α. A conservative upper
bound for the probability of false alarm in all frequencies is
obtained as below:

Pr
((
Schatteringi (ω1) > thersholdi

)
∪ · · · ∪(

Schatteringi (ωN
2
) > thersholdi

)
|NormalCondition

)
≤

N
2∑

n=1

Pr
(
Schatteringi (ωn) > thersholdi|NormalCondition

)
≤
N
2
α%. (64)

In Fig.5, the power spectrum of the chattering signal
for the second state, chattering2, has been used to identify
model mismatch. In this case, a very small change in natural
frequency (ω0 = 11Hz compared to ω0 = 10Hz for normal
conditions) is considered, while all other parameters remain
unchanged. Accordingly, the state matrix of the system

will change to A =

[
1 0.001

−4.7769 0.9862

]
, while input and

measurement matrices do not change (B̂ = B, Ĉ = C). It can
be seen from (23) or (51) that chattering1 will not change
when only ω0 changes. Thus, the mismatch is not observable
in chattering1.

As shown, the mismatch causes a spike in the spectral
density at 11Hz, which coincides with the natural frequency
of the actual system. For the high measurement noise level

shown in Fig.5, this peak is lower than the threshold, which
means it cannot be separated from the noise effect. Using
the expected power spectrum is one strategy to resolve
this issue. For this purpose, using the idea of Monte Carlo
simulation, average of the spectrogram is obtained for many
realizations of the same event with the same input and
identical conditions. Then, the averaged power spectrum of
the noise will converge to the expected value, while the
peak at 11Hz remains the same as demonstrated in Fig.6.
Nevertheless, this approach cannot be used for real-time
mismatch identification.

Fig.7 depicts the power spectrum of the chattering for
different levels of mismatch, where the natural frequency of
the real system is changed to ω0 = 9Hz, 12Hz, and 15Hz,
as opposed to the nominal model with ω0 = 10Hz.
Results demonstrate that the proposed approach is capable
of separating various levels of mismatch and indicating the
intensity of the mismatch based on the amplitude of the peak.
As mentioned previously, the frequency resolution of the
spectrogram depends on the duration of data gathering and
the sampling rate.

C. EXTRACT TEMPORAL INFORMATION OF THE
MISMATCH FROM THE SPECTROGRAM OF THE
CHATTERING SIGNAL
Frequency content of the chattering signal changes when a
mismatch or fault occurs in a system. Therefore, it would
be beneficial for mismatch detection to extract temporal
information about the frequency content of nonstationary sig-
nals. Time-varying spectrum, also known as the spectrogram,
is a powerful tool to recover the temporal information along
with the frequency content of the signal. Two well-known
techniques can be deployed to generate the spectrogram:
the Short-Time Fourier Transform (STFT) and the wavelet
transform. The STFT method is used in this part to identify
the mismatch from the chattering signal.

Let us assume the following scenario for the general
second-order system presented in (30), where the process
and measurement noise are independent white zero-mean
Gaussian with Q = mathrmdiag

(
10−8, 10−6

)
and R =

mathrmdiag
(
10−6, 10−4

)
:

• Under normal conditions, the natural frequency of the
system is 5Hz with no damping ratio.

• For the first 2 seconds, a model mismatch is introduced
to the system by changing the natural frequency to 8Hz.

• Then, for 2 seconds system goes back to normal
condition.

• Then again, for 2 seconds, a model mismatch is
introduced, this time by changing the damping ratio
to 0.1.

• Finally, the system becomes normal again until the end
of the simulation.

According to the Heisenberg-Gabor limit, the periodical
and temporal resolution of the spectrogram, which are both
governed by the STFT window, have an inverse relationship.
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FIGURE 4. Power spectrum of the chattering signal under normal conditions for (a) low measurement noise level and (b) high measurement
noise level, where α denotes the error probability.

FIGURE 5. Power spectrum of the chattering signal with a mismatch (ω0 = 11Hz) for (a) low measurement noise level and (b) high
measurement noise level, where α denotes the error probability.

A long window improves the frequency resolution but
decreases the temporal resolution and vice versa. Therefore,
the length of the window should be chosen carefully based

on the application at hand. For this problem, the length of
the window has been chosen to be one second, which gives a
1Hz frequency resolution and 1 second time resolution. The
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FIGURE 6. Detection of mismatch by averaging over different realizations.

FIGURE 7. Power spectrum of the chattering signal for different levels of
mismatch.

shift time is set to be 0.2s (or 0.8s overlap) to have a sharper
edge for detecting the start and end of each mismatch period,
and the Hamming window function is used as the taper. The
spectrogram of the chattering signal is shown in Fig.8 for two
input signals: a unit constant function and a step function.

Results accurately pinpoint the frequency and damping
mismatches as well as their temporal details. Note that for
a constant input, the effect of damping ratio mismatch fades
away after a while, because the system stops moving due to
damping. However, when the system is excited at t = 5s,
with the step function input, the impact of the mismatch
will become visible in the chattering signal. This shows
the importance of persistence excitation especially when a
system has a large damping.

In the next section, the proposed method is used for fault
detection, and its performance is evaluated.

V. SIMULATION RESULTS FOR FAULT DETECTION IN AN
ELECTRO-HYDRAULIC ACTUATOR
The discrete model of the EHA system as described in [32]
is used to illustrate the application of the suggested approach
for identifying leakage, friction, and bulk modulus mismatch

TABLE 1. The electro-hydraulic actuator parameters.

faults. The EHA is a third-order system with state variables
that correspond to its position, velocity, and differential
pressure, as given in the following state-space model:

x1(k + 1) = x1(k) + Tsx2(k) + v1(k),

x2(k + 1) =

(
1 −

Tsa
M

)
x2(k) +

TsAc
M

x2(k) + v2(k),

x3(k + 1) =

(
1 −

TsβeLt
V0

)
x3(k)

−
TsβeAc
V0

x2(k) +
TsβeDp
V0

+ v3(k),
z1(k) = x1(k) + w1(k),
z2(k) = x2(k) + w2(k),
z3(k) = x3(k) + w3(k),

(65)

where Ts is the sampling time, which is assumed to be 0.001s,
v(k) and w(k) are zero-mean white Gaussian noise with the
following covariance matrices:

vv⊺
= Q = diag

(
10−12, 10−6, 1

)
ww⊺

= R = diag
(
10−6, 10−6, 106

)
(66)

Table.1 provides the nominal values of the parameters
in the state-space model (64) [21]. When a leakage fault,
friction fault, or bulkmodulus mismatch occurs in the system,
it causes a change in the associated parameter values Lt ,
a, or βe. Following [21], Table.2 summarizes the mismatch
scenarios, which are considered to evaluate the ability of the
proposed method for handling different levels of defects and
faults. This table also shows the corresponding changes in
the system’s dynamics for each fault regarding damping ratio
and natural frequency with respect to their nominal values
presented in Table.1.

The system matrices are obtained from (64) as follows:

Â =

0 Ts 0
0 1 −

Tsa
m

TsAc
m

0 TsAcβe
V0

1 −
TsβeLt
V0

 , B̂ =

 0
0

TsβeDp
V0

 ,
Ĉ =

1 0 0
0 1 0
0 0 1

 . (67)

Substituting (66) and (67) into (56), (61), and (62), the
expected value and the threshold can be calculated for
the power spectrum of the chattering signal under normal
conditions. An input chirp signal with a frequency ranging
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FIGURE 8. Mismatch identification using the spectrogram of the chattering signal for (a) a constant unit input and (b) a step function input.

TABLE 2. Fault levels.

from 10 to 100Hz is used to excite the system below and
above its natural frequency. Fig.9 shows the power spectrum
of the chattering signal under the healthy condition. For
the error probability α = 0.1%, the power spectrum of
the chattering signal follows the expected value trend and
remains below the threshold for the corresponding chattering
signals of the three state variables. For α = 1%, there
are several false alarms in high frequencies, which would
be acceptable considering the number of data points (N =

4000). However, these false alarms can be avoided by a lower
level of α using (64).

Ignoring the negligible impact of the initial error ez(0|0) in
(23), the chattering signal of the EHA for leakage condition
is obtained from (67). In this equation, 1Lt is the mismatch

in the leakage coefficient due to leakage fault. As shown in
(68), at the bottom of the page 15, leakage fault is observable
from the chattering signal of the third state variable that
represents differential pressure. Thus, the power spectrum
of the pressure chattering signal is used for leakage fault
detection. Fig.10 shows that the power spectrum of the
chattering signal deviates from the expected value when
leakage occurs, with higher leakage levels leading to a larger
divergence. However, only major leakage can be detected
based on the 0.1% threshold, derived from system noise. This
issue can be improved to some extent by deploying a more
accurate sensor with a lower level of noise. Additionally,
following the idea of Monte Carlo simulation, as shown
in Fig.6, the experiment can be repeated, and the average
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FIGURE 9. Power spectrum of the chattering signal for the EHA system
under the healthy condition, where α denotes the error probability.

FIGURE 10. Leakage fault detection using spectral analysis of the
pressure chattering signal.

of the power spectrum can be calculated. Then, detection
can be performed based on the expected power spectrum.
As indicated in Table.2, leakage has a small impact on natural
frequency. Hence, the power spectrum has a peak at the
natural frequency of the system.

Similar to (68), the equation (69), as shown at the bottom
of the next page, is used to obtain the chattering signal when
there is a friction fault. In this equation,1a is the mismatch in
the friction coefficient due to the fault. The power spectrum

FIGURE 11. Friction fault detection using spectral analysis of the velocity
chattering signal.

FIGURE 12. Bulk modulus mismatch detection using the spectral analysis
of the pressure chattering signal.

of the velocity chattering signal is employed for friction fault
identification. As demonstrated in (69), friction fault can
be observed from the chattering signal of the second state
variable that represents velocity. Fig.11 shows that bothminor
and major frictions can be detected from spectral analysis.
The friction fault has a negligible impact on the natural
frequency, but it increases the damping ratio of the system and
makes it overdamped (Table.2). The power spectrum does not
peak at the natural frequency, because the system becomes
overdamped for minor and major friction faults.

The chattering for the bulk modulus mismatch is obtained
from (70), as shown at the bottom of the next page. In this
equation, 1βe is the mismatch in the bulk modulus due to
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the fault. The bulk modulus mismatch is detectable from the
pressure chattering signal, as indicated in (70). Fig. 12 shows
that the bulk modulus mismatch can be identified using the
deviation from the expected power spectrum. Furthermore,
a larger mismatch leads to a higher degree of deviation.
According to Table. 2, a higher bulk modulus increases the
natural frequency and decreases the damping ratio of the
system. This phenomenon is illustrated in Fig.12.

VI. CONCLUSION
In addition to the innovation vector, which is used in filtering
algorithms to correct the predicted state vector in light of
the most recent estimation, SVSF benefits from a secondary
set of indicators which are the chattering signals associated
with different state variables. This paper entertained the
idea of using the chattering signal for fault detection and
model mismatch identification. In this paper, mathematical
expressions were derived for chattering signal of the SVSF
for both full-state and partial-state measurement scenarios.
Spectrogram of the chattering signal was investigated to
extract temporal and spectral information. Building on the
idea ofMonte Carlo simulation, and taking account of process
and measurement noise characteristics, expected value of
the chattering signal’s power spectrum was obtained under
normal conditions. It was proposed to select a threshold
for mismatch identification based on a trade-off between

avoiding false alarms and minimizing the chance of missing
any event that leads to a change in the system under study
and causes model mismatch such as fault occurrence. The
proposed strategy for choosing this threshold takes the prob-
ability distribution of the chattering signal’s power spectrum
into consideration. A confidence interval is determined using
such a distribution that paves the way for fault detection using
one realization of the sequence of events, which is suitable for
real-time applications. Furthermore, to recover the temporal
information regarding a mismatch, the chattering signal can
be analyzed using the short-time Fourier transform. The
effectiveness of the proposed method for fault detection
and mismatch identification was demonstrated through
considering a number of scenarios for a typical second-order
system and an electro-hydraulic actuator. Furthermore, the
proposed framework allows for determining the severity of
the mismatch.

Future research can study the implementation of this
approach within a closed-loop system for fault diagnosis and
development of a Fault Tolerant Control System (FTCS).
Considering that the majority of closed-loop systems are
designed to demonstrate overdamped dynamics and regard-
ing the fact that the input excitation originates from the
controller, addressing challenges in achieving the persistent
excitation necessary for fault detection calls for an in-depth
exploration.

chattering1(k + 1)
chattering2(k + 1)
chattering3(k + 1)



=


v1(k) + Tsw2(k) + w1(k + 1)

v2(k) +

(
1 −

Tsa
m

)
w2(k) +

TsAc
m

w3(k) + w2(k + 1)(
1 −

Tsβe1Lt
V0

)
x3(k) + v3(k) +

TsAcβe
V0

w2(k) +

(
1 −

TsβeLt
V0

)
w3(k) + w3(k + 1)

 . (68)

chattering1(k + 1)
chattering2(k + 1)
chattering3(k + 1)



=


v1(k) + Tsw2(k) + w1(k + 1)

−
Ts1a
m

x2(k) + v2(k) +

(
1 −

Tsa
m

)
w2(k) +

TsAc
m

w3(k) + w2(k + 1)

v3(k) +
TsAcβe
V0

w2(k) +

(
1 −

TsβeLt
V0

)
w3(k) + w3(k + 1)

 . (69)

chattering1(k + 1)
chattering2(k + 1)
chattering3(k + 1)



=


v1(k) + Tsw2(k) + w1(k + 1)

v2(k) +

(
1 −

Tsa
m

)
w2(k) +

TsAc
m

w3(k) + w2(k + 1)

TsAc1βe
V0

x2(k) −
Ts1βeLt
V0

+
Ts1βeDp

V0
u(k) + v3(k) +

TsAcβe
V0

w2(k) +

(
1 −

TsβeLt
V0

)
w3(k) + w3(k + 1)

 .
(70)
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