
Received 11 July 2023, accepted 17 September 2023, date of publication 22 September 2023,
date of current version 27 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3318206

Classifying and Benchmarking Quantum
Annealing Algorithms Based on Quadratic
Unconstrained Binary Optimization
for Solving NP-Hard Problems
JEHN-RUEY JIANG , (Member, IEEE), AND CHUN-WEI CHU
Department of Computer Science and Information Engineering, National Central University, Taoyuan 320317, Taiwan

Corresponding author: Jehn-Ruey Jiang (jrjiang@csie.ncu.edu.tw)

This work was supported by the National Central University, Taiwan.

ABSTRACT Quantum annealing has the potential to outperform classical transistor-based computer
technologies in tackling intricate combinatorial optimization problems. However, ongoing scientific
debates cast doubts on whether quantum annealing devices (or quantum annealers) can genuinely provide
better problem-solving capabilities than classical computers. The question of whether quantum annealing
algorithms (QAAs) running on quantum annealers have computational advantages over classical algorithms
(CAs) running on classical computers still remains unclear. This paper aims to clarify the question by
classifying and benchmarking QAAs that utilize quadratic unconstrained binary optimization (QUBO)
formulas to solve NP-hard problems. It proposes a four-class classification of QUBO formulas and
exemplifies each class by QUBO formulas used by QAAs for solving specific NP-hard problems, such
as the subset sum, maximum cut, vertex cover, 0/1 knapsack, graph coloring, Hamiltonian cycle, traveling
salesperson, and job shop scheduling problems. The classification is based on the following two criteria:
(i) Does the number of QUBO variables scale linearly with the problem input size? (ii) Does the QUBO
formula have both the constraint term and the optimization term? QAAs are implemented and run on a
D-Wave quantum annealer for benchmarking. They are benchmarked against related CAs in terms of the
quality of the solution and the time to the solution. The benchmarking results reveal which classes of QUBO
formulas are likely to provide advantages to QAAs over CAs. Furthermore, based on the benchmarking
results, observations and suggestions are given for each class of QUBO formulas, facilitating the adoption
of appropriate actions to improve the performance of QAAs.

INDEX TERMS Noisy intermediate-scale quantum, NP-hard problem, quantum annealing, quantum
computer, quadratic unconstrained binary optimization.

I. INTRODUCTION
Quantum computers perform computation based on quantum
bits or qubits with the phenomena of quantum superposition,
quantum entanglement, quantum tunneling, and so on.
A qubit exists in a superposition of both 0 and 1, and
definitely reveals 0 or 1 when measured. In contrast, classical
computers perform computation based on bits, each of which
is either 0 or 1. Quantum computers have been attracting

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

much research attention because they can offer computing
power that classical computers can never offer, which is
called quantum supremacy [1].

Some quantum computers, such as IBM Q [2] Google
Sycamore [3], are universal, whereas some others, such as
D-Wave Advantage [4], are non-universal. On the one hand,
universal quantum computers rely on quantum gates to form
quantum circuits to perform computation to solve general
problems. On the other hand, other mechanisms rather than
quantum gates are employed to perform computation for solv-
ing special problems on non-universal quantum computers.

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 104165

https://orcid.org/0000-0002-0650-3683
https://orcid.org/0000-0003-0586-090X


J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

For example, the quantum annealing mechanism is used by
D-WaveAdvantage, a quantum annealer, to leverage quantum
tunneling to traverse the energy landscape to find the globally
lowest energy [5] for solving optimization problems.
Quantum annealers hold the promise of outperforming

classical computers in solving intricate combinatorial
optimization problems arising in different application areas,
such as quantum chemistry [6], quantum machine learning
[7], [8], [9], quantum deep learning [10], [11], quantum
variational autoencoders [12], [13], fault detection and
diagnosis [14], [15], online fraud detection [16], financial
portfolio optimization [17], [18], operational planning [19],
[20], data processing in high energy physics [21], [22],
material microstructure equilibration [23], [24] and Monte
Carlo sampling [25]. However, as mentioned in [26], there
are ongoing scientific debates [27], [28], [29], [30] arguing
whether quantum annealers can provide better problem
solving capabilities than classical computers. The question
still remains unclear regarding whether quantum annealing
algorithms (QAAs) running on quantum annealers have
computational advantages over classical algorithms (CAs)
running on classical computers. We are thus motivated to
write this paper aiming to clarify the question by classifying
and benchmarking QAAs that use quadratic unconstrained
binary optimization (QUBO) formulas to solve NP-hard
problems.

This paper classifies QUBO formulas into four classes,
as previously demonstrated in [31]. It also exemplifies each
class with two QUBO formulas used by two QAAs for
solving specific NP-hard problems. The solved problems
are the subset sum problem (SSP), maximum cut problem
(MCP), vertex cover problem (VCP), 0/1 knapsack problem
(0/1 KP), graph coloring problem (GCP), Hamiltonian cycle
problem (HCP), traveling salesperson problem (TSP), and
job shop scheduling problem (JSP). It is believed that no CA
can solve an NP-hard problem efficiently with a polynomial
time complexity in the worst case. That is to say, for an
NP-hard problem, the best CA to solve it needs a super-
polynomial (e.g., exponential) time complexity in the worst
case. The QAAs based on QUBO to solve the above-
mentioned NP-hard problems are implemented and run on a
D-Wave quantum annealer. They are compared with related
CAs for benchmarking in terms of the quality of the solution
and the time to the solution. The benchmarking results reveal
which classes of QUBOs are likely to provide advantages
to QAAs over CAs. Based on the benchmarking results,
observations and suggestions are given for each QUBO
formula class, so that proper actions can be adopted to
improve the performance of QAAs. Compared with CAs,
QAAs using QUBO formulas are competitive in the current
NISQ era [32], in which quantum computers have only a
moderate number of error-prone qubits with low-fidelity. It is
believed many QAAs will have superior performance to CAs
in the future when we go beyond the NISQ era to have
quantum computers owning thousands or more qubits with
high fidelity.

The contribution of this paper is fourfold. First, it proposes
a four-class classification of QUBO formulas used by QAAs
for solving NP-hard problems. It also exemplifies each class
by QUBO formulas solving specific NP-hard problems.
Second, QAAs are implemented and run on a D-Wave
quantum annealer to solve the specific NP-hard problems.
They are compared with related CAs for benchmarking in
terms of the quality of the solution and the time to the
solution. Third, this paper identifies which classes of QUBO
formulas are likely to provide advantages to QAAs over
CAs. Fourth, observations and suggestions are given for each
QUBO formula class, so that appropriate actions can be
taken to improve the performance of QAAs. Generally, the
significance of this paper is (i) for people to determine if
a QAA using a QUBO formula to solve a certain NP-hard
problem is likely to outperform related CAs by checking
the QUBO formula class, and (ii) for people to take proper
actions to further improve the QAA performance.

The remainder of this paper is organized as follows.
Section II introduces some preliminaries. TheQUBO formula
classification is described in Section III. QUBO formulas
used by QAAs solving specific NP-hard problems are shown
as examples of classification classes in Section IV. For the
purpose of benchmarking, the QAAs are also compared with
related CAs in terms of different performance metrics in
Section V. Observations and suggestions based on QAA
benchmarks are given in Section VI. Finally, Section VII
concludes this paper.

II. PRELIMINARIES
A. NP-HARD PROBLEMS
In this subsection, we introduce the concept of NP-hard
problems. As mentioned earlier, it is well believed that
no CAs can solve NP-hard problems efficiently with a
polynomial time complexity for any problem instances.
Below, we first introduce the concepts of deterministic
algorithms and nondeterministic algorithms [33] for realizing
NP-hard problems.

The deterministic algorithm is the normal CA that can
run on current classical general-purpose computers to find
solutions to problems. On the contrary, according to [34],
the nondeterministic algorithm cannot run on any current
computers; it is conceptual and intended only for theoretical
discussions. A nondeterministic algorithm to solve a given
problem has two phases: choosing and checking. The
choosing phase is to select one out of given options. The
checking phase is to check whether the selected option leads
to a correct solution to the problem or not. If so, it returns
‘‘success’’, which means that a correct solution can be found;
otherwise, it returns ‘‘failure’’, which means that no correct
solution can be found. The nondeterministic algorithm has a
strong assumption that if there exist proper options leading
to correct solutions, then the choosing phase is assumed to
always select one of the proper options for the algorithm to
return ‘‘success’’.

104166 VOLUME 11, 2023



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

On the one hand, problems that can be solved by the
deterministic algorithm with a polynomial time complexity
constitute a problem set called P; they are called P
problems. On the other hand, problems that can be solved
by the nondeterministic algorithm with a polynomial time
complexity constitute a problem set called NP; they are called
NP problems. It is believed, but has not yet been proven, that
P is a proper subset of NP.

Cook proved that every NP problem can be ‘‘polynomially
reducible to’’ the satisfiability (SAT) problem [34]. A prob-
lem X is said to be ‘‘polynomially reducible to’’ a problem
Y if and only if X can be solved by (i) converting X’s
input instance into Y’s input instance with a polynomial time
complexity, (ii) getting an algorithm to solve the problem
Y with the converted input instance to output Y’s solution,
and (iii) converting Y’s solution into X’s solution with a
polynomial time complexity. According to Cook’s proof,
if the SAT problem belongs to P, then all NP problems also
belong to P. A problem is called an NP-hard problem if every
NP problem is polynomially reducible to it. Therefore, the
SAT problem is an NP-hard problem. Many problems have
been shown to be NP-hard problems. For example, Karp
introduced 21 NP-hard problems, such as the SSP, MCP,
VCP, 0/1 KP, HCP, and TSP [35]. Up to now, no NP-hard
problem has been solved by any deterministic algorithm with
a polynomial time complexity in the worst case. And it is
believed that there will be no such algorithm. Thus, we may
well say that NP-hard problems are very hard problems to
solve.

B. QUANTUM ANNEALING AND QUBO FORMULAS
Quantum annealing (QA) is a mechanism [36] leveraging
quantum tunneling to solve optimization problems that
optimize objective functions of very large solution spaces.
Quantum tunneling [37] is a quantum mechanics phe-
nomenon about energy levels. When a quantum particle
encounters an energy barrier, it may pass through the barrier
even if its momentum is less than the barrier potential.

For an objective function, QA first prepares states
associated with the function. It then initiates an adiabatic
process starting from a quantum superposition of all possible
candidate states of the solution space with equal probability
amplitudes. Afterwards, the amplitudes of all states keep
changing at the same time, which is like traversing all states
in parallel. If the changing rate is slow enough, then the
adiabatic process stops with a state close to the ground
state of the lowest Hamiltonian (or total system energy)
associated with the objective function, which corresponds to
the optimal solution. In summary, with the quantum tunneling
phenomenon, the QA mechanism behaves as traversing the
whole solution space in parallel to find the globally optimal
solution to the objective function. The solution found does not
get stuck in the local optimization (or minimum), but reaches
the global optimization (or minimum), as shown in Figure 1.
Based on the QA mechanism, a QAA formulates an

optimization problem as an objective function of a quadratic

FIGURE 1. Illustration of quantum annealing that leverages quantum
tunneling to find the global minimum in the solution space.

unconstrained binary optimization (QUBO) formula f of
binary variables, as described in the following Equation (1).

f (x) = xTQx =

∑
i

Qi,ix2i +

∑
i<j

Qi,jxixj, (1)

whereQ is an n×n upper triangular matrix with real-number
coefficients, and x = (x1 x2 . . . xn)T is a column vector of n
binary variables of either value 0 or 1. The minimum value
of the objective function corresponds to the optimal solution
to the problem. Note that xi is either 0 or 1, so Equation (1)
can be rewritten as Equation (2) shown below. Also note that
Equation (1) and Equation (2) are true for the Ising formula
of variables of either value -1 or 1, which is a well-known
model equivalent to the QUBO formula.

f (x) =

∑
i

Qi,ixi +
∑
i<j

Qi,jxixj, (2)

A QUBO formula should have no constraint term, as sug-
gested by its name. However, some optimization problems
have constraints of feasible solutions. Any equality constraint
Rx = t can be transformed into a constraint term or penalty
term of the form α(Rx − t)2, where R is a 1 × n matrix
(or row vector) with real-number coefficients, x is a column
vector of variables with binary values, t is a constant, and
α is called a constraint weight or penalty weight of a real-
number value. By integrating the penalty term α(Rx− t)2 and
the optimization term xTQx, the objective function f (x) is
extended to be the formula shown in Equation (3) below.

f (x) = α(Rx − t)2 + xTQx (3)

Equation (3) sometimes is extended to be a more general
formula, as shown in Equation (4) below.

f (x) = α(Rx − t)2 + βxTQx, (4)

where β is called the optimization weight of a real-number
value associated with the optimization term xTQx.

VOLUME 11, 2023 104167



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

The value of weights α and β should be set properly so
that the whole QUBO objective function can be minimized
to return an optimal and feasible solution to the problem.
Some weight setting methods are proposed to set the weights
properly. They are elaborated in the next subsection.

C. SETTING QUBO PENALTY WEIGHTS
In this subsection, we elaborate weight setting methods
(WSMs) [38], [39] to properly set the penalty weight α of
the QUBO formula shown in the following Equation (5).

f (x) = α(Rx − t)2 + xTQx = αg(x) + c(x), (5)

where α is the penalty weight with a real-number value, R is a
row vector with real-number coefficients, x is a column vector
of binary variables with either value 0 or 1, t is a constant,Q is
an upper triangular matrix with real-number coefficients, g(x)
is the constraint function, and c(x) is the cost function or the
optimization function.

In Equation (5), g(x) > 0 if x represents an infeasible
solution, whereas g(x) = 0 if x represents a feasible solution.
Let y be the optimal solution that makes f (y) have theminimal
value, and S be the space of all infeasible solutions. We have
the following inequality:

c(y) < αg(x) + c(x), for every x ∈ S. (6)

According to Equation (6), a valid penalty weight α must
satisfy the following inequality:

α > max
x∈S

(
c(y) − c(x)

g(x)

)
. (7)

Based on Equation (7), different WSMs [38], [39] are
proposed to set α as various values. The methods are
Verma and Lewis Method (VLM), Upper Bound (UB),
Maximum QUBO Coefficient (MQC), Maximum change in
Objective function divided by Minimum Constraint function
of infeasible solutions (MOMC), and Maximum value
derived from dividing each change in Objective function with
the corresponding change in Constraint function (MOC).

Table 1 shows the penalty weights associated with the
above-mentioned WSMs. In the table, G and C are n × n
matrices representing g(x) and c(x), respectively. Moreover,
z is a column vector with all 1’s, so αUB is an upper
bound of the objective function with all positive QUBO
formula coefficients. αMQC is the maximum QUBO formula
coefficient. αVLM is a good estimation of the numerator
(i.e., c(y) − c(x)) of Equation (7) without considering the
denominator (i.e., g(x)). αMOMC considers g(x) to improve
αVLM by estimating g(x) as γ , the minimum change in the
constraint function that is larger than 0. αMOC tries to further
improve αVLM by considering a possible increase in the
constraint function as a result of a change in the objective
function which can be achieved by flipping any bit from 0 to
1 or vice versa. The readers are referred to [38] and [39] for
details of setting the penalty weight α.

D. RUNNING A QAA ON A QUANTUM ANNEALER
Figure 2 shows the five major steps to design and run a QAA
for solving an optimization problem on a quantum annealer,
such as the D-Wave Advantage quantum computer. The five
steps are elaborated below.

Step 1. Problem formulation (or definition): The optimiza-
tion problem is formulated as the QUBO formula of a QAA.
Note that some studies formulate the problem as the Ising
model [40]. For example, the paper [41] formulates 21 NP-
hard problems as Ising models. It has been shown in [42]
that the QUBO formula and the Ising model are equivalent,
and can be transformed to each other easily. Since this paper
focuses on the QUBO formula, an optimization problem is
formulated as a QUBO formula in the following context. The
formula is in turn transformed into a graph in which a node (or
vertex) stands for a binary variable, and the weight of an edge
between two nodes represents the coupling strength between
the two variables associated with the two nodes.

Step 2. Minor embedding: The graph corresponding to the
QUBO formula is embedded in the quantum processor or
quantum processing unit (QPU) of the quantum annealer,
with qubits and couplers representing graph nodes and
edges, respectively, as shown in Figure 2. Ideally, a qubit
should be directly connected to every qubit that has a
coupling relationship with it. However, due to the hardware
limitation of qubit connectivities, a qubit can only be directly
connected to a certain number of qubits. For example,
a qubit can be directly connected to 6 and 15 other qubits
in the D-wave quantum annealer Chimera and Pegasus
architectures, respectively.

In order to maintain the coupling relationships of nodes in
the graph, multiple qubits are used to represent a node, and
couplers (or chains) of strong strength are set between each
other of these qubits to make them maintain the same value.
Note that a doubled line between two nodes of some graphs
in Figure 2 represents a chain.
When the required number of qubits exceeds the upper

limit of the device, the graph corresponding to the original
problem should be decomposed into subgraphs to be
properly embedded into the QPU. Currently known graph
decomposition (or problem decomposition) methods include
the iterative centrality halo method [43], which prioritizes
nodes that have significant impacts on the global solution,
and the DBK (Decomposition, Bounds, K-core) method,
which recursively decomposes a graph into subgraphs of
specific sizes [44]. Certainly, the performance of quan-
tum annealing is greatly affected by graph decomposition
methods [43], [44].

Step 3. Initialization: This step sets the initial Hamiltonian
Hi and the final Hamiltonian Hf of the entire system. For
a particular state of the system, the Hamiltonian represents
the total energy of the system in that state. The initial
Hamiltonian Hi is set to make every qubit stay in a
superposition state. The final HamiltonianHf is set according
to the QUBO formula, so that the minimum final Hamil-
tonian corresponds to the optimal solution to the problem.

104168 VOLUME 11, 2023



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

TABLE 1. Different weight setting methods (WSMs) and their associated penalty weights.

FIGURE 2. The workflow of running a QAA on a D-Wave quantum annealer (adapted from [36]).

The system HamiltonianH (t) at time t of a quantum annealer
can be expressed as the following Equation (8).

H (t) = A(t)Hi + B(t)Hf , (8)

where A(t) and B(t) are Hamiltonian scaling functions that
evolve with the annealing time t . On the one hand, A(t)
gradually goes from 1 to close to 0; on the other hand, B(t)
gradually goes from 0 to close to 1.

Step 4. Annealing: In this step, the annealing process is
performed to obtain the optimal (or minimum) value of the
objective function. The system starts from the lowest initial
Hamiltonian, where every qubit is in a superposition state.
Then during annealing, the initial Hamiltonian decreases
gradually, whereas the final Hamiltonian increases gradually.
Finally, at the end of the annealing, the effect of the
initial Hamiltonian drops to zero, and the system is in the
lowest energy state of the final Hamiltonian associated with
the QUBO formula of the objective function. Each qubit

collapses from the superposition state to the state of 0 or 1,
which corresponds to the binary variable value achieving the
final global optimal objective function value.

The lower right part of Figure 2 shows the change in
the energy scaling functions A(t) and B(t) in Equation (8).
During the annealing process, the energy scaling function
A(t) and B(t) gradually grow smaller and larger with time t ,
respectively. Thus, the influence of the initial HamiltonianHi
becomes more significant, whereas the influence of the final
Hamiltonian Hf becomes less significant. And at the end of
annealing, the system Hamiltonian is mostly reflected by the
final Hamiltonian Hf .

Step 5. Reading: After the annealing process, the value
(0 or 1) of each qubit is read out for post-processing.
According to the corresponding relationship between the
qubit and the graph node, a solution to the original problem
can be derived. If the values of qubits representing the same
node are inconsistent, post-processing mechanisms, such as

VOLUME 11, 2023 104169



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

the majority vote, are employed to determine what the value
of the node is. Note that Steps 4 and 5 are repeatedmany times
(shots), which is called the resampling process, to ensure that
the optimal solution to the problem can be found with high
probability.

III. QAAS SOLVING NP-HARD PROBLEMS
This section presents QAAs using QUBO formulas to solve
specific NP-hard problems, including the SSP, MCP, VCP,
0/1 KP, GCP, HCP, TSP, and JSP. The QAAs are elaborated
one by one in the following subsections.

A. THE QAA SOLVING THE SSP
The subset sum problem (SSP) is defined as follows:

Given a set S = {s1, s2, . . . , sn}with n integers, and a target
integer T , the SSP is to find a subset S ′ of S such that the sum
of the integers in the subset S ′ is exactly T .

The QAA solving the SSP utilizes the following QUBO
formula:

H (x) =

(
n∑
i=1

sixi − T

)2

(9)

In Equation (9), si is an integer in S, xi = 1 represents
that si is in S ′, and xi = 0 represents that si is not in S ′,
where 1 ≤ i ≤ n. The number of QUBO variables is of O(n),
which scales linearly with the problem size n, and the QUBO
formula has only the constraint term.

B. THE QAA SOLVING THE MCP
The maximum cut problem (MCP) is defined as follows:

Given an undirected graph G = (V ,E) with the vertex set
V and the edge set E , a cut in G is a subset S ∈ V . The MCP
is to find a cut S such that EWS(S, S ′) is maximized, where
S ′

= V − S, and EWS(S, S ′) stands for the edge weight sum
of edges between S and S ′.

The QAA solving the MCP utilizes the following QUBO
formula:

H (x) =

∑
(u,v)∈E

wuv(−xu − xv + 2xuxv) (10)

In Equation (10), xu = 1 (resp., xu = 0) indicates that u
is (resp., is not) in S, xv = 1 (resp., xv = 0) indicates that v
is (resp., is not) in S, and wuv is the weight associated with
the edge (u, v). The number of QUBO variables is of O(n),
which scales linearly with the problem size n, and the QUBO
formula has only the optimization term.

C. THE QAA SOLVING THE VCP
The vertex cover problem (VCP) is defined as follows:

Given an undirected graph G = (V ,E) with the vertex
set V and the edge set E , the VCP is to find a minimum-sized
subset V ′ of V , such that for every edge (u, v) in E , either u
or v is in V ′.

The QAA solving the VCP utilizes the following QUBO
formula:

H (x) = A
∑

(u,v)∈E

(1 − xu)(1 − xv) + B
∑
v∈V

xv (11)

In Equation (11), xu = 1 (resp., xu = 0) indicates that u
is (resp., is not) in V ′, and xv = 1 (resp., xv = 0) indicates
that v is (resp., is not) in V ′. The first term is the constraint
term whose weight is A, whereas the second term is the
optimization term whose weight is B. The number of QUBO
variables is of O(n), which scales linearly with the problem
size n, and the QUBO formula has both the constraint term
and the optimization term.

D. THE QAA SOLVING THE 0/1 KP
The 0/1 knapsack problem (0/1 KP) is defined as follows:

Consider a knapsack with capacity W and n objects
o1, . . . , on whose weights are w1, . . . ,wn and whose costs
are c1, . . . , cn. The 0/1 KP is to select objects to form a
set S such that

∑
oi∈S ci is maximized under the constraint∑

oi∈S wi ≤ W (i.e., selected objects can be accommodated
by the knapsack and have the maximum total cost).

The QAA solving the 0/1 KP utilizes the following QUBO
formula:

H (x) = A

1 −

W∑
j

yj

2

+ A

 W∑
j=1

jyj −
n∑
i=1

wixi

2

− B
n∑
i=1

cixi (12)

In Equation (12), xi = 1 if oi ∈ S (i.e., if oi is selected
to be put in the knapsack), where 1 ≤ i ≤ n. Furthermore,
yj = 1 if the total weight of the selected objects in S to be
put in the knapsack is j, where 1 ≤ j ≤ W . The number of
QUBO variables is of O(n + W ), which scales linearly with
the problem size n plus W , and the QUBO formula has both
the constraint term and the optimization term. Note that if
we consider the number b = logW of bits representing W
as the input size, then the number of QUBO variables is
of O(n + 2b), which is no longer scales linearly with the
problem size. This situation is like that 0/1 KP is regarded as
a pseudo polynomial time-complexity problem, as a dynamic
programming algorithm can solve the 0/1 KP with the time
complexity of O(n×W ) [45]. However, we still take the value
ofW as the problem input size and assume that the number of
QUBO variables is of O(n + W ), which scales linearly with
the problem size n andW .

E. THE QAA SOLVING THE GCP
The graph coloring problem (GCP) is defined as follows:

Given a chromatic number n, and an undirected graphG =

(V ,E) with the vertex set V and the edge set E ofm edges, the

104170 VOLUME 11, 2023



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

GCP is to decide if it is possible to color all vertices in V such
that for every edge (u, v) in E , vertices u and v have different
colors.

The QAA solving the GCP utilizes the following QUBO
formula:

H (x) =

∑
v∈V

(
1 −

n∑
i=1

xv,i

)2

+

∑
(u,v)∈E

n∑
i=1

xu,ixv,i (13)

In Equation (13), xv,i = 1 indicates that vertex v is colored
with color i, 1 ≤ i ≤ n. The first term and the second term
are both constraint terms. The first constraint term means
that every vertex should be colored with only one color. The
second constraint termmeans that adjacent vertices should be
colored with different colors. The number of QUBO variables
is of O(m×n), which does not scale linearly with the problem
size m and n, and the QUBO formula has only the constraint
term.

F. THE QAA SOLVING THE HCP
The Hamiltonian cycle problem (HCP) is defined as follows:

Given an undirected graph G = (V ,E) with the vertex set
V of n vertices denoted by numbers 1, . . . , n and the edge
set E , the HCP is to decide if there exists a Hamiltonian cycle
starting at an arbitrary vertex s, visiting very other vertex
exactly once, and going back to vertex s.
The QAA solving the HCP utilizes the following QUBO

formula:

H (x) =

n∑
v=1

1 −

n∑
j=1

xv,j

2

+

n∑
j=1

(
1 −

n∑
v=1

xv,j

)2

+

∑
(u,v)/∈E

n∑
j=1

xu,jxv,j+1 (14)

In Equation (14), xv,j = 1 represents that vertex v is the
jth vertex visited, where 1 ≤ v, j ≤ n. There are three terms
in the QUBO formula. They are all constraint terms. The first
term restricts that every vertex can be visited only once. The
second term restricts that only one vertex can be visited at a
time. The third term restricts that if vertex v is visited after
vertex u is visited, then there must be an edge (u, v) ∈ E . The
number of QUBO variables is of O(n2), which does not scale
linearly with the problem size n, and the QUBO formula has
only the constraint term.

G. THE QAA SOLVING THE TSP
The travelling salesman problem (TSP) is defined as follows:

Given a directed graph G = (V ,E) with the vertex set V
of n vertices denoted by numbers 1, . . . , n and the edge set E ,

the TSP is to find a cycle that first visits an arbitrary vertex s,
then sequentially visits every other vertex exactly once, and
at last visits vertex s, such that the sum of weights of edges
included in the cycle is minimized.

The QAA solving the TSP utilizes the following QUBO
formula:

H (x) = A
n∑
v=1

1 −

n∑
j=1

xv,j

2

+ A
n∑
j=1

(
1 −

n∑
v=1

xv,j

)2

+ A
∑

(u,v)/∈E

n∑
j=1

xu,jxv,j+1

+ B
∑

(u,v)∈E

Wu,v

n∑
j=1

xu,jxv,j+1 (15)

In Equation (15), xv,j = 1 represents that vertex v is the
jth vertex to be visited, where 1 ≤ v, j ≤ n. There are
four terms in the QUBO formula. The first three terms are
constraint terms whose weights are A. The first constraint
term indicates that each vertex should be visited only once,
the second term means that only one vertex should be visited
at a time, and the third term means that if the visit of vertex
u is followed by the visit of vertex v, then there should exist
an edge (u, v) ∈ E . The fourth term is an optimization term,
in which Wu,v is the weight associated with the edge (u, v).
The number of QUBO variables is of O(n2), which does
not scale linearly with the problem size n, and the QUBO
formula has both the constraint term and the optimization
term.

H. THE QAA SOLVING THE JSP
The job shop scheduling problem (JSP) is defined as follows:

Consider a set M = {M1, . . . ,Mm} of m machines and
a set J = {J1, . . . , Jn} of n jobs, where job Jc consists
of a sequence JOc of operations for 1 ≤ c ≤ n. Let
JO1 = (o1, . . . , ok1 ), JO2 = (ok1+1, . . . , ok2 ), . . . , JOn =

(okn−1+1, . . . , okn ), where kn is the total number of operations.
Note that k0 is set as 0 to be used later. Each operation is
associated with an index i, 1 ≤ i ≤ kn, and its processing
time is denoted as pi. An operation needs to be processed on
a specific machine, operations of a job should be processed
sequentially, and only one operation of a job can be processed
at a given time. The JSP is to find a schedule to assign
operations to machines for minimizing the makespan, that is,
the total length of the schedule, or the latest finish time of
operations.

The QAA solving the JSP utilizes the following QUBO
formula:

H (x) = A h1(x) + B h2(x) + C h3(x) + Dho(x),where

VOLUME 11, 2023 104171



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

h1(x) =

n∑
c=1

 ∑
kc−1<i<kc
t+pi>t ′

xi,txi+1,t ′


h2(x) =

m∑
d=1

 ∑
(i,t,i′,t ′)∈Rd

xi,txi′,t ′


h3(x) =

kn∑
i=0

(
T∑
t=1

xi,t − 1

)2

ho(x) =

kn∑
i=0

T∑
t=0

(
xi,t (kn + 1)

)t+pi (16)

In Equation (16), xi,t = 1 represents that operation oi starts
at time t ≤ T , where T is the maximum time. Furthermore,
Rd = Ad ∪ Bd ,Ad = {(i, t, i′, t ′) : (i, i′) ∈ Id × Id , i ̸=

i′, 0 ≤ t, t ′ ≤ T , 0 < t ′−t < pi},Bd = {(i, t, i′, t ′) : (i, i′) ∈

Id × Id , i < i′, t = t ′, pi > 0, pi′ > 0}, and Id is the set of
indices of all operations that are restricted to be executed on
machineMd , 1 ≤ d ≤ m.
The terms h1(x), h2(x), and h3(x) are constraint terms.

The term h1(x) restricts that all operations of a job should
be processed sequentially. The term h2(x) restricts that a
machine can process only one operation at a time. The
term h3(x) restricts that every operation should be processed
exactly once. The term ho(x) is the optimization term for
minimizing the makespan, since ho(y) < ho(z), where y is
the optimal solution, and z is any non-optimal (but feasible)
solution.

The number of QUBO formula variables is of O(kn × T ),
which does not scale linearly with the problem size kn and T ,
and the QUBO formula has both the constraint term and the
optimization term.

IV. THE QUBO FORMULA CLASSIFICATION
As just shown in the last section, QUBO formulas are used
by QAAs to solve the SSP, MCP, VCP, 0/1 KP, GCP, HCP,
TSP, and JSP. The QUBO formulas can be classified into four
classes according to the following two classification criteria.

• Classification criterion 1 (CC1): Does the number of
QUBO variables have a linear relationship with the
problem input size?

Some QUBO formulas meet CC1 and maintain
a linear relationship between the number of QUBO
variables and the problem input size, whereas some
QUBO formulas do not. For example, the QUBO
formulas used by the QAAs to solve the SSP, MCP,
VCP, and 0/1 KP meet CC1. On the contrary, the QUBO
formulas used by the QAAs to solve the GCP, HCP, TSP,
and JSP do not meet CC1.

• Classification criterion 2 (CC2): Does the QUBO for-
mula have both the constraint term and the optimization
term?

Some QUBO formulas do not meet CC2 and have
either the constraint term or the optimization term.
However, some QUBO formulas meet CC2 and have

both the constraint term and the optimization term. For
example, theQUBO formulas used by theQAAs to solve
the SSP, MCP, GCP, and HCP have either the constraint
term or the optimization term. On the contrary, the
QUBO formulas used by the QAAs to solve the VCP,
0/1 KP, TSP, and JSP have both the constraint term and
the optimization term.

As shown in Table 2, QUBO formulas can be classified
into four classes according to the two criteria CC1 and CC2.
Table 2 also shows examples for each class. Specifically,
QUBO formulas used byQAAs to solve the SSP and theMCP
belong to Class-1. QUBO formulas used by QAAs to solve
the VCP and the 0/1 KP belong to Class-2. QUBO formulas
used by QAAs to solve the GCP and the HCP belong to
Class-3. QUBO formulas used by QAAs to solve the TSP and
the JSP belong to Class-4.

V. BENCHMARKS OF QAAS SOLVING NP-HARD
PROBLEMS
This section benchmarks the above-mentioned QAAs against
the CAs with the best solutions ever known (i.e., the best
quality of the solution). It presents the performance compar-
isons of the QAAs and related CAs for solving the SSP, MCP,
VCP, 0/1 KP, GCP, HCP, TSP, and JSP. The performance
comparison experiments are conducted by accessing the
D-Wave Advantage quantum annealer through the Amazon
Braket service for running the QAAs. The performance
information of the CAs solving the same problems is derived
from research papers in the literature. Certainly, the QAAs
and the CAs are applied to the same problem instances for
the sake of fair comparisons. The hardware and software
specifications that significantly influence the CA execution
time are not the same for different problems, though. We still
include the CA execution time derived from existing papers
for reference in benchmarking.

A. BENCHMARKING THE QAA SOLVING THE SSP
The public problem instances, p01, p02, p03, p04, p05,
p06, and p07, derived from [46] are used for benchmarking
algorithms solving the SSP. Every integer element in set S of
the SSP instance is between 5 and 30, and the target integer T
is between 20 and 200. The comparative CA is a dynamic
programming algorithm [46].

As shown in Table 3, the CA can find correct solutions
(indicated by ‘‘Y’’) to all problem instances. However, the
QAA cannot find the correct solution to the problem instance
p03, in which set S contains many large integers. In other
words, the CA can find solutions to all problem instances,
so does the QAA except for one problem instance. Thus, the
QAA is almost as good as the CA in terms of the quality to
solutions, but the CA is a little better. However, the QAA usu-
ally consumes less time, either in terms of the total execution
time (ET) or the QPU time (QT). For problem instances p02
and p03, the QAA is faster than the CA by a factor around
30, and 130, respectively. Note that below a result in blue
with a superscript =, a result in red with a superscript +, and

104172 VOLUME 11, 2023



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

TABLE 2. The four-class classification of QUBO formulas.

TABLE 3. Benchmarks of algorithms solving the SSP.

a result in green with a superscript - are used to indicate that
the QAAs’ solutions (Sol.) are equal to, better than, andworse
than those of CAs, respectively. Also note that the time unit
is ‘‘second’’ in the tables of benchmarks.

B. BENCHMARKING THE QAA SOLVING THE MCP
The problem instances, g22, g23, g24, g25, g27, g32,
g33, g35, g36, and g37, derived from a publicly available
database [47] are used for benchmarking algorithms solving
the MCP. The instances include cyclic graphs, planar graphs,
and random graphs with edge weights of 1, 0, and -1.
The number of graph nodes in the instances ranges
from 800 to 3000. The CA to be compared is the optimization
software provided by Meta-Analytics [48].
As shown in Table 4, both the QA and the CA can

find good solutions to the MCP instances, and the QA
can even find better solutions to problem instances g33
and g36, improving the maximum cut solution of the
weight sum from 1380 to 1382, and from 7674 to 7675,
respectively. Due to the limited number of qubits, when
faced with large-sized problem instances, it is necessary to
first decompose the problem instance by a tool running on
a classical computer before embedding it in the QPU for
quantum annealing. Therefore, the QAA has longer execution
time than the CA, as shown in Table 4. However, the QPU
time of the QAA is shorter than the execution time of
the CA. Note that EnergyImpactDecomposer, which is a
problem decomposition tool provided in the D-Wave Ocean
library [49], is used to decompose the problem into smaller
subproblems based on the energy contributions of variables
to the problem.

C. BENCHMARKING THE QAA SOLVING THE VCP
The public problem instances, p-hat300-1, keller4,
brock400-2, keller5, DSJC500.5, C1000.9, and keller6,
derived from the DIMACS (Discrete Mathematics and
Theoretical Computer Science) challenge [50] are used for
benchmarking algorithms solving the VCP. The number of
vertices in vertex set V of the VCP instances is between

300 and 1000. The comparative CA is a branch-and-bound
algorithm [51].
There are two QAAs, QAA1 and QAA2, for benchmark-

ing. The QAA1 sets the optimization weight B as 1 and then
sets the penalty weight A by employing applicable WSMs in
the following order: MOC, MOMC, VLM, MQC, and UB,
to make the penalty weight larger and larger until feasible
solutions are found. With our experiences, small penalty
weights usually lead to infeasible solutions, whereas large
penalty weights tend to cause feasible solutions. However,
too large penalty weights may lead to feasible solutions with
low qualities. This is the reason why QAA1 sets the penalty
weight by employing applicable WSMs according to the
order of MOC, MOMC, VLM, MQC, and UB. Note that
a WSM may not be applicable to a QUBO formula. For
example, the MOC cannot be applied to the QUBO formula
using matrices of different dimensions.

The penalty weights of the QAA2 are set by running an
evolutionary algorithm, the genetic algorithm (GA) provided
in [52], for many iterations. The GA encodes penalty weights
as bit vectors to go through the population initialization,
fitness evaluation, elitism selection, crossover, and mutation
processes. TheGAdetails are described as follows. The initial
population size is 10. The QAA is used to evaluate the fitness
value. The elite number of the roulette-wheel elitism selection
process is 4. The crossover rate is 0.9, and the one-point
crossover is adopted for the crossover process. The mutation
rate is 0.2, and the one-point mutation is employed to flip the
bit at the mutation point. The maximum number of iterations
to run the GA is 50.

As shown in Table 5, the QAA1 uses the UBmethod to find
solutions to the three problem instances, keller4, keller5, and
keller6, whereas it uses the MOC method to find solutions
to the other problem instances. QAA1 has equally good
solutions as the CA to three problem instances, p-hat300-1,
keller4, and DSJC500.5, and has worse solutions than the
CA to other problem instances. The QAA2 has equally good
solutions to five problem instances, and has worse solutions
than the CA to two problem instances, keller 5 and keller 6.

VOLUME 11, 2023 104173



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

TABLE 4. Benchmarks of algorithms solving the MCP.

TABLE 5. Benchmarks of algorithms solving the VCP.

Furthermore, it can be observed that QAAs may be faster or
slower than the CAs for the VCP instances.

D. BENCHMARKING THE QAA SOLVING THE 0/1 KP
The public problem instances, L3, L4, L6, L7, L11, and
L14, derived from [47] are used for benchmarking algorithms
solving the 0/1 KP. The number of objects of the 0/1 KP
instances is between 4 and 45, and the knapsack capacity
is between 20 and 1000. The comparative CA is Google
OR-Tools [53], which is a free and open-source toolkit,
using the linear programming, mixed-integer programming,
constraint programming, and vehicle routing algorithms,
to solve optimization problems.

There are two QAAs, QAA1 and QAA2, for benchmark-
ing. The QAA1 sets the optimization weight B as 1 and then
sets the penalty weight A by employing applicable WSMs in
the following order: MOC, MOMC, VLM, MQC, and UB,
to make the penalty weight larger and larger until feasible
solutions are found. Unfortunately, none of the WSMs can
properly set the penaltyweights to find feasible solutions. The
acronym ‘‘NF’’ representing ‘‘Not Found’’ is used to indicate
such cases in Table 6. The penalty weights of the QAA2 are
set by running the GA provided in [52]. The GA parameters
are set as follows. The number of bits to represent the penalty
weight as an integer is 14. The initial population size is 10.
The elite number of the selection process is 4. The crossover
rate is 0.5, and the one-point crossover is adopted for the
crossover process. The mutation rate is 0.2, and the one-point
mutation is employed to flip the bit at the mutation point. The
maximum number of iterations to run the GA is 100.

As shown in Table 6, the QAA2 and the CA have the same
solutions to most problem instances; however, the QAA has
worse solutions to problem instances L11 and L14 than the
CA has. Furthermore, it can be observed that the CA has
better computation time than QAAs.

E. BENCHMARKING THE QAA SOLVING THE GCP
The public problem instances, R125.1, DSJC125.1,
DSJC125.5, R250.1, DSJC250.1, DSJC250.5, DSJC500.1,
and le450_15d, derived from [54] are used for benchmarking
algorithms solving the GCP. The number of vertices in
vertex set V of the GCP instances is between 125 and 450.
The comparative CA is a memetic algorithm combining the
teaching-learning concept and the tabu-search concept [55].
As shown in Table 7, the QAA cannot find solutions

to GCP instances DSJC125.5, DSJC250.5, DSJC500.1, and
le450_15d, whereas and the CA can find solutions to all
problem instances. Furthermore, the QAA may be faster or
slower than the CA for some problem instances.

F. BENCHMARKING THE QAA SOLVING THE HCP
The public problem instances, 4_H, 6_H-1, 6_H-2, 8_H-
1, 8_H-2, and alb1000, derived from [56] are used for
benchmarking algorithms solving the HCP. The number of
vertices in vertex set V of the HCP instances is between
1000 and 5000. The comparative CA is an algorithm using
the ‘‘snakes and ladders’’ heuristic [57]. The algorithm is
implemented in Python and C++ [58].
As shown in Table 8, the QAA cannot find solutions to

the problem instance alb1000 (indicated by ‘‘NF’’), whereas
and the CA can find solutions to all problem instances.
The CA execution time is 0.023 for the alb1000 problem
instance. However, the CA execution time cannot be found
from research papers and indicated by ‘‘N/A’’ (i.e., ‘‘not
available’’) in Table 8. The QAA takes several seconds to run,
and takes QPU time less than 0.202 seconds. However, the
QAA cannot run properly for the alb1000 instance; it gets an
errormessage of ‘‘Kernel died’’ (indicated by ‘‘X’’ in Table 8)
and no solution is returned. The reason for getting such an
error message is that the problem size is too large, causing
too many QUBO variables.

104174 VOLUME 11, 2023



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

TABLE 6. Benchmarks of algorithms solving the 0/1 KP.

TABLE 7. Benchmarks of algorithms solving the GCP.

TABLE 8. Benchmarks of algorithms solving the HCP.

G. BENCHMARKING THE QAA SOLVING THE TSP
The public problem instances, br17, ftv33, ftv35, gr17, gr21,
p43, ry48p, and kro124p, derived from TSPLIB [59] are used
for benchmarking algorithms solving the TSP. The number
of vertices of the TSP instances is between 17 and 124.
The comparative CA is the algorithm provided by Google
OR-Tools [53].

There are three QAAs, QAA1, QAA2, and QAA3, for
benchmarking. Again, the QAA1 sets the optimization
weightB as 1 and then sets the penalty weightA by employing
applicable WSMs in the following order: MOC, MOMC,
VLM, MQC, and UB, to make the penalty weight larger and
larger until feasible solutions are found. The QAA2 uses a
method called ‘‘total edge weight adjustment (TEWA)’’ to
set the optimization weight B as 1 and then set the penalty
weight A as the value of n

m

∑
e∈E we (i.e., A is the summation

of all edge weights times the number n of vertices and divided
by the number m of edges). QAA3 sets the optimization
weight B as 1 and uses the GA to set the penalty weight
A with the following GA parameters. The number of bits
to represent the penalty weight is 16. The initial population
size is 4. The elite number of the selection process is 2.
The crossover rate is 0.9, and the one-point crossover is
adopted for the crossover process. The mutation rate is 0.2,
and the one-point mutation is employed to flip the bit at the
mutation point. The maximum number of iterations to run the
GA is 3.

As shown in Table 9, the QAA1, QAA2, QAA3, and
the CA find an equally good solution to the problem
instance br17, whereas the QAA1, QAA2, and QAA3 have
worse solutions to all other problem instances than the CA.
Furthermore, the QAA1, QAA2, and QAA3 are slower than
the CA for all problem instances in terms of the total
execution time. However, the QPU time of the QAA1, QAA2,
and QAA3 is smaller than the execution time of the CA for
some problem instances.

H. BENCHMARKING THE QAA SOLVING THE JSP
The public problem instances, ft02, ft03, ft04, ft06, la03, and
ft10, provided by OR-Library [60] are used for benchmarking
algorithms solving the JSP. The comparative CA is the
algorithm provided by Google OR-Tools [53].

The QUBO formula used by the QAA has three constraint
terms and one optimization term, each of which has a
different weight. So, none of MOC, MOMC, VLM, MQC,
and UB is applicable to tune the penalty weights. Instead,
GA is adopted as theWSM to tune theweightsA,B,C , andD.
The GA parameters are set as follows. The number of bits to
represent the weights is 5. The initial population size is 10 (for
ft02, ft03, ft04, and ft06) or 4 (for la03 and ft10). The elite
number of the selection process is 4 (for ft02, ft03, ft04, and
ft06) or 2 (for la03 and ft10). The crossover rate is 0.9, and the
one-point crossover is adopted for the crossover process. The
mutation rate is 0.2, and the one-point mutation is employed

VOLUME 11, 2023 104175



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

TABLE 9. Benchmarks of algorithms solving the TSP.

to flip the bit at the mutation point. The maximum number of
iterations to run the GA is 10 (for ft02, ft03, ft04, and ft06)
or 3 (for la03 and ft10).

As shown in Table 10, the QAA has the same solutions
as the CA to the problem instances ft02, ft03, ft04, and
ft06. However, the QAA cannot find any feasible solution
(indicated by ‘‘NF’’) to the problem instances la03 and ft10.
Furthermore, both the execution time and the QPU time of
the QAA are longer than the execution time of the CA.

VI. OBSERVATIONS FROM QAA BENCHMARKS
By the benchmarks of QAAs and CAs for solving different
NP-hard problems, we have the following observations and
suggestions.

The QAAs using Class-1 QUBO formulas are likely to
have performance that is better than or similar to that
of related CAs. This is because the number of QUBO
variables of a Class-1 QUBO formula scales linearly with the
problem input size. Furthermore, a Class-1 QUBO formula
has either the constraint term or the optimization term. Thus,
a Class-1 QUBO formula usually has fewer QUBO variables
and simpler coupling relationships between variables than
formulas of other classes. The graph associated with a
Class-1 QUBO formula is thus easier to be embedded into
the QPU properly, leading to short computation time and
annealing time, along with good solutions.

A Class-2 QUBO formula has both the constraint term and
the optimization term, but the number of QUBO variables of
a Class-2 QUBO formula scales linearly with the problem
input size. Thus, a Class-2 QUBO formula usually has fewer
QUBO variables than formulas of other classes. However,
it may have more complex coupling relationships. On the
contrary, a Class-3 QUBO formula has either the constraint
term or the optimization term, leading to simpler coupling
relationships. However, the number of QUBO variables of
a Class-3 QUBO formula does not scale linearly with the
problem input size, which implies there are more QUBO
variables. By observing benchmarks of QAAs and related

CAs just shown earlier, QAAs using Class-2 or Class-3
QUBO formulas have similar or a little worse performance
than related CAs.

A Class-4 QUBO formula has both the constraint term and
the optimization term, and the number of QUBO variables
of a Class-4 QUBO formula does not scale linearly with the
problem input size. Thus, a Class-4 QUBO formula has more
QUBO variables and more complex coupling relationships
than formulas in other classes. Thus, the graph associated
with a Class-4 QUBO formula is hard to be embedded into
the QPU properly, leading to long computation time and
annealing time, along with unfavorable solutions.

For QAAs using Class-2 or Class-4 QUBO formulas
that contain both constraint terms and optimization terms,
we need to set the penalty weight and the optimization weight
before the quantum annealing process starts. It is suggested
to set the optimization weight as 1 and then set the penalty
weight by employing applicable WSMs in the following
order: MOC, MOMC, VLM, MQC, and UB, to make the
penalty weight larger and larger until feasible solutions are
found. It is observed that small penalty weights may lead to
infeasible solutions, whereas large penalty weights tend to
cause feasible solutions. However, too large penalty weights
may lead to feasible solutions with low qualities. This is
the reason why it is suggested to set the penalty weight by
employing applicable WSMs according to the order of MOC,
MOMC, VLM, MQC, and UB.

It is also suggested to adopt GA for setting the optimization
weight and the penalty term properly. The GA encodes
weights as bit vectors to go through the population initial-
ization, fitness evaluation, elitism selection, crossover, and
mutation processes. The GA runs iteration by iteration until
fitness value converges or the maximum iteration is reached.
By the QAA benchmarks shown earlier, the GA is promising
to set the penalty weight and the optimization weight properly
for QAAs to find good solutions. However, the GA consumes
much computation time, which is not included in the QAA
benchmarks, to set weights properly. It is suggested to use

104176 VOLUME 11, 2023



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

TABLE 10. Benchmarks of algorithms solving the JSP.

the GA to set weights for a problem instance PI for the first
time. When the problem instance PI is modified slightly,
the same weights are still applied to the modified problem
instance. Moreover, the same weights can also be applied to
problem instances that are similar to PI. Therefore, the GA
computation time can be regarded as just a one-time pre-
consumption of time.

VII. CONCLUSION
In this paper, QUBO formulas are classified into four
classes according to two criteria: (i) Does the number of
QUBO variables scale linearly with the problem input size?
(ii) Does the QUBO formula have both the constraint term
and the optimization term? The classification is exemplified
by QUBO formulas used by QAAs to solve specific NP-hard
problems, including the SSP, MCP, VCP, 0/1 KP, GCP, HCP,
TSP, and JSP.

We benchmark the QAAs against related CAs. Observa-
tions from QAA benchmarks along with derived suggestions
are further given for improving QAA performance. CAs and
QAAs using Class-2 and Class-3 QUBO formulas provide
solutions of similar qualities to NP-hard problems. QAAs
may have longer or shorter execution time than CAs. QAAs
using Class-1 (resp., Class-4) QUBO formulas are likely to
be better (resp., worse) than CAs in terms of the quality of
the solution and the time to the solution. It is believed many
QAAs will have superior performance in the future when
we go beyond the current NISQ era [32], in which quantum
devices have only a moderate number of error-prone qubits.

In the future, we plan to investigate more QAAs using
different QUBO formulas to solve more problems to
exemplify the QUBO formula classificationmore thoroughly.
In addition to the evolutionary algorithm GA, we also plan
to study the possibilities of employing various evolutionary
algorithms, such as the particle swarm optimization, ant
colony optimization, and tabu search algorithms, to prop-
erly set weights of constraint and optimization terms for
improving QAA performance. Furthermore, we plan to apply
the QUBU formulas to developing algorithms for different
computing machines that are similar to the quantum annealer,
such as the digital annealer (DA) [61] and the coherent Ising
machine (CIM) [62], to see if the DA or the CIM can obtain
better solutions than the quantum annealer.

REFERENCES
[1] F. Arute et al., ‘‘Quantum supremacy using a programmable super-

conducting processor,’’ Nature, vol. 574, no. 7779, pp. 505–510,
2019.

[2] M. Bozzo-Rey and R. Loredo, ‘‘Introduction to the IBM Q experience and
quantum computing,’’ in Proc. 28th Annu. Int. Conf. Comput. Sci. Softw.
Eng., 2018, pp. 410–412.

[3] M. AbuGhanem and H. Eleuh, ‘‘A quantum state tomography study
of Google’s Sycamore gate on an IBM’s quantum computer,’’ Elsevier,
Rochester, NY, US, Tech. Rep. SSRN 4316581.

[4] C. McGeoch and P. Farré, ‘‘The D-Wave advantage system: An overview,’’
D-Wave Syst., Burnaby, BC, Canada, Tech. Rep. 14-1049A-A, 2020.

[5] S. Abel, N. Chancellor, and M. Spannowsky, ‘‘Quantum computing for
quantum tunneling,’’ Phys. Rev. D, Part. Fields, vol. 103, no. 1, Jan. 2021,
Art. no. 016008.

[6] M. Hernandez and M. Aramon, ‘‘Enhancing quantum annealing perfor-
mance for the molecular similarity problem,’’ Quantum Inf. Process.,
vol. 16, no. 5, p. 133, May 2017.

[7] A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gómez, and R. Biswas,
‘‘Opportunities and challenges for quantum-assisted machine learning in
near-term quantum computers,’’ Quantum Sci. Technol., vol. 3, no. 3,
Jun. 2018, Art. no. 030502.

[8] R. Y. Li, R. Di Felice, R. Rohs, and D. A. Lidar, ‘‘Quantum annealing
versus classical machine learning applied to a simplified computational
biology problem,’’ npj Quantum Inf., vol. 4, no. 1, p. 14, Feb. 2018.

[9] E. H. Houssein, Z. Abohashima, M. Elhoseny, and W. M. Mohamed,
‘‘Machine learning in the quantum realm: The state-of-the-art, chal-
lenges, and future vision,’’ Expert Syst. Appl., vol. 194, May 2022,
Art. no. 116512.

[10] M. Wilson, T. Vandal, T. Hogg, and E. G. Rieffel, ‘‘Quantum-assisted
associative adversarial network: Applying quantum annealing in deep
learning,’’ Quantum Mach. Intell., vol. 3, no. 1, pp. 1–14, Jun. 2021.

[11] C. F. Higham and A. Bedford, ‘‘Quantum deep learning by sampling neural
nets with a quantum annealer,’’ Sci. Rep., vol. 13, no. 1, p. 3939,Mar. 2023.

[12] A. Khoshaman, W. Vinci, B. Denis, E. Andriyash, H. Sadeghi, and
M. H. Amin, ‘‘Quantum variational autoencoder,’’ Quantum Sci. Technol.,
vol. 4, no. 1, Sep. 2018, Art. no. 014001.

[13] N. Gao, M. Wilson, T. Vandal, W. Vinci, R. Nemani, and E. Rieffel,
‘‘High-dimensional similarity search with quantum-assisted variational
autoencoder,’’ in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2020, pp. 956–964.

[14] A. Perdomo-Ortiz, A. Feldman, A. Ozaeta, S. V. Isakov, Z. Zhu,
B. O’Gorman, H. G. Katzgraber, A. Diedrich, H. Neven, J. de Kleer,
B. Lackey, and R. Biswas, ‘‘Readiness of quantum optimization machines
for industrial applications,’’ Phys. Rev. Appl., vol. 12, no. 1, Jul. 2019,
Art. no. 014004.

[15] A. Perdomo-Ortiz, J. Fluegemann, S. Narasimhan, R. Biswas, and
V. N. Smelyanskiy, ‘‘A quantum annealing approach for fault detection and
diagnosis of graph-based systems,’’ Eur. Phys. J. Special Topics, vol. 224,
no. 1, pp. 131–148, Feb. 2015.

[16] H. Wang, W. Wang, Y. Liu, and B. Alidaee, ‘‘Integrating machine learning
algorithms with quantum annealing solvers for online fraud detection,’’
IEEE Access, vol. 10, pp. 75908–75917, 2022.

[17] J. Lang, S. Zielinski, and S. Feld, ‘‘Strategic portfolio optimization using
simulated, digital, and quantum annealing,’’ Appl. Sci., vol. 12, no. 23,
p. 12288, Dec. 2022.

[18] M. Mattesi, L. Asproni, C. Mattia, S. Tufano, G. Ranieri, D. Caputo, and
D. Corbelletto, ‘‘Financial portfolio optimization: A QUBO formulation
for Sharpe ratio maximization,’’ 2023, arXiv:2302.12291.

[19] E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and
V. N. Smelyanskiy, ‘‘A case study in programming a quantum annealer for
hard operational planning problems,’’Quantum Inf. Process., vol. 14, no. 1,
pp. 1–36, Jan. 2015.

VOLUME 11, 2023 104177



J.-R. Jiang, C.-W. Chu: Classifying and Benchmarking QAAs Based on QUBO for Solving NP-Hard Problems

[20] M. Klar, P. Schworm, X. Wu, M. Glatt, and J. C. Aurich, ‘‘Quantum
annealing based factory layout planning,’’Manuf. Lett., vol. 32, pp. 59–62,
Apr. 2022.

[21] A. Mott, J. Job, J.-R. Vlimant, D. Lidar, and M. Spiropulu, ‘‘Solving
a Higgs optimization problem with quantum annealing for machine
learning,’’ Nature, vol. 550, no. 7676, pp. 375–379, Oct. 2017.

[22] D. Pires, Y. Omar, and J. Seixas, ‘‘Adiabatic quantum algorithm formultijet
clustering in high energy physics,’’ Phys. Lett. B, vol. 843, Aug. 2023,
Art. no. 138000.

[23] R. Sandt, Y. Le Bouar, and R. Spatschek, ‘‘Quantum annealing for
microstructure equilibration with long-range elastic interactions,’’ Sci.
Rep., vol. 13, no. 1, p. 6036, Apr. 2023.

[24] K. Wils and B. Chen, ‘‘A symbolic approach to discrete structural
optimization using quantum annealing,’’ 2023, arXiv:2307.00153.

[25] R. Sandt and R. Spatschek, ‘‘Efficient low temperature Monte Carlo
sampling using quantum annealing,’’ Sci. Rep., vol. 13, no. 1, p. 6754,
2023.

[26] P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver,
‘‘Perspectives of quantum annealing:Methods and implementations,’’Rep.
Prog. Phys., vol. 83, no. 5, May 2020, Art. no. 054401.

[27] B. Altshuler, H. Krovi, and J. Roland, ‘‘Anderson localization makes
adiabatic quantum optimization fail,’’ Proc. Nat. Acad. Sci. USA, vol. 107,
no. 28, pp. 12446–12450, Jul. 2010.

[28] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar,
J. M. Martinis, and M. Troyer, ‘‘Evidence for quantum annealing with
more than one hundred qubits,’’ Nature Phys., vol. 10, no. 3, pp. 218–224,
Mar. 2014.

[29] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker,
J. M. Martinis, D. A. Lidar, and M. Troyer, ‘‘Defining and detecting
quantum speedup,’’ Science, vol. 345, no. 6195, pp. 420–424, Jul. 2014.

[30] H. G. Katzgraber, ‘‘Viewing vanilla quantum annealing through spin
glasses,’’ Quantum Sci. Technol., vol. 3, no. 3, Jul. 2018, Art. no. 030505.

[31] J.-R. Jiang and C.-W. Chu, ‘‘Solving NP-hard problems with quantum
annealing,’’ in Proc. IEEE 4th Eurasia Conf. IoT, Commun. Eng. (ECICE),
Oct. 2022, pp. 406–411.

[32] J. Preskill, ‘‘Quantum computing in the NISQ era and beyond,’’ Quantum,
vol. 2, p. 79, Aug. 2018.

[33] R. C. T. Lee, R. C. Chang, Y. T. Tsai, and S. S. Tseng, Introduction to the
Design and Analysis of Algorithms, New York, NY, USA: McGraw-Hill,
2005.

[34] S. A. Cook, ‘‘The complexity of theorem-proving procedures,’’ in Proc.
3rd Annu. ACM Symp. Theory Comput. (STOC), 1971, pp. 151–158.

[35] R. M. Karp, ‘‘Reducibility among combinatorial problems,’’ in Com-
plexity of Computer Computations. Boston, MA, USA: Springer, 1972,
pp. 85–103.

[36] S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt, ‘‘Quantum annealing for
industry applications: Introduction and review,’’ Rep. Prog. Phys., vol. 85,
no. 10, Oct. 2022, Art. no. 104001.

[37] M. Razavy, Quantum Theory of Tunneling. Singapore: World Scientific,
2013.

[38] A. Verma and M. Lewis, ‘‘Penalty and partitioning techniques to improve
performance of QUBO solvers,’’ Discrete Optim., vol. 44, May 2022,
Art. no. 100594.

[39] M. Ayodele, ‘‘Penalty weights in QUBO formulations: Permutation
problems,’’ in Proc. Eur. Conf. Evol. Comput. Combinat. Optim. (Part
EvoStar). Cham, Switzerland: Springer, 2022, pp. 159–174.

[40] S. S. Wald, ‘‘Thermalisation and relaxation of quantum systems,’’ Ph.D
thesis, Dept. Natural Sci. Technol., Université de Lorraine, Lorraine,
France, 2017.

[41] A. Lucas, ‘‘Ising formulations of many NP problems,’’ Frontiers Phys.,
vol. 2, p. 5, Feb. 2014.

[42] F. Glover, G. Kochenberger, and Y. Du, ‘‘A tutorial on formulating and
using QUBO models,’’ 2018, arXiv:1811.11538.

[43] G. Bass, M. Henderson, J. Heath, and J. Dulny, ‘‘Optimizing the optimizer:
Decomposition techniques for quantum annealing,’’ Quantum Mach.
Intell., vol. 3, no. 1, pp. 1–14, Jun. 2021.

[44] E. Pelofske, G. Hahn, and H. N. Djidjev, ‘‘Solving larger maximum clique
problems using parallel quantum annealing,’’ 2022, arXiv:2205.12165.

[45] M. R. Garey and D. S. Johnson, Computers and Intractability, vol. 174.
San Francisco, CA, USA: Freeman, 1979.

[46] Data for the Subset Sum Problem. Accessed: Mar. 25, 2023.
[Online]. Available: https://people.sc.fsu.edu/~jburkardt/datasets/sub
set_sum/subset_sum.html

[47] C. Helmberg and F. Rendl, ‘‘Solving quadratic (0,1)-problems by
semidefinite programs and cutting planes,’’Math. Program., vol. 82, no. 3,
pp. 291–315, Aug. 1998.

[48] Meta-Analytics: Max Cut Benchmarks. Accessed: Jun. 1, 2022. [Online].
Available: http://meta-analytics.net/index.php/max-cut-benchmarks/

[49] D-Wave Decomposer. Accessed: Mar. 25, 2023. [Online]. Available:
https://docs.ocean.dwavesys.com/en/stable/docs_hybrid/reference/decomp
osers.html,

[50] Network Repository: A Scientific Network Data Repository With Interac-
tive Visualization and Mining Tools. Accessed: Mar. 25, 2023. [Online].
Available: https://networkrepository.com/index.php

[51] L. Wang, S. Hu, M. Li, and J. Zhou, ‘‘An exact algorithm for minimum
vertex cover problem,’’Mathematics, vol. 7, no. 7, p. 603, Jul. 2019.

[52] H. Cheng, The Genetic Algorithm Solving the Optimization Problem.
Accessed: Mar. 25, 2023. [Online]. Available: https://reurl.cc/6NnnEO

[53] Google OR-Tools. Accessed: Mar. 25, 2023. [Online]. Available:
https://developers.google.com/optimization

[54] Graph Coloring Instances. Accessed: Mar. 25, 2023. [Online]. Available:
https://mat.tepper.cmu.edu/COLOR/instances.html#XXDSJ

[55] T. Dokeroglu and E. Sevinc, ‘‘Memetic Teaching–Learning-Based opti-
mization algorithms for large graph coloring problems,’’ Eng. Appl. Artif.
Intell., vol. 102, Jun. 2021, Art. no. 104282.

[56] M. Meringer, ‘‘Fast generation of regular graphs and construction of
cages,’’ J. Graph Theory, vol. 30, no. 2, pp. 137–146, Feb. 1999.

[57] P. Baniasadi, V. Ejov, J. A. Filar, M. Haythorpe, and S. Rossomakhine,
‘‘Deterministic, ‘snakes and ladders’ heuristic for the Hamiltonian cycle
problem,’’Math. Program. Comput., vol. 6, no. 1, pp. 55–75, 2014.

[58] M. T. Lezana, ‘‘A Python implementation of the snakes and ladders
for solving the Hamiltonian cycle problem using a graphical interface,’’
Bachelor’s Thesis, Dept. Comput. Sci., Univ. Basque Country, Leioa,
Spain, 2021.

[59] G. Reinhelt. TSPLIB: A Library of Sample Instances for the TSP (and
Related Problems) From Various Sources and of Various Type. Accessed:
Mar. 25, 2023. [Online]. Available: http://comopt.ifi.uniheidelberg.
de/software/TSPLIB95

[60] OR-Library. Accessed: Mar. 25, 2023. [Online]. Available: http://people
.brunel.ac.uk/~mastjjb/jeb/info.html

[61] O. Šeker, N. Tanoumand, and M. Bodur, ‘‘Digital annealer for quadratic
unconstrained binary optimization: A comparative performance analysis,’’
Appl. Soft Comput., vol. 127, Sep. 2022, Art. no. 109367.

[62] T. Honjo, T. Sonobe, K. Inaba, T. Inagaki, T. Ikuta, Y. Yamada, T. Kazama,
K. Enbutsu, T. Umeki, R. Kasahara, K.-I. Kawarabayashi, and H. Takesue,
‘‘100,000-spin coherent Isingmachine,’’ Sci. Adv., vol. 7, no. 40, Oct. 2021,
Art. no. eabh0952.

JEHN-RUEY JIANG (Member, IEEE) received
the Ph.D. degree in computer science from
National Tsing Hua University, Hsinchu, Taiwan,
in 1995. He joined Chung-Yuan Christian Uni-
versity as an Associate Professor, in 1995. Then,
he joined Hsuan-Chuang University, in 1998, and
became a Full Professor, in 2004. He is cur-
rently with the Department of Computer Science
and Information Engineering, National Central
University, Taoyuan, Taiwan. He also leads the

Advanced Computing And Networking (ACAN) Laboratory, which focuses
on investigating advanced technologies about computing and networking.
His research interests include quantum annealing algorithms, universal
quantum algorithms, quantum computing, quantum networking, the Internet
of Things, the quantum Internet of Things, machine learning/deep learning,
and quantum machine learning/deep learning.

CHUN-WEI CHU received the B.S. degree
from the Department of Applied Mathemat-
ics, National Chung Hsing University, Taichung,
Taiwan, in 2020, and the M.S. degree from the
Department of Computer Science and Informa-
tion Engineering, National Central University,
Taoyuan, Taiwan, in 2022. His research interests
include quantum annealing algorithms and the
Internet of Things (IoT).

104178 VOLUME 11, 2023


