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ABSTRACT We consider guaranteeing end-to-end (E2E) latency bounds to flows in a network. It is desirable
that flows are isolated from other flows. The bursts from other flows or the network utilization level should
not affect a flow’s latency bound. The fair queuing technique, which includes Packetized Generalized
Processor Sharing (PGPS) andVirtual Clock (VC), is based on the concept of ideal packet service completion
time called the Finish Time (FT). The fair queuing is known to provide the near perfect flow isolation but
has to maintain the flow states. Alternative schemes were suggested, in which the entrance node in a network
generates FT for a packet and records it in the packet with other necessary information. Subsequent nodes,
based on these records, decide the service eligibility and service order of the packets. A packet is served only
when it is eligible, thus the system is non-work conserving. In this paper, a simpler framework for deriving
such FTs in core nodes without flow state is presented, in which initial FT is updated by adding a delay factor
per node, which is a function of parameters of nodes and flow. The proposed scheduler is work conserving
and has the property that, for a certain choice of the delay factor, the expression for E2E latency bound can be
found. This E2E latency bound function is the same as that of a network with stateful fair queuing schedulers
in all the nodes. Moreover, utilizing the fact that the service order of packets passing through the same path
can be unaltered in the middle of the path, we also present a FIFO-based architecture whose performance
is similar to that of a priority queue-based architecture. The extensive simulations prove that the proposed
framework shows an ideal flow isolation performance over a wide range of delay factor values, with superior
scalability.

INDEX TERMS Finish time, deterministic networking, latency bound, scheduler, fair queuing.

I. INTRODUCTION
There are emerging applications that require both latency and
latency variation (jitter) bounds in large-scale networks [1].
In environments such as smart factories and in-vehicle net-
works, there is a demand for a network service that guarantees
the upper bound of latency and jitter. Accordingly, standard-
ization of related technologies has progressed in the IEEE
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802.1 time-sensitive networking (TSN) task group [2], [3].
This demand has also arisen in large-scale networks such as
Metaverse, and the IETF deterministic networking (DetNet)
working group is also dealing with issues in higher layers
such as IP/MPLS and issues in large-scale networks [4].
In large-scale networks, end-nodes join and leave, and a

large number of flows are dynamically generated and termi-
nated. Achieving satisfactory deterministic performance in
such environments would be challenging. The current Inter-
net, which has adopted the differentiated services (DiffServ)
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architecture [5], has the problem of the burst accumulation
and the cyclic dependency, which is mainly due to FIFO
queuing and strict priority scheduling. Cyclic dependency
is defined as a situation wherein the graph of interference
between flow paths has cycles. The existence of such cyclic
dependencies makes the proof of determinism a much more
challenging issue and can lead to system instability, that is,
unbounded delays [6].

A class of schedulers called Fair Queuing (FQ) limits
interference between flows to the degree of maximum packet
size. Packetized generalized processor sharing (PGPS) and
weighted fair queuing (WFQ) are representative examples
of FQ [7]. In FQ, the ideal service completion time, called
Finish Time (FT), of a packet is obtained from an imaginary
system, which can provide the ideal flow isolation. Packets
in the queue are served in an increasing order of the FT.
Then the service of the packet is completed approximately
the same as the FT. When this technique is applied, the worst
delay at each node is proportional to the maximum packet
length among flows sharing the link. However, the FT of the
previous packet within a flow has to be remembered for the
calculation of the current packet’s FT. This information can
be seen as the flow state. The complexity of managing such
information for a large number of flows is a problem, so it is
not usually adopted in practice.

The objective of this work is to provide a framework,
which is scalable and work conserving, for latency guarantee
through flow isolation. In this paper, the following four novel
contributions are provided.
• A framework for deriving FT at core nodes is proposed,
based on the initial FT value, flow intrinsic parameters,
and nodal information. This framework yields a work
conserving scheduler. The initial FT calculated at the
entrance node and the ‘‘delay factors’’ at intermediate
nodes are accumulated to determine the packets’ FT at
core nodes.

• It has proved that the scheduler of the proposed method
can have a mathematical expression for the end-to-end
(E2E) latency upper bound, under condition that the
node specific delay factor function to be accumulated
is carefully selected. Moreover, this E2E latency bound
function is the same as that of a FQ network, which
is defined as a network having stateful fair queuing
schedulers in all the nodes.

• It is also proposed a first in first out (FIFO) based
architecture whose performance is similar to that of
a priority queue-based architecture. This is based on the
fact that the service order of packets of all the flows
passing through the same path does not change much
in the middle of the path. The packets from flows with
similar characteristics can be put into a FIFO queue. The
packet to be served can be easily decided by comparing
only the FTs of packets at head of queue (HoQ) of the
FIFO queues. We have shown that this simple FIFO
implementation can achieve a similar maximum E2E
latency to that of a FQ network.

• It is shown that, over a wide range of delay factor
functions, including a simple fixed value such as the
propagation delay of a link, the proposed framework
provides a maximum E2E latency similar to that of a
stateful FQ network.

The structure of this paper is as follows. Section II summa-
rizes the overview of the scheduling algorithms. Section III
examines the existing studies related to DetNet technology
and the standardization trend. Section IV presents a frame-
work that derives the FT values at core nodes based on the
initial FT, intrinsic flow parameters, and nodal information,
without state management for each flow. In this framework,
a new FT of a packet at a core node is decided by adding
the FT value in the previous node plus the delay factor.
In Section V, various nodal delay factor values are presented
and examined. Their worst E2E latency performances are
compared with the existing technologies in a moderately
sized networkwith cycles in topology. It is shown that the pro-
posed framework can achieve superior E2E latency bounds in
a broad range of delay factor values while securing the same
level of scalability comparable to the simple priority-based
scheduling techniques. Section V describes the conclusion
and future research directions.

II. BACKGROUND
In this section we summarize the overview of the scheduling
techniques, which has been studied for many years in the
name of quality of service provisioned to various types of
traffic.

One of the keys to the latency and jitter performance of a
network is the packet scheduling technique. Packet schedul-
ing refers to an algorithm that decides when the packets
in an output port leave the system. Packets usually have
variable length. The objective of scheduling can be diverse.
The two most important performance metrics for scheduling
algorithms are throughput and fairness. In a deterministic net-
working environment, a flow requests a service specification
and traffic specification. A service specification specifies the
required maximum end-to-end latency and jitter. A traffic
specification specifies the maximum burst size, maximum
packet length, and average arrival rate of the flow. In order
to meet such requirements for flows with such different
characteristics, it is not enough to just serve packets indis-
criminately. Some schedulers do not serve packets even when
the output link idles. They are called non-work conserving
schedulers. Regulators, which do not serve packets until they
are allowed, are good examples of the non-work conserving
schedulers. A time-division multiplexer is another example
of non-work conserving scheduler, in which a packet is sent
only in an allowed slot.

On the other hand, a majority of packet schedulers are
work conserving. They transmit packets whenever there are
packets. In this paper we focus on the work conserving sched-
ulers, since they have superior average throughput. Note that
any two schedulers have an identical throughput, only if they
are both work conserving. In deterministic networking, it is
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required to guarantee various service specifications of flows.
Therefore, the flows have to be differentiated and isolated
from other flows.

Our objective is to devise a scheduler that can completely
isolate a flow from other flows sharing a link. For an ideal
flow isolation, a scheduler would provide service to a flow,
as if there is no other flow in an imaginary linkwhose capacity
is equal to the allocated service rate to the flow. In this case
the latency upper bound is a function of the parameters, which
depend only on the flow.

There are mainly three groups of work conserving packet
schedulers, according to their levels of flow isolation. The
first is the FQ technique. This technique limits interference
between flows to the degree of maximum packet size. FT of
a packet represents the time that an ideal fluid system would
complete its service of the packet. In a real packetized FQ
system, the packets in the queue are served in the increasing
order of the FT. The FT is recorded in the packet. Then the
service of the packet is completed approximately the same
as the FT. When this technique is applied, the worst delay
at each node is proportional to the maximum packet length
among flows sharing the link. However, in this method, FT of
the previous packet within a flow has to be remembered for
the calculation of the current packet. This information can
be seen as the flow state. The complexity of managing such
information for a large number of flows is a problem, so it is
not usually adopted in practice.

The second is the round-robin based technique that main-
tains only the rough information of flow states. Based on the
service history of the flows, the service order of the flows
is determined. This technique includes weighted round robin
(WRR) and deficit round robin (DRR) [8]. When such a tech-
nique is applied, the worst delay at each node is proportional
to the sum of the maximum packet sizes of all the flows.

The third technique is to store flows in a queue grouped
by priority and simply to serve the queues according to the
priority. The scheduling method adopted in Differentiated
Services (DiffServ) is a representative example of the third
technique [5]. When this technique is applied, the worst
delay is determined by the sum of the maximum bursts of
the flows. The maximum burst of a flow means the total
amount of data that the source can send at once as allowed
for that flow. In general, it represents a bundle of a large
number of packets, and therefore it is considerably larger than
the packet length. Therefore, the worst delay proportional
to their sum may be an unacceptable level in some cases.
Moreover, in a network to which this technique is applied,
if there is a cycle in the topology, the maximum burst size
of a flow exponentially grows as the flow passes through
the nodes. There can be a situation where the worst delay
cannot be guaranteed depending on the level of network
utilization [6]. The phenomenon of burst accumulation is
illustrated in Figure 1. When bursts from input ports collide,
then the flow under observation, whose burst arrived a little
later than the other bursts, can experience burst accumulation
with a FIFO scheduler. A larger blue box represents the

FIGURE 1. Illustration of burst accumulation with FIFO scheduler.
In contrast, FQ schedulers can evenly disperse the packets over time
according to the service rate of a flow.

burst of the flow under observation. The size of the blue
box increases as the it departs from a FIFO scheduler. The
burst with FQ scheduler, on the other hand, is dispersed
evenly.

The level of flow isolation is inversely proportional to the
latency performance as we have described so far. However,
the higher the isolation level, themore complex to implement.
The fair queuing technique of the first type is preferable, but it
has been impossible to manage the states of millions of flows
in real time in core nodes of large-scale networks. To solve
this problem, Core-Jitter Virtual Clock (CJVC) fair queuing
[9] was proposed, which enables isolation between flows by
updating FT based only on nodal parameters and initial FT
information as needed [9], [10]. The node at the edge of the
network creates state information for each packet, including
FT and other necessary information, and records them in the
packet. Subsequent core nodes infer the exact flow states at
the node based on these records without managing flow state
information. However, CJVC mandates a packet to wait until
an eligible time for a service start, thus a non-work conserving
service. The non-work conserving schedulers can suffer from
a worse statistical performance.

III. RELATED WORKS
In this section we summarize the prior works related to deter-
ministic networking and the approach presented in this paper.

A. STANDARDIZATION IN DETERMINISTIC NETWORKS
For small networks such as in-car networks or 5G fron-
thaul networks, the IEEE 802.1 TSN task group defines a
set of solutions for latency and jitter minimization. TSN’s
packet forwarding technology can be largely divided into
synchronous and asynchronous technologies. In synchronous
technology, the solutions rely on the time synchronization
of every node in the network and slot scheduling. For
scheduling and allocating slots for the flows, coordination
among nodes throughout the network is required. The TSN
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task group has standardized multiple functional components
for jitter-sensitive services based on time synchronization.
Among them, the IEEE 802.1Qbv time aware shaping (also
known as the time-aware shaper, TAS) [11], and IEEE
802.1Qch cyclic queuing and forwarding (CQF) [12] are built
for jitter minimization as well as latency guarantee. Here,
time is divided into appropriately sized slots, and these slots
are aggregated to form a frame. The frame is repeated with
a fixed length. Transmittable flows are specified for each
slot. It exhibits characteristics similar to those of TDMA.
In this method, 1) the size of the slot should be determined,
2) the problem of how to allocate the flows to the slots
should be solved, and 3) the source should generate pack-
ets only in the allocated slots. If these limiting factors are
solved, latency and jitter bounds can be guaranteed. The
latency bound is proportional to the slot size. If the slot size
is reduced, the latency is reduced, but the problem of slot
allocation becomes complicated and real-time allocation can
be limited to a small number of flows. If the slot size is
increased to make the slot scheduling easier, the waste of
resources is severe, and the worst delay also increases pro-
portionally. Moreover, this mechanism requires every node
in the network to be synchronized and requires collaboration.
In a large-scale network, this method is too expensive and
inappropriate.

TSN’s asynchronous technology uses a regulator to prevent
burst accumulation of packets. Accumulation of packet bursts
can occur in the work conserving scheduler, which does not
idle when there are packets in the queue. Mitigating the
accumulation with the regulation function has been proposed
for more than two decades. However, it has not been widely
used due to the complexity of determining when to send
packets by placing a queue for each flow in the core node.
TSN has solved this complexity to some extent by adopting
an interleaved regulator (IR) under the name of asynchronous
traffic shaping (ATS) [13], [14]. However, if we have to
regulate, it has to be non-work conserving, thus the efficiency
by statistical multiplexing is inevitably reduced, which is the
most important success factor of the Internet. The regulator
function of ATS is also disadvantageous in terms of average
latency.

The IETF DetNet WG is trying to solve the problem
of guaranteeing latency in a large-scale network in three
directions.

The first is the extension of TSN synchronous technology.
The slot size is kept the same, but the start and end times are
not synchronized across the nodes. In this way, it is claimed
that the problem of propagation delay and dead time can be
solved. However, it is necessary to specify the slot in which
the packet should be serviced as tag information between
adjacent nodes, so it is called Tagged CQF. The biggest
disadvantage of this method is that it is difficult to use in
a network that dynamically changes in real time because it
involves considerable complexity in determining the slot size
and scheduling slots to flows. The problem of slot scheduling
in TSN remains the same.

The second is the extension of the ATS of TSN
asynchronous technology. It divides the network into
appropriately sized domains and places IRs between domains
to avoid burst accumulation. By grouping and processing
flows having the same path within the domain together, the
complexity of flow-based processing technology is largely
offset. This technology has also been approved as a standard
by ITU-T study group (SG) 13 [15], [16].

The third is a group of technologies that record various
types of meta-data in a packet and determine a forwarding
policy based on them. The first type of meta-data is directly
related to the latency. The accumulated latency from network
entering up to the current time, the latency bound, and the
latency budget, which is a value obtained by subtracting
them, are being mentioned. However, it is yet to be proved
that this latency related meta-data alone can guarantee the
latency upper bound. The second type of meta-data is the
FT and related information, which are the ones discussed
in this paper. This method can guarantee the highest flow
isolation performance thus the smallest latency bound. This
meta-data-based network operation technology has recently
been spotlighted for various purposes, so it is worth paying
attention. For example, the segment routing technique, which
uses packet meta-data, allows the end-host or edge router to
determine the path of the flow, and also to determine the for-
warding function as suggested by the standards in the IETF,
thus actively reflecting the user’s intention and providing
more detailed service differentiation seems possible.

ITU-T SG13 has approved, as of September 2023, four
Recommendations on deterministic networking services;
Y.3113, Y.3118, Y.3120, and Y.3121. ITU-T Y.3113 and
Y.3120 specify the requirements, framework, functional
architecture, and operational procedures for latency guaran-
tee in large-scale networks. Y.3118 specifies the requirements
and framework for jitter guarantee in large-scale networks.
Y.3121 specifies the requirement and framework for deter-
ministic networking services in heterogeneous forwarding
technology domains interwork. Y.3113 and Y.3120 define
the use of the flow aggregate and regulators to be used over
aggregation domains. Recently, the usage of meta-data of FT
and related information, similar to the ones proposed in IETF
DetNet WG, is also proposed in ITU-T SG13.

B. FAIR QUEUING SCHEDULERS
Since the 1990s, a technology that guarantees the requested
service rates to all the flows based on an ideal fluid-based
scheduling model has been developed. A flow is a set of
packets belonging to the same application with the same
source and destination. Generalized processor sharing (GPS)
suggested a paradigm for a fair service for flows as fluid.
Packetized GPS (PGPS or Weighted fair queuing), which
implemented GPS in the realistic packet-based environment,
played a pioneering role in this type of packet-based sched-
ulers [7]. PGPS determines the service order of packets in
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ascending order of the FT derived by the following equation.

F(p) = max{F(p− 1),V (A(p))} + L(p)/r, (1)

where p and p − 1 are the pth and (p-1)th packet of a flow,
F(p) is the FT, A(p) is the arrival time, L(p) is the length of
the packet p, and r is the service rate guaranteed to the flow.
Note that the index for the flow i is omitted. V (t) is called
the virtual time function [7] or a system potential [17] and
is a value representing the current system progress at time
t . If the backlogged flows almost fill the link capacity, then
the system slowly progresses in terms of a flow’s view, and
so does the virtual time. If there is only a handful of back-
logged flows, then the virtual time increases with a higher
rate. It can be obtained, for example [7], by V (0) = 0 and
V (tk + τ)−V (tk) = τ/

∑
j∈f (h,t) rj, where f (h, tk ) is the set

of backlogged flows in node h at tk , tk is a moment of f (h, tk )
element change, τ < tk+1 − tk , and rj is the service rate
of flow j. It prevents an unfair situation in which flows that
entered late have relatively small FTs thus receive services
earlier for a considerable period of time, compared to existing
flows.
F(p), the FT of p, represents the time that an ideal fluid

system would complete its service of packet p. In a real
packetized fair queuing system, the packets are served in
the increasing order of the FT. The FT can be calculated
at the moment the packet arrives in the node, so it can be
recorded and used in the node in the form of meta-data of
the packet before it is stored in the buffer. In general, there
is a queue for each flow, the queues are managed by FIFO
manner, and the scheduler serves the queue having the HoQ
packet with the smallest FT. Alternatively, it is possible to
put all packets in one queue and sort them during enqueue
and dequeue processes according to the value of the FT. This
implementation requires a priority queue. The point of (1)
is that, in the worst case, when all flows are active and the
link is fully used, a flow is served at an interval of L(p)/r .
At the same time, by using the work conserving scheduler,
any excessive link resources are shared among the flows. How
fair it is shared is the main difference of various fair queuing
schemes.

In order to obtain (1), F(p − 1) of the flow, the FT of
the previous packet of the flow must be remembered. When
a packet is received, it is necessary to find out which flow
it belongs to and find out the FT of the latest packet of
the corresponding flow. F(p − 1) of this latest packet is a
value representative of the so-called ‘flow state’. The fact that
such state information must be memorized and read means a
considerable complexity at a core node managing millions
of flows. This is the main reason why such fair queuing
schedulers are not actually used on the Internet. In this paper,
we pay attention to the fact that the fair service time interval
information between packets is already included in the FTs
of the entrance node of a flow. Instead of deriving a new FT
at each core node, we propose a method of deriving the FT at
downstream nodes by using the FT information calculated at
the entrance node.

On the other hand, calculating V (t) also involves the com-
plexity of calculating the sum of r by tracking the flows
currently being serviced in real time. It must be a fairly
difficult calculation, considering that the beginning of flows
can be countless in any short time period. Therefore, instead
of calculating V (t) accurately, methods for estimating it in
a simple way have been suggested [18], [19], [20]. Among
them, Virtual clock (VC) [18] uses the current time t instead
of V (t) to determine the FT. Self-clocked fair queuing [19]
uses the FT of the recently serviced packet of another flow
instead of V (t).
Stiliadis et al. showed that this series of FQ schedulers can

belong to the rate-proportional server (RPS) group and can be
implemented with its packet-based version, packetized RPS
(PRPS) [17]. For example, PGPS and VC are PRPS, while
self-clocked fair queuing is not. Furthermore, it was proved
that a network with all the nodes having one of these PRPSs
guarantee the E2E latency Di for flow i as follows.

Di ≤
Bi − Li
ri
+

∑H

h=0
SLhi , (2)

where Bi and ri are the maximum burst size and service rate
of the flow i, Li is the maximum packet length of flow i, and
SLhi is the service latency of flow i at the node h. H is the last
node for the flow i to traverse.

The service latency, SL, in a node that is applicable to every
PRPS is expressed as in (3). The service latency was first
introduced in the concept of the latency-rate server model
[21], which can be interpreted as the worst delay until the
first packet of a newly arrived flow can be served. Lmax is the
maximum packet length over all flows in the server,, and R is
the link capacity of the node h.

SLhi =
Li
ri
+
Lmax
R

. (3)

C. CORE-STATELESS FAIR QUEUEING
The FQ scheduling technique stores state information for
each flow, extracts this information when a packet of the cor-
responding flow arrives, calculates the FT of the packet, and
stores it again. If F(p−1) in (1) represents state information,
the newly calculated F(p) becomes the updated state of the
flow. This complexity is the reasonwhy it is difficult to imple-
ment FT-based scheduling in a core node where millions of
flows are active simultaneously. Therefore, if Fh (p) is the FT
of p at the hth node in the path, methods of estimating Fh (p)
with F0 (p) instead of Fh (p− 1) have been proposed. These
methods are collectively called core-stateless fair queuing
(CSFQ) [9], [10]. In particular, in the study of Stoica et. al.
[9], the seminal work of similar studies, Fh (p) is derived in
the following way. First, Eh (p) is defined as the eligible time
of the packet p to start the service. Each packet becomes a
candidate for service after the eligible time has elapsed. The
packet having the lowest Fh (p) value among these candidates
is served.

E0 (p) = A0 (p) ,
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Eh (p) = Ah (p)+ Gh−1 (p)+ δh (p) ,

Fh (p) = Eh (p)+
L (p)
r

. (4)

Here, Gh (p) is the delay margin at h (the difference
between the FT and the actual service completion time), and
δh (p) is the delay that forces Eh (p) to be always greater than
Eh−1 (p). This term guarantees the service order preservation
between packets in the flow. Consequently, Eh (p) can be
expressed as a function of E0 (p). That is, if Gh (p), r , δh (p) ,

and L(p) are stored in the header of the packet and sent to
the next node, the eligible time and FT of (4) can be derived
without managing the flow state information. This scheduling
method, CJVC, is based on the VC [18], and is claimed to
minimize jitter as well.

The key idea in (4) is to use F0 (p) instead of Fh (p− 1) in
(1) to obtain Fh (p). For example, suppose a flow continues to
send packets and is continuously backlogged on the entrance
node. In this case, F0 (p) is calculated as F0 (p− 1)+L(p)/r .
That is, the interval between the consecutive packets’ FTs is
maintained at L(p)/r . These characteristics are independent
of the states of other flows. That is, the FT of a packet can
be inferred, ahead of traveling to the downstream nodes, only
from the packet lengths and the assigned service rate of the
flow as L(p)/r during the backlogged period. Even in the
downstream nodes, during the backlogged periods, we can
predict Fh (p) = Fh−1 (p)+dh(p), where dh(p) is some delay
function specific to the node and the packet. Note that dh(p)
may not be a function of p, but of p’s flow. In this case, it can
maintain the intervals between packets’ FTs identical to those
of F0 (p).

Comparing (4) with (1), we can see the following facts
about the CJVC.
• A packet cannot be serviced until its eligible time is
reached. It is a non-work conserving scheduler.

• WithGh (p), the delay variation between packets is min-
imized.

• The service order between packets within a flow is
preserved. However, small packets from other flows
traveling in the same path can catch large packets and
be serviced earlier.

Regardless of these properties, the CJVC is claimed to have
the same E2E delay bound as that of PGPS [9]. However,
we will show the inefficiency of the CJVC when compared
to the proposed work conserving fair queuing scheduler in
terms of both themaximum and the average E2E latency, with
simulations in Section V-G. It will be also shown that the jitter
of this non-work conserving scheduler is not better than the
one of the proposed work conserving scheduler.

IV. WORK CONSERVING STATELESS CORE FAIR
QUEUING (C-SCORE)
In this section we present the framework for the stateless
fair queuing in core nodes, the requirements for existence
of E2E latency bound, and the practical considerations for
implementations.

A. FRAMEWORK FOR FINISH TIME DETERMINATION IN
CORE NODES
The basic assumptions in this paper on the traffic and network
events are as follows.

• All the flows conform to their traffic specification
(TSpec) parameters. In other words, with the maximum
burst size Bi and the arrival rate ri, the accumulated
arrival from a flow i in any arbitrary time interval
(t2 − t1) does not exceed Bi + (t2 − t1) ri.

• Actual allocated service rate to a flow can be larger than
or equal to the flow’s arrival rate.

• Total allocated service rate to all the flows in a node does
not exceed the node’s link capacity.

• In this paper, the service rate is considered to be the same
as the arrival rate ri. However, as it will be shown in
Theorem 3 that, by adjusting the service rate to a flow,
the E2E latency bound of the flow can be adjusted. Note
that ri is used interchangeably with the symbol r .

• A node, or equivalently a server, means an output
port module of a switching device. It is also assumed
that ideal non-blocking output-queued switches are
used. Internal stages within a switch, which may cause
additional latency, are not considered. Note that this
assumption can affect the scalability, since the most
complex core switching devices may not support ideal
output-queued switching.

• The entrance node for a flow is the node located at the
edge of a network, from which the flow enters into the
network. A core node for a flow is a node in the network,
which is traversed by the flow and is not the entrance
node. Note that a single node can be both an entrance
node to a flow and a core node for another flow.

• A packet is arrived, or serviced; when its last bit has
arrived, or left the node, respectively.

• Propagation delays are neglected for the simplicity of
representation. However, it can be easily incorporated
into the equations in this paper, if necessary. This issue
will be covered in Section IV-C.

Before going into the detailed description of the framework,
let us summarize the symbols used in this section in Table 1.
It is preferred that the FTs at core nodes satisfy the follow-

ing conditions. The flow index in the equations are omitted.

C1) Keep the fair distance between FTs of consecutive
packets: Fh (p) ≥ Fh (p− 1)+ L(p)/r .

C2) Preserve the FT orders: Fh (p) ≥ Fh (p− 1) . This
condition is a subset of Condition 1.

C3) Reflect the time lapse as hops progress: Fh (p) >

Fh−1 (p) .

C1 is needed for the service provided to the flow does not
exceed the allocated rate. C2 is the basic requirement for
service order preservation within a flow. C3 is necessary
in order for flows from different paths to be served fairly.
In essence the three conditions are to ensure that (1) is closely
approximated even in core nodes.

105230 VOLUME 11, 2023



J. Joung et al.: Scalable Flow Isolation With Work Conserving Stateless Core Fair Queuing

TABLE 1. Mathematical symbols used in this section.

In the following, we describe the proposed framework to
obtain the FT in core nodes. First, at the flow entrance node 0,
where the flow of interest arrives to the network, the FT is
calculated in the same way as a fair queuing scheduler, for
example the VC [18].

F0 (p) = max {F0 (p− 1) ,A0 (p)} + L(p)/r, (5)

where F0(p) is the FT of p at the entrance node, and so on.
F0 (0) = 0. Next, in a core node h,

Fh (p) = Fh−1 (p)+ dh(p). (6)

dh (p) is called the delay factor, which is a function of nodes
and the packet. By using (5) and (6), only Fh−1 (p) and dh(p)
values are required when calculating the FT in the core node.
We call this framework the work conserving stateless core
fair queuing (C-SCORE). Note that in most of the cases
considered in this paper, dh(p) is a function of node h−1, not
h. Therefore,Fh−1 (p) and dh(p) can be delivered from h−1 to
h by storing them in the form of meta-data in the header of the
packet, or be calculated based on the information carried as
meta-data. An update is required at every node, but sufficient
time would be given because the update is allowed at an
appropriate time between the arrival to a switching device and
the enqueuing to the output port queue. In some cases, dh(p)
is only a function of the current node or the upstream node,
not the function of packet p. Then it may be acknowledged by
exchanging information through out-of-band communication
between nodes. On the other hand, the different values of dh in
core nodes may affect the fairness between flows arriving at a
core node through different paths. That is, the FTs of different
flows should be aligned with each other to ensure fair service
between flows.

Let us consider various choices for dh(p). For example,
the first two conditions C1 and C2 can be achieved with the

following simple way.

dh(p) = Uh−1(p). (7)

Uh (p) is the latency upper bound of the p’s flow in node h,
such that

Ah (p)+ Uh (p) ≥ Ah+1 (p) .

Theorem 1: Fh (p) obtained by (5), (6), and (7) meets the
inequality: Fh (p) ≥ Ah (p)+ L(p)

r .
Proof: We prove it by induction over h. First, we show

that it is satisfied with F0 (p), and then we show that it
is satisfied with Fh (p) where h> 0. From (5), F0 (p) =
max {F0 (p− 1) ,A0 (p)} + L(p)

r . Therefore

F0 (p) ≥ A0 (p)+
L (p)
r

.

Now, for Fh (p) with h> 0, assume that the theorem holds for
Fh−1(p). In other words, Fh−1 (p) ≥ Ah−1 (p) + L(p)

r . From
(6),

Fh (p) = Fh−1 (p)+ dh(p)

≥ Ah−1 (p)+
L (p)
r
+ dh(p).

Let Uh−1(p) be the latency upper bound of the p’s flow in
node h− 1, i.e. Ah−1 (p)+ Uh−1(p) ≥ Ah (p) . Then

Fh (p) ≥ Ah−1 (p)+
L (p)
r
+ dh(p)

≥ Ah (p)− Uh−1(p)+
L (p)
r
+ dh(p).

From (7), dh(p) = Uh−1(p). The theorem holds for any h> 0,
as well as for h = 0.

However, (7) can be disadvantageous to flows with larger
numbers of hops. Another method for determining the delay
factor function would be

dh(p) = Wh−1(p), (8)

where Wh(p) is the latency lower bound of the p’s flow in
node h. It can be the propagation delay of the output link of
h. (8) would be advantageous to the flowswith larger numbers
of hops. For end users who do not know the topology of
the network or the number of hops needed for the flow, this
treatment can be considered fair. It is to see the whole network
as a single virtual node.

As a compromise in between Uh (p) and Wh(p), dh(p) can
be the average latency within the node. However, in this case,
in order not to flip the service order between the packets
in a flow, the average latency used as the delay factor must
be a non-decreasing function of time. When compared with
(4), it can be seen that (7) or (8) may not increase the FT
as much as L(p)/r at every node. This reflects the fact that
it may be fair to view the entire network as a single virtual
node and maintain the initially set distances between packets’
FTs. The exact value of Uh (p) can be obtained, for example,
by measurement.

Another advantage of (7) or (8) is that it maintains the
initial FT order of packets within a flow, thereby minimizing
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FIGURE 2. Example node architecture having each FIFO queue assigned
for flows with similar characteristics. M obtains FT and writes it on the
packet header. S examines the HoQ of FIFO queues and services the
packet having minimum FT.

the chance of service order flips between packets in the
same path in a core node. Note that the FT order within a
flow is still maintained. Using this framework, the schedulers
based on FT, which require a sorting algorithm [22], can be
implemented with the FIFO queue with minimal performance
degradation. We will see that this possibility can be fulfilled,
especially when the queue is assigned according to the flows’
characteristics, in Section V. Finding out the packet to service
can be also performed by comparing only the FTs of theHoQs
of the corresponding queues. With such a simple scheduler
configuration, it is possible to secure scalability in the core
node. Figure 2 shows an example of this implementation.
All traffic is divided into high priority and low priority, and
preemption is enabled. By adopting such an architecture, high
priority traffic can be processed regardless of the presence or
absence of low priority traffic.

B. E2E LATENCY GUARANTEE WITH THE PROPOSED
FRAMEWORK
With a certain choice of the delay factor function, the E2E
latency can be bounded. For the concrete understanding, let us
start with the definitions for some terminologies. Theymainly
follow the definitions from [17] and [21].
Definition 1: A node busy period is a maximal interval

of time during which the server has packets to send. Dur-
ing a node busy period a work conserving server is always
transmitting packets.
Definition 2: A backlogged period for flow is any period

of time during which packets belonging to that flow are
continuously queued in the system.
Definition 3: A flow i busy period is a maximal interval

of time such that at any time, t , within the interval (t0, t1],
the accumulated arrivals of the flow since the beginning
of the interval do not fall below the total service received
during the interval at exactly the allocated rate ri, i.e. ri(t−t0).
The flow busy period is defined only in terms of the

arrival function and the allocated rate, and does not reflect the
real system’s instantaneous service variations to actual flows.

Note that a busy period may contain intervals during which
the actual backlog of flow in the system is zero and the flow
is not receiving service.
Definition 4: An active period for flow is a maximal inter-

val of time, over which the FT of its last packet is greater than
the virtual time (equivalently the system potential). Any other
period is an inactive period for the flow.
Definition 5: The first packet of an active period is an

activation packet.
As pointed out in [17], a transition from inactive to active

period can occur only by the arrival of a packet of a flow that
is currently idle, as stated in Lemma 1.
Lemma 1: [17] If time T is the beginning of a flow busy

period in an RPS, then T is also the beginning of an active
period for flow.

When a flow is in an inactive period, it cannot be back-
logged and, therefore, cannot be receiving service. On the
other hand, an active period need not be the same as a back-
logged period for the flow.

We assume for simplicity, that the propagation delay is zero
for every link between nodes. Non-zero values of propagation
delays can be easily incorporated. Define Li as the maximum
packet length of flow i. Define Lmaxh as the maximum packet
length over all the flows in node h. Also define Rh as the link
capacity of the node h. We will show that when

dh (p) =
Lmaxh−1

Rh−1
+ Li/ri, (9)

the E2E latency of a flow is bounded. Let us call this expres-
sion on the right-hand side the service latency (SL) of the flow
under observation i at node h-1, i.e.

SLh =
Lmaxh

Rh
+ Li/ri.

This expression is indeed the service latency of a PGPS or
VC server. The service latency was first introduced in the
concept of the latency-rate server model [21], which can be
interpreted as the worst delay until the first packet of a newly
arrived flow to be served.

In the following, without loss of generality, we assume that
the packet 0 is an activation packet of the active period during
which packet p arrived at node 0.
Lemma 2: If (5), (6), and (9) are satisfied, then for h> 0,

Fh (p) = B (p) /ri + A0(0)+
∑h−1

k=0
SLk ,

where B (p) is the sum of the packet lengths from packet 0 to
packet p, i.e. B (p) =

∑p
k=0 L(k).

Proof: The proof is straightforward. Applying (9) in
nodes 1, 2, . . . , h, Fh (p) = Fh−1 (p)+SLh−1 (p) = F0 (p)+∑h−1

k=0 SLk . By (5), the rule of FT assignment in a VC sched-
uler at node 0, F0 (p) = max {F0 (p− 1) ,A0 (p)} + L(p)

ri
.

Because 0 is the activation packet of the active period in
which p arrived at the node 0, F0 (k − 1) ≥ A0 (k), for k,
0<k≤p. Therefore F0 (p) = A0 (0) + B (p) /ri. Fh (p) =
F0 (p) +

∑h−1
k=0 SLk = A0 (0) + B (p) /ri +

∑h−1
k=0 SLk

follows.
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Lemma 3: If (5), (6), and (9) are satisfied, then

Fh (p) ≥ Fh (p− 1)+ L(p)/ri,

for any p and h > 0.
Proof: From Lemma 2, for p > 0, Fh (p) = F0 (p) +∑h−1

k=0 SLk = A0 (0) + B (p) /ri +
∑h−1

k=0 SLk = A0 (0) +
B (p− 1) /ri + L(p)/ri +

∑h−1
k=0 SLk = Fh−1 (p) + L(p)/ri.

For p = 0, by the definition of an activation packet, F0 (0) ≥
F0 (−1) + L(0)/ri, where packet −1 is the previous packet
of packet 0 in the flow. Thus Fh (0) = F0 (0)+

∑h−1
k=0 SLk ≥

F0 (−1)+L(0)/ri+
∑h−1

k=0 SLk = F0 (−1)+L(0)/ri. We just
proved that for p that is either activation packet or not, the
inequality is satisfied. Lemma follows.
Lemma 3 states that any packet including activation pack-

ets satisfies the inequality. Now consider an imaginary node
with an ideal preemptive scheduler, h∗, whose input pattern
and FT values of the packets are identical to the node h in our
system. In this ideal preemptive node, the served portion of
a packet before it is preempted is not served again. We call
such a pair of systems are equivalent to each other. In h∗,
a preempted packet can be infinitesimally divisible, such that
it receives the remaining service without any overhead.

Let Ch (p) be the actual service completion time of packet
p at node h.
Lemma 4: If h is a work conserving non-preemptive

scheduling node, which is equivalent to the work conserving
preemptive scheduling node h∗, and the service order of pack-
ets is not changed dynamically, then Ch (p)−Ch∗ (p) ≤

Lmaxh
Rh

.
Proof: Lemma 4 is stated and proved in Theorem 1 of

[23]. It is also similar to Theorem 1 of [7].
Because both systems are work conserving, the node busy

periods are identical. It is enough to show that within a
single busy period, the inequality in Lemma 4 holds. The
intuition behind the inequality can be understood with the
following example. Just before a packet under observation’s
arrival, another maximum length packet with a larger FT from
another flow arrives at an idle node. In a non-preemptive sys-
tem, the packet under observation waits for

Lmaxh
Rh

until it starts
to get service. In a preemptive system, however, the packet
gets service immediately upon arrival. Therefore, the service
start times in two systems, or the actual service completion
times, differ as much as

Lmaxh
Rh

in the worst case. Any following
packets within the busy period are sorted thus having the same
actual service completion time in both systems.

Now we can state the bound of actual service completion
time in a core node as the following.
Theorem 2: In a network which satisfies (5), (6), and (9),

Ch (p) ≤ Fh (p)+
Lmaxh
Rh

.
Proof: The proof is by induction.

For h = 0, the server is VC, and that Ch∗ (p) ≤ Fh (p) is
proven in various literatures [7], [23]. Intuitively, since every
flow is assigned the FT values according to its allocated rate,
the sum of the allocated rates is less than the link capac-
ity, and the scheduler is work conserving, therefore the VC
scheduler guarantees the actual service completion time to be

not greater than the FT. The Theorem follows from lemma 4,
when h = 0.
For h> 0, we assume that the theorem holds from node 0 to

h−1, i.e. Ch−1 (p) ≤ Fh−1 (p)+
Lmaxh−1
Rh−1

. Equivalently Ah (p) ≤

Fh−1 (p)+
Lmaxh−1
Rh−1

, since we also assume zero propagation delay.
We first show that Ch∗ (p) ≤ Fh (p) for h> 0. By (9) and

the induction hypothesis,

Fh (p) = Fh−1 (p)+ SLh−1 ≥ Ah (p)−
Lmaxh−1

Rh−1
+ SLh−1

= Ah (p)+ Li/ri ≥ Ah (p)+ L(p)/ri. (10)

Note that Fh (p) = Fh∗ (p) and Ah (p) = Ah∗ (p), regardless
of the use of preemption.

Now consider an arbitrary time interval [t1, t2]. Con-
sider a set of packets of flow i, P(t1, t2), which arrived
in the interval [t1, t2] and whose FTs are not greater
than t2. Now define a quantity Th∗ (p) = Fh (p) −
max (Ah∗ (p) ,Fh (p− 1)). If Ah∗ (p) ≤ Fh (p− 1), from
Lemma 3, Th∗ (p) ≥ Fh (p− 1)+ L(p)

ri
− Fh (p− 1) ≥ L(p)

ri
.

IfAh∗ (p) ≥ Fh (p− 1), from (10), Th∗ (p)≥L(p)/ri. In either
case Th∗ (p) ≥ L(p)/ri. The function Th∗ (p) represents the
time taken for p to be served in an ideal preemptive system,
or equivalently the fair amount of time for p to be served.
Further, define the function ri,h∗ (t) = ri if there is a packet p
in flow i, such that Ah∗ (p) ≤ t and Fh (p− 1) < t ≤ Fh (p);
else ri,h∗ (t) = 0. ri,h∗ (t) represents the instantaneous service
rate given to flow i in an ideal fluid system. Since Th∗ (p) ≥
L(p)/ri,∫ t2

t1
ri,h∗ (t) =

∑
p∈P(t1,t2)

ri ∗ Th∗ (p)

≥

∑
p∈P(t1,t2)

ri ∗
L (p)
ri
=

∑
p∈P(t1,t2)

L(p). (11)

Therefore, the cumulative length of all the packets from flow
i, which arrive in interval [t1, t2] and whose FT not greater
than t2, is less than or equal to

∫ t2
t1
ri,h∗ (t). Intuitively, (11)

states that any set of consecutive packets from a flow receive
a greater amount of service (

∫ t2
t1
ri,h∗ (t)) than what is required

for them to be served before their FT (
∑

p∈ôP(t1,t2)
L(p)), in a

preemptive system.
Now we prove that Ch∗ (p) ≤ Fh (p) with contradiction.

Assume that for packet p, Ch∗ (p) > Fh (p). Also let t0 be the
start of the node busy period that packet p is served, and t2 =
Fh (p). Let t1 be the least time less than t2 during the node
busy period such that no packet with FT value greater than t2
is served in the interval [t1, t2]. In other words, those packets
that served later than t1 has FT values less than t2 = Fh (p).
If no such t1 exists, then p is the first packet of the busy

period, or the first packet served in the busy period by pre-
emption. In either case, the packet served immediately upon
arrival, and Ch∗ (p) = Ah∗ (p) + L(p)/Rh ≤ Fh (p), which
contradicts the assumption Ch∗ (p) > Fh (p).

If such t1 exists, all the packets served in the interval
[t1, t2] arrive in this interval have FTs less than or equal
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FIGURE 3. Illustration of inequality between Ch∗(p2) and Fh(p2). Packets
are queued per flow. The amount of bits in the dotted box (Fh(p2)*Rh) is
larger than or equal to the amount of bits in the shaded packets
(Ch∗(p2) ∗ Rh). Thus Fh(p2) ≥ Ch∗(p2).

to t2 = Fh (p). Let us use the convention that j such that
j ∈ h represents any flow in node h. Since the server is
busy in [t1, t2] and packet p is not serviced by t2 by the
assumption Ch∗ (p) > Fh (p). From (11),

∫ t2
t1

∑
j∈h

rj,h∗ (t) =∑
j∈h

∫ t2
t1
rj,h∗ (t)≥

∑
j∈h∗

∑
p∈P(t1,t2)

L(p) ≥ (t2 − t1)Rh.

However, the link capacity is not exceeded therefore∑
j∈h

rj,h∗ (t) < Rh, and
∫ t2
t1

∑
j∈h

rj,h∗ (t) < (t2 − t1)Rh. This

contradicts with each other, so the assumption Ch∗ (p) >

Fh (p) is proved wrong. Thus Ch∗ (p) ≤ Fh (p) is proved.
From Lemma 4 and that Ch∗ (p) ≤ Fh (p), the induction

step is proved. The Theorem follows.
Theorem 2 can be understood by the following rationale.

First, consider a preemptive network, in which every node
serves packets with preemption. It is easy to understand that
in an entrance node Ch∗ (p) ≤ Fh (p) is met. Note that the
FT is calculated as if the flow under observation is the only
flow served in an imaginary link which has the allocated
service rate. However, in a real packet system, the link is
shared with other flows whose sum of service rates is less
than or equal to the link capacity. The remaining service rates
(C −

∑
i
ri) is shared among the flows. Therefore, the actual

service completion time of a packet is always less than or
equal to the FT. This can be further illustrated by an example
in Figure 3.
In Figure 3, assume for simplicity, all the flows are allo-

cated the same service rates and their bursts arrive at the node
at the same time, 0. Also assume that the queues are assigned
per flow. In the fluid model, the actual service completion
time of p2 is Fh (p2). During [0, Fh (p2)], the bits served
by the link are the bits in the dotted box, whose amount is
Rh ∗ Fh (p2). In the preemptive packet system using FT, the
actual service completion time of p2 is Ch∗ (p2). Since all the
packets are sorted, the sum of lengths of packets that have
been served at Ch∗ (p2) is the area of the shaded packets,
Rh ∗ Ch∗ (p2), which are less than or equal to Rh ∗ Fh (p2).
Thus, Ch∗ (p2) ≤ Fh (p2).
In core nodes, the FT is updated by adding the service

latency, which is the worst delay a packet of a newly arriving

flow to the node can experience. With this FT update, the
actual service completion time of a packet is less than or
equal to the FT. Intuitively, if this worst delay is added to
FT, a packet which actually experienced the worst delay gets
advantage compared to the other packets, since the difference
between its FT and arrival time is smaller. It is also true that
this service latency is the only choice for the FT increment
value, which guarantees (11) is tightly met with equality.
Now consider a non-preemptive network. From Lemma 4,

Ch (p) − Ch∗ (p) ≤
Lmaxh
Rh

, and therefore, Ch (p) ≤ Fh (p) +
Lmaxh
Rh

.
In order to understand the meaning of the service latency,

consider the worst case: Right before a new flow’s first packet
arrives at a node, the transmission of another packet with
length Lmaxh has just started. This packet takes the transmis-

sion delay of
Lmaxh
Rh

. After the transmission of the packet with
Lmaxh , the flow under observation could take only the allocated
share of the link, as in Figure 3 with all the flows fill up the
link capacity, and the service of the packet under observation
would be completed after Li/ri. Therefore, the packet has to
wait, in the worst case,

Lmaxh
Rh
+ Li/ri.

The proof of Theorem 2 takes similar steps with the proof
of Lemma 3 of [24]. However, Lemma 3 of [24] is not
concrete in the sense that, in its proof, all the schedulers in the
network have to be preemptive. In the meantime, Lemma 4 in
this paper, which is also used in [24], considers only a single
node. We have clarified this issue by considering Lemma 4
and the fact Ch∗ (p) ≤ Fh (p) at the same time in deriving
Theorem 2.
The E2E latency bound in a C-SCORE network with (5),

(6), and (9) is given as follows.
Theorem 3: The latency of flow i, in the network with

C-SCORE and VC entrance nodes is bounded as

Di ≤ (Bi − Li)/ri +
∑H

k=0
SLk ,

where H is the last node of flow i.
Proof: From Theorem 2, CH (p) ≤ FH (p) +

LmaxH
RH
=

F0 (p)+
∑H−1

k=0 SLk +
LmaxH
RH

. The E2E latency of p is Di (p) =

CH (p) − A0 (p) ≤ F0 (p) +
∑H−1

k=0 SLk +
LmaxH
RH
− A0 (p) =

F0 (p) − A0 (p) +
∑H−1

k=0 SLk +
LmaxH
RH

. However, it is proved

in Theorem 3 of [25] that the (F0 (p)− A0 (p)) of a VC node
0 is bounded by Bi/ri. Intuitively, a burst of packets from a
flow can arrive simultaneously, and the last packet of the burst
can be assigned the FT of Bi/ri − A0 (p), at most. Therefore
Di (p) ≤ Bi/ri +

∑H−1
k=0 SLk +

LmaxH
RH
= (Bi − Li)/ri +∑H

k=0 SLk .
Note that the bound given in Theorem 3 is identical to that

of a FQ network with stateful schedulers, e.g. PGPS or VC,
in all the nodes.

One important observation on the E2E latency bound
given in Theorem 3 is that the bound is the function on
the flow intrinsic parameters, (Bi, Li, ri) and the ratios of
the maximum packet length on the link to the link capacity
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(Lmaxh /Rh). Considering that Rh is much larger than ri, the
value of Lmaxh /Rh is negligible. Therefore, the bound is almost
adjustable by adjusting the flow’s own parameters. A network
can fulfill the requested E2E latency bound of a flow by allo-
cating especially a proper service rate to the flow, regardless
of the number of flows in the network. This argument cannot
be met by other schedulers such as ATS in TSN, whose E2E
latency bound is a function of the sum of other flows’ initial
maximum burst sizes.

C. CONSIDERATIONS FOR TIME DIFFERENCE BETWEEN
NODES
As it has been stated in Section IV-A, we have assumed zero
propagation delays between nodes. In reality, there are time
differences between nodes, including the differences due to
the propagation delays. This time difference can be defined
as the difference between the actual service completion time
measured at the upstream node and the arrival time measured
at the current node. In other words,

tdh−1,h (p) = Ah (p)− Ch−1 (p) ,

where tdh−1,h (p) is the time difference between node h-1
and h, and Ch−1 (p) is the actual service completion time
measured at node h-1, for packet p respectively. Note that
FT does not need to be precise. It is used just to indicate
the packet service order. Therefore, if we can assume that
the propagation delay is constant and the clocks do not drift,
then tdh−1,h (p) can be simplified to a constant value, tdh−1,h.
In this case the delay factor in (9) can be modified to be

dh (p) = SLh−1 + tdh−1,h.

The E2E latency bound given in Theorem 3 increases as
much as the sum of propagation delays from node 0 to h.
Moreover, the time difference tdh−1,h can be updated only
once in awhile, and signaled out-of-band. Evenwith the clock
differences and propagation delays, C-SCORE does not need
global time synchronization.

V. ANALYSIS OF VARIOUS C-SCORE SCHEMES
In this section the performance of C-SCORE with various
choices of delay factors are examined through simulations
in a medium sized network topology with different types of
flows.

A. SIMULATION ENVIRONMENT
The simulations use SimPy, a Python-based process-based
discrete-event simulation framework that provides various
types of resources [26]. Since these resources are shared by all
processes, a process detects and performs the defined action
when the trigger for increase/decrease, release, and creation
events of the resource operates through the generator function
inherent in the process [26].

The network topology used for the simulations is shown in
Figure 4. Nodes 1, 2, 3, 13, 14, and 15 are directly connected
to the source. They are the entrance nodes, while the rest are

core nodes. In C-SCORE, an output port of a core node has
a queue for each input port, so there are two queues in an
output port. These queues operate on a PIFO basis unless
otherwise specified. The packets are sorted according to their
FTs upon enqueuing. An entrance node maintains the state
for each flow and the FIFO queue for each flow. The link
capacity of all links in the topology is 1 Gbps. In Figure 4,
arrows indicate the flow direction.

FIGURE 4. Network topology used in simulation.

A source creates one flow to each destination for a total of
6 flows. 36 flows are created throughout the network. Table 2
and Table 3 describe characteristics of the three different
flow types used in the simulations. The destination of a flow
decides the flow type. For example, all the flows destined to
node 1 are of type A. There are 6 flows for each destination.
There are 12 flows for each type. Flow types are classified
with the maximum burst size, maximum packet length, and
input rate of a flow. The flows generate packets of different
lengths from 1K to 10Kbit, in units of 1Kbit.

TABLE 2. Characteristics of each flow type.

Among the flows, the flows of interest are C type flows.
The C type flows have a higher input rate, a smaller burst size,
and a smaller packet size. They should prefer to be isolated
from the other types. The A type flows have the opposite
characteristics. They would experience better latencies when

VOLUME 11, 2023 105235



J. Joung et al.: Scalable Flow Isolation With Work Conserving Stateless Core Fair Queuing

TABLE 3. Peak input rate for each flow type according to utilization.

TABLE 4. Longest path of each flow type in the topology.

the flows are not isolated. We will compare the observed
maximum E2E latencies of each flow type. The flows with
longest paths within the same flow type are of interest. Table 4
shows the path of the flows with longest paths for each flow
type. For all the flow types, the number of hops in the longest
paths is the same. The utilizations on a path may differ for
different links.

A probabilistic packet generation process is necessary for
statistical performance observation. Therefore, we choose to
use the combination of a Markov On-off model and a token
bucket as the packet generation process. The source gener-
ates packets along the Markov on-off model independently
for each flow. The Markov on-off model used is shown in
Figure 5. The state changes every microsecond according to
the transition rate specified in Figure 5. When the Markov
on-off model for each flow is in the ON state, packets are
generated according to the peak rate specified in Table 3. The
packet generation rate over a long period of time, along the
on and off states of the Markov model, is called the average
input rate. Note that the Markov model generates packets
probabilistically. Therefore, in a short period of time the flow
may generate more packets than its TSpec allows. In order
to guarantee a flow does not violate the TSpec constraints of
the maximum burst and average input rate, the token bucket
algorithm is used. The token size is set to 1. The token
generation rate is the same as the peak input rate. Arrival
time of a packet in an entrance node is the time it departs
the token bucket. Token bucket is used to keep the average
arrival rate of flow under the TSpec. It is a part of the packet
generation process. The probability of being in theON state in

FIGURE 5. The Markov on-off model used in the source and the transition
rate of the model.

the Markov on-off model is set at 90%, so that the difference
between the average input rate and the peak input rate is not
large.

The simulation covers the utilization levels from 70% to
95% with an increment of 5%. Utilization is computed based
on the peak input rate. In our topology, the link between 5-6
and the link between 10-11 are the bottleneck. One type A
flow, six type B flows, and one type C flow pass these links.

With C-SCORE, to sort packets based on their FT val-
ues, push in first out (PIFO) queues, or equivalently priority
queues, are used. With a recent implementation of pro-
grammable PIFO switch, it is shown to be possible to sort
the packets in specified order upon arrival up to 10 Gbps
line-speed with 64 ports sharing a single shared memory
[27]. However, note that [27] utilizes the fact that the pack-
ets within a flow are always served in FIFO manner. The
maximum of 1000 flows are assumed in its implementation.
Having more than 1000 flows likely results in a degraded per-
formance. Another notable example of priority queue is the
pipelined heap (P-heap) [28]. It showed that a priority queue
is supported up to 15 Gbps, 232 priority levels, for 53 Byte
ATM cells, with 0.35 micro technology, which is translated
into around 100 MHz clock. Moreover, the throughput of
P-heap is independent of the queue size or the number of
flows.

We have compared FIFO, ATS, WRR, DRR, VC and
C-SCORE. The C-SCOREs in the comparisons may have
different dh (p) values. FIFO is the basic scheduler used in
DiffServ. It is well known that if the utilization is low and the
sum of allocated rates to all the flows in a link is less than the
link capacity, then the E2E latency can be bounded even with
the FIFO. Thus the FIFO can be the simplest candidate for
E2E latency guarantee. The ATS of IEEE TSN TG is a com-
bination of per-input port interleaved-regulators and a FIFO
scheduler. It prevents the accumulation of bursts over hops,
and theoretically has a better latency bound than the FIFO.
The DRR and WRR are used in real Internet deployments.
They still require per-flow queues therefore per-flow state
maintenance, however. The weight of WRR was determined
as the ratio of the peak input rate. The quantum size of DRR
was used by multiplying the weight used in WRR by 10K,
the maximum packet length. The VC is the representative of
all the stateful fair queuing schedulers, defined as the class
of PRPS [17] by Stiliadis et al. The schedulers in PRPS class
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have the identical E2E latency bounds, therefore it is enough
to observe only the VC’s E2E latency performance.

Each flow generates 1000 packets. We get E2E latency of
a total of 36000 packets per simulation. The simulation was
repeated 100 times with random seeds for each utilization.
For each scheduler simulation, the traffic generation pattern
must remain constant, so we used the same random seed.
The maximum E2E latency for each flow type observed
through each simulation was obtained as a result. These
observed maximum E2E latencies are depicted with box
plots.

B. NODE-SPECIFIC DELAY FACTOR
As the simplest way to determine dh (p) of C-SCORE, a func-
tion that depends only on node, dh, can be used. In other
words, the delay factor is a fixed value for an output port of
a node. We call this a node-specific delay factor. Since all
packets use the same dh value in a node, there is no need
to inform this value through a packet meta-data. Instead, dh
value can be negotiated and acknowledged among nodes in
the control plane. In this case, only Fh (p) is used as a packet
meta-data, and there is no further information needed to be
stored in the node.

This approach of selecting dh as the delay factor clearly
satisfies Condition 1 to 3 in Section IV-A. Condition 4 can
also be satisfied if dh value appropriately reflects the actual
delay of the hop. We have examined the possibility of these
node-specific delay factors through simulations.

Figure 6 is the graph of the maximum E2E latency of type
C flows with varying dh and utilization. In these simulations
dh is the same for all the nodes. Each plane of different
color represents the maximum, average, and minimum of
the observed maximum E2E latency. As dh increases, the
maximum E2E latency also increases. This is because among
the same types, flows with larger numbers of hops determine
the maximum E2E latency. Since dh is a fixed value, the
FT of packets with more hops becomes larger thus suffering
more delay, regardless of the route. Moreover, this effect can
be observed between the flows with different types. When
utilization is high, this symptom is observed more clearly
with larger dh.

When dh is 0, i.e., when dh is the minimum value,
packets generated earlier have an advantage. The FT of a
packet that has traveled more hops gets advantage compared
to a packet that has traveled less hops. Note that in this
paper, the propagation delay of a link is assumed to be
zero. In practical implementations, the minimum value of dh
should be equal to the propagation delay. In this case, the dh
should reflect the difference among the propagation delays of
links.

We have compared the maximum E2E latencies of each
flow type, of C-SCORE with the node-specific delay factor,
with the other schedulers. Figure 7 depicts the distribution
of the maximum E2E latency of each flow type for each
scheduler at 90% utilization. For C-SCORE, dh = 0.

FIGURE 6. 3D surface plot of the maximum E2E latency of a type C flow in
C-SCORE according to dh and utilization.

FIGURE 7. The maximum E2E latency distributions for each scheduler is
shown when the utilization is at 90%, with dh of C-SCORE being the
minimum value. The order of boxplots is the same as the order in the
legend.

In Figure 7 and the subsequent simulations, FIFO and ATS
show no meaningful difference in maximum E2E latency for
each flow type. It can be conjectured that the burst accu-
mulation in this simulation is not significant, thus the IR
of ATS does not contribute to reducing the latency. Some
degree of flow isolation is observed for WRR and DRR.
However, in flow type C, WRR shows worse performance
than DRR because WRR does not consider packet length.
Flow type C suffers more in WRR due to its small packet
length. C-SCORE provides a good flow isolation, as it
achieves smallest latency bounds like those of VC for all flow
types.
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FIGURE 8. The maximum E2E latency distributions of C type flows
according to dh value of C-SCORE, when the number of hops is either 3 or
7. The order of boxplots is the same as the order in the legend.

As it has been expected, FIFO does not isolate flows,
therefore all the types of flows show similar maximum E2E
latencies. On the contrary, VC and C-SCORE successfully
isolate flows, thus the E2E latencies are differentiated dra-
matically with these schedulers.

We examined the case where the arrival process of a
flow follows deterministically the arrival curve. Compared
to the results in Figure 7, in this case the maximum E2E
latencies are higher for all the schedulers. The Variances are
also smaller. However, the performance of C-SCORE is still
similar to that of VC, and the differences in maximum E2E
latencies are not significant.

We have also examined the effect of the hop count on
maximum E2E latency, with varying delay factors. Figure 8
shows the distribution of maximum E2E latency by number
of hops traveled for type C flows according to dh at 90%
utilization. As shown in Figure 8, as dh increases, the max-
imum E2E latency of packets traveling a large number of
hops increases, and that of packets traveling a small number
of hops decreases. This causes a quality of service differ-
ence within the same flow type, which cannot be considered
fair. In order to reflect the delay of packets experienced in
a node, we may want to determine a proper constant dh
value instead of the minimum value. However, it can still
result in unfavorable service for packets traveling a large
number of hops. Therefore, in the following subsection,
we propose a method to determine the dh (p) function for
each node based on the actual delay experienced in the
node.

C. NODE-ADAPTIVE DELAY FACTOR
Since a fixed value of dh causes the unfairness to flows
according to their number of hops, dh needs to be able to vary
appropriately for each node, reflecting the actual delay in the
node.We call this a node-adaptive delay factor dh(t), which is

a function of node and time. If this nodal delay is reflected in
the FT, the difference between the FT and the actual service
time is reduced, allowing for a more accurate alignment
between the flows from different paths. For example, we can
think of three choices of delay factor reflecting the actual
delay.

1) Delay of a packet in the previous node is added to FT.
However, doing so could flip the order of services of
packets within a flow.

2) Average delay of a flow is added to FT. However, doing
so requires flow state maintenance.

3) Average delay of all the packets in a node is added
to FT. However, the average delay becomes smaller as
time passes, the FTs can be flipped within a flow.

These should be avoided. Therefore, a non-decreasing func-
tion of time, which reflects the nodal delay should be used as
dh(t). When the delays of all the packets over all the flows
are used, the differentiation between flow types seems to be
weakened. However, we have observed in Figure 7 that the
max E2E latencies can be differentiated even with a fixed dh.
Therefore, the node-adaptive delay factor has the potential to
be an appropriate choice.

Since dh(t) must be a non-decreasing function, the maxi-
mum observed value of the average (max_avg) so far is used
as dh(t), rather than a simple average. Each time a packet is
transmitted, the average queuing delay is calculated. If the
average calculated is greater than the current max_avg value,
the max_avg is updated with the recent average value. The
method for determining dh(t) with max_avg is described in
Algorithm 1. To perform this operation, the packet’s meta-
data should include both the arrival time at the node and
dh(t). The arrival time should be updated as soon as the
packet arrives at the node, while dh(t) should be updated
every time the packet leaves the node. The queuing delay
should be calculated just before the packet leaves the node,
and the average of the queuing delays should be computed.
Additionally, the node should keep a record of both the aver-
age and max_avg value. Continuous increase of dh(t) in the
max_avg method can result in a service differentiation due to
the number of hops, just like the cases with a fixed positive
value of dh. To prevent this issue, we reset the max_avg
value when the node is empty. Although the average value
itself is not reset, dh(t) continues to accumulate. If the node
is empty, adding a relatively small dh(t) value can reduce
the effect of the number of hops. This approach performs
better than initializing the max_avg value and the average
together.

Figure 9 depicts the maximum E2E latency distributions of
type C flows for each scheduler based on utilization, with dh
set as the max_avg value. WRR is excluded from the graph
due to a significant difference in maximum E2E latency.
C-SCORE shows maximum E2E latency like VC at all uti-
lization levels. In C-SCORE, themax_avgwas observed to be
up to 351us at utilization 90%. The results are comparable to
those obtained when dh is fixed to the minimum value. How-
ever, since dh is non-zero in the maximum average method,
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Algorithm 1Max_Avg Calculation in C-SCORE
Input: p: packet

n: number of packets transmitted
avg: average of queueing delay
max_avg: maximum value of average

1: n←0
2: avg←0
3: max_avg←0
4: while true do
5: if packet p is ready to be transmitted then
6: queueing delay← current time –

p.node_arrival_time
7: avg←(avg × n + queueing delay)/(n+1)
8: n←n+1
9: if max_avg < avg then
10: max_avg←avg
11: end
12: dh(t)←max_avg
13: end
14: if all queues are empty then
15: max_avg←0
16: end
17: end

FIGURE 9. The distributions of the maximum E2E latency of C type flows
with different schedulers and varying utilization. dh(p) of C-SCORE is the
max_avg function. The order of boxplots is the same as the order in the
legend.

resulting in a larger maximum E2E latency for the flows with
larger numbers of hops.

Figure 10 depicts the distribution of the maximum E2E
latency of type C flows based on the number of hops traveled
at 90% utilization, with the delay factor set to the minimum
value and with the delay factor set as the max_avg. As men-
tioned earlier, themaximumE2E latency for packets traveling
a large number of hops is increased, while the maximum

FIGURE 10. Comparison of maximum E2E latency distributions by the
number of hops traveled by C type flows with different dh(p) and 90%
utilization. The order of boxplots is the same as the order in the legend.

E2E latency for packets traveling a small number of hops is
decreased, although the differences are negligible.

D. FLOW-ADAPTIVE DELAY FACTOR
The disadvantage of using the max_avg as the delay factor is
that both the average queuing delay and a packet’s queuing
delay itself must be continuously calculated and maintained.
Since this calculation should be performed right before trans-
mission, it can be burdensome to be executed in real time.
Moreover, the delay differences among the different types of
flows have to be addressed as well. Intuitively, flows with
larger service rate should have experienced lesser delay in a
node. This difference has to be reflected in FT.

To solve this issue, we propose a flow-adaptive delay factor
that incorporates flow characteristics. In this method, dh (p)
is determined as the service latency in the previous node
h− 1, as described in (9) of Section IV. It is repeated here
for readability.

dh (p) =
Lmaxh−1

Rh−1
+ Li/ri, (12)

(12) incorporates various parameters, including Lmaxh−1 and
Rh−1, which are information from the previous node and rep-
resent the maximum packet length and link capacity at node
h−1, respectively. Li and ri are flow specific information, rep-
resenting the maximum packet length and service rate of the
flow, respectively. This method requires meta-data, includ-
ing the maximum packet length observed at the previous
node, the link capacity of the previous node, the maximum
packet length generated by the flow to which the packet
belongs, and the service rate. Upon receiving a packet, the
proposed method calculates dh (p) using this meta-data, adds
it to the FT, and updates the meta-data from the previ-
ous node with those of the current node. Alternatively, the
Fh (p) can be pre-calculated at node h − 1 and written as
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FIGURE 11. The distributions of the maximum E2E latency of C type flows
with different schedulers and varying utilization. The C-SCORE is with the
flow-adaptive dh(p). The order of boxplots is the same as the order in the
legend.

TABLE 5. The observed maximum E2E latency in millisecond.

the meta-data. It has been proven in Section IV, that the
proposed flow-adaptive method can guarantee a E2E latency
bound for each flow.

Figure 11 depicts the maximum E2E latency distribution
of type C flows with varying utilization, obtained using the
proposed flow-adaptive dh (p) as in (9). Like the previous
delay factors used, the results demonstrate effective flow
isolation, as indicated by a maximum E2E latency similar to
that achieved using the stateful VC scheduler in every node.

Figure 12 depicts the distribution of maximumE2E latency
for flow type C at a utilization of 90%. The red dotted
line in Figure 12 represents the theoretical maximum E2E
latency of C-SCORE using the flow-adaptive method at 90%
utilization, which is 0.3226ms. Table 5 shows the maximum
E2E latency results observed for each scheduler at different
levels of utilization. The results for the flow-adaptive method
are reported under the label ‘C-SCORE’ in Table 5. The
observed maximum E2E latency for C-SCORE was 0.29ms,
confirming that it did not exceed the theoretical maximum at
all levels of utilization.

Considering the fact that the most stringent flows require
less than 1ms E2E latency bounds [29], the ATS, FIFO, and

FIGURE 12. The maximum E2E latency distributions of C type flows using
various schedulers when utilization is 90%. The C-SCORE is with the
flow-adaptive dh(p). The red dotted line indicates the theoretical E2E
latency bound of both VC and C-SCORE. The order of boxplots is the same
as the order in the legend.

TABLE 6. Theoretical E2E Latency Upper Bounds At Utilization 90%.

DRR cannot fulfill this requirement. The C-SCORE is the
only scalable solution here.

Figure 13 depicts the distribution of maximumE2E latency
by the number of hops for type C flows at a utilization of 90%,
when dh (p) is set to the minimum value and when dh (p) is
set to the flow-adaptive method. Compared to the case where
dh (p) is set to the minimum value, the average maximum
E2E latency of packets traveling a large number of hops
increases, but the maximum value is similar. Additionally, the
maximumE2E latency of packets traveling a small number of
hops is greatly reduced. Unlike the previous two methods, the
flow-adaptive method assigns different dh (p) values between
flows, resulting in better flow isolation and ensuring that type
C flows receive fair service regardless of the number of hops.

The theoretical E2E latency bounds of ATS, DRR, and C-
SCORE, when the utilization is 90%, are shown in Table 6.
They are calculated based on the inequalities obtained in [8]
and [16], and Theorem 3, respectively for ATS, DRR, and
C-SCORE. VC has the same bound with C-SCORE. For
FIFO, because of the loop in the network, the E2E latency
explodes and the bounds cannot be obtained. Note that all
the bounds are much larger than the observed maximum
latency. However, the order of the bounds and the order of
the observed maximum values are identical.
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FIGURE 13. Comparison of maximum E2E latency distributions by
number of hops traveled by C type flows with different dh(p) and 90%
utilization. The order of boxplots is the same as the order in the legend.

E. C-SCORE WITH ALIGNMENT (C-SCORE-A)
All three methods of determining dh (p) described above
assume the use of a priority queue such as heap or PIFO. Since
the implementation of a priority queue can be complicated,
we would like to find a way to approximate the a priority
queue service using only FIFO queues. The reason for using
a priority queue was to sort the packets according to their FT
order, which can be different from their arrival order.

We first propose the C-SCORE with alignment
(C-SCORE-A), which aligns a packet’s FT to match the order
of arrivals with the order of FTs of packets. Algorithm 2
describes how to determine dh (p) in C-SCORE-A. There
is a FIFO queue per input port. Packets are put into the
FIFO queues according to their input ports. The essence
of Algorithm 2 is that, if the FT of the arriving packet,
Fh (p), would be larger than the port’s recent FT value, Ei (p),
or smaller than the current nodal alignment target, Sh (p), then
to force Fh (p) to become the max{Ei(p), Sh(p)+L(p)/r(p)}.
Ei(p) is the maximum FT of packets arrived before p, from

the input port i. Sh(p) is the maximum FT among packets
serviced so far in the node. By forcing the FT to be such a
value, the FT order matches the arrival order of the packets.
Therefore, the FTs of packets departing from the node are
guaranteed to be sorted.

Note that the delay factor, dh (p), proposed in this paper is
usually a function of node h− 1, except in the cases with an
alignment function.

Figure 14 depicts the maximum E2E latency distribution
of type C flows using C-SCORE-A and other schedulers
with varying utilization. Unlike C-SCORE, C-SCORE-A’s
performance changes according to utilization. The higher
the utilization, the more packets are aligned at once. The
alignment process consequently makes it operate like a FIFO,
so the performance of C-SCORE-A is close to that of a FIFO

Algorithm 2 C-SCORE-A
Input: i: input port

dh∗: current d value of the input port
p: packet
pi: preceding packet of the input port of
packet p
ps: packet being served by the node, or if the
node
is empty then packet served most recently
Fh(p): FT of packet p in node h
A(p): node arrival time of packet p
L(p): length of packet p
r(p): service rate of flow to which packet p
belongs

1: while true do
2: if packet p is received then
3: Ei(p)←max{Fh(pi)}+maxi{Li/Ri}
4: Sh(p)←max{Fh(ps(t))}
5: if Fh−1(p)+ dh∗ > Ei(p) or

Fh−1(p)+ dh∗ < Sh(A(p)) then
6: dh (p)←max{Ei(p),

Sh(A(p))+L(p)/r(p)}−Fh−1(p)
7: Fh(p)←Fh−1(p)+dh(p)
8: dh∗ ←dh(p)
9: end

10: end
11: end

FIGURE 14. The distributions of maximum E2E latency per scheduler with
varying utilization. The order of boxplots is the same as the order in the
legend.

as utilization increases. Conversely, the smaller the utiliza-
tion, the rarer the alignment between flows, and the order of
services is determined by the FT set by the entrance node.
Therefore, as the utilization is lowered, the performance
becomes like that of VC.
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FIGURE 15. The distributions of maximum E2E latency of different flow
types with various schedulers at 90% utilization. The order of boxplots is
the same as the order in the legend.

Figure 15 depicts the maximumE2E latency distribution of
different flow types using C-SCORE-A and other schedulers
when utilization is 90%. Unlike the previous C-SCOREs,
flow isolation is not well executed, but still better than
FIFO or ATS. C-SCORE-A can be concluded to show the
performance between FIFO and VC. Compared to DRR,
C-SCORE-A uses a queue for each input port, so it can
be used even on core nodes with many flows. Also, when
compared to the previous C-SCOREs, it has the advantage
of using the simpler FIFO.

F. FIFO QUEUE PER FLOW TYPE
We proposed and examined the C-SCORE-A using FIFO
queue with alignment between flows. However, the per-
formance of C-SCORE-A is similar to that of the simple
FIFO scheduler, and is inferior to the previously examined
C-SCOREs. One important insight gained through the sim-
ulations of C-SCORE-A is that, when we put the different
types of flows into a single FIFO queue, the actual service
times in core nodes can be affected by the parameters of other
flows, when using the alignment function. The parameters
of different types of flows also alter the flow’s own FT
distances. Therefore, we propose to allocate FIFO queues for
each flow type. The flows of the same type are defined as
the flows having the same maximum packet length and the
same service rate. As we have noted in (9), the flow-adaptive
delay factor function, the service rate and maximum packet
size are important pieces of information for determining the
FT values in core nodes. A FIFO queue is assigned to the set
of flows of a similar or same type. Compared to implementing
a separate queue for each flow, using a queue for each flow
type requires fewer queues, which can be predicted based on
the environment, making implementation easier than VC or
DRR. Since there are three types of flows passing through

FIGURE 16. The distributions of maximum E2E latency per scheduler
according to utilization. C-SCORE uses a FIFO queue for each flow type,
with the flow-adaptive dh(p). The order of boxplots is the same as the
order in the legend.

FIGURE 17. Comparison of maximum E2E latency distributions of C type
flows having 3 or 7 hops. Utilization is 90%. C-SCORE with PIFO queue
with dh(p) = 0 (Blue), FIFO with the flow-adaptive dh(p) (Orange), and
FIFO with dh(p) = 0 (Green). The order of boxplots is the same as the
order in the legend.

the simulation environment, three queues are implemented
for each output port in the node.

We have observed through simulations that, when FIFO
queue per flow type is used, flow isolation performance
is improved when dh (p) is determined either by the
flow-adaptive or zero delay factor. Figure 16 shows the max-
imum E2E latency distribution of C type flows with different
schedulers with varying utilization. The C-SCORE, using a
FIFO queue for each flow type, shows similar performance
to VC. When compared to the C-SCORE with PIFO, using
a FIFO queue for each flow type results in a more consis-
tent distribution of maximum E2E latency, with only slight
changes observed across different levels of utilization.
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Figure 17 shows the maximum E2E latency distribution
with varying number of hops traveled by C type flow at 90%
utilization, when a PIFO queue with dh (p) = 0 and FIFO
queues with the flow-adaptive or zero delay factor. Using a
FIFO queue for each flow type is disadvantageous in terms
of maximum E2E latency compared to the case with PIFO.
It is due to the fact that the service order of packets with small
FT values still can be behind the HoQ packet with larger FT.
This increase in latency is observed regardless of the number
of hops traveled by the packet. Nevertheless, the difference in
maximum E2E latency is not significant.

G. COMPARISON WITH NON-WORK CONSERVING FAIR
QUEUING SCHEDULERS
Wecompare the E2E latencies of type Cflows, with non-work
conserving counterparts, Jitter-VC and CJVC [9]. Jitter-VC is
a non-work conservingVC. It requires flow statemaintenance
in core nodes. Unlike VC, Jitter-VC holds a packet until it
is eligible. For the explanation of CJVC, see section III-C.
In short, CJVC is a stateless Jitter-VC in core nodes.

Figure 18, 19, and 20 depict the distributions of the maxi-
mum E2E latencies, the average E2E latencies, and the E2E
latencies, respectively. In a single simulation run, a maximum
and an average E2E latencies of the 7-hop C-type flows
are observed and determined. With 100 simulation runs, the
distributions are obtained and plotted in Figure 18 and 19. The
E2E latencies of the 7-hop C-type flows obtained throughout
the simulation runs are gathered and plotted in Figure 18. The
C-SCORE in these figures uses dh (p) =

Lmaxh−1
Rh−1
+
Li
ri
, the service

latency at the previous node.

FIGURE 18. Comparison of maximum E2E latency distributions of 7-hop C
type flows. Utilization is 90%. C-SCORE with PIFO queue with dh(p) =

service latency. The order of boxplots is the same as the order in the
legend.

The red dotted line in Figure 18 represents the theoretical
bound for all the four schedulers. It can be seen that this bound
is not violated. Figure 18 and Figure 19 show that, for both the
maximum E2E latency and the average E2E latency, the work
conserving schedulers are better. Figure 20 also shows that

FIGURE 19. Comparison of average E2E latency distributions of 7-hop C
type flows. Utilization is 90%. C-SCORE with PIFO queue with dh(p) =

service latency. The order of boxplots is the same as the order in the
legend.

FIGURE 20. Comparison of E2E latency distributions of 7-hop C type
flows. Utilization is 90%. C-SCORE with PIFO queue with dh(p) = service
latency. The order of boxplots is the same as the order in the legend.

even in terms of the delay variation, or the jitter, the non-work
conserving schedulers do not perform better, contrary to the
claim in [9]. This is due to the fact that the eligible time itself
used in Jitter-VC and CJVC can vary widely, according to
the packet’s order within a burst. For a packet placed last in a
burst, the eligible time is quite different from the arrival time,
while for a packet placed first in a burst has an eligible time
that is identical to the arrival time.

H. SIMULATION WITH A COMPLEX TOPOLOGY
To observe performance variations based on changes in
C-SCORE’s topology, simulations were conducted using
a different topology. A topology consisting of a hierar-
chical structure comprising local area networks (LANs),
metropolitan area networks (MANs), and a core network;
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FIGURE 21. The architecture of the LAN in the simulation.

FIGURE 22. The architecture of the MAN in the simulation.

altogether having a diameter of 16 hops was employed. The
network was implemented using OMNeT++ [30] and INET
[31], based on the example topology provided by INET called
‘Hierarchical’.

The LAN represents the lowest level network that includes
hosts, as shown in Figure 21. The link capacity is 1 Gbps. For
implementation convenience, only one host was instantiated.
This host runs six applications: three of them transmit flows,
while the other three receive flows. The characteristics of
flows, except for the destination, remain consistent with those
outlined in Table 2. There are also three types of flows,
maintaining a service rate ratio of 1:10:10. The service rates
of flows were set to achieve a 72% utilization in the core
network. The host transmits one flow type each, totaling three
flows, with the average traffic rate of 450 Mbps. The packet
generation process for applications remains the same as in
previous simulations, utilizing a Markov on-off model and
token bucket.

The MAN employs a ring topology, as illustrated in
Figure 22. The link capacity between routers and between
routers and LANs is 1 Gbps, while the links connecting to
the core network have a capacity of 10 Gbps. Each router is
connected to one LAN, and two routers are linked to the core
network.

The core network employs a grid topology, as depicted
in Figure 23. The link capacity is 10 Gbps. Each router is

FIGURE 23. The architecture of the core network in the simulation.

FIGURE 24. The distributions of maximum E2E latency of different flow
types with various schedulers at 72% utilization. The order of boxplots is
the same as the order in the legend.

connected to one MAN with two links. The core network
achieves a maximum utilization of 72%, with both directions
of the respective links showing a 72% utilization. Flows have
symmetric source and destination pairs with respect to the
center of the topology. For example, in Figure 23, flows
emanating from man[0] are headed towards man[15], while
flows originating from man[8] are directed towards man[7].

A scheduler was implemented on every switch and router
at all the layers. The schedulers used in the simulation were
FIFO, DRR, VC, and C-SCORE. C-SCORE utilized PIFO
and a flow-adaptive delay factor. Hosts exclusively used FIFO
scheduling. Each transmitting application sent 1000 packets.
The simulation was repeated 30 times. Since there was little
difference between the results for the entire set of hosts in the
simulation and the symmetric half, we obtained results using
only the corresponding half of the results.
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Figure 24 depicts box-and-whisker plots of the maxi-
mum end-to-end latency for each flow in each simulation.
It demonstrates that C-SCORE successfully protects the tar-
get flow type, denoted as C. Furthermore, it is shown that in
a topology where networks with different link capacities are
connected, C-SCORE exhibits performance similar to VC.

I. ANALYSIS SUMMARY
In Sections IV-B ∼ V-F, we have examined various delay
factor functions, dh (p), regarding their performances in terms
of observedmaximumE2E latency. A fixed value of the delay
factor in a node independent of the flow, i.e. dh (p) = dh,
shows surprisingly good performance considering its simplic-
ity of updating the FT in core nodes. A smaller value of dh
gives better performance for flows with larger numbers of
hop, and vice versa. Setting dh to be zero, or the propagation
delay of the link in the realistic case, is similar to considering
the network as a single service entity. If, regardless of the hop
count, the flows should have the same level of E2E latencies,
then this choice of dh would be fair, and would give a better
overall E2E latency bound.

The flow-adaptive choice of dh (p) that is dependent on the
flow the packet belongs to, dh (p) =

Lmaxh−1
Rh−1
+ Li/ri as in (9),

yields an explicit expression for the E2E latency upper bound.
The simulation results confirm this mathematical expression
over various network utilizations. When compared to the case
of a fixed delay factor value, the flow-adaptive delay factor
requires additional packet meta-data, that is

Lmaxh−1
Rh−1

and Li/ri.

However,
Lmaxh−1
Rh−1

value can be signaled out-of-band between
neighboring nodes. Moreover, Fh (p) itself can be calculated
at node h− 1 and be put into the packet before sending to the
node h.

For the fixed or the adaptive delay factor function, a proper
implementation requires a priority queue. In order to avoid
the use of a priority queue, we have examined the possibil-
ity of aligning the order of FTs and the order of arriving
times of packets to coincide. This was called the C-SCORE
with alignment. However, the alignment algorithm makes the
C-SCORE have the characteristics of a FIFO scheduler.

From the observation that the order of FTs is similar to
the order of arrival times of packets in core nodes, we have
put flows with the same characteristics into a single FIFO
queue, with the flow-adaptive delay factor in (9) or zero delay
factor. The maximum E2E latencies of schedulers with such
FIFO queues are shown to be similar to that with the PIFO
queue. The C-SCORE with FIFO per similar flows with zero
delay factor can be seen as an alternative choice of the most
sophisticated implementation suggested in this paper, which
is the one using PIFO with the delay factor in (9).

VI. CONCLUSION
In this paper, a framework for deriving FTs in core nodes
without maintaining flow states is presented, in which ini-
tial FT obtained in the entrance node is updated in a core
node by adding a nodal delay factor, which is a function

of parameters that can depend on upstream nodes and flow
itself. The packets are to be put into a queue, if there is
a packet currently being served. The packets in the queue
have to be served in the increasing order of FTs. Therefore,
in general the proposed scheduler requires a priority queue
and is work conserving. It is proven that, for a certain choice
of the delay factor function, the mathematical expression for
the E2E latency upper bound exists. It is remarkable that
this E2E latency bound function is the same as the one with
a network having stateful fair queuing schedulers in all the
nodes. It is well understood that the fair queuing schedulers
are the best in terms of flow isolation and latency bound.
Moreover, the bound is the function of the flow intrinsic
parameters, except the ratios of the maximum packet length
on a link and the capacity of the link. Therefore, the bound
is adjustable with the flow’s own parameters. A network can
fulfill the requested E2E latency bound of a flow by allocating
especially a proper service rate to the flow.

It is also proposed a FIFO-based architecture, by using
the fact that the service order between packets of the flows
passing through the same path can be unaltered in the middle
of the path if the delay factors added to the FTs of these
flows are non-decreasing function of time. In this FIFO-based
architecture, flows having the similar parameters, such as
the maximum packet size and the service rate, are put into
the same FIFO queue. It is shown that this scheduler’s E2E
latency performance matches those of priority queue-based
architectures.

Through the extensive simulations, we have shown that
the proposed mechanism provides an ideal flow isolation
performance, without having to maintain flow states in core
nodes. The framework is shown to be also robust, as it pro-
vides a stable maximum E2E latency throughout the various
choices of delay factor function, at various utilization levels
within 70 ∼ 95%. We also showed that the proposed work
conserving fair queuing scheduler is superior to the existing
non-work conserving fair queuing schedulers, Jitter-VC and
CJVC, in terms of both the maximum and the average E2E
latency with simulations. It was also shown that the jitters of
these non-work conserving schedulers are not better than the
ones of the proposed work conserving scheduler.

In practice, it is anticipated the simplest implementation
can be adopted, in which a core node maintains a fixed delay
factor value, e.g. the propagation delay of a link, for all
the flows; and assigns a FIFO queue for flows with similar
types. This simplest implementation shows a comparable
performance with the most sophisticated implementation of
C-SCORE, which uses PIFO and the service latency as the
delay factor. Considering the fact that the types of traffic
that require deterministic networking are limited, we con-
jecture that the number of FIFO queues required is within a
reasonable range. The fixed delay factor value could be deter-
mined through long-term observations or by an advanced
approach such as the one with reinforcement learning. More-
over the FT at node h can be pre-calculated at node h−1 with
the delay factor value that is the function of node h − 1.
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In this case the FT is the only meta-data necessary. This
practical implementation would provide an enough level of
flow isolation and E2E latency upper bound.

The flow states still have to be maintained in the entrance
nodes. The notion of the entrance node, however, can be mit-
igated into various edge devices, including the source itself.
The FT value of a packet is decided based on the maximum
of F0 (p− 1) and A0 (p); and L (p) /r . These parameters are
flow-specific. There is no need to know any other external
parameters. The arrival time of p to the network, A0 (p), can
be approximated by the generation time of p at the source.
Then F0 (p) is determined at the packet generation time and
can be recorded in the packet. Therefore, we can simplify
the proposed solution to a great degree, and can apply to
any network with robustness and scalability. The possibility
of further simplifying the framework will be studied in the
future.

The network used in most of the simulations has a mod-
erate size and a symmetric topology. Although its topology
includes loops, so that burst accumulation effect can be
maximized, the moderate size can be its limit. To verify
performance in a realistic large-scale network, a network
with a hierarchical structure is being implemented using
OMNeT++, with a goal of 50 or more nodes. The link
capacities and topology can be chosen randomly. The charac-
teristics of the flow are set to follow those of the actual flow
being serviced on the Internet. The initial results from such a
complex network are shown in Section V-H.
The framework in this work has been proposed in vari-

ous International standard organizations by the authors, as a
solution for deterministic networking, including IETFDetNet
WG [32], [33], [34] and ITU-T SG 13 [35]. Considering there
are a number of standard working groups that try to utilize
various meta-data for management and packet handling, such
as routing in IETF SPRING WG [36], adding the FT as
another meta-data will not introduce too much burden.
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