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ABSTRACT Homomorphic encryption (HE) based on the CKKS scheme is a promising candidate for
implementing privacy-preserving deep neural networks (PP-DNN) by performing operations directly on the
encrypted data. However, due to the computational complexity of HE operation, even simple PP-DNNs
require a huge amount of processing time. In order to reduce the processing time of PP-DNN, in this
paper, we present an innovative, low-latency model optimization solution for PP-DNNs. Our proposed
low-latency model optimization solution exploits second-order polynomials that approximate original
activation functions, ensuring low-latency and accurate DNN performance. To further reduce the processing
latency of PP-DNNs, we introduce the coefficient absorbing technique and a masking convolution for
convolutional layers. The experimental results show that the proposed solution constructs bootstrapping-free
PP-DNN and reduces the inference latency of CKKS-based ResNet-34 by 35% in the CIFAR-100 dataset
and ResNet-32 by 77% in the CIFAR-10 dataset compared to previous approaches while maintaining the
same level of inference accuracy. Moreover, through the layer-wise latency analysis, we show the efficacy of
our approaches, and through validation in various scenarios, we demonstrate the generality of our methods.

INDEX TERMS RNS-CKKS, convolutional neural network, homomorphic encryption, privacy preserving
neural network.

I. INTRODUCTION
Due to the superior algorithmic performance, deep neural
networks (DNNs) have been actively applied to the practical
applications associated with numerous multimedia data
such as images [1], [2], [3], [4], videos [5], [6], [7],
and speeches [8], [9]. As the computational complexity of
recent DNN models has continuously increased for better
accuracy, the contemporary DNN-based services have been
generally realized at the server-scale computing platforms;
and therefore, the client should transfer its data to the
dedicated server to get the desired DNN results [10].
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For privacy-critical applications, however, it is impossible
to directly open sensitive user-level information such as per-
sonal images, secret messages, or biomedical data. In order to
apply advanced DNN solutions even to these sensitive data,
the concept of privacy-preserving DNNs (PP-DNNs) based
inference has recently gained great notability and popularity.
To implement the PP-DNN, there are several key concepts
exist, such as differential privacy (DP), secure multi-party
computation (MPC), and homomorphic encryption (HE).
DP ensures the privacy of data by adding noise to indi-
vidual data, preserving sensitive information while allowing
accurate model training and analysis. By incorporating
DP, it ensures that the outputs of models do not reveal
sensitive information about the data used in the training
process [11]. However, the effectiveness of the DP-based

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 104775

https://orcid.org/0000-0003-1925-7941
https://orcid.org/0000-0002-2467-8276
https://orcid.org/0000-0001-7005-6489


H. Lee, Y. Lee: Optimizations of Privacy-Preserving DNN for Low-Latency Inference

PP-DNN method on inference is still not revealed. The
MPC enables multiple parties to collaboratively train or
infer a machine-learning model on their respective datasets
without the need to share the raw data. MPC ensures that
the data of each party remains encrypted throughout the
computation [12]. But, the MPC-based approach increases
the communication overheads between parties, which can-
not be acceptable, especially for energy-limited edge-level
clients. HE enables computations directly on encrypted
data, allowing machine learning models to be trained and
inferred on encrypted data without decryption. This approach
ensures data privacy is maintained throughout the entire
computation, even during model training and evaluation [13].
However, the HE-based method is computationally intensive,
thereby causing a substantial increase in computational
overhead.

To implement PP-DNN-based inference, we focus on the
HE-based approach. As mentioned earlier, it is essential to
note that HE provides strong privacy guarantees but requires
a considerable computational burden in the inference process.
Due to such a burden, at least 200ms of latency is required
for multiplication between ciphertexts [14], and, furthermore,
the state-of-the-art PP-DNN implementation based on HE
still takes more than 38 minutes to process a ResNet-20
model, even in a server-scale environment [15]. The latency
caused by such extreme computational demands makes it
infeasible for practical application. In this paper, we propose
an optimization technique to reduce the performance gap
drastically.

In the emerging CKKS scheme [16], the complexity of
each operation is related to the ciphertext level l, and l also
determines the consecutive multiplications, also known as
multiplicative depth. As computational complexity is related
to l, simply increasing l to achieve a higher multiplicative
depth results in excessive delay. Instead, it is possible
to allow unlimited multiplicative depth by activating the
bootstrapping steps [17], which refresh the current level
l, i.e., multiplicative depth. However, it is hard to freely
increase the number of serialized multiplications due to
the bootstrapping itself incurring long processing delays.
Therefore, to achieve low-latency inference, it is important
to address the issue of latency related to multiplicative
depth. Consequently, it is essential to develop optimization
techniques to reduce the required multiplicative depth.
By doing so, the predefined maximum level, denoted as
lMAX, and the number of bootstrapping are effectively
decreased, thereby leading to a reduction in overall compu-
tational complexity and resulting in decreased latency. For
practical PP-DNN processing, therefore, previous research
has focused on developing HE-aware CNN architectures
that minimize the multiplicative depth while supporting
sufficiently acceptable recognition accuracy [15], [18], [19],
[20], [21], [22], [23], [24], [25], [26]. However, to avoid
or minimize using bootstrapping, they implement relatively
shallow networks [18], [19], [20], [21], [22], [23], [25],
[26]. Alternatively, there exist studies on deep networks

[15], [24]; however, they require an excessive number of
bootstrapping.

In this paper, we newly develop advanced HE-aware model
optimization techniques, significantly relaxing the required
multiplicative depth of PP-DNN processing and achieving
low latency PP-DNN-based inference. Contributions of this
paper are summarized as follows:

• The proposed work adopts approximated second-order
polynomials based on the original non-linear activation
functions to achieve low latency without degrading the
recognition accuracy of original models.

• The coefficient absorbing and masking convolution
schemes are proposed to construct the HE-aware
convolution layers, further reducing the processing time.

• Experimental results reveal that the proposed
approaches even lead to bootstrapping-free ResNet-
32 and ResNet-34 with feasible HE parameters
while maintaining the baseline accuracy, reducing the
processing delay by 4.3 and 1.5 times in the CIFAR-10
and CIFAR-100 datasets, respectively, compared with
the state-of-the-art PP-DNN studies.

• We evaluate the proposed work using various datasets,
such as Fashion-MNIST, CIFAR-10, and CIFAR-100,
various networks, and various HE libraries, and the
results show that the proposed work can be applied
generally.

The rest of this paper is organized as follows. Section II
describes the related works and background for HE and
PP-DNN, and the proposed optimization methods for low-
latency PP-DNN operations are described in Section III.
Experimental results on the practical CNN models are
evaluated and compared with the other works in Section IV,
and the conclusion remarks are finally made in Section V.

II. BACKGROUNDS
A. RELATED WORKS
Although HE provides the highest level of security, the HE
can only perform addition and multiplication operations. So,
using HE to compute the non-linear layers in a conventional
DNN is challenging. Conceptually, depending on how evalu-
ating the non-linear layers, HE-based PP-DNN architectures
are categorized into interactive or non-interactive schemes
[15], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], as shown in Fig. 1. The
interactive approach resolves the challenge of computing
non-linear activations through MPC, where the client and
server interact to compute non-linear functions on the data
[27], [28], [29], [30], [31], [32]. More specifically, the
server returns the intermediate results of each convolution
layer, and the client performs the non-linear operations
on the received data based on the MPC protocol. Then,
the results of non-linear operations are re-transmitted to
the server to continue the following linear operations as
depicted in Fig. 1 (a). The interactive method may totally
remove the time-consuming bootstrapping steps by returning
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FIGURE 1. Conceptual diagram of (a) interactive PP-DNN and (b)
non-interactive PP-DNN.

the intermediate ciphertexts. However, they should increase
the client-server communication overheads that cannot be
acceptable, especially for energy-limited edge-level clients.

On the other hand, the recent non-interactive approach
introduces the end-to-end PP-DNN processing at the server
so that the client only receives the final ciphertext results [15],
[18], [19], [20], [21], [22], [23], [24], [25], [26]. To evaluate
the non-linear layer in the HE domain, several works replace
the non-linear layer with low-degree polynomials, such
as square [18], [19] and second-order polynomials [20],
[21], [22], [23], [25], [26], that can be computed with HE
operations. However, they remain in implementing relatively
shallow networks due to the degraded recognition accuracy
in deep networks when using second-order polynomials.
More specifically, the first HE-based PP-DNN [18] imple-
mented only 2-linear layer networks with square activation.
Subsequent works are also performed at a shallow layer
[19], [20], [21], [23], [25]. Reference [22] implemented
InceptionNet with second-order polynomial activation and
proposed finding a low-latency architecture algorithm, but
they use a relatively light network, which can not achieve
sufficient accuracy. Reference [26] implemented ResNet-20
for CIFAR-10 with second-order polynomial activation, but
they require time-consuming bootstrapping. Alternatively,
the high-order polynomial approximation has been applied
to convert the previous non-linear activation functions not to
severely degrade the recognition accuracy [15], [24], [33].
Due to the excessively-increased multiplicative depth from
the high-order polynomials, targeting the practical CNN
models, we have to actively insert bootstrapping steps to
refresh the multiplicative depth as depicted in Fig. 1 (b).
In more detail, [15], [24] used precisely approximated ReLU
function, a 29-degree polynomial, as non-linear activation
and successfully implement ResNet-20 and ResNet-110,

respectively. However, bootstrapping is required for each
non-linear layer, and bootstrapping consumes more than half
of the total execution time, resulting in excessively long
runtimes.

Moreover, several works propose optimization techniques
for the non-interactive PP-DNN. References [15] and [23]
proposed a multiplexed convolution method, which utilizes
the non-valid slots generated by pooling or convolution with
a stride of 2 or more to reduce the multiplication in the
convolutional layer. References [15], [22], and [25] proposed
a merging method, which merges adjacent linear layers of
neural networks, such as the convolutional layer and batch
normalization layer. This merging method can decrease the
required multiplicative depth without affecting the results.
As a result, lMAX is reduced; thus, the overall latency,
which is related to l, is reduced. The merging method is
a simple yet powerful technique for achieving low-latency
PP-DNN. Despite their optimization technique, their work
still remains in shallow networks, which cannot achieve
acceptable accuracy using in practical cases, or requires
bootstrapping, which is a time-consuming operation. In this
work, focusing on the non-interactive PP-DNN, we propose
a more drastic level reduction method, which can even
implement bootstrapping-free ResNet-34 inference.

B. HOMOMORPHIC ENCRYPTION
As illustrated in Fig. 1, applying HE schemes allows to
directly perform arithmetic operations without requiring
pre-decryption steps in the traditional encryption systems
[16], [34]. The ciphertext in HE is defined as two N
degree polynomials in an integer ring. The encryption
process encrypts the N/2 size vector into the ciphertext with
N/2 slots. For ease of explanation, we represent the encryp-
tion of N/2 size vector v as [[v]]. Then, the well-known HE
operations have been developed from numerous studies as
follows [16].

• Addition: [[v0]] ⊕ [[v1]] = [[v0 + v1]]
• Plaintext multiplication: [[v0]] ⊙ v1 = [[v0 · v1]]
• Ciphertext multiplication: [[v0]] ⊗ [[v1]] = [[v0 · v1]]
• Rotation: rot([[v]], r) = [[v ≪ r]]

Where ⊕, ⊙, and ⊗ represent addition, plaintext multiplica-
tion, and ciphertext multiplication in the ciphertext domain,
respectively, and + and · represent element-wise addition
and multiplication in the vector domain, respectively. The
rotation rot uses the rotation amount of r , rearranging
coefficients of ciphertext [[v]]. This operation, i.e., v ≪

r operation in vector domain, rotates the data in slots
(v[0], v[1], . . . , v[N/2 − 1]) to (v[r], v[r + 1], . . . , v[N/2 −

1], v[0], . . . , v[r − 1]).

C. PP-DNN BASED ON RNS-CKKS
1) RNS-CKKS
Among various HE schemes, in this work, we focus on
the recent RNS-CKKS-base HE [35], which is regarded as
a practical solution for constructing PP-DNN models [15],
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FIGURE 2. Latency of (a) rotation and (b) plaintext multiplication
according to N and l .

[20], [21], [22] due to its property that enables fixed-point
arithmetic. CKKS scheme enables the fixed-point arithmetic
by encoding the N/2 size fixed-point vector into an N -degree
polynomial, and the ciphertext is generated by performing
the encryption process on this polynomial. We represent this
encoding of vector v, i.e., the plaintext, as [v]. Further, the
RNS-CKKS scheme reduces the computational complexity
of CKKS by using the property of the Chinese Remainder
Theorem (CRT), which can replace the long coefficient size
with practical machine word size coefficients. The l-level
polynomial of RNS-CKKS is the element of the polynomial
ring ZQl [x]/

〈
XN + 1

〉
, where Ql = 5l

i=0qi and each qi is a
prime number.

During the encoding process, the scaling factor is intro-
duced to represent the fixed-point vector in the plaintext and
ciphertext, and the HE multiplication increases this scaling
factor. To precisely control the scaling factor, the rescaling
operation exists. When considering plaintext multiplication
between [[v0]] and [v1], each scaling factor being 10 and
11, the resulting ciphertext [[v0 · v1]] has a scaling factor
of 10 × 11. To decrease the scaling factor, the rescaling
operation is performed by dividing the prime ql . As a
result, the scaling factor is reduced to 10×11

ql
and the level

of ciphertext is reduced from l to l − 1. Because this
rescaling operation can only be performed lMAX times, the
multiplicative depth is defined as lMAX. Bootstrapping [17]
can refresh the reduced level to the maximum level lMAX, but
it requires a significant execution time.

2) MULTIPLICATIVE DEPTH OF PP-DNN
Level l determines the computational complexity of HE
operations. More specifically, the complexity of plaintext
multiplication is O(N · l) and complexity of rotation is
O(N · logN · l2), as shown in Fig. 2. As stated in [22], the
multiplicative depth of PP-DNN is defined by the number
of serialized HE multiplications in the network, and the
maximum level lMAX is selected based on the multiplicative
depth of PP-DNN. Therefore, the complexity of PP-DNN
can be defined as O(N · logN · l2MAX), similar to the most
complex operation, which is rotation. Reducing N and lMAX
can decrease the complexity of PP-DNN. However, as the
security level is determined by N and lMAX, to keep the
security level, N should be large enough depending on

FIGURE 3. (a) Mapping from tensor to plaintext and (b) efficient
homomorphic convolution method from [27].

lMAX. So, to maintain the bit security level while reducing
the complexity of PP-DNN, it is necessary to decrease the
multiplicative depth of PP-DNN, as mentioned in [22].

D. CONVOLUTION ON HOMOMORPHIC ENCRYPTION
The operation of the convolutional layer on CNN is
defined as:

y[o][h][w] =

∑
c,j,n

(x[c][h+ j][w+ n] · w[o][c][j][n]) + q[o],

(1)

where x,w,q, and y are input, weight, bias, and output
tensors, and o, c, h,w, j, and n are the index of the output
channel, input channel, image height, image width, kernel
height, and kernel width, respectively. This convolution
operation can be performed parallel by the SIMD property
of HE. Reference [27] proposed efficient homomorphic
convolution that performs SIMD convolution operation in the
ciphertext domain for one or multiple channels according
to the packing method. As shown in Fig. 3 (a), [27]
treated 2 (or 3)-dimension tensor as a 1-dimension vector
and encrypt this vector to ciphertext. x is the input tensor,
and each number represents the element index of x, i.e.,
x[0], [0], [0], x[0], [0], [1], . . . are represented as 0, 1, . . . in
the figure. Fig. 3 (b) shows the 3 × 3 convolution method on
HE proposed in [27] for the 3 × 3 input with one input and
one output channel. [[x]] and [[y]] represent the ciphertexts
of the input tensor x and output tensor y, respectively.
[p0], [p1], . . . , [p8] are weight plaintexts, which consist of
weight values of the 3 × 3 kernel w[0], [0], [0][0],w[0],
[0], [0][1], . . . ,w[0], [0], [2], [2], respectively. Suppose each
channel of the input tensor is encrypted separately into
different ciphertexts. In that case, each HE multiplication
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FIGURE 4. The modified models with HerPN block of (a) VGG net, (b)
ResNet, and (c) PA-ResNet.

can perform W · H multiplications in parallel, where W
and H represent the image width and height, respectively.
Alternatively, if multiple channels are encrypted into a single
ciphertext, each HE multiplication can perform W · H · C
multiplications in parallel, whereC is the number of channels
in the ciphertext. To efficiently pack the multiple channels
into the ciphertext, this method fills appropriate slots in the
weight plaintexts with zeros to allow padded convolution
without additional overhead. It enables more channels to be
accommodated in a single ciphertext, increasing the capacity
from ⌊

N
2·(W+2·P)·(H+2·P)⌋ to ⌊

N
2·W ·H ⌋, where P is the padding

size. The HE rotation is performed to align the data slots
during the convolution operation.

E. HerPN BLOCK
The effect of replacing the activation function with a Hermite
polynomial is analyzed in [36] and [37]. Basically, using
Hermite polynomial as an activation function instead of
ReLU enables more stable training and achieves similar
accuracy. Further, [32] proposed the HerPN block, which
utilizes the Hermite expansion of ReLU as a activation
function with basis-wise normalization, to use in PP-DNN.
Thismethod preserves the accuracy of the backbone networks
which utilize non-linear activations such as ReLU. In this
section, we provide a brief overview of the HerPN block
introduced in [32].
Hermite expansion of ReLU is defined as follows:

ReLU(x) =

∞∑
i=0

f̂ihi(x) (2)

where hn(x) =
1

√
n!
(−1)ne

x2
2 dn
dxn e

−x2
2 and f̂i is:

f̂i =



1
√
2π

n = 0,

1
2

n = 1,

0 n ≥ 2 and odd,
((n− 3))!!)2

√
2πn!

n ≥ 2 and even

(3)

FIGURE 5. Example of non-valid slots generated from down-sampling
operation with s = 2.

Then, to apply basis-wise normalization, batch normalization
is performed to the output of the Hermite polynomial. Finally,
the HerPN block for input x is as follows:

f (x) =

d∑
i=0

f̂i
hi(x) − µ
√

σ 2 + ϵ
. (4)

The HerPN block generated from the above process can
replace both the batch normalization and ReLU layers in
a neural network while preserving the accuracy of the
original models. The Modified models with HerPN block
for VGG [1], ResNet [2], and PA-ResNet [3] are shown in
Fig. 4 (a), (b), and (c), respectively.

F. THREAT MODEL
In our paper, the threat model is similar to the previous works
on PP-DNNs [15], [22]. The client encrypts the private data
using HE and sends it to the semi-honest server, i.e., the
server performs computation accurately but is curious about
the client data. The server performs private inference on the
encrypted data without decrypting it by the property of HE.
Then, the server returns the ciphertext of the inference result
to the client. Only the client that holds the secret key can
decrypt the result using the secret key.

III. PROPOSED METHOD
In this section, we introduce the techniques of preserving
accuracy while reducing multiplicative depth through a
second-order polynomial, coefficient absorbing, andmasking
convolution. First, to implement non-linear layers in PP-
DNN, we replace the ReLU with a second-order polynomial
using the HerPN block. By employing a second-order
polynomial as the activation function, it is possible to
drastically reduce the multiplicative depth compared to using
higher-order approximate polynomials, thereby enabling
the elimination of bootstrapping. However, conventional
approaches using quadratic polynomials encounter an issue
of accuracy degradation as the network deepens. To address
this, we adopt the HerPN block explained in Section II-E as
our activation. Even by utilizing only the 0th to 2nd term of
the HerPN block, the accuracy of networks using ReLU as
the activation function can be preserved [32].

Then, before explaining the proposed absorbing tech-
niques, we first describe the gap g between the valid slots and
the conventional merging method. In the non-interactive PP-
DNN scenario, non-valid slots occur due to down-sampling
operations such as pooling or convolution operations with
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FIGURE 6. (a) Conventional merging method and (b) proposed work to reduce multiplicative depth for ResNet architecture when g = 2 and s = 1.

s ≥ 2, where s is the stride of operations, as shown in Fig. 5.
The number of non-valid slots is g2 − 1 times larger than
valid slots. g expands by s times through down-sampling
operations.

Fig. 6 shows the difference between the conventionalmerg-
ing method and the proposed work when using second-order
polynomial as non-linear activation. We assume that the
initial input image size is 8× 8 and the input ciphertext [[x]]
of the current layer is 4 × 4 size and g = 2 due to the
previous down-sampling. When stride-1 3 × 3 convolution
and HerPN block operation are performed on [[x]], the
output ciphertext [[z]] has the same size 4 × 4 and g =

2 as the input. The conventional merging method merges
the batch normalization layer into the non-linear layer or
convolutional layer, achieving a multiplicative depth of 3 for
the convolutional layer followed by the non-linear layer [15],
[22], [23], [25]. To handle non-valid slots, previous works
have used additional masking layers or merged the masking
patterns into the coefficient of the second-order term of
activation layers, as shown in Fig. 6 (a), where a is filled
with the coefficient of the second-order term and v consists
of 0 and 1 values to mask non-valid slots. As s = 1 and
g = 2, v has the same valid slots as the input ciphertext [[x]].
By multiplying [a·v] with the output of the convolution layer,
the non-valid slots are masked to zero.

To eliminate this masking layer, we propose absorbing
techniques of the vectors a and v into the prior convolutional
layer. To absorb the vector a, coefficient absorbing is
proposed in Section III-A. Then, to eliminate the mask
vector v multiplication, masking convolution is proposed in
Section III-B. The proposed masking convolution generalizes
the homomorphic convolution method of [27] for g ≥ 2 and
generates masked weight plaintexts accordingly. So, the
weight plaintexts for 3 × 3 convolution is changed from [pi]
in Fig. 6 (a) to [mi] in Fig. 6 (b). By combining the proposed
methods, the multiplicative depth of each convolution and

HerPN block pair can be further reduced compared to the
previous approach, as shown in Fig. 6 (b), and thus the
total multiplication depth of the network is also reduced.
Therefore, as the total multiplicative depth of the network
is decreased significantly, the maximum level lMAX is also
decreased. So, the latency of PP-DNN, the complexity of
which can be represented as O(N · logN · l2MAX), decreases
as the level lMAX decreases. Finally, Section III-C describes
the method for applying the proposed methods to the channel
packing.

A. COEFFICIENT ABSORBING
The purpose of coefficient absorbing is to absorb the
coefficients of the second-order term in the polynomial
activation function into the previous convolution layer,
thereby replacing the operation of the activation layer from
the conventional ay2 + by+ c to ŷ2 + b′ŷ+ c. Therefore, the
multiplicative depth of the activation layer is reduced.

The proof of coefficient absorbing, when utilizing the
HerPN block with three bases, h0, h1, and h2, as activation
function, proceeds according to the subsequent explanation.
HerPN block with three bases, i.e., d = 2 in Eq.(5), is as
follows:

z =

2∑
i=0

f̂i
hi(y) − µi√

σ 2
i + ϵ

= f̂0
1 − µ0√
σ 2
0 + ϵ

+ f̂1
y− µ1√
σ 2
1 + ϵ

+ f̂2

y2−1
√
2

− µ2√
σ 2
2 + ϵ

, (5)

where f̂i are from Eq. (3), and µi and σi are the mean
and standard deviation of each basis, respectively, y is
the output of the convolution layer, and z is the output
of HerPN block. Eq. (5) is equivalent to ay2 + by + c

when we set σ̂i =

√
σ 2
i + ϵ, a =

f̂2√
2σ̂2

, b =
f̂1
σ̂1
,
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and c = f̂0
1−µ0

σ̂0
− f̂1

µ1
σ̂1

− f̂2
1+

√
2µ2√

2σ̂2
. Finally, we absorb the

coefficient of highest order term as follows:

z = ay2 + by+ c

= (
√
ay)2 +

b
√
a
(
√
ay) + c

= ŷ2 + b′ŷ+ c, (6)

where ŷ =
√
ay and b′

=
b

√
a . The coefficient of the

second-order term is absorbed in this way, and the weights
and biases of the convolutional layer are multiplied by
the absorbed

√
a. Consequently, the convolution operation

represented in Eq. (1) is modified as follows:

ŷ[o][h][w] =
√
a · y[o][h][w]

=

∑
c,j,n

(x[c][h+ j][w+ n] · (
√
a · w[o][c][j][n]))

+ (
√
a · q[o])

=

∑
c,j,n

(x[c][h+ j][w+ n] · ŵ[o][c][j][n]) + q̂[o],

(7)

where ŵ[o][c][j][n] =
√
a·w[o][c][j][n] and q̂[o] =

√
a·q[o]

and all other parameters follow the representation of Eq. (1).
Through this proof, the operation of the activation layer can
be successfully replaced from ay2 + by + c to ŷ2 + b′ŷ + c,
and therefore, we theoretically demonstrated that coefficient
absorbing allows for reducing the multiplication depth while
obtaining equivalent results to the conventional approach.

In Fig. 6, [a], [b], [c], and [b′] consist of a, b, c, and b′

in Eq. (6), respectively. [pi] are weight plaintexts consisting
of weight tensor w before absorption, i.e., w[o][c][j][n] in
Eq. (1), following the method of [27]. The weight plaintexts
[mi] consist of absorbed weight tensor ŵ, i.e., ŵ[o][c][j][n]
in Eq. (7), and zero values, through masking convolution,
described in the next section. Note that our method absorbs
the parameters of neural networks to the prior layer, so the
result of neural networks remains in the same values and does
not degrade accuracy.

B. MASKING CONVOLUTION
By further developing the convolution method of [27], which
generates weight plaintexts for homomorphic convolution,
we propose a generalized masked weight vector generation
method for any stride s and gap g, as described inAlgorithm 1.
In this algorithm, nch and ncw are the height and width
of the current feature map, respectively, which are reduced
by the down-sampling operation and calculated as denoted
in the initialization step. nih and niw are the initial size of
the input image height and width, respectively. kh and kw
are kernel size, s is stride, and ŵ is the kh × kw absorbed
weight tensor of the current convolutional layer. The masked
weight vectors mi generated by this algorithm are composed
of a masking pattern consisting of zeros and absorbed weight
values, enabling the omission of the process of multiplying by

Algorithm 1Masked Weight Vector Generation
Input:

Current height nch and width ncw,
input height nih and width niw,
kernel size kh and kw, gap g, stride s,
and absorbed weight tensor ŵ ∈ Rk×k

Output:
Masked weight vectors
M = (m0,m1, . . . ,mkhkw−1), wheremi ∈ RN/2

Initialization:
Padding size Ph = ⌊kh/2⌋
Padding size Pw = ⌊kw/2⌋
mi = 0, for i ∈ [0, khkw − 1]
nch = ⌊

nch−kh+2·Ph
s+1 ⌋

ncw = ⌊
ncw−kw+2·Pw

s+1 ⌋

Processing:
for i = 0 to kh − 1 do

fh = ⌊kh/2⌋ − i
for j = 0 to kw − 1 do

fw = ⌊kw/2⌋ − j
for l = 0 to l < nch − 1 do

hpos = l − nih/g
if 0 ≤ fh ≤ l or hpos < fh < 0 then

for n = 0 to n < ncw − 1 do
wpos = n− niw/g
if 0 ≤ fw ≤ n or wpos < fw < 0
then
o = (l · niw + n) · g · s
mkw·i+j[o] = ŵ[i][j]

end
end

end
end

end
end
M = (m0,m1, . . . ,mkhkw−1)
return M

the mask plaintext [v]. The generated masked weight vectors
mi are then encoded into plaintexts [mi]. Each [mi] only
has valid values in first nih × niw slots, and other slots, i.e.,
N/2 − nih × niw slots, remain in zero. Using the [mi], the
homomorphic convolution on [[x]] performs as follows:

[[ŷ]] =

th∑
i=−th

tw∑
j=−tw

rot([[x]], −g(niwi+ j)) ⊙ [mkw(th+i)+tw+j],

(8)

where tw = ⌊kw/2⌋ and th = ⌊kh/2⌋. We assume that the
convolution operation performs on padded features and omits
the representation for channels. We represent Eq. (8) using ⊛
as follows:

[[ŷ]] = [[x]] ⊛ [M], (9)

where [M] = ([m0], [m1], . . . , [mkhkw−1]).
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FIGURE 7. The slots of weight plaintexts, input ciphertext, and output
ciphertext when g = 2 and s = 1.

For instance, when kh = 3, kw = 3, nih = 8, niw = 8, nch,
ncw = 4, g = 2, s = 1, and both input and output channels 1,
weight plaintexts are generated, as shown in Fig. 7, according
to Algorithm 1. To implement stride one convolution for
input ciphertext [[x]] with g = 2, the zero and the weight
values are alternately placed in the slots of weight plaintexts.
Additionally, to solve the slot mismatch caused by non-valid
slots, there are exist zero value slots at the edges, as shown in
green-colored slots in the figure, and [[x]] needs to be rotated
by two times as many slots compared to the conventional
method. So, the homomorphic convolution of this example
is defined as follows:

[[ŷ]] =

1∑
i=−1

1∑
j=−1

rot([[x]], −2(8i+ j)) ⊙ [m3(1+i)+1+j].

(10)

The output ciphertext [[ŷ]] has the same non-valid slots as
the input ciphertext [[x]] because s = 1. Using the generated
[mi], convolutional and activation layers can be performed
with the multiplicative depth of 2 without masking layer,
as shown in Fig. 6 (b). Algorithm 1 assumes both the input
and output channels are 1, but it can be easily generalized to
various hyperparameters of PP-DNN.

C. CHANNEL PACKING
Similar to previous works [15], [20], [21], [22], [23],
[27], we adopt the channel packing method, which packs
cn = ⌊

N
2·W ·H ⌋ channels per ciphertext, to achieve low

latency inference. Each layer of the network has ⌈
ci
cn

⌉ input
ciphertexts and ⌈

co
cn

⌉ output ciphertexts, where ci and co
are the numbers of input and output channels, respectively.
Fig. 8 shows the homomorphic convolution method using
channel packing, where ⊛ is the operation defined in Eq.
(9), [[xpack]] represents the packed ciphertext, i.e., xpack is

TABLE 1. The number of rotations and multiplications according to
packing method.

consist of concatenated cn channels of input, each xi in the
[[xpack]] is the i-th channel data of input ciphertext, and [MPi]
are the weight plaintext vectors for channel packing defined
as [MPi] = ([mpi0], [mpi1], . . . , [mpikhkw−1]). mpij consist
of the vectors generated by Algorithm 1. More specifically,
mpij ∈ RN/2 is defined as:

mpij = concat(m−i,0
j ,m1−i,1

j , . . . ,mcn−1−i,cn−1
j ), (11)

where j ∈ [0, khkw − 1], mmo,mi
j are mj for the mi-th

input channel and the mo-th output channel, and concat
extracts the first nih×niw slots from input vectorsmmo,mi

j and
concatenates them. Whenmo andmi are negative, cn is added
to set the appropriate channel index. Then, the homomorphic
convolution method using channel packing is defined as:

[[ŷpack]] =

cn−1∑
i=0

rot([[xpack]] ⊛ [MPi], nihniw · i). (12)

Fig. 8 and Eq. (12) show the case of ci and co are the same
as cn. But, these can be extended to support multiple input or
output ciphertexts when co > cn or ci > cn. Table 1 shows
the number of rotations and multiplications with and without
channel packing. The number of kernel-level rotations is
reduced to (kh · kw − 1) ·

ci
cn

from (kh · kw − 1) · ci, as the
number of input ciphertexts is reduced to ci

cn
. Similarly, the

number of multiplications is reduced to kh · kw ·
ci
cn

· co
from kh · kw · ci · co. Channel-level rotation is performed
(cn − 1) ·

co
cn

times additionally. Additional channel-level
rotations are required, but the overall number of operations is
significantly reduced, resulting in decreased latency through
the channel packing method. Further, this table shows the
complexity of multiplexed packing proposed in [15], which
reduces the number of multiplications in the convolutional
layer by utilizing the non-valid slots. Here, we provide a
brief description only of its computational complexity. More
detailed explanations can be found in [15]. It packs the
ciphertexts by filling the non-valid slots with valid slots from
other ciphertexts through rotation and addition. Multiplexed
packing reduces the number of kernel-level rotations to (kh ·

kw − 1) ·
ci

cn·g2
from (kh · kw − 1) ·

ci
cn

and the number of
multiplications to kh · kw ·

ci
cn·g2

· co from kh · kw ·
ci
cn

· co.
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FIGURE 8. Homomorphic convolution method using channel-packed ciphertext. Kernel-level operations are performed, followed by
channel-level rotations to sum the intermediate results.

TABLE 2. The network architectures of PP-DNNs.

However, this method occurs additional rotations during the
packing process. Specifically, ⌈

ci
cn·g2

⌉ · (g2 − 1) rotations

are added for multiplexed packing, and ⌈
co
cn

⌉ · ⌈log(g2)⌉
rotations are required to sum up the multiplexed packed data.
In Section IV, we compare this method to the proposed work
in more detail.

IV. EVALUATION
A. EXPERIMENTAL SETUP
1) DATASET AND NETWORKS
We evaluate our proposedmethods using the Fashion-MNIST
[38], CIFAR-10, and CIFAR-100 [39] datasets. The
Fashion-MNIST dataset contains 60k train and 10k validation
28 × 28 grayscale images of 10 classes. The CIFAR-10 and
CIFAR-100 datasets consist of 60k color images. The training
set comprises 50K images, and the test set contains 10K
images. The images in these datasets have 3 channels, and
each channel is composed of 32 × 32 pixels. The CIFAR-10
has 10 classes, and the CIFAR-100 has 100 classes. The
CIFAR-100 dataset is the most complex dataset used in
previous PP-DNNs [15], [22], [32].
We adopt several well-known CNN architectures to

implement PP-DNNs, as shown in Table 2. C, H, P, and
FC denote convolution, HerPN block with three bases,
average pooling, and fully-connected layers. We keep the
network hyperparameters, such as channel and kernel sizes,
the same as those specified in the original papers [1],
[2], [3]. All kernels have a size of 3 × 3. In the case

TABLE 3. The accuracy of networks for each dataset.

of VGG-16, ResNet-18, PA-ResNet-18, ResNet-34, and
PA-ResNet-34, the channel size doubles for specific layers,
starting at 64 and then increasing to 128, 256, and 512,
while the width and height of the image start at 32 × 32
and are halved at each step. In the case of ResNet-32 and
PA-ResNet-32, the channel size increases to 16, 32, and
64. We replace the ReLU and batch normalization layers
with the HerPN block, as shown in Fig. 4, and replace
the max pooling layer with the average pooling layer.
We perform experiments on Fashion-MNIST and CIFAR-10
datasets using ResNet-32 [2] and PA-ResNet-32 [3]. For the
CIFAR-100 dataset, we employ the VGG-16 [1], ResNet-18
[2], and PA-ResNet-18 [3] used in the previous work [32], and
additionally, we evaluate the proposedmethods on ResNet-34
and PA-ResNet-34.

The ReLU-based networks and networks with HerPN
block are trained by PyTorch in the plaintext domain.
We basically follow the training setting of [40] and use
the same training settings for all datasets. Images in each
dataset are normalized using channel-wise mean and standard
deviation for each dataset. Images are zero-padded with an
additional 4 pixels around the edges, followed by a random
extraction of a 32×32 crop. Images are randomly rotated
around, ranging from −15 to +15 degrees, and any resulting
blank spaces are filled with zeros and randomly flipped
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horizontally with 50% probability. We use He initialization
[41] for weight initialization. We utilize SGD for training
with a batch size of 128, Nesterov momentum set at 0.9,
a weight decay of 5e-4, and employ a cross-entropy loss
function. Training is performed in 200 epochs, starting with a
learning rate of 0.1, which is reduced by a factor of 5 after 60,
120, and 160 epochs. To train ResNet-32 and PA-ResNet-32
with the Fashion-MNIST dataset, which consists of grayscale
images, the grayscale image is duplicated into three RGB
channels. Table 3 shows the accuracy of the ReLU-based
and the HerPN block-based networks. Unlike other datasets,
in the case of the Fashion-MNIST dataset, which is a simpler
dataset, it can be observed that ResNet-32 and PA-ResNet-32
achieve nearly the same accuracy. The accuracy of the ReLU-
based and HerPN-based networks is almost the same across
various networks and datasets. These results show that we
can replace the ReLU with the HerPN block while keeping
accuracy.

2) SYSTEM SETUP
The inference of all PP-DNNs is executed on a server-scale
platform, which consists of an Intel Xeon Gold 6230 at
2.10GHz CPU (20 cores) with 512GB DRAM memory, with
the Ubuntu 20.04 operating system. The ciphertext inference
is implemented using the RNS-CKKS scheme from the
Microsoft SEAL library [42] and the latency is measured
using the Chrono C++ library. The scale of the encrypted
input message is set to 25 bits, following the approach of [22],
and the scale of the weight filters is set to 20 bits, greater than
[22] because we have experimented on the deeper network.

B. CKKS PARAMETER SELECTION
To evaluate the effectiveness of the proposed optimization
solution for PP-DNN, we implement the PP-DNN operation
of previous works and proposed work using the networks
described in Table 2. Table 4 shows the setting of the
HE parameters, which are systematically selected, for the
PP-DNN models used in this work. The HE parameters of
this table are configured to enable PP-DNN inference without
bootstrapping and all parameters are set to ensure a bit
security level λ is greater than or equal to 128-bit security
[20], [21], [22]. We set the special prime logP = 60 bits
and q0 = 60 bits for all parameters. When using a
high-degree polynomial as the activation, the required logPQ
and lMAX increase, necessitating bootstrapping. We success-
fully eliminate such bootstrapping by using a second-order
polynomial as the activation. Further, even when using
the same network, the proposed solution, compared to the
conventional merging method, reduces the multiplication
depth of the convolution and HerPN block pairs from 3 to 2,
approximately 33% reduction, through coefficient absorbing
and masking convolution. We can also observe a similar
trend in both logPQ and lMAX, which are related to
multiplicative depth, in this table. As a result, it can be
assumed that the proposed work leads to faster ciphertext
inference due to lower values of lMAX and logPQ compared

to the conventional method. In the cases of ResNet-32 and
PA-ResNet-32, the proposed work allows to choice of a lower
N for the same bit security level due to the decrease in lMAX
and logPQ, enabling us to reduce latency even further.

C. RESULTS AND ANALYSIS
To evaluate the effectiveness of the proposed methods,
we measure the end-to-end single-image inference latency
of PP-DNNs. Table 5 shows the comparison result of
inference latency between HEMET [22], MultParConv [15],
the proposed work, and the vector domain implemented in
PyTorch. Since plaintext in CKKS refers to an encoded
polynomial, we use the term vector instead of plaintext to
represent the unencoded vector to avoid confusion. We select
HEMET and MultParConv as our comparison targets,
which use the conventional merging method. We imple-
ment HEMET and MultParConv with HerPN block-based
networks, as presented in Table 2, for a fair comparison.
Both use the conventional merging method, so we apply the
conventional parameters from Table 4. Furthermore, for the
operation of convolutional layers, HEMET employs channel
packing, while MultParConv utilizes multiplexed packing.
The proposed solution utilizes the proposed parameters from
Table 4 and employs the channel packing method. The
latency of VGG-16, ResNet-18, PA-ResNet-18, ResNet-34,
and PA-ResNet-34 is measured on the CIFAR-100 dataset,
and the latency of ResNet-32 and PA-ResNet-32 is measured
on the Fashion-MNIST and CIFAR-10 datasets. To perform
inference on Fashion-MNIST, similar to the training process,
we replicate the grayscale image into 3 channels and add zero
padding to make 32× 32 from the 28× 28 image. Therefore,
as the inference latency of ResNet-32 and PA-ResNet-32
is the same for CIFAR-10 and Fashion-MNIST, we do not
include a separate entry for Fashion-MNIST in the table. The
results show that the proposed work significantly reduces
latency across all networks compared to the HEMET. The
latency reduction comes from the decrease in lMAX, which
reduces the complexity of PP-DNN defined as O(N · logN ·

l2MAX). Specifically, the proposed work reduces the latency
by 41% for VGG-16. For ResNet-18,34, PA-ResNet-18, and
34 cases, the proposed work achieves latency reduction by
47%, 59%, 41%, and 58%, respectively. Next, we compare
the proposed work with MultParConv, which effectively
reduces the total multiplications using multiplexed packing.
MultParConv achieves better latency results than HEMET
by significantly reducing the number of multiplications.
It also achieves better latency than the proposed work
on relatively shallow networks. However, as the network
layers become deeper, the difference in lMAX between
the two methods increases, showing that the proposed
work performs better than MultParConv. Specifically, the
proposed work has longer latency in VGG-16, ResNet-18,
and PA-ResNet-18 compared to MultParConv. However,
the proposed work reduces latency by 35% and 31% for
ResNet-34 and PA-ResNet-34, respectively, compared to
MultParConv. Moreover, in the case of ResNet-32 and
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TABLE 4. HE parameter settings for conventional and proposed approaches in this work.

FIGURE 9. Comparison of layer-wise latency in ResNet-34 on CIFAR-100 for the proposed and previous methods.

TABLE 5. Comparison of inference latency between proposed and
previous methods.

PA-ResNet-32, as N reduced from 217 to 216, we can show
that the latency is drastically reduced by 77% and 74%,
respectively, compared to MultParConv. Then, we compare
the inference latency in the HE domain and the vector
domain implemented by PyTorch. We use the time library in
Python3 to measure the latency of the network implemented

in PyTorch running on the CPU. Despite significantly
reducing latency in the HE domain through the proposed
methods, there still remains a considerable gap when
compared to the latency in the vector domain. It can be
observed that compared to the latency in the vector domain,
the latency in the HE domain is at least 100,000 times
slower.

Then, we analyze the effect of the proposed methods in
terms of layer-wise latency of the network. Fig. 9 shows
the layer-wise latency analysis of convolutional layers in
ResNet-34 for the HEMET, MultParConv, and the proposed
methods. Others include plaintext multiplication and addition
latency. We have not analyzed the latency of activation
functions (HerPN block) and rescaling operations as it is
small enough to be considered negligible. Due to each
ciphertext having ⌊

N
2·(W+2·P)·(H+2·P)⌋ channels in HEMET

[20], [22], this work has more input and output ciphertexts
of each layer than MultParConv and the proposed work.
Furthermore, as mentioned earlier, since the coefficient
of the highest term of the activation function is not
absorbed, requiring a more multiplicative depth, the lMAX
is large. On the other hand, since both MultParConv and
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TABLE 6. Implementation results of the previous and proposed methods
with Lattigo and SEAL for ResNet-32 on CIFAR-10.

the proposed work pack the ⌊
N

2·W ·H ⌋ channels into each
ciphertext, it is obvious that the number of ciphertexts is
lower thanHEMET.Also,MultParConv significantly reduces
the number of multiplications through multiplexed packing,
greatly decreasing the ratio of other operations in the total
latency compared to other works. However, MultParConv has
limitations in latency reduction due to the required larger
l for mask operations on non-valid slots. As the latency
of rotation and plaintext multiplication is proportional to
l2 and l, as shown in Fig. 2, there is a substantial difference
in latency between rotation and multiplication for a large
l. Therefore multiplexed packing effectively reduces the
overall multiplication but increases the level l, making the
rotation latency too long. On the other hand, the proposed
work, which further reduces the level l, effectively reduces
the overall latency in deep neural networks, particularly in
the earlier layers of the network. It almost reduces 50%
latency of earlier layers compared to the MultParConv. The
proposed work suggests that its effectiveness increases as
the total required multiplication depth of PP-DNN grows
larger.

Lastly, we present the implementation results of the
previous and proposed methods using a different HE library
in Table 6. The implementation in a different HE library is
conducted for ResNet-32 on CIFAR-10. We use the Lattigo
[43] as the alternative HE library for the implementation.
To measure the latency of the network implemented with
Lattigo, we use the time library in the Go language. Our
optimization solution can be confirmed to work well in
Lattigo as well. As presented in [14], [44], Lattigo performs
optimization at various levels, resulting in at least 1.44×
speed improvement compared to SEAL when running the
same algorithm.

D. DISCUSSION
It is important to reduce level l to reduce latency as the
latency of HE operation is related to l. In this work,
to further reduce the level l while preserving accuracy,
we adopt degree-2 polynomial as non-linear activation and
propose multiplicative depth reduction techniques called
coefficient absorbing and masking convolution. The pro-
posed methods reduce the multiplication depth by 33%
compared to the previous merging method, and as a result,
both logPQ and lMAX, which have a strong correlation with
the multiplication depth, in Table 4 are similarly reduced.
Therefore, through the proposed method, it is possible to

implement PP-DNN with feasible HE parameters without
bootstrapping, as presented in Table 4, even for deep
networks.

Through latency comparison with previous approaches,
we show the validity of the proposed optimization solution.
As shown in Table 5, compared to HEMET [22], our
approaches achieve latency reductions of 1.7 to 6.9 times
in various networks. Compared to MultParConv [15], the
proposed approaches reduce latency by 1.4 to 3.9 times in
deep networks. However, the proposed methods show longer
latencies in relatively shallow networks. More specifically,
in our implementation, our method shows better performance
when logPQ ofMultParConv is higher than 1761, i.e., logPQ
of MultParConv is higher than the 128-bit security level
value for N = 216. This is because, as shown in Fig. 2,
the rotation latency is proportional to l2. Therefore, the
proposed solution indicates that the larger the total required
multiplication depth of PP-DNN, the more effective it is due
to the gap in level l between the two methods widening.
The proposed work may show lower performance in shallow
networks, but in practical applications, using deep networks is
common to achieve higher accuracy. Therefore, the proposed
work gains advantages by eliminating bootstrapping for deep
networks and reducing the multiplicative depth more than
the conventional method. Despite our optimization technique,
as shown in Table 5, HE domain inference still requires long
latency compared to vector domain inference. The implemen-
tation results are based solely on CPU execution, and the
proposed method is not platform-specific optimization, so it
is anticipated that utilizing GPUs will result in a reduction
of latency by over 100 times [45]. However, comparing
latencies based on different computing platforms falls outside
the scope of our current work, so we leave it for future
work.

Through layer-wise latency analysis in Fig. 9, it can
be observed that the proposed work achieves a significant
reduction in latency at earlier layers of ResNet-34 compared
to conventional merging method-based works, specifically, a
3.8× and 2× reduction in latency compared to HEMET and
MultParConv, respectively.

In addition, we show that the proposed work can be applied
to various scenarios through various generality evaluations,
such as datasets, networks, and HE libraries. Therefore,
the proposed work can be applied to all convolution-
based networks, making it applicable for various image
tasks such as medical, satellite, and facial image pro-
cessing. However, the current proposed work is centered
on CNN optimization techniques, and the previous works
[15], [22], [37] are also confined to CNNs. Therefore,
applying this approach to LSTM or non-convolution-based
ANN would require further research and is left for future
work.

V. CONCLUSION
In this paper, we have proposed a low-latency model
optimization solution for non-interactive PP-DNN based
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on the RNS-CKKS scheme. We utilize the HerPN block
as an activation function to achieve low-latency inference
while maintaining the accuracy of the original model.
To further reduce the multiplicative depth compared to
the previous works, coefficient absorbing and masking
convolution schemes are proposed. The proposed approaches
can construct the HE-aware convolution layers without
affecting the recognition result. As a result, the proposed
work constructs the PP-DNN without the need for boot-
strapping while preserving the baseline accuracy using
practical HE parameters. Compared with the state-of-the-
art, the proposed work reduces the processing latency
of ResNet-32 by 4.3 times on the Fashion-MNIST and
CIFAR-10 datasets and ResNet-34 by 1.5 times on the
CIFAR-100 dataset. Further, through layer-wise latency
analysis, we show the effectiveness of the proposed work
in the deep network, especially. The evaluation results using
various datasets, networks, and HE libraries demonstrate that
the proposed solution can be generally applicable. Thus,
our methods provide a practical and efficient solution for
accelerating secure deep neural network computations in a
privacy-preserving manner. In future work, our objective is
to address more challenging tasks about PP-DNNs. This
includes exploring solutions such as GPU or dedicated
hardware processing, additional optimization techniques for
various architectures, and applications to deep network
architectures.
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