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ABSTRACT This paper presents a novel model-free switching and control method for three-level neutral
point clamped (NPC) converter using deep reinforcement learning (DRL). Our approach targets two primary
control objectives: voltage balancing and current control. In this method, voltage balancing, current control
and selection of optimal switches are achieved using a reward function which is calculated based on
various signals measured as observations of the DRL agent. Since the action space is discrete, a deep
Q-network (DQN) agent is utilized. DQN is used due to its capability of handling high-dimensional state
spaces. In order to highlight its pros and cons, the proposed method is compared with model predictive
control (MPC), which is another popular non-linear control method for power electronic converters. The pro-
posed method is evaluated and compared with theMPCmethod in grid-connected mode using simulations in
Matlab/Simulink. To evaluate the practical performance of the DRLmethod, various experimental results are
obtained. The simulation and experimental results demonstrate that the proposedmethod effectively achieves
accurate voltage balancing and ensures steady operation even in the presence of various dynamic changes,
including variations in the reference currents and grid voltage. Additionally, the method successfully handles
uncertainties, such as sensor measurement noise, and accommodates parameter variations, such as changes in
the capacity of the DC-link capacitors and line impedance. The results demonstrate that this method exhibits
superior adaptability to real-time changes and uncertainties, delivering more robust performance compared
to similar conventional methods like MPC. Thus, this method can be considered a promising approach for
intelligent control of power electronic converters, especially when conventional methods such as MPC face
challenges in performance and accuracy under severe parameter variations and uncertainties.

INDEX TERMS Artificial intelligence, deep reinforcement learning, machine learning, neutral point
clamped, power converters, power electronics converters.

I. INTRODUCTION
Power electronics converters are essential components of
numerous modern applications such as power supplies,
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renewable energies, electrical vehicles, and energy storage
units [1], [2]. Control of power electronics converters is
crucial to ensure their reliable, consistent, and efficient per-
formance [3].

Linear control methods for power electronics converters,
such as PID, are based on linear approximations of the

105394
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-1607-0850
https://orcid.org/0000-0001-9737-3548
https://orcid.org/0000-0001-9148-0473
https://orcid.org/0000-0003-0276-4277
https://orcid.org/0000-0003-3991-4929


P. Qashqai et al.: Model-Free Switching and Control Method for Three-Level NPC Converter

converters using linearization techniques such as averaging
and state space modeling [4]. These methods are easy to
study and implement while providing sufficient performance
for simpler converters with linear or weakly non-linear oper-
ating modes. However, due to the small-signal nature of
these methods, they are not proper for highly non-linear
operating modes, uncertainties, and disturbances [5]. Some
solutions are proposed in the literature to mitigate these draw-
backs using several controllers to tackle different operating
modes [6].

On the other hand, non-linear control methods use
non-linear feedback or optimization techniques to address
the non-linearity in power electronics converters and con-
sequently provide robust performance across different oper-
ating modes. There are various non-linear control methods
proposed in the literature but some of the most popular meth-
ods are feedback linearization, sliding mode control (SMC),
and model predictive control (MPC).

Feedback linearization [7] transforms the non-linearity of
converters into a linear representation so that the outcome
could be controlled using conventional linear methods. This
method requires an accurate model of the converter as well
as its inverse model which may be difficult to extract in some
complex converters. It is difficult to model unknown internal
factors such as parasitic elements using this method which
may lead to degradation in its performance. This method may
be sensitive to sudden and large disturbances as well as noise
in measurement signals.

Sliding mode control (SMC) [8], [9] forces the converter
to reach and stay on a predetermined sliding surface. This
method is resilient to uncertainties, external disturbances, and
internal parameter variations. However, it introduces high
switching frequencies to the switches which may result in
switching loss, shorter lifespan of the switches, and effi-
ciency degradation. Additionally, it requires a high-gain
controller which makes this method sensitive to noise in
measurements.

Model predictive control (MPC) [10], [11], [12] is inher-
ently an online optimization problem that utilizes an accurate
model of the converter to predict its future behavior. Then,
it will be able to choose the best sets of actions from all
the possible ones to aim for the highest possible optimiza-
tion. Although this method can address non-linearities and
constraints, it requires an accurate model of the converter
and load, which may be difficult in practice. Moreover, this
method demands high computational power and fast process-
ing for solving an optimization problem at every single time
stamp. Finally, since it relies on accurate modeling of the
converter, this method is sensitive to parameter variations and
other changes in system dynamics [13], [14]. Some studies
have taken advantage of machine learning for tuning MPC
parameters. For instance, in [15] a supervised learning model
predictive control (SLMPC) method is utilized and optimized
using the artificial bee colony (ABC) algorithm, to train
the weighting factors of the cost function for controlling

a three-phase NPC. This method replaces the conventional
time-consuming and imprecise methods.

On top of all the challenges the aforementioned that con-
ventional non-linear control methods are facing, they also
suffer from performance degradation due to the accumulative
error between a model and the actual behavior of a given
power electronics converter [16], [17]. Various intelligent
methods such as particle swarm optimization (PSO) and
fuzzy neural network (FNN) are used alone or in conjunc-
tion with each other to mitigate these problems [18], [19].
However, these methods often suffer from weak adaptability
and limited learning capacity. For instance, Control methods
combined with PSO suffer from slow convergence and local
optimal [20], whereas FNN has high computational com-
plexity and overfitting problems [21]. Thus, more advanced
non-linear control methods have gained popularity in recent
years to mitigate these problems.

DRL is a subset of machine learning (ML) that utilizes
deep neural networks (DNN) in reinforcement learning (RL)
so that an agent learns from interactions with an environ-
ment to achieve the maximum long-term reward. In recent
years, due to the breakthroughs in deep learning and the
availability of high computational power, Deep reinforcement
learning (DRL) has gained popularity to solve various com-
plex problems including but not limited to robotics [22], [23],
electrical vehicles and hybrid vehicles [24], [25], renewable
energies [26], [27] and power systems [27], [28].

The advantages and disadvantages of the aforementioned
methods are listed in Table 1. As seen, despite requiring
high computational power, long training times, and large
training datasets, DRL is utilized as an advanced control
method for power electronic converters due to its resilience
towards uncertainties, noise in measurements, and parameter
variations.

TABLE 1. Overview of non-linear control methods for power electronic
converters.

In [29], DRL is applied as a solution to the shortcoming of
conventional methods for control of DC/DC buck converter
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when feeding constant power load (CPL). The conventional
methods often demonstrate poor performance in the presence
of large changes in the CPL. Although the DRL method
proposed in this paper can deliver satisfactory performance,
the agent is used for tuning gains in the feedback loop. Thus,
not only auxiliary control is required, but also a significant
advantage of DRLwhich is being model-free is not exploited.

In [30], a model-free DRL controlling method for DC/DC
buck converter feeding CPL is proposed. This method
demonstrates good dynamic performance when large changes
are applied to the CPL. However, the controller proposed in
this paper requires accurate measurements which results in
sensitivity to noise and accumulative error between a trained
model and a real-world converter. Thus, this method may not
be able to provide reliable performance in practice.

In [31], a novel technique is used to enable a DRL-
controlled DC/DC buck converter to demonstrate resilient
performance facing uncertainties and parameter variations.
However, this method requires an off-line pre-trained
model of the converter so that an extended state observer
(ESO) observes the error between this model and the
real-world converter to adapt to parameter variations and
uncertainties.

In recent years, due to the significant breakthroughs in
artificial intelligent algorithms especially machine learn-
ing (ML), and thanks to the remarkable surge in computa-
tional capabilities, research on the use of artificial intelligence
in power electronics has gained substantial popularity [32].
Some studies have focused on machine learning-based mod-
eling approaches [33], [34], [35], [36], while others have
utilized machine learning to enhance the control of power
electronics.

Although a considerable amount of research is focused
on applications of DRL in power electronics, the status of
research on the advantages of this method for the control
of power electronic converters is still in its infancy [32].
For instance, In [37], DRL is used for control of a simple
buck converter but no experimental tests are performed for
evaluation. Similarly in [38], a buck converter is controlled
by DRL and real-time simulations are performed for evalu-
ation but no real-life practical results are obtained. In [39],
a hybrid method is implemented for the control of a two-level
converter. ADRL agent is utilized for obtaining the weighting
factor design of an MPC controller. Few papers have stud-
ied applications of DRL in more complex converters such
as Neutral Point Clamped (NPC) converters. For instance,
in [40], a DRL agent is used for the efficiency optimization
design of a three-level NPC. In [41], a model-free DRL
method for controlling the three-level NPC is proposed. This
method utilizes an actor-criticmethod to apply all the possible
switching states under different conditions to learn the opti-
mal switching algorithm that satisfies the control objectives.
Although this method demonstrates a satisfactory steady-
state performance, it is not studied under dynamic changes,
uncertainties, internal and external parameter variations,

and noise in measurements. Additionally, experimental
results are not obtained to prove the practical feasibility of
the proposed control method. Most importantly, the proposed
method is not compared against a conventional non-linear
control method like MPC.

As seen, despite the recent gaining interest in this subject,
there is a gap in research on the application of DRL as a con-
trol method for multilevel power electronics converters such
as NPC, emphasizing its advantages regarding uncertainties
which conventional non-linear methods face challenges. This
paper aims at improving the literature on this subject by
proposing a new control method using DRL.

In this paper, a model-free DRL control method for three-
level NPC is proposed. Through simulation results as well
as experimental results, the method is proven to be resilient
facing dynamic changes, uncertainties, internal and external
parameter variations, and noise in measurements without
requiring any auxiliary controllers or pre-trained models.
Thus, this method may be a promising solution to the
common problems associated with conventional non-linear
control methods for power electronic converters.

The rest of this paper is structured as follows: In Section II,
the fundamentals of DRL, various popular DRL methods as
well as their advantages and disadvantages are explained in
detail. In section III, the proposed method is introduced. Sim-
ulation results are obtained and discussed in section IV where
the proposed method is compared with another conventional
non-linear control method. Section V is dedicated to the
experimental results that prove the real-world feasibility of
the method. Finally, the limitations of the proposedmethod as
well as the potential future studies are explained in sectionVI,
and the whole paper is concluded.

II. FUNDAMENTALS OF DEEP REINFORCEMENT
LEARNING
In this section, reinforcement learning will be introduced.
Then different methods for finding optimal policy are
explained and their limitations are discussed. Finally, a mod-
ern type of RL that utilizes deep learning (DL), also known
as deep reinforcement learning (DRL) is introduced.

A. WHAT IS REINFORCEMENT LEARNING?
As shown in Fig. 1, machine learning (ML) is a subset of
artificial intelligence (AI). Machine learning is a term used
to describe various methods that enable computer programs
to make decisions or predictions solely by learning from data.
The major difference between these methods and numerical
methods is that these methods are capable of generaliza-
tion. There are three major categories of machine learning
algorithms: supervised learning, unsupervised learning, and
reinforcement learning as depicted in Fig. 2.

Supervised learning is inherently an advanced curve-fitting
method that learns the relationship between data andmaps the
input data and their corresponding target data. These sets of
data can be labels (classification) or numbers (regression).
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FIGURE 1. Diagram of overlap between data science and its subset big
data with artificial intelligence (AI) and its subsets machine learning (ML)
and deep neural networks (DNN).

FIGURE 2. Diagram of different machine learning techniques.

Unsupervised learning, on the other hand, finds the rela-
tionship between data sets without using predetermined
labels. This method is popular for finding anomalies in data
and fault detection.

Reinforcement learning, as shown in Fig. 3., finds an opti-
mal policy to achieve maximum cumulative reward through
interactions with the environment without having access to
the model of the environment. Learning solely by trial and
error and learning from past experiences, enables RL to be
used in various applications where extracting an accurate
model is difficult or impossible.

As shown in Fig. 3, reinforcement learning is comprised of
an agent, the environment, action, state, and reward. This can
be expressed as a four-tupleMarkov Decision Process (MDP)
of {s, a, pa, ra} where s is the current state, a is the action,
pa is the probability of going to state s by taking action a in
state s and finally ra_is the immediate reward. The objective
of the RL agent is to find an optimal policy that leads to the
maximum accumulative reward as shown in (1):

π∗ = argmaxπE

[
∞∑
t=0

γ trt |s0, π

]
(1)

π∗ is an optimal policy continuously updated through (1),
rt is the reward at the time step t where the initial state is s0,

FIGURE 3. Diagram of a reinforcement learning agent exploring an
environment, updating a policy of π (s,a) at time step of t.

and γ is a discount factor that indicates how much the pre-
vious actions with their corresponding rewards can affect the
future reward.

B. FINDING THE OPTIMAL POLICY
There are three main methods for solving RL problems
and obtaining the optimal policy for maximum accumulative
long-term reward.

1) VALUE-BASED METHODS
These methods try to find the optimal value function without
explicitly dealing with the policy. Using iterative algorithms
such as Q-learning [42] and SARSA [43], these methods
update a value function. This value function can predict the
reward of taking action based on current states and previous
rewards. To update the value function, the Bellman equation
is utilized:

V (s, a) = R (s, a)+ γ max
(
V

(
s′, a′

))
(2)

V (s, a) is the value function in state s, R (s, a) is the
immediate reward for taking action a in state s, γ is the
discount factor that determines how much the future rewards
are taken into account, and finallymaxV

(
s
′
)
is themaximum

value function in the state s′ for taking all actions of a′. Where
a′ represents the action that maximizes the value function in
the state s′.
There are several disadvantages to using value-based

methods, such as slow convergence rates, especially for
high-dimensional state spaces, the inherent difficulty in han-
dling continuous action spaces, and suboptimal performance
in capturing time information in time series. To mitigate these
problems, DQN-D and DRQN are proposed [44]. Despite
these efforts, value-based methods are still recommended to
be implemented in discrete action spaces.

2) POLICY-BASED METHODS
These methods try to find the optimal policy function with-
out calculating the value function first. Using gradient-based
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algorithms such as Proximal Policy Optimization (PPO) [45]
and Advantage Actor-Critic (A2C) [46], these methods
update the policy parameters judging by their performance.
In (3) the equation for updating the policy parameters in
gradient ascent, one of the most popular methods is depicted.

θ ← θ+ ∝ ∇θJ (θ) (3)

θ is the policy parameter,∝ is the learning rate, J (θ) is the
objective function, and finally ∇θJ (θ) is the gradient of the
objective function J (θ).

These methods suffer from several disadvantages such as
high fluctuations in training episodes, becoming stuck in local
optimal, and difficulty in handling discrete actions [47].

FIGURE 4. Block diagram of an actor-critic reinforcement learning
method.

3) ACTOR-CRITIC METHODS
These methods combine the two previous methods in the
form of two neural networks. The neural network which is
responsible for policy is called ‘‘actor’’, whereas the neural
network responsible for value function is called ‘‘critic’’.
A diagram of an actor-critic RL is depicted in Fig. 4. As it
can be seen, the RL agent uses the actor to generate actions
and the critic evaluates how well the actions were chosen
based on the value function. The actor judges by its temporal
difference (TD) error. This enables the actor-critic methods
to be more data-efficient compared to other methods.

However, these methods suffer from noisy gradients which
leads to unstable learning and sensitivity to hyperparameters
which leads to unreliable performance in disturbances [48].

C. DEEP REINFORCEMENT LEARNING
Conventional RL methods use linear function approxima-
tions. Therefore, their applications are limited to less complex
problems with low levels of non-linearity. These methods
may not be able to find an optimal policy when large state
spaces or action spaces are present. By implementing neural
networks into RL, as shown in Fig. 5, a more powerful

FIGURE 5. Block diagram of a reinforcement learning agent exploring an
environment, updating a policy of π (s, a) at the time step of t.

generation of RL methods titled Deep Reinforcement Learn-
ing (DRL) emerged. Using neural networks provides several
advantages in comparison to conventional RL methods: first,
neural networks can be generalized, which makes them
effective in dealing with uncertainties and unseen scenarios.
Secondly, neural networks are capable of effectively handling
high dimensions of input and output which enables them
to deal with large state and action spaces. Moreover, neural
networks can approximate non-linear functions, making them
suitable for highly complex applications. And finally, neural
networks can learn from experience, which enables them to
learn a policy that is not known beforehand or may change in
the future [49].

III. THE PROPOSED METHOD
This section discusses the different aspects of the proposed
method. First, the agent type is chosen. Secondly, obser-
vations that are signals measured by sensors, are selected.
Then reward function and action space are proposed. Finally,
the implementation of the DRL agent on a three-level NPC,
as a switching and control method is discussed. The overall
diagram of the proposed method is shown in Fig. 6.

FIGURE 6. Block diagram of the proposed method using a DRL agent at
time t to generate action At which is converted to switching pulses using
the ‘‘Action to Switch’’ algorithm.

A. SELECTING AGENT TYPE
As mentioned in the previous section, there are different
methods for finding the optimal policy for RL agents. Each
of these methods has its advantages and disadvantages.
Policy-based methods are more efficient when action space
is continuous, however, value-based methods are better at
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handling large continuous state spaces while tackling discrete
action spaces [47]. Actor-critic methods are effective in both
continuous and discrete state spaces and action spaces.

TABLE 2. Popular agent types and other action spaces.

However, these methods require more computational
power and memory due to utilizing two separate net-
works. They also suffer from instability, delayed reward,
and extended training times due to the correlation problems
between actors and critics [46]. The most popular DRL agent
types supported by MATLAB [50] are listed in Table 2.

Since control of a three-level NPC is inherently comprised
of a large continuous state space and a small action space,
a value-based method like Q-learning would be a proper
choice.

Moreover, since deep learning provides many advan-
tages over conventional numerical methods of RL, in this
paper, the deep network form of Q-learning which is Deep
Q-network (DQN) is selected. A diagram of the DQN net-
work is shown in Fig. 7. Unlike Q-learning, which uses a
Q-table as a lookup table to store pairs of state-action and
their values, DQN uses neural networks and a replay buffer
to achieve the same goal.

B. OBSERVATIONS AND PREPROCESSING
To generate a proper state space as depicted in (4), various
observations are required.

st= f (ot) (4)

FIGURE 7. Topology of the deep Q-learning network (DQN) agent utilizing
a replay buffer to find the optimal value function for control of the
environment.

In (4), st is the state space at time t , whereas ot is the matrix
of observations at time t , and f is a function that manipulates
the observations through a preprocessing algorithm to map
them to the state space. In (5), the observation matrix is
depicted:

ot =
[
Vabc, idref , iqref , Iabc,VC1,VDC

]
(5)

where Vabc and Iabc are the three-phase voltage and current
of the grid (or load, depending on the operational mode)
respectively, idref and iqref are the d and q reference currents
in the park’s transformation respectively, VC1 is the voltage
across C1 one of the capacitors in the DC link (since the
voltage of C2 is dependent on this voltage and balancing one
capacitor is enough to balance both of them), and finally, VDC
is the voltage of the DC link.

Using the measurements in ot may not converge or
may lead to significantly high training times. Thus, a pre-
processing unit is used to manipulate the signals so that the
agent can determine the performance of its policy more effec-
tively. The pre-processing block is shown in Fig. 8. As seen,
the state space is continuous and comprised of various signals
and measurements mapped to represent the behavior of the
converter.

C. REWARD FUNCTION
Reward function creation is probably the most important
and most challenging part of DRL. Since the agent has no
agency, it can easily exploit undesirable outcomes to achieve
an optimal reward. Therefore, it is vital to create a reward
function that eliminates any potentially undesirable or non-
sensical scenarios that may lead to high rewards. For instance,
let us assume that a DRL agent is utilized for driving a
vehicle and a reward function delivers a medium reward for
maintaining speed and a high reward for not collidingwith the
environment. By constructing such a flawed reward function,
the agent may decide not to move the vehicle at all to achieve
maximum reward, which would be undesirable. Having this
notion in mind, the following reward function is constructed
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FIGURE 8. Diagram of the pre-processing unit that manipulates
observations to become states that are comprehensible by the agent.

for this control algorithm:

RtT = α(ϕt (id)+ ϕt (iq)+ ϕt (VC1) ) (6)

where t is the time at any given time step. ϕ (id) and ϕ
(
iq

)
are the reward functions of the d and q currents in park’s
transform respectively, ϕ (VC1) is the reward function of
the voltage across C1, α is the gain, and finally, RT is
the total reward applied to the DQN agent. The reward
functions of id , iq and VC1 can be obtained using (7)-(9),
respectively.

ϕt (id) =

{
−2 |∇ (id )|2 |∇ (id )|> 0.2 A
−2 |∇ (id )|2 + 2e−2 |∇ (id )| ≤ 0.2 A

(7)

ϕt (iq) = {
−2

∣∣∇ (
iq

)∣∣2 ∣∣∇ (
iq

)∣∣ > 0.2 A
−2 |∇ (q)|2 + 2e−2

∣∣∇ (
iq

)∣∣≤ 0.2 A
(8)

ϕt (VC1) =

{
− |∇ (VC1)|2 |∇ (VC1)|> 5V
− |∇ (VC1)|2 + 5e−3 |∇ (VC1)| ≤ 5V

(9)

where ∇(id ), ∇(iq), and ∇(VC1) are the errors between
each of these signals and their reference values, as shown

FIGURE 9. Heatmap of the combined reward for errors between id and iq
with their reference values (a) ; and errors between id and VC 1 and their
reference values (b).

in (10)-(12), respectively.

∇ (id ) = id − idref (10)

∇
(
iq

)
= iq − iqref (11)

∇ (id ) = VC1 −
VDC
2

(12)

To better understand the reward function, a heatmap of
the combined rewards of ϕt (id ) and ϕt

(
iq

)
, as well as,

ϕt (id ) and ϕt (VC1) are depicted in Fig. 9-a. and Fig. 9-b,
respectively. In order to demonstrate the overall reward, a 3D
graph of the total reward under three scenarios is depicted
in Fig. 10. Scenario-1 is when only ϕt (id ) is considered.
Scenario-2 combines the rewards of ϕt

(
iq

)
and ϕt

(
iq

)
. Even-

tually, scenario-3, adds ϕt
(
iq

)
to the equation which makes it

equal to the total reward. The x-axis represents the percentage
of deviation from nominal errors of id , iq, and VC1. As can
be seen, negative rewards are used to punish undesirable
behaviors of the agent. Thus, the optimal reward for this agent
is nearly zero.

105400 VOLUME 11, 2023



P. Qashqai et al.: Model-Free Switching and Control Method for Three-Level NPC Converter

FIGURE 10. Exploration space for the DRL agent to achieve maximum
reward.

FIGURE 11. Topology of a three-level neutral point clamped (NPC)
converter.

TABLE 3. Switching states of leg X of a three-level NPC.

D. ACTION SPACE
Before discussing the action space, consider the topology of a
three-level NPC illustrated in Fig. 11. As seen, the converter
is comprised of 12 switches. Since each switch has two states
of On and Off. Therefore, there are 24 = 16 combinations at
each leg of the converter. However, only three combinations
are permitted for each leg as is listed in Table 3 for leg X
(i.e., A, B, or C). The rest of the combinations lead to fault
or short-circuit. Since the converter has three permitted states
and it has three legs, the total number of permitted switching

states is 33 = 27. Since these labels are unintelligible for
the DRL agent, an integer number is used to represent each
combination. Thus, the discrete action space in this method
would be:

at = [0, 1, . . . , 26] (13)

Using a lookup table connected to the output of the DRL
agent, each action which is an integer, is converted to its
corresponding switching signals. As shown in Fig. 6, the
‘‘Action to Switch’’ block maps actions to switching signals.

E. CONNECTING THE AGENT TO THE CONVERTER
The diagram of a three-level NPC controlled by the proposed
method is shown in Fig. 12. The actions taken by the DRL
agent do not change until the next sampling period of the
agent which is not necessarily equal to the sampling time of
the simulation. Therefore, the sampling period of the DRL
agent is equal to the switching frequency (fsw).

IV. SIMULATION RESULTS
To evaluate the performance of the proposed method,
we implemented it in Matlab/Simulink simulation envi-
ronment usi. Simulation parameters, as well as training
parameters, are listed in Table 4 and Table 5, respectively.

After training the DRL agent with a sampling time of 50µs,
which is equal to a switching frequency of 20 KHz, the saved
agent is initiated with a sampling time of 100 µs which is
equal to a switching frequency of 10 kHz.

A. STEADY-STATE OPERATION
By setting the reference currents of idref and iqref to 20 A
and 0A, respectively, the steady-state results are obtained.
The steady-state waveforms of the output id and iq cur-
rents, output three-level currents, the voltage across the C1
capacitor, and Van the output phase voltage is illustrated
in Fig. 13-a, Fig. 13-b, Fig. 13-c, Fig. 13-d, respectively.
As can be seen, the DRL agent is capable of effectively
following the reference currents, while balancing the dc-link
capacitors. It is worth mentioning that the THD of the
three-phase output currents is 3.62%, which is within the
standard limits.

B. UNCERTAINTIES AND PARAMETER VARIATION
As mentioned earlier, the proposed method in this paper
can take advantage of the characteristics of DRL to
generalize its knowledge of the converter when facing
uncertainties.

To evaluate the performance of the proposed method, the
simulation is run for 300 milliseconds with different opera-
tion modes. Five scenarios are examined, and their simulation
results are depicted in Fig. 14, where Fig. 14-a shows the
output id and iq currents, Fig. 14-b shows the output three-
level currents, Fig. 14-c illustrates the voltage across the C1
capacitor, and Fig. 14-d depicts Van the output line voltage.
As seen at time t = 33ms, idref is changed from 10A to 20A
to evaluate the dynamic response of the DRL agent to sudden
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FIGURE 12. Block diagram of the proposed method for control and switching of a three-level NPC.

TABLE 4. Simulation parameters.

active power changes. Similarly, at time t = 66ms, iqref is
changed from zero to 20 A to evaluate the dynamic response
of the DRL agent to sudden reactive power changes. To assess
the resilience of the proposed method in the presence of
external parameter variations, the grid inductance is increased
by 20% at t = 150ms. There is a slight distortion in the
waveforms but after a few samples, the agent adapts to the
new condition. To evaluate the resilience of the proposed
method in the presence of internal parameter variations, the
capacity of each one of the dc-link capacitors is reduced by
15% at t = 200ms.

C. NOISE IN MEASUREMENT
Ultimately, to evaluate the robustness of the proposed method
when there is noise in measurements, a white Gaussian
noise (WGN) is added to each measurement signal at
t= 250ms. The power of each addedWGN is adjusted so that

TABLE 5. Training parameters.

the signal-to-noise ratio (SNR) is 25 dB. As shown in (14)
and (15), the root-mean-square (RMS) of the noise signal
should be around 5% of the RMS of the measured signal so
that SNR is approximately 25 dB. In (14) and (15), P and A
are the power and RMS of signals or noise, respectively.

SNR =
Psignal
Pnoise

=

(
Asignal
Anoise

)2

(14)

SNRdB = 10 log10 (
Psignal
Pnoise

) (15)
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FIGURE 13. Waveforms of the output id and iq currents (a) ; output
three-level currents (b); the voltage across the C1 capacitor (c); and Van
the output phase voltage (d), in steady-state operation, when idref = 20
and iq= 0.

FIGURE 14. Waveforms of the output id and iq currents (a) ; output
three-phase currents (b); the voltage across the C1 capacitor (c); and Van
the output phase voltage (d), when facing active power changes, reactive
power changes, grid inductance increase, capacitor degradation, and
noise in measurements.

By doing so it can be seen that the agent continues to
perform satisfactorily despite the presence of noise in mea-
surement.

D. COMPARISON WITH THE MODEL PREDICTIVE
CONTROL (MPC) METHOD
To further evaluate the proposed method and assess its advan-
tages, disadvantages, and limitations, the same topology and
parameters are controlled by both the DRL method, and
another conventional non-linear control method known as the
Model Predictive Control (MPC). The cost function of the

MPC controller is multi-objective as shown in (16).

G =λ1g1 + λ2g2 + λ3g3 (16)

It aims at controlling current, reducing common mode volt-
age (CMV) and capacitor voltages. Where g1 − g3 represent
the reference current, capacitor voltages and CMV, respec-
tively. Similarly, λ1 − λ3 are the corresponding weighting
factors.

To perform a fair comparison, the DRL agent is re-trained
using the same training options mentioned in Table 5. Only
this time, the sampling time of both the DRL agent and the
MPC controller is equally set to 50µs.

FIGURE 15. Waveforms of the output id and iq currents using the DRL
method (a) ; average frequency of the switches using the DRL
method (b); the output id and iq currents using the MPC method (c); and
average frequency of the switches using the MPC method (d).

1) STEADY-STATE OPERATION AND STEP RESPONSE
To assess the performance of each method in terms of
steady-state operation and step response, the reference cur-
rent id is increased from 10 A to 20 A at t = 100 ms as
shown in Fig. 15-a for the DRL agent and Fig. 15-c for
the MPC controller, respectively. As seen, the initialization
phase (warm-up) of the DRL method is superior to that of
the MPCmethod. Additionally, the step response of the MPC
controller results in a larger undershoot, more prolonged
oscillations, and longer settling times. Similarly, as shown in
Fig. 15-a and Fig. 15-c, the reference current of iq is changed
from 0 A to 5 A at t = 200ms. As depicted, both methods
resulted in satisfactory transient results as well as accurate
and smooth steady-state performances. It can be concluded
that depending on the magnitude of step changes, the DRL
agent demonstrates superior warm-up and transient responses
compared to the MPC method.
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2) SWITCHING LOSSES
In order to evaluate the effect of each method on switching
losses the switching frequencies can be studied. By counting
the rising edges of each switch and dividing it by time, the
average switching frequencies corresponding to each switch
can be calculated. Since in the NPC, there are supplementary
switch couples where the state of each switch is the inverse of
its dual switch (e.g., S1a and S3a), we have selected one switch
from each couple. Thus, the switches S1a, S2a, S1b, S2b, S1c,
and S2c are considered for an apparent presentation.
As you can see in Fig. 15-c and Fig. 15-d, despite hav-

ing the same sampling time (TS ), the switching frequencies
of switches in the DRL method are approximately around
2.5 KHz with a low degree of variance, whereas in the
MPC method, not only the switching frequencies are higher
and consequently the switching losses are higher but also
the switching frequencies have a large degree of variance
which makes the design of a filter more complex and more
challenging.

In addition, considering the dynamic changes of the ref-
erence currents at t = 100 ms and t = 200 ms a depicted
in Fig. 15-a and Fig. 15-c, we can conclude that both meth-
ods demonstrate near-constant switching frequencies when
facing dynamic changes. However, in the MPC method, the
average switching frequencies change slightly when the ref-
erence currents change but this change is negligible.

Ultimately, it is worth mentioning that despite hav-
ing higher switching frequencies the MPC method results
in slightly smoother current waveforms with a THD of
2.44% compared to the THD of the DRL method which
equals 3.62%. Considering the less satisfactory performances
of the NPC method in terms of switching frequency and
switching losses, and despite resulting in slightly smoother
waveforms and better THD, we can conclude that the DRL
method is superior to the MPC method in this domain.

3) UNCERTAINTY AND PARAMETER VARIATIONS
As stated before, control methods based on ML including
DRL have the ability to generalize policies to never-seen
scenarios. Furthermore, the DRL method proposed in this
paper is inherentlymodel-free and consequently, not sensitive
to parameter changes. In contrast, the MPC method which
has an acceptable performance for nonlinear control of power
electronic converters, not only requires the precise model of
the converter but also cannot generalize its policy to unex-
plored areas and unknown scenarios. For this reason, we have
performed a series of simulation tests in this section of the
paper to evaluate and compare the resilience of each method
when facing parameter changes and uncertainties.

Six scenarios are considered for comparison:
A step increase in the reference current id from 10 A

to 20 A at t = 100ms is applied to the DRL agent as shown
in Fig. 16 and to the MPC controller as shown in Fig. 17,
respectively. As can be seen and stated earlier, the transient
response to this change is superior in the DRL method in

FIGURE 16. Waveforms of the output id and iq currents (a) ; output
three-phase currents (b); the voltage across the C1 and C2
capacitors (c); and Vao the output phase voltage (d), when facing active
power changes, reactive power changes, grid inductance increase,
capacitor degradation, grid voltage increase and noise in measurements
controlled by the DRL method.

FIGURE 17. Waveforms of the output id and iq currents (a) ; output
three-phase currents (b); the voltage across the C1 and C2
capacitors (c); and Vao the output phase voltage (d), when facing active
power changes, reactive power changes, grid inductance increase,
capacitor degradation, grid voltage increase and noise in measurements
controlled by the MPC method.

terms of settling time, undershoot, and oscillations. In the
MPC method the output phase voltage vao is slightly dis-
torted. Although the MPC controller mitigates this distortion
after a short time, such deformation is not present in the DRL
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method. In addition, the waveform of vao is more symmetrical
in the DRL method. As stated before, THD is slightly lower
in the MPC method resulting in smoother output current
waveforms. Nonetheless, this smoothness in the waveform
comes at the cost of higher switching frequencies and conse-
quently higher switching losses. The voltages of the DC-link
capacitors are successfully balanced in both methods, but
their ripples are slightly increased in both methods upon
increasing id .
A step increase in the reference current iq from 0 A

to 5 A at t = 200ms is applied to the DRL method as
shown in Fig. 16 and to the MPC method as shown in
Fig. 17. The transient response of the DRL method is sim-
ilar to the previous scenario while the transient response
of the MPC method to a step change in iq is better than
the previous scenario. Contrasting the previous scenario, the
waveform of vao has remained without distortion in both
methods. The voltages of the DC-link capacitors remain
unchanged.

The inductance and resistance of the grid line are increased
by 20% at t = 300ms. This scenario is designed to evaluate
the performance of both methods under grid line parameter
variations. As seen in Fig. 16 and Fig. 17, this change has
resulted in waveform distortion of the output current wave-
forms in both methods. This distortion of the waveforms is
slightly worse in the DRL method. The waveform of the
output phase voltage has distortion in both methods, but this
distortion is mild in the DRL method but considerable in the
MPCmethod. It is worth mentioning that these distortions are
temporary and are eliminated after several sampling times.
The waveforms of the voltages of the DC-link capacitors
remain unchanged.

To simulate the performance under degraded capacitors,
the capacitance of the DC-link capacitors is decreased
by 15% at t = 400ms. As seen in Fig. 16 and Fig. 17, this
change did not result in a considerable change in the output
currents and the output phase voltage. However, the voltage
ripples of the DC-link capacitors are increased which is not
unexpected. Thus, it can be concluded that both methods
demonstrate resilience toward moderate degradation in the
DC-link capacitors.

The grid voltage is increased by 10% at t = 500ms. As seen
in Fig. 16 and Fig. 17, the output currents of the converter and
the output phase voltage vao remain unchanged. The voltages
of the DC-link capacitors remain unchanged in the DRL
method, but their ripples are increased slightly in the MPC
method. It can be concluded that both methods demonstrate
resilience toward variations of the voltage grid.

Ultimately, the most important scenario is considered in
this section to evaluate the resistance of both methods when
facing a common uncertainty which is noise in measure-
ments. A noise of 25 dB is added to the measurements of the
output currents Iabc at t = 600ms. As seen in Fig. 16 and
Fig. 17 as soon as the noise is introduced the MPC controller
becomes unstable. Not only do the output currents become
severely distorted but also the output phase voltage vao is

also heavily distorted and the voltage ripples of the DC-link
capacitors are drastically increased. In the meantime, the
DRL method is not affected by this uncertainty. This is due
to its characteristic of being model-free and being able to
generalize which are the inherent characteristics of machine
learning algorithms.

In conclusion, based on the simulation results obtained in
this section it can be stated that the MPC method despite
demonstrating satisfactory performance in many scenarios
is not a reliable solution when moderate uncertainties are
present in the control environment. This is due to the
fact that the MPC method requires a precise model of
the converter, and it assumes the measurements are ideally
obtained with minimal noise or distortion. On the other
hand, the DRL method demonstrates resilience toward var-
ious kinds of parameter changes and uncertainties, especially
noise in measurements. Thus, the DRL method despite
being more computationally intensive is the better choice
for applications where a moderate degree of uncertainty
is present.

TABLE 6. Experimental test parameters.

V. EXPERIMENTAL RESULTS
In this section, the proposed DRL method has been exper-
imentally evaluated using an advanced testbed constructed
based on dSPACE 1202, OP8662 (voltage and current mea-
surements), a power board of NPC, an autotransformer, and
several loads detailed in Table 6. The proposed experimental
setup is illustrated in Fig. 18, in which the test equipment is
highlighted. The intelligent controller has been trained and
implemented using the ‘‘Reinforcement Learning Toolbox’’
provided by MATLAB.

The steady-state performance of the NPC converter in the
grid-connected mode is obtained when idref is set to 12 A
and iqref is 0 A, as depicted in Fig. 19. As seen, the
agent effectively controls the NPC despite not having access
to the mathematical model. The dynamic performance of
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FIGURE 18. Details of the experimental setup built in the GREPCI
laboratory to implement and evaluate the DRL control algorithm.

FIGURE 19. Experimental results of the line voltage and the three-phase
current in steady-state mode when idref is set to 12A and iqref is
set to 0A.

FIGURE 20. Experimental results of the line voltage and the three-phase
currents under a step change of idref from 4A to 12A.

the proposed DRL controller under a step change of the
d-reference current from 4 A to 12 A is shown in Fig. 20.

FIGURE 21. Dynamic performance of the proposed DRL controller under
perturbations caused by a nonlinear load.

FIGURE 22. Experimental results of reactive power compensation under
the operation of a reactive load.

The captured results from this dynamic test demonstrate the
fast dynamic performance of the intelligent controller.

Ultimately, to evaluate the performance of the proposed
method in the presence of non-linearity, it is connected to a
full-bridge non-linear load with a dc impedance of 80 � and
2200 µF. The dynamic response of the proposed method in
this scenario is obtained when a step change of idref from 3 A
to 12A is applied, as depicted in Fig. 21. Regarding the results
of this test scenario, the proposed method demonstrates the
robust performance of the DRL controller in the presence
of perturbations caused by the non-linear load. In addition,
Fig. 21 proves that the controller can perfectly synchro-
nize the converter’s current with the grid voltage, regardless
of perturbations caused by loads or the grid environment.
The experimental results of another test scenario in Fig. 22
indicate that the proposed DRL algorithm can successfully
preserve the unity power factor of the grid by injecting reac-
tive power demanded by loads. The THD analysis of the
grid voltage and current in Fig. 23 also validates the optimal
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FIGURE 23. Experimental results of THD analysis of the grid voltage and
current (phase A) under steady-state performance.

switching control performance of the proposed DRL control
algorithm in practice.

VI. CONCLUSION
In conclusion, this paper presents a novel model-free switch-
ing and control method for a three-level NPC converter using
deep reinforcement learning. The proposed method provides
a robust performance under both simulation and experimental
tests and achieves accurate voltage balancing and reference
current tracking not only in steady-state mode but also under
various dynamic changes, parameter variations, harmonic
perturbations, and uncertainties. By applying various scenar-
ios, the proposed method is compared against MPC, another
conventional nonlinear control method for power electronic
converters. The comparison results demonstrate the resilience
of the proposed method against various types of parameter
changes and uncertainties. The proposed DRL method is
proven to be resilient against the presence of noise in sensor
measurements whereas the MPC method becomes unstable
in such an environment. However, it should be noted that this
method requires long training times, and creating a reward
function is very challenging. Nevertheless, future studies
can be conducted to extend the application of this proposed
method to other power electronic converters, especially those
with complex control. Overall, this method can be consid-
ered a promising approach for model-free, non-linear control
of power electronic converters, especially under parameter
variations and uncertainties where conventional methods face
performance and accuracy challenges.
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