
Received 2 September 2023, accepted 18 September 2023, date of publication 22 September 2023,
date of current version 27 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3318481

Generating Daily Gap-Free MODIS Land Surface
Temperature Using the Random Forest Model
and Similar Pixels Method
DONG CHEN 1, QIFENG ZHUANG 1, LIANG ZHU 2, WENJIE ZHANG1, AND TAO SUN1
1College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China
2Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

Corresponding author: Qifeng Zhuang (zhuangqf@njtech.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 42301420 and Grant 42271420.

ABSTRACT The land surface temperature (LST) is one of the vital variables for surface-atmosphere
interaction. However, due to the vulnerability of thermal infrared remote sensing to clouds, the MODIS
LST products have many observation gaps, which seriously limits their application. In this paper, to make
up for the shortage of random forest model in reconstructing images with substantial cloud-cover pixels,
a combined random forest (RF) and similar pixels (SP) reconstruction scheme was proposed to generate
daily gap-free MODIS/Terra LST product and validated by the automatic weather stations (AWS) data in
the Heihe River Basin. First, we used the RF model to reconstruct the images that meet the threshold (the
clear-sky pixels percentage is more than 30%). Then, we used a combination of the RF model and the SP
method to reconstruct the images that do not meet the threshold. Thus, the daily MODIS LST reconstruction
results were obtained. The visual assessment indicated that the reconstructed LST strongly correlates with
the original LST and can capture the spatial distribution features of LST-related characteristic variables.
Additionally, the validation with in situ observations demonstrated that the method of directly using the RF
model performs well with an R2 of 0.87, an NSE of 0.87, an RMSE, and a Bias of 4.69 K and 0.08 K,
respectively. The RF model and SP method combination still have a good performance with an R2 of 0.79,
an NSE of 0.76, and an RMSE and Bias of 6.37 K and 0.62 K, respectively.

INDEX TERMS Land surface temperature (LST), remote sensing, MODIS, random forest (RF) regression,
reconstruction, similar pixels (SP).

I. INTRODUCTION
Land surface temperature (LST) is one of the most important
environmental parameters describing the regional and global
land surface-atmospheric interaction and water circulation
processes [1], [2]. It is irreplaceable an irreplaceable role
in urban heat island effect research, surface energy flux
estimation, evapotranspiration research, and soil moisture
estimation [3], [4]. The investigation of LST retrieval algo-
rithms has been widely applied in many significant research
fields, including climate, ecology, hydrology, and global
environmental change [5], [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongjun Su.

The traditional ground-based measurement sometimes is
challenging to meet the requirements of obtaining LST
products and their spatial-temporal distribution on regional
and global scales. However, in recent years, with the rapid
development of remote sensing technology, remote sensing
satellite data sets from all over the world have made the
rapid acquisition of LST products a reality [7], [8]. Since
the 1970s, it has gradually become one of the hotspots in the
field of quantitative remote sensing to use the Spaceborne
Thermal infrared remote sensing technology to carry out
the macroscopic and dynamic temporal and spatial evolution
pattern of LST [9]. The relevant satellite data sets include the
Moderate Resolution Imaging Spectrometer (MODIS), the
Advanced Very High-Resolution Radiometer (AVHRR), and
the Advanced Along-Track Scanning Radiometer (AATSR),
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etc. [10]. The MODIS sensors carried on the Terra and
Aqua satellites are one of the most widely used sources
of satellite-derived LST because of their superior spatial
and temporal resolution and long-term availability [11].
MODIS provides multiple daily LST products from thermal
infrared bands using the generalized split-window (GSW)
algorithm [12]. MODIS LST products have been success-
fully applied in urban heat island research, surface energy
flux estimation, cropland evapotranspiration estimation,
etc. [13], [14]. However, thermal infrared remote sensing can
still not overcome the interference of clouds and fog. In the
case of cloudy weather or other atmospheric interference
radiation transmission, it significantly impacts the retrieval of
LST [15]. Infrared sensors can detect the heat released from
any surface they observe, but they can not penetrate the thick
cloud layer. As a result, the existing thermal infrared remote
sensing inversion algorithm is only applicable to clear-sky
conditions, resulting in a large number of missing surface
temperature information under cloud cover conditions and
null-value pixels in the LST products appear more or less,
which dramatically limits the in-depth application of surface
temperature in relevant fields [16], [17], [18]. Therefore,
accurate estimation of LST of cloud-covered pixels is an
urgent issue to expand the application of LST and promote
the research of thermal infrared remote sensing.

Driven by the rapid development of earth observation
technology, the reconstruction methods for cloud-covered
pixels can be separated into three categories: spatial-based,
temporal-based, and spatiotemporal-based [19]. For spatial-
based methods, the invalid pixel mainly determines the
objective function through the spatial relationship between
its adjacent pixels. It restores the invalid value, which is the
most widely used, including inverse distance weighting, the
Krigingmethod, Co-Kriging, and adjusted Kriging [20], [21].
For temporal-based methods, invalid pixels are reconstructed
by time information between different pixels on the same
timeline without considering the values of geographically
adjacent pixels. Based on this idea, Arroyo and Villajos [22]
and Zhang et al. [23] proposed the Linear Temporal method.
The change law of LST in 8 days before and after the
target pixel is analyzed, and the linear equation is deter-
mined, which can be applied to fill invalid values using
temporal information. Yan et al. [24] and Yang et al. [25]
used the Savitzky-Golay (S-G) method and the Harmonic
Analysis of Time Series (HANTS) to interpolate daily invalid
data, respectively. The spatiotemporal-based methods con-
sider neighboring pixels in both the temporal and spatial
domains. Zeng et al. [15] established an adaptive window
with invalid pixels as the center to search for effective and
similar pixels (SP) geographically and combined the effective
information of images on adjacent days to accomplish the
search process. The best estimate for the clear-sky equivalent
LST was proposed by Chen et al. using multiple temporally
adjacent images as reference [26]. Additionally, Yu et al. [27],
Tan et al. [28], and Chen et al. [29] assumed that adjacent

pixels in the temporal and spatial domains are similar pixels
(SP) with high correlation. This method was used to construct
a transfer function between SP to recover LST under cloudy
conditions. Previous research shows that the SP method is a
highly explanatory and practical interpolation.

In addition to the above methods, with the development
of machine learning algorithms in recent years, some recon-
structionmethods based on artificial neural networks, random
forest, and support vector machines have gradually emerged
[30], [31]. Wu et al. reconstructed the gap-free LST of
Wuhan City from 2016 to 2021 using a random forest model
that considers spatial characteristics [32]. Recurrent neu-
ral network (RNN) and short-term memory (LSTM) neural
network models also exhibit typical performance in temper-
ature reconstruction [33], [34]. Chung et al. constructed a
air temperature estimation LSTM model using different LST
data during cold and hot periods in one year and achieved
acceptable performance during cold periods [35]. Yang et al.
also evaluated the performance of large-scale LSTM models
for air temperature [36]. Artificial neural networks (ANN)
also have very broad application prospects in temperature
reconstruction [37], [38]. Wang et al. used the ANN model
to accurately reconstruct air temperature in complex moun-
tainous areas [39]. Sahin used the ANN model to model
the monthly average temperature of 20 cities [40]. Wu et
al. developed a multi-scale feature connection model using
convolutional neural networks (CNN) to reconstruct LST
datasets with large missing regions [41]. LST is greatly
affected by solar radiation, land use type, vegetation cover,
terrain, etc. [42], and LST has substantial space and het-
erogeneity. The machine learning method, with its simple,
fast, no complex physical mechanism, considering the sur-
face spatial heterogeneity, can establish an ideal relationship
between LST and related impact factors and has a broad
application prospect [41]. Therefore, the results obtained by
machine learning-based methods are often highly +accurate
and suitable for more accurate LST reconstruction. The RF
model is a classic machine learning model for LST recon-
struction, as it reduces the risk of overfitting by combining
multiple weak classifiers to form a robust classifier. Zhao and
Duan [43] reconstructed the MODIS/Terra LST data using
European second-generation geostationary meteorological
Meteosat Second Generation (MSG) solar radiation data and
other surface variables (vegetation index, surface albedo,
water index, and topographic characteristics). The random
forest (RF) algorithm was used to construct the correlation
model under the clear-sky pixel element, and the association
model was applied to the cloud coverage pixel area. The real
surface temperature of the cloud cover element was recon-
structed with high accuracy. Li et al. used various machine
learning methods to reconstruct LST, including ANN, SVM,
and RF. The results indicate that RF performs better than
other methods [44]. As a machine learning method, RF can
connect LST with its most relevant influence variables and
construct a fitting function, and the training process is
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relatively straightforward [45]. However, when using RF to
carry out the LST reconstruction work, the reconstruction
accuracy is affected by the number and numerical distribution
of training sample sets to a certain extent. The relationship
between related impact factors and reconstruction results is
still worth discussing. In addition, in previous studies on LST
reconstruction using the RF model, there is still no good
solution for images with severe cloud pollution and almost no
clear-sky pixels. Xiao et al. only reconstructed images with
clear sky pixels that meet a certain threshold within a year
using the random forest model [46].

Hence, to address the limitations of the RF model in recon-
structing heavily polluted images, we proposed an improved
LST reconstruction scheme using the RF model and SP
method to generate daily gap-free MODIS/Terra LST prod-
uct. We selected the Heihe River Basin (HRB) as the study
area and reconstructed the daily MODIS/Terra LST product
in this area in 2019. The reconstruction results were vali-
dated by in situ observations from automatic weather stations
(AWS) [47], [48] and the relationship between the accuracy
of the reconstruction results and the training samples was
quantitatively evaluated.

II. MATERIALS
We introduced daily auto weather station data with parame-
ters for geography and time, remotely sensed data and other
ancillary data to conduct our work. All data and their abbre-
viations used in this study are listed in Table 1.

TABLE 1. Variables used for the RF model estimation in 2019.

A. AWS MEASUREMENTS
The in situ LST measurements from AWS thermal infrared
thermometer observation validated the reconstructed LST.
The average frequency of AWS observation results is half
an hour. The validation data of four auto weather stations

in 2019 were used in this study: Arou (AR), Dashalong
(DSL), Sidaoqiao (SDQ), and Zhangye (ZY) [47], [48].
Detailed information on these eight locations is shown in
Table 1.

TABLE 2. Site location and underlying surface information of Heihe River
Basin.

B. MODIS PRODUCTS
In this study, the 1 km MOD11A1 product was selected to
complete the reconstruction of MODIS/Terra LST. Accord-
ing to the quality assurance description from the MODIS
quality control (QC) band, we set the part that does not
generate LST due to cloud effect and the portion that does
not cause LST due to reasons other than cloud effect the LST
that needs to be reconstructed.

The surface reflectance data was selected fromMOD09GA
in this study. NDVI, EVI, andMNDWIwere calculated based
on different reflectance bands. NDVI was calculated with the
red and near-infrared bands’ reflectance, MNDWI was cal-
culated with the green and mid-infrared bands’ reflectance,
and EVI was calculated with the red, blue, and near-
infrared bands’ reflectance. LSWI was calculated with the
near-infrared and the shortwave infrared bands’ reflectance.
All theMODIS datasets are downloaded fromNASA’s Earth-
data website (https://appeears.earthdatacloud.nasa.gov/,
accessed on 23 July 2022) for free.

C. TOPOGRAPHIC DATA
The elevation and slope data used in this study were obtained
free from Shuttle Radar Topography Mission (SRTM)
90-m DEM data (http://srtm.csi.cgiar.org/, accessed on
31 July 2022). According to the DEM data, elevation and
slope data were calculated to be the terrain factors in
the reconstruction process. Using the bilinear interpolation
method, they were resampled into 1 km to keep consistent
with the MODIS LST data.

D. SOLAR RADIATION DATA
Surface downward shortwave radiation is the primary energy
driving surface temperature changes; accurately obtain the
difference in radiation conditions caused by surface cloud
coverage, the East Asia-Pacific longwave/shortwave down-
ward radiation at the surface data set (2016-2020) was
applied in this study (http://data.tpdc.ac.cn/, accessed on
13 August 2022) [49]. The temporal resolution of the short-
wave radiation data is 10 minutes, and the spatial resolution
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is 5 km respectively. The product is developed by the geo-
stationary satellite Himawari-8, which can provide radiation
estimates under the clear-sky pixels and cloud-cover pix-
els and have higher spatiotemporal resolution than other
radiation products such as the fifth generation ECMWF atmo-
spheric reanalysis of the global climate data (ERA5) and The
Global Land Surface Satellite (GLASS) product. To fully
consider the cumulative effect of radiation factors on the
surface temperature, VSOL represents the cumulative value
of surface solar radiation from sunrise to satellite observing
time (10:30 am). VSOL value was estimated by integrating all
instantaneous data within the time range and resampled into
1 km to keep consistent with the MODIS LST data.

III. METHODOLOGY
A. STUDY AREA
The Heihe River Basin (HRB) is located between 97.1◦ E to
102.0◦ E and 37.7◦ N to 42.7◦ N, which is the second largest
inland river in the arid region of northwest China, flow-
ing through Qinghai Province, Gansu Province, and Inner
Mongolia Autonomous Region. HRB is rich in underlying
surface types, characterized by alpine and arid and semi-arid
landscapes, mainly grassland and green coniferous forest; in
the middle reaches, primarily corn, wheat, and other crops; in
the lower reaches, mainly riverbank mixed forest.

The terrain of the HRB is high in the south, low in
the north, high in the West, and low in the East. Qilian
Mountain in the South has the most considerable altitude
change and is the basin’s primary source of snowmelt water.
The annual average temperature, rainfall, and evaporation
potential in the study area are 7.5◦ C, 136.8 mm, and
1840.1 mm, respectively. The arid region and the cold area
coexist in the river basin, with extremely distinct climatic
characteristics, making the HRB an ideal experimental river
basin for the comprehensive study of the river basin. Rich
surface types create different ecological landscapes, which

can also thoroughly test the reconstruction performance. The
international Geosphere-Biosphere Program (IGBP) classifi-
cation was employed to distinguish the different land surface
types. Fig. 1 shows the detailed introduction of the HRB.

B. RANDOM FOREST MODEL
This study used the Random Forest algorithm to construct
the LST reconstruction model. For the same surface, the
difference between LST under clear-sky and cloudy-sky con-
ditions is mainly due to the difference in surface solar incident
radiation caused by cloud cover. Therefore, the actual LST
of each pixel is directly related to the cumulative radiation
received by the pixel. To quantitatively express the effect
of environmental factors on LST, Zhao and Duan [43] pro-
posed an RF-based model to reconstruct LST under cloudy
conditions. The cumulative solar radiation information of
each pixel was extracted through MSG data. The empiri-
cal surface temperature estimation model was established
together with characteristic variables (Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI),
Normalized DifferenceWater Index (NDWI), surface albedo,
elevation, slope, and latitude) to characterize the nonlinear
relationship between LST and radiation and local surface
parameters. The estimation model was applied to the pixels
under cloudy conditions to realize the LST reconstruction of
this pixel. Mokhtari et al. believe that Land Surface Water
Index (LSWI) is a parameter highly related to LST [50].

On the other hand, surface albedo is also vulnerable
to cloud cover. Hence, in this study, characteristic vari-
ables were chosen as NDVI (VNDVI ), EVI (VEVI ), MNDWI
(VMNDWI ), LSWI (VLSWI ), elevation (VELV ), slope (VSLP),
latitude (VLAT ), and solar radiation factor (VSOL). Modified
Normalized Difference Water Index (MNDWI) was used
instead of NDWI. The RF-based model was firstly used
to establish the LST linking model with the characteristic
variables under clear-sky conditions. The model was trained

FIGURE 1. (a) The location of the study area and the distribution of elevation. (b) IGBP land use type and site location in the study area.
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based on the effective LST and its characteristic variables
under clear-sky conditions. Then, the perfectly trained LST
linking model was applied to the pixels covered by the cloud,
and the actual LST value was estimated by combining the
corresponding characteristic variables.

C. SIMILAR PIXELS METHOD CONSIDERING THRESHOLD
During the estimation process, the number of pixels under
clear-sky conditions used to train the LST linking model
should be large enough to accurately capture the relationship
between the LST and its characteristic variables. Gu et al.
believed that the training set with low correlation inevitably
reduced the accuracy of the random forest model [51]. For
some images with severe cloud pollution and few clear-sky
pixels, it is unreasonable to use the random forest model
to predict LST. Therefore, we set a 30% threshold for the
effective pixels percentage of LST which participate in the
LST linking model training. If the clear-sky pixels percentage
of the LST product is less than 30% on a specific day, the
LST product on that day will not be reconstructed. This is
the result obtained after multiple tests. As shown in Fig. 2,
in 2019, the number of days meeting the above requirements
is 290, and the number of days needing recovering the invalid
value through temporal reconstruction is 75. However, it is
still challenging for the random forest model to reconstruct
images with almost no adequate information. Therefore,
to generate daily MODIS/Terra LST product, based on the SP
method used by Yu et al. [27] and Tan et al. [28], we proposed
an RF and SP-based reconstruction method for LST images
whose effective pixels percentage does not meet the thresh-
old. The common point is to complete the reconstruction of
invalid values by searching for similar pixels related to invalid
pixels and establishing the relationship between them. The
specific method is that for each LST image whose clear-sky
pixels percentage does not meet the threshold, the LST image
whose clear-sky pixels percentage meets the threshold closest
to it in time was searched. The LST linkingmodel was trained
by combining the clear-sky pixels of the two images.

Then, the trained LST linking model was used to recover
LST products whose effective pixels percentage did not meet

the threshold. As shown in Figure 3, we combine the RF
model with the SP method to propose a new LST reconstruc-
tion scheme. the RF model divides the input dataset into a
training dataset and a testing dataset, accounting for 66.7%
and 33.3% respectively. The training process is divided into
two steps. Firstly, LSTs that meet the threshold within a year
are placed in the RFmodel for training, and the reconstruction
results that meet the threshold are obtained; Then, LSTs
that do not meet the threshold within a year are combined
with similar pixels searched by the SP method and trained
in the RF model to obtain reconstruction results that do not
meet the threshold. By integrating the reconstruction results
of the two parts, the daily gap-free LST can be obtained.
Before training the model, two meta-parameters should be
adjusted to obtain the optimal RF model: the number of
decision trees in the forest (ntree) and the number of pre-
dictor variables randomly selected on each node of the trees
(ntry). According to Belgiu and Drăguţ [52], the ntree and
ntry values were set as 500 and 2, respectively. This study
used the Python machine learning library (Scikit-Learn) to
construct the reconstruction model. ntree and ntry correspond
to n_elements andmax_features in the PythonRandomForest
algorithm. The decision tree maximum depth (max_depth)
was not restricted.

IV. RESULTS
A. ASSESSMENT OF ORIGINAL LST AND CHARACTERISTIC
VARIABLES
1) ORIGINAL LST
The visual assessment of the original LST can intuitively
feel the data missing from MODIS/Terra LST product.
To better show the reconstruction effect of random forests,
we randomly selected four days of the year to analyze the
temporal and spatial distribution of LST in the Heihe River
Basin. These days are in four different seasons (the day
of the year (DOY) 20, 86, 232, 298 in 2019), respectively.
In terms of temporal scale, DOY 20, DOY 86, DOY 232,
and DOY 298 represented the winter, spring, summer, and
autumn in a year, respectively. The data missing in these
four days is severe, and their effective pixel percentages

FIGURE 2. Percentage of daily MODIS/Terra LST clear-sky pixels in 2019 and their changes.
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FIGURE 3. Flowchart of daily gap-fee LST reconstruction based on random forest model and similar pixels method.

are 47.41%, 35.17%, 62.30%, and 45.00%, respectively.
Subsequent reconstruction results verification will also be
based on these four days. The spatial distribution of clear-sky
LST pixels on these four days is shown in Fig. 4. In terms of
spatial scale, the spatial distribution of clear-sky LST pixels
in these four days is different.

On the whole, they are distributed in middle and high
latitudes and a few in low latitudes. The upper reaches of
the HRB, an area located near Qilian Mountain, with a high
altitude and are easily covered by clouds. The middle and
lower reaches of the HRB are arid area dominated by desert,
with a low altitude, and is often exposed to direct sunlight for
a long time. The significant difference in LST in these four
days can represent the distribution characteristics of LST in
the whole basin within one year. Fig. 5 shows the histogram
of characteristic variables (LST, NDVI, and elevation) in
these four days. As input data of the random forest model,
the distribution of clear-sky pixels often showed significant
differences and featured a large value range. The difference
in elevation and NDVI represented differences in air tem-
perature and vegetation cover, respectively. These are the
factors that directly affect LST. On the other hand, different
spatial distribution results in distinct spatial correlation, input
data with significant differences can help the random forest
model capture the characteristics of the prediction variables
and deduce the relationship between LST and characteristic
variables. This played a vital role in promoting the training of
the random forest model and obtaining better accuracy.

2) THE IMPACT OF THE CLOUD ON MODIS LST PRODUCTS
Solar radiation information can reflect the degree of cloud
cover in a region. The solar radiation factor VSOL used in this

study was estimated from the accumulated surface solar radi-
ation from sunrise to satellite observing time. Fig. 6 shows the
Spatial distribution of cumulative solar radiation and LSWI
in 2019. VSOL can reflect the influence of cloud cover on solar
radiation in warming the surface. For areas with severe cloud
cover, the value of VSOL should be meager.
Similarly, the cloud will also have an impact on LSWI. The

aggregation of clouds will increase the LSWI value. By com-
paring Fig. 4 and Fig. 6, it can be seen that the clear-sky
pixels have similar spatial distribution characteristics with the
high-value pixels of VSOL. On the other hand, the clear-sky
pixels also have identical spatial distribution characteristics
with the low-value pixels of LSWI. Therefore, this study’s
solar shortwave radiation products can effectively monitor
solar radiation under different conditions. Based on this, the
random forest model can accurately capture the relationship
between LST and other characteristic variables, especially the
impact of cloud cover.

3) VALIDATION OF RECONSTRUCTION LST BASED ON
CLEAR-SKY PIXELS
To validate the result of the RF reconstruction, the density
scatter plots between the reconstructed LST by RF and
the original MODIS clear-sky pixels are shown in Fig. 7.
Overall, the good validation results show excellent random
forest model fitting performance. The coefficient of deter-
mination (R2) is above 0.96, and the root mean squared
error (RMSE) is lower than 1 K. This shows that the RF
model maintains relative stability in different seasons. The
reconstructed LST is consistent with the original clear-sky
LST. For the amount of data involved in RF training, the
data volume of the four seasons from small to large is
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FIGURE 4. The spatial distribution of original MODIS/Terra LST on four days in 2019 (DOY 20, DOY 86, DOY 232, and DOY 298).

FIGURE 5. Histogram profiles of LST, NDVI, and elevation on four days in 2019 (DOY 20, DOY 86, DOY 232, and DOY 298).

DOY 86 (35.17%), DOY 298 (45.00%), DOY 20 (47.41%),
and DOY 232 (62.30%). It is evident that R2 increases
with the increase in data volume. At the same time, RMSE
also decreases with the increase in data volume. Although
DOY 232 did not show this feature, its RMSEwas also within
a relatively reasonable range. By contrast, the amount of
training data affects the reconstruction accuracy to a certain
extent. The more data, the higher the accuracy. During the
training process, the RF model randomly divides the input
data set into the training and testing parts, containing 66.7%
and 33.3% of the data set. The average out-of-bag score of
0.96 also shows that the random forest model can capture the
interaction between LST and its characteristic variables well.
Different characteristic variables have various contributions

to the model. Table 2 shows the average importance score
of each characteristic variable on the reconstruction day.
The higher the score, the higher the correlation with LST
during training. Zeng et al. [15] believe that elevation is
an important parameter that cannot be ignored in the LST
reconstruction. It can be seen that the characteristic variables
with high scores are VELV (0.35), VLSWI (0.19), VLAT (0.19),
and VMNDWI(0.17), respectively.

Among them, VELV becomes the most relevant character-
istic variable of LST. It also shows that elevation has become
the most critical factor affecting LST reconstruction in the
Heihe River basin, a region with complex terrain and colossal
altitude difference. Fig. 8 shows the spatial distribution of
LST reconstructed by RF. Compared with the original LST,
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FIGURE 6. Spatial distribution of cumulative solar radiation and LSWI in 2019 (DOY 20, DOY 86, DOY 232, and DOY 298).

the reconstructed LST still has strong spatial similarity.
However, the value of recovered LST is lower than the
surrounding value of clear-sky pixels. This may be due to
the cloud cover, and solar radiation is absorbed or reflected,
resulting in the actual surface temperature being lower than
the clear sky surface temperature. LST changes related to
elevation and latitude can be seen in the images of these four
days. Overall, the altitude in low-latitude areas is high, and
the LST is usually low; In high-latitude regions, the altitude is
low, and the LST is relatively high. Therefore, the RF model
can clearly show the spatial distribution characteristics of
recovered LST.

B. VALIDATION OF RECONSTRUCTED LST BASED ON
IN-SITU LST
1) VALIDATION OF RECONSTRUCTION RESULTS THAT MEET
THE THRESHOLD
Ground measurement validation is essential for confirming
the accuracy and applicability of LST reconstruction meth-
ods. The surface temperature observation data used in this
study are from the AWS in the Heihe River basin [47], [48],
and the reconstruction results were validated. In 2019,
290 images met the threshold, and these images that met the

threshold were directly reconstructed using the random forest
model. Fig. 9 shows the reconstructed LST directly using
the RF model versus in situ LST of four sites. The scatter
plot generally demonstrates that the reconstructed LST using
the RF model has a good correlation with in situ LST with
an R2 value of 0.87, the Bias of 0.08 K, and an RMSE of
4.69 K. Most points are densely distributed near the 1:1 line,
which indicates that the reconstruction accuracy can reach
a satisfactory level. In addition, the value of Nash-Sutcliffe
Efficiency (NSE) comes to 0.87, demonstrating that the RF
model is compelling and convincing in reconstructing LST.

To better analyze the reconstruction effect of the RF model
at different sites, we compared the reconstruction effect of
each site. Table 3 shows the validation statistics of these sites.
In general, these four sites have performedwell in LST recon-
struction, and the R2 varies from 0.79 to 0.92, and the NSE
varies from 0.78 to 0.96. However, it can be seen from the
comparison that the performance of the DSL site is worsened
than other sites, especially in terms of RMSE. Combined with
the detailed information of each site in Table 1, we know that
the elevation of the DSL site is the largest among the four
sites, reaching 3739 m, followed by 3033 m of the AR site.

On the other hand, two sites, ZY and SDQ, with lower
elevations, perform well with the RMSE of 3.92 K and
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FIGURE 7. Comparison of MODIS clear-sky LST and LST reconstructed by RF in 2019 (DOY 20,
DOY 86, DOY 232, and DOY 298).

FIGURE 8. Spatial distribution of LST reconstructed by RF in 2019 (DOY 20, DOY 86, DOY 232, and DOY 298).

TABLE 3. The average characteristic importance scores on the reconstructed days.

4.38 K, respectively. Although the factor of elevation was
considered and used as the characteristic variable of LST
to participate in the training of the random forest model,
it also inevitably affected the reconstruction process of LST.

However, compared with other LST reconstruction schemes
that do not consider elevation, although some sites show
a significant deviation, the overall results still show that
the reconstructed LST strongly correlates with in situ LST.
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FIGURE 9. Validation of LST reconstructed by the RF model versus LST
from AWS observations.

TABLE 4. The general performance results of LST were reconstructed by
using the RF model at four sites.

Therefore, we can conclude that the LST reconstruction
method based on the random forest model can effectively
recover the invalid LST pixels under the cloud.

2) VALIDATION OF RECONSTRUCTION RESULTS THAT DO
NOT MEET THE THRESHOLD
In 2019, 75 images did not meet the threshold, and these
images that did not meet the threshold were reconstructed
using the RF model combined with the SP method. Fig. 10
shows the validation statistics chart of reconstruction results.
The R2, RMSE, Bias, and NSE are 0.79, 6.37 K, 0.62 K,
and 0.76, respectively. Compared with Fig. 9, most points
are not concentrated near the 1:1 line and appear relatively
scattered. Among them, the R2 (0.79 vs. 0.87), Bias (0.62 K
vs. 0.08 K), and NSE (0.76 vs. 0.87) is slightly lower than
that of the method directly using the RFmodel, but the RMSE
(6.37 K vs. 4.69 K) has a significant increase. Although this
method does not perform as well as the method directly using
the random forest model, from the overall reconstruction
effect, the evaluation indicators of this method remain within
a relatively reasonable range. This method is an effective
method for recovering invalid pixels for images with severe
cloud pollution and a limited number of clear-sky pixels
during LST reconstruction. NSE close to 1 also shows that
the reconstruction effect of this method can reach a relatively
satisfactory level.

FIGURE 10. Validation of LST reconstructed by using the RF model
combined with SP method versus LST from AWS observation.

Therefore, we combine two methods to complete the
reconstruction of images that meet the threshold and those
that do not achieve the reconstruction of the daily gap-free
MODIS/Terra LST product. Fig. 11 compares daily recon-
structed LST and in situ LST at four sites. Overall, the trend
of the reconstructed LST and in situ LST have strong consis-
tency. The NSE of these sites is above 0.76. The two curves
show good correlation and similar changes, indicating that the
LST reconstruction scheme used in this study can effectively
reconstruct the cloud-cover LST. For each site, the DSL site
with the highest altitude still performs the worst, with the
highest RMSE of 5.57 K, followed by the AR site with an
RMSE of 5.20 K. On the other hand, the ZY site and the SDQ
site with lower elevations perform better, with the RMSE of
4.87 K and 4.73 K, respectively. Therefore, in the subsequent
LST reconstruction process, to obtain a better reconstruction
effect, the elevation factor is still worth discussing, especially
in areas with complex terrain.

V. DISCUSSIONS
In previous studies, although many machine learning algo-
rithms have been developed for conducting research on LST
reconstruction. But most machine learning algorithms often
require a large number of training datasets to obtain accu-
rate results. For daily LST images, machine learning can
reconstruct images with a large number of clear sky pixels
on a certain day. Once there is a high amount of cloud
cover or other conditions on a certain day that result in a
low number of clear sky pixels, the reconstruction effect of
machine learning will be poor, and the reconstruction results
are often not continuous. Therefore, the RF model proposed
in this article can effectively solve this problem. On the one
hand, utilizing the fast and simple advantages of random
forest models to complete reconstruction, and on the other
hand, using similar pixel methods to supplement the number
of training sets. From this, daily gap-free LST data can be
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FIGURE 11. Validation of daily LST reconstructed by using the LST reconstruction scheme in this study versus LST from AWS observation.

obtained. Continuous LST dataset is also more valuable for
related surface research and other thermal infrared remote
sensing studies.

This paper reconstructed the daily MODIS/Terra LST
product using the random forest model and similar pixels
method. First, the 290 images that meet the threshold were
reconstructed by the RFmodel for the reconstruction process.
From the validation results in Fig. 9, the LST reconstructed
using the RF model is highly correlated with the in situ
LST, which indicates that the RF model is feasible in LST
reconstruction. To explore the difference in the reconstruction
effect of the RFmodel in different seasons and the correlation
between reconstructed LST and origin LST, we chose four
days to represent the four seasons and showed the reconstruc-
tion effect. According to the validation indicators in Fig. 7,
the RF model maintains relative stability in different seasons.
As a machine learning algorithm, the sensitivity of the RF
model to the amount of training data has always been a
concern. Comparing the number of training sets and recon-
struction accuracy in these four days, we can find that the
reconstruction accuracywas also increasing with the data vol-
ume increase. This is consistent with most studies [52], [53].
R2 increased from 0.96 to 0.99, and RMSE decreased from
1 k to 0.52 K. But as the day with the most training data set,
the RMSE of DOY 232 is not the lowest with 0.78 K. Because
RMSE is still sensitive to some outliers even though the data
volume is large.

Nevertheless, the RMSE of 0.78 K is still within a reason-
able range. Generally speaking, when the data quality meets
the requirements, the larger the data volume, the richer the
data features that the RF model can extract, and the better the
reconstruction accuracy. However, the validation indicators
will not change significantly. The RF model can calculate
the importance of the independent variable according to the

change of error. The importance is an indicator to quanti-
tatively evaluate the impact of each influence factor on the
surface temperature—the greater the importance value, the
greater the impact on the surface temperature reconstruc-
tion [46]. Table 2 shows the average importance scores in
the reconstruction process using the RF model. VELV has the
highest score, with 0.35, which indicates that elevation is the
most critical factor affecting LST. Some previous researchers
chose elevation over all other LST-related variables. This is
because the elevation is a measurable variable linked to LST
[29], [54], [55]. Mushore et al. [56] and Sun et al. [57] all
obtained an inverse relationship between the LST and the ele-
vation, namely that the higher the elevation, the weaker the
correlation between the LST reconstruction accuracy and the
elevation. Subsequent validation results further proved this
point. The reconstruction effect of the two sites with high
elevation (AR and DSL) is worsened than those with low
elevation (ZY and SDQ). This may be due to the complex
terrain and elevation differences caused by different slope
effects, affecting the amount of radiation received by the
surface and the elevation of the air temperature regulation
effect. According to Fig. 1 and Table 1, the Heihe River Basin
is a region with complex terrain and colossal elevation differ-
ence. The elevation difference between the lowest and highest
points can reach more than 4000 meters. Therefore, elevation
is a vital factor that this study cannot ignore. In addition,VLAT
also played an essential role in the reconstruction process,
with a score of 0.19. For the Heihe River Basin, a region that
spans three provinces and has a substantial north-south span,
the regulation effect of latitude is still pronounced. In future
research, we will further explore the influence of relevant
characteristic variables on the reconstruction accuracy and
carry out different algorithms to optimize the reconstruction
model, especially the influence of elevation.
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Second, the 75 images that did not meet the threshold
were reconstructed using the RF model and SP method. It is
infeasible to directly use the RF model for those images
with severe cloud pollution and almost no clear-sky pixels.
Therefore, we consider the temporal-related information and
train together with the clear-sky pixels in the neighborhood
and their clear-sky pixels to complete the reconstruction of
these images. According to Fig. 10, the reconstruction effect
of this method is not as good as that of using the RF model
directly. Because of these images with severe cloud pollution,
the available adequate information is minimal. Even if ade-
quate information in the temporal domain is combined, it is
not directly related to them. Therefore, the effect of image
reconstruction using the information directly related to itself
is better than this method. In addition, the amount of available
data is less due to the severe cloud and fog, and the size of
the data volume also affects the accuracy of reconstruction
to a certain extent. But overall, the reconstruction accuracy
using this method is still satisfactory. Although the RMSE is
relatively large, the overall R2 and NSE reach 0.79 and 0.76,
respectively. Finally, we combined the two methods to ana-
lyze the daily reconstruction results. The results in Fig. 11
show that the two curves have high coincidence and similar
change trends. Validation indicators show that the recon-
structed LST strongly correlates with in situ LST. Therefore,
the RF-based LST reconstruction scheme proposed in this
study can effectively restore the land surface temperature
under cloud condition.

VI. CONCLUSION
Land surface temperature (LST) is a vital indicator of energy
partitioning at the land surface-atmosphere boundary and
is sensitive to changing surface conditions. Satellite remote
sensing provides opportunities to estimate global and contin-
uous LSTs. It is widely used in earth resources, environment,
attitude systems, hydrology, etc. However, remote sensing
data are inevitably affected by clouds. Under cloudy con-
ditions, LST products will have many observation gaps,
reducing their accuracy, which significantly limits the broad
application of LST products. Therefore, recovering invalid
values is a crucial challenge for LST product application and
is significant.

In recent years, machine learning algorithms have provided
new technical means for the seamless observation of land
surface temperature. Based on the algorithm of random forest
in machine learning, this paper reconstructed the missing
pixels in the Heihe River Basin’s MODIS/Terra LST product
in 2019. We set a threshold for the daily MODIS/Terra LST
product quality and divided the images with the clear-sky
pixels percentage greater than 30% (290 images) and those
with clear-sky pixels less than 30% (75 images) into one
group, respectively. First, we used the RF model to train
images that met the threshold and introduced some char-
acteristic variables related to LST into the RF model. The
visual assessment indicated that the reconstructed LST image
could fully capture the spatial distribution features of LST

related-characteristics variables. The reconstructed LST had
a strong correlation with the original LST, with all R2 sig-
nificant than 0.96 and all RMSE less than 1 K. From the
overall validation results of the four sites, the R2 and NSE
reached 0.87 and 0.87, respectively. The RMSE and the Bias
reached 4.69 K and 0.08 K, respectively. This showed that the
RF model performed well reconstructing LST. Through the
analysis of the characteristic importance score, we found that
elevation is the most crucial factor affecting LST reconstruc-
tion, with a score of 0.35, followed by LSWI and latitude.
Second, we used the RF model and SP method to recover
invalid values for images that do not meet the threshold. For
each image that does notmeet the threshold value, we can find
an image close to and meets the threshold value in the time
series. The clear-sky pixels of the two images were combined
and put into the RF model to recover the invalid values. From
the reconstruction effect, the overall reconstruction accuracy
can reach a satisfactory level with an R2 of 0.79, an NSE
of 0.76, and an RMSE and Bias of 6.37 K and 0.62 K,
respectively. We completed the daily MODIS/Terra LST
product reconstruction through the above two methods. From
the validation indicators of the four sites, the reconstructed
LST had a strong correlation with the in situ LST.

In this study, we generated daily MODIS/Terra LST prod-
uct using the RF model and SP method. Our RF-based LST
reconstruction scheme can accurately restore invalid LST
pixels based on the validation results. It provides a theoretical
reference for the accurate acquisition of surface temperature
reconstruction results based on the machine learning method.
It brings a new idea for MODIS LST products reconstruction
in the Heihe River Basin and other regions.
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