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ABSTRACT Patients with Type 1 diabetes must closely monitor their blood glucose levels and inject
insulin to control them. Automated glucose control methods that remove the need for human intervention
have been proposed, and reinforcement learning has been used recently as an effective control method in
simulation environments. However, its real-world application would require trial and error interaction with
patients. As an alternative, offline reinforcement learning does not require interaction with humans and
initial studies suggest promising results can be obtained with offline datasets, similar to classical machine
learning algorithms. However, its application to glucose control has not yet been evaluated. In this study,
we evaluated two offline reinforcement learning algorithms for blood glucose control and discussed their
potential and shortcomings. We also evaluated the influence on training and performance of the method that
generates the training datasets, as well as the influence of the type of trajectories used (single-method or
mixed trajectories), the quality of the trajectories, and the size of the datasets. Our results show that one of
the offline reinforcement learning algorithms evaluated, Trajectory Transformer, is able to perform at the
same level as commonly used baselines such as PID and Proximal Policy Optimization.

INDEX TERMS T1D blood glucose control, offline reinforcement learning, transformer, artificial pancreas,
machine learning.

I. INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune system disorder
involving the destruction of liver 8 cells of the pancreatic
islets of Langerhans due to insulin deficiency. Without
enough insulin, glucose cannot enter the cells to transform
it into energy. People with TID need to monitor their
blood glucose (BG) levels regularly and take insulin to
keep their blood sugar levels within a normal range. Higher
(hyperglycemia) or lower (hypoglycemia) blood glucose
levels can cause serious health problems such as blindness,
kidney failure, or heart attack, so people with T1D must
monitor their blood glucose levels and inject insulin to
prevent them. There are several insulin delivery methods both
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manual and automated. The usual insulin delivery method
to manage glucose levels is the basal-bolus (BB) regime,
which involves taking insulin before meals and at bedtime.
A continuous Glucose Monitor (CGM) is a device that
measures human plasma glucose levels in real-time. A CGM
typically consists of a small sensor that is inserted under
the skin, a transmitter that sends the data to a receiver
or smartphone, and an application or other interface that
displays the glucose levels in real-time. Even combined with
a CGM, the disadvantage of BB is the need for manual
injection several times per day, which is a trouble, especially
for children when they are at school [1].

As a solution, several methods for automated glucose
control have been developed. Methods that completely
remove the need for human intervention are usually called
close-loop controls or artificial pancreas (AP). Those systems
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additionally include an insulin pump and some method
to regulate the injections, that is, a control algorithm.
The control algorithms employed usually are predictive
integral derivative controllers (PID) [2] and model predictive
controllers (MPC) [3]. Both algorithms are effective and
widely used [4]. In particular, PID controller is the most used
both in commercial and research because of its simplicity and
robustness [5]. But these methods are sensitive to external
factors such as food intake, exercise, and illness, which affect
the control effectiveness [6], [7].

Recently, machine learning (ML), including reinforcement
learning (RL), has gained attention in diverse domains such
as finance, robots, computer vision or language recognition.
ML predictive models can be applied to time series data
to understand changes in glycemic state and determine the
amount of insulin to deliver. Reinforcement learning is a
branch of ML that lets the agent learn by interacting with
the environment, which in our case is the simulation of
an artificial patient [8]. RL is being applied in diverse
domains, including robotic rehabilitation [9], aircraft main-
tenance [10], and electric vehicle battery lifetime predic-
tion [11]. The RL agent, gathers rewards from outcomes
of the agent’s action, which uses to learn to take better
decisions. Thus, RL algorithms can use physiological data
gathered from CGM systems to train the agent. However,
this RL process, called online RL, requires extensive trial
and error interaction with the environment, the real patient
in this case, something that is obviously not safe at the
moment. Therefore, online RL has been so far successfully
used to automatically control BG [12], [13] but only in in
silico tests and there is no clear way of bringing it to clinical
trials because of the high risk involved when working on real
patients.

In contrast, offline RL [14], a recent approach, could
solve that problem. Offline RL requires only pre-obtained
data to make an agent learn a policy for a particular
environment. This data can come from real measurements
taken from patients. Thus, this approach does not involve
actual interaction with the environment (patient) during the
training phase. Offline RL methods have been used in various
applications such as marketing [15], web user interfaces [16],
sport strategy planning [17], healthcare [18], [19], and T1D
blood glucose control [4], [20]. Offline RL is particularly
suitable for time series data, such as blood glucose data, due
to its ability to learn from historical sequences and capture
the temporal dependencies and patterns present in the data.

So, one key advantage of offline RL for blood glucose con-
trol is its ability to handle non-stationary environments. Blood
glucose levels can vary significantly over time, and offline RL
algorithms can adapt to these changes by learning from the
entire historical sequence. Offline RL can leverage recurrent
neural networks (RNNs) or transformers. These models can
capture long-term dependencies and accurately represent the
sequential nature of blood glucose measurements, leading to
more accurate predictions and decision-making. This enables
the agent to capture the dynamics of the underlying system
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and make appropriate decisions even in the face of changing
blood glucose patterns.

The other key advantage is the ability of offline RL to avoid
exploration by interaction with the environment. Since offline
RL algorithms learn from a pre-collected dataset, which may
have undergone extensive safety checks, the risk of dangerous
or harmful actions during the learning process is reduced.
This is particularly important in the context of blood glucose
control, as patient safety is paramount.

On the other hand, there are some challenges in offline
RL, including distribution mismatch, biased behavior, sample
complexity, off-policy evaluation, and practical deployment.
Addressing these challenges requires the development of
robust algorithms, novel techniques for policy evaluation, and
careful consideration of safety and deployment considera-
tions. Indeed, the suitability of offline RL for BG control
has only been started to be discussed in the literature [4],
showing that certain offline RL algorithms may be a feasible
alternative to online RL, a fact that has not been clearly
established yet. Therefore, our first contribution in this paper
is to show that some additional offline algorithms can actually
perform at the level of online ones for BG control.

Moreover, the importance of the implementation details is
recognized for both online RL and offline RL [12], in addition
to the algorithms used: Online RL requires to design or select
the state space, the reward function, and other factors while
offline RL, in addition to those choices, requires careful
selection of dataset trajectories, as we will discuss in the
paper. That is, while for simple environments the states
are clearly defined, for most of real problems, including
BG control, this is actually a design decision. For example,
as discussed in [12], one can use as input state just the last BG
sample, or a sequence of past BG samples or a combination of
past BG samples and injected insulin doses [13]. The design
of the reward function is also a crucial step.

Therefore, a second contribution of our work is to explore
and discuss part of this available design space. Our findings
and lessons learned will be valuable for other researchers,
enabling them to focus on other key aspects, which should
save testing time, especially considering that training offline
RL agents is a highly time-consuming and resource-intensive
task.

In summary, the contributions of this work are:

o An evaluation of offline RL as a method for effective

blood glucose (BG) control.

o An assessment of the potential and shortcomings of
offline RL algorithms for data-driven BG control.

o A comparison of their performance against online RL
and PID baselines.

« An exploration of several factors influencing the learn-
ing ability of offline RL agents, including the dataset size
and its quality.

« Extensive evaluation of different dataset types, sizes and
selection approaches.

o The identification of the importance of careful data
selection for training offline RL agents.
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To facilitate results repeatability, the trained agents, as well
as the baseline data and the datasets generated for training
for this paper, are available on the open science framework
repository [21].

In the remainder of this paper, we first review glycemic
control methods and related works. Afterwards, we describe
our experimental setup and data generation and the results
of our tests. Next we discuss our findings and potential next
steps. Finally, we provide concluding remarks.

Il. BACKGROUND AND RELATED WORK

A. TID SIMULATION AND MODELS

For safety reasons, biomedical experiments with machine
learning algorithms have been done and pre-evaluated in
silico through computer simulation. Currently, there are
several T1D simulators available, with both free and paid
versions, as for instance, AIDA [22], Type 1 Diabetes Virtual
Patient Population (T1D-VPP) [23], and the UVA/PADOVA
Simulator [24]. AIDA is a free software simulating human
plasma insulin and blood glucose for education and research
purposes. T1D-VPP involves single (SH) and dual hormone
(DH) mathematical models which generate a T1D diabetes
virtual population of patients and model the effect of exercise
in the glucoregulatory system.

The UVA/PADOVA simulator was originally developed in
2007. It is the first approved in silico TID model by the
United States Food and Drug Administration (FDA) [24].
The simulator provides virtual patients in three age groups:
adults, adolescents, and children, with 10 patients per group
in the free version. In this paper, we use SimGlucose,
an open-source Python implementation of the UVA/PADOVA
simulator [25], previously used in similar studies [8], [13],
[26], [27], which can be seamlessly integrated with multiple
machine-learning libraries.

B. METHODS FOR GLYCEMIC REGULATION

TID conditions typically develop in children or young
adults and require lifelong treatment with insulin injections.
Several insulin regimes are used to control blood sugar.
The traditional ones involve one or two injections per day.
But patients must control their food intake to be constant
throughout the three meals a day. Multiple daily injection
therapy, or basal-bolus (BB), offers more flexibility in diet
and dosage, but patients still need to control carbohydrate
intake and insulin injections [28]. Automatic insulin pumps
with integrated continuous glucose monitors (CGMs) have
been developed to alleviate the burden of glycemic control
and deliver optimal insulin according to current blood glucose
levels, allowing patients to live independently without having
to worry about delivering insulin. A system that does
not requires any human intervention is usually called a
closed-loop controller or Artificial Pancreas (AP). Currently,
most of the commercially available insulin pumps use a PID
(proportional-integral-derivative) algorithm to control blood
sugar levels. A PID controller is a control system that uses
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feedback to adjust a system’s output in order to achieve the
desired outcome. In the context of blood glucose control,
a PID controller is used to regulate the release of insulin
in order to maintain a stable blood glucose level [29]. The
proportional component of the PID controller adjusts the
output based on the current error between the desired and
actual blood glucose levels, while the integral component
considers the accumulated error over time and the derivative
part predicts future errors based on the current rate of
change. By combining and tuning these three components,
PID controllers can regulate blood glucose levels, but they
usually have problems to adapt to disturbances in food intake
and need to be customized to individual patients [13], [30].

ML is gaining momentum in AP research recently.
ML algorithms can be used theoretically in the field of
blood glucose control to develop systems that are able to
automatically regulate blood glucose levels according to the
individual needs. As other data-driven methods, the idea is to
collect labeled data from CGMs and other devices and train
a ML model. Through the training process, ML algorithms
would ideally identify patterns and trends in order to learn
how to predict blood glucose (BG) levels and adjust insulin
levels accordingly. At this point, there are several alternatives.
The first one is to use the ML model to just predict the
expected BG level ahead of time and then use some other
method to decide the insulin dose required to keep BG at
the desired level. However, the human response to insulin is
highly non-linear and it is also difficult to predict the response
to the insulin injection. Therefore, another alternative is to
learn that response with ML methods also. To this purpose,
Reinforcement Learning (RL) could be used, since the ML
agent directly learns the appropriate action (insulin doses) to
take given a certain input state (the patient BG history). This
is what traditional RL (also called online RL) does, by letting
the agent interact with the environment, and receive a reward
as a result of this interaction. By maximizing the cumulative
rewards, the agent effectively learns how to adjust insulin
levels. That is, by learning through trial and error, the agent
could potentially develop effective strategies for maintaining
healthy blood glucose levels over time. This method has
successfully been used to automatically control BG levels in
in silico trials, outperforming PID-based methods [12], [13].

However, the main drawback of this approach is that it is
not clear at all how to apply it to real patients, that is, how
to transfer the learning from the in silico environment to real
patients. Although data (BG level, physical activity, etc.) can
be automatically collected from real patients from electronic
devices, RL agents still need to experiment with the patient
response in order to learn.

To solve this issue, a more recent approach, called offline
reinforcement learning, has emerged. In offline reinforce-
ment learning, the agent is not able to receive any feedback
from its environment during the learning process, and must
instead learn only from previously collected data [14]. This
means that the agent must learn to make decisions based
on the information that is available (no exploration). Note
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that the main difference with other ML methods is that with
offline RL the actions and rewards are also given as input
data. For example, a typical supervised ML algorithm uses
collected BG levels (as well as other context data) to train and
is able to predict the next BG level, given a certain input BG
history. On the contrary, to train an offline RL agent we need
to use BG levels, actions taken and observed rewards, and,
once trained, it is able to predict the required action, given a
certain BG history as input.

The advantage is that it is useful in situations where it is
not possible or practical to experiment with the environment,
such as when working with historical data or in safety-critical
environments. As a drawback, note that, although it removes
the need to interact with the environment to learn, it still
leaves open the question of how to collect the required states,
actions and rewards for training, which is not obvious for
many practical situations. In this paper, since we can collect
those data from simulations, we put aside temporarily this
question and focus on evaluating how effective is offline RL
for BG control. Let us finally remark that the value of offline
RL is that it is able to effectively generalize, that is, to apply
the appropriate action to an input not previously seen in the
training dataset. In other contexts, ML has proved to be very
effective generalizing [31], but to the best of our knowledge,
the generalizing performance of offline RL for BG control
has only been started to be discussed in the literature [4]. Our
goal in this paper is to evaluate it and discuss factors that may
have an influence in the learning and prediction performance.

In particular, we evaluate the following offline RL
algorithms: Decision Transformer (DT) [32] and Trajectory
Transformer (TT) [33]. Both of them approach offline RL as a
sequence modeling problem, that is, the agent is trained with
sequences of observations, actions and rewards (trajectories)
and its goal is to generate sequences that result in high
rewards. We summarize their features:

Decision Transformer (DT) [32]:

. Trajectory representation: T = RAl, S1,di, RAz, $2,an,

...,RAT,ST,(IT

o Uses return-to-go (R, = Zszl r¢) instead of rewards

« Input of DT is a subset of the trajectory 7 consisting of

the K most recent time steps

Trajectory Transformer (TT) [33]:
2 N 1 2

o Trajectory representation: T = stl, ST, 80, a;, 4
RN ra r,,:()T_l

o Uses discretized states and actions as input, along with
a scalar reward

« Augments the trajectory with return-to-go as in DT and

employs a beam search algorithm for planning [34]

Both DT and TT uses as architecture for action prediction
a transformer network. The transformer is a type of deep
learning model that is designed to process sequential data
which was introduced by Vaswani et al. in 2017 [35].
The transformer architecture is based on the idea of using
self-attention mechanisms to process input data, rather than
using traditional convolutional or recurrent layers. This
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allows the model to capture long-range dependencies in the
data and to process the input sequence in parallel, which
makes it faster and more efficient than many other types
of models. A key aspect determining the performance of
offline RL algorithms is the quality of the datasets used
for training. In fact, their performance is usually validated
separately according to the quality of the trajectories included
in the dataset. For instance, the quality of the dataset can
range from randomly (random dataset) generated trajectories
to trajectories generated by the best-performing algorithm
(expert dataset) or a mixture of them [32], [33].

C. RELATED WORK

Most of the current commercially available control algo-
rithms for AP systems are based on PID or Model-Predictive-
Control (MPC) [6], [7], [29], [36], [37], [38], [39]. PID and
MPC controllers usually require the user to announce her
meal intake and exercise activity, and so they work as an
hybrid closed-loop system, [29]. PID and MPC are used in
current FDA-approved products such as MiniMed systems,
Control IQ, and Dexcom [5].

The main drawback of PID controllers is that usually
do not handle well variability in food intake [13], [36].
Several improvements of the basic PID control have
been put forward, such as insulin feedback (IF), which
increases its efficiency [38], [39]. MPC controllers use
a mathematical model to predict and control BG levels.
It involves using a mathematical model of the patient’s
physiology to predict future blood glucose levels and
optimizing a sequence of control actions over a specific
time horizon. The process includes modeling the patient’s
dynamics, predicting glucose trajectories, formulating an
optimization problem to minimize a cost function while
satisfying constraints, implementing the first control action,
and repeating the process in a receding horizon manner. MPC
offers benefits such as dynamic adaptation and incorporation
of safety constraints, but challenges include model accuracy,
patient-specific parameters, and computational requirements.
Di Ferdinando et al. [6] and Borrietal. [7] model the
endogenous insulin delivery rate (IDR) with nonlinear
differential difference equation (DDE). These models usually
are applied to T2DM patients, since IDR cannot be neglected
for them. Finally, overnight hypoglycemia is dealt by PID
and MPC-based commercial products with Predictive Low
Glucose Suspend (PLGS) technology [29], which predicts
glucose concentration trends and suspends insulin delivery
before hypoglycemia occurs.

ML has been used as a tool for the prediction of
diabetes [40], [41], [42], [43], but also for glycemic control
in an insulin pump, and such techniques are growing rapidly
within the artificial pancreas research community. Most ML
experiments are done in silico, through computer simulation.
As CGM data are time series, non-linear autoregressive neu-
ral networks are used for BG prediction in [23], while [44],
[45], [46], [47], [48] use recurrent neural networks (RNN)
and long short-term memory (LSTM).

VOLUME 11, 2023



P. Viroonluecha et al.: Evaluation of Offline Reinforcement Learning

IEEE Access

For BG control, RL has been increasingly tested, using
multiple RL methods such as double score strategy [49],
Q-learning [50], [51], [52], Deep Q-network (DQN) [53],
Deep Deterministic Policy Gradient (DDPG) [54] and its
improvement Twin Delayed DDPG (TD3) [55], Soft Actor-
Critic [13], [56] and Proximal Policy Optimization [12].
These RL methods are called online RL, since the agent
interacts with the environment to collect data. As an example,
our previous work [12], shows a simple RL implementation
strategy that outperforms PID with IF for BG control in in
silico tests. The recent work of Yu et al. [57] uses a meta-RL
framework called active RL with personalized embeddings
(ARLPE). By learning a general meta-policy and then fine-
tuning it to the particular patient, their results show very
promising results. However, their results have only been
tested for adult and adolescent cohorts, excluding the most
difficult group to train, the children. In addition, it remains
the question of how to actually do the fine tuning for real
patients, which cannot be done on the simulator. That is in
fact, the main problem of online RL. A potential alternative
to alleviate this problem is to use a model-based RL approach,
such as the recent one in [58], where a hypothesized insulin
dose is simulated on a BG predictor before actually being
injected to the patient. Its performance is good for simulations
up to 12 hours and two meals but decreases in more realistic
scenarios.

In summary, in spite of recent advances, online RL
is not yet suitable for safety-critical environments, where
interaction with the environment (the real patient) is not
possible. Therefore, recently, researchers have paid more
attention to offline RL. Offline RL is similar to online RL,
but the offline RL agent does not need to interact and
receive any new information from the environment during
the learning process [14]. This means that the agent instead
learns from previously collected data, which is safer and
more useful for medical and healthcare research. Only a
few works have evaluated the use of offline RL for BG
control, such as [20], which uses Simulation-Augmented
Batch RL (SABR), and [4], which applies and compares three
offline RL techniques: Batch Constrained Deep Q-learning
(BCQ), Conservative Q-learning (CQL) and Twin Delayed
DDPG with Behavioural Cloning (TD3-BC). The work of
Fox demonstrates how offline RL can reduce risks over two
months and two years of evaluation. The work of Emerson et
al. shows that TD3-BC outperformed PID across all patients.
This is the work most similar to ours in this paper, but there
are significant differences: first, we evaluate more recent
offline RL algorithms (DT and TT), which have shown better
results than the ones used by Emerson et. al. Second, their
work only evaluates 9 patients, 3 from each of the three
group ages available at SimGlucose, while we evaluate all the
virtual patient population, 30 patients. Finally, their training
dataset only contains 10° samples generated by PID for
each patient, while our datasets contain 1 million sample per
patient and have been generated with PID-IF and our previous
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online RL implementation. As we said, for offline RL it is key
to evaluate the influence of the training dataset, so we have
extensively evaluated this aspect by: trying different dataset
sizes, using those two types of datasets, mixing them and
selecting the best subset of trajectories.

Ill. MATERIAL AND METHODS

In this section we describe our evaluation of offline RL as a
method for automatic BG control. We evaluate two offline RL
algorithms, Decision Transformer [33] (DT) and Trajectory
Transformer [32] (TT). Each of the algorithms have been
trained with two different sets of datasets, one generated
by our previous online RL BG controller, PPO-RNN [12],
and another one generated from a PID-IF controller [12],
[39]. We also use those methods as baselines for comparison.
In the remaining of the paper, each combination is referred
to as Decis-PPO, Traj-PPO, Decis-PID-IF and Traj-PID-
IF, respectively. In addition, a dataset that mixes trajectories
from both methods (PPO-RNN and PID-IF) is also used
to evaluate both algorithms. As metrics used to determine
whether the glycemic control algorithm works appropriately,
we use the percentage in time in euglycemia or Time in
Range (TIR). In both cases they refer to the time spent in
the target glycemic level range between 70 and 180 mg/dL.
Lower (hypoglycemia) and higher ranges (hyperglycemia)
may cause short-term and long-term complications in T1D.
Most diabetics should aim for a TIR of at least 70 percent of
readings [4].

We first describe the baselines and the experimental setup
and then discuss our evaluation results. Our general goal is
to determine whether offline RL is a feasible method for
automated BG control and how the quality and size of the
datasets influence the learning process.

A. BASELINES

1) PROXIMAL POLICY OPTIMIZATION (PPO-RNN)

In a previous paper we proposed and evaluated a RL control
based on the PPO [59] algorithm [12]. One key finding of
our previous work was that we were able to successfully train
the agents if we selected a proper observation frequency for
each type of patient, different from the default 3-minute CGM
samples. That is, instead of using the default frequency of
the CGM sensor, observations were made every 45, 30 and
15 minutes for adults, adolescents and children respectively.
In addition, a simple reward function, shown in eq. (1), was
used.

1, if BG € [70, 180] mg/dL.
reward = { 0, if BG € [10, 69]or[181, 1000] mg/dL.
—100, otherwise.

ey

With this implementation strategy, we showed that the PPO
agent outperforms other control methods and is able to keep
over 73% of time in euglycemia across all groups.
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2) PROPORTIONAL INTEGRATIVE DERIVATIVE WITH INSULIN
FEEDBACK (PID-IF)

In our previous paper [12] we also tested a PID control that
aims to keep the BG level at a target point of 112.517 mg/dl,
which is the zero-risk point in Clake’s Risk Index. Note that
PID-IF includes insulin feedback [38], [39]. Insulin feedback
is an adjustment of insulin delivery that adapts to metabolism
changes due to life activities and has been shown to improve
the performance of PID controls. Therefore, formally, the
trajectories used as input for both offline RL agents use
si = by, d = u, and r! = rw,, where by, u;, and rw; are,
respectively, the BG sample, the insulin units and the reward
from eq. (1) at time z. In addition, offline RL uses additional
input consisting of a terminal flag indicating whether the
patient’s BG is below 10 or above 1,000 mg/dL, and a
timeout flag indicating whether the patient survived the full
episode length. Thus, each sample in the dataset corresponds
to an agent trajectory and consists of five vectors, with the
mentioned data.

For our previous work we implemented the PID-IF control
for the default observation frequency (OF) of 3 minutes for
all patients. However, in this paper we want to combine
PID-IF trajectories with PPO-RNN for training the offline RL
agents. Since the PPO-RNN agents use different observation
frequencies for each group age, as discussed previously,
we have to adapt the PID parameters, proportional, derivative
and integral constants, K,, Ky, and K;, for that particular
frequencies. To accommodate different observation frequen-
cies, the utilization of new OF values may necessitate the
discovery of new PID parameters. Hence, in order to adapt to
varying observation intervals and the corresponding insulin
response based on age groups, the optimization framework
Optuna [60] is employed to identify suitable PID parameters.
After evaluating various optimization methods, including
Tree-structured Parzen Estimator (TPE) [61], we determined
that TPE exhibited the best performance. Subsequently,
we conducted 1000 trials using TPE to identify the optimal
PID parameters that resulted in the highest euglycemia
percentage within a 10-day episode length. The optimal PID
parameters for each patient are provided in Table 1.

In summary, in this work both baselines, PPO-RNN and
PID-IF, use the same observation frequency; 15, 30, and
45 minutes for children, adolescents, and adults, respectively.
Finally, meals were randomly generated by the Harris-
Benedict algorithm [13] and used along in data generation
for training and evaluation.

The baseline data as well as the datasets generated for
training for this paper are available on the open science
framework repository [62], in CSV format.

B. EXPERIMENTAL SETUP

We used the open-source implementations of TT and
DT, available at [32], [33]. For training and evaluation,
we used the SimGlucose: python framework based on the
UVA/Padova simulator, with 30 virtual patients divided
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TABLE 1. Optimal PID parameters obtained by optuna.

Patient Kp K; Kq
adolescent#001 | -0.000291775 | -1.42915E-07 | -0.01999
adolescent#002 | -0.000428201 | -1.43021E-07 | -0.00987
adolescent#003 | -0.000187463 | -6.29647E-08 | -0.00785
adolescent#004 | -0.000188523 | -1.12114E-07 | -0.00912
adolescent#005 | -5.23529E-05 | -1.76362E-07 | -0.01109
adolescent#006 | -8.65727E-10 | -2.96707E-11 | -0.01167
adolescent#007 | -1.03457E-07 | -8.77117E-08 | -0.00846
adolescent#008 | -3.34156E-10 | -8.98967E-12 | -0.00927
adolescent#009 | -0.000118396 | -1.73358E-07 | -0.00774
adolescent#010 | -2.237E-10 -5.3542E-12 -0.01215
adult#001 -0.000255779 | -8.80847E-08 | -0.01967
adult#002 -0.000762343 | -1.35421E-07 | -0.01966
adult#003 -4.93202E-10 | -1.32181E-07 | -0.01304
adult#004 -0.000187846 | -1.10494E-07 | -0.00892
adult#005 -0.000401528 | -1.12032E-07 | -0.01999
adult#006 -0.001015064 | -1.02666E-06 | -0.02417
adult#007 -0.002457841 | -9.76956E-06 | -0.0179
adult#008 -0.000164119 | -1.23146E-07 | -0.01839
adult#009 -0.0001885 -1.64768E-07 | -0.01997
adult#010 -0.000165964 | -3.62289E-08 | -0.01791
child#001 -4.32616E-05 | -4.99315E-07 | -0.0012
child#002 -2.43848E-05 | -1.19047E-08 | -0.0063
child#003 -0.000114261 | -2.2317E-08 -0.0019
child#004 -0.000122317 | -9.84608E-07 | -0.00171
child#005 -0.000144505 | -2.35487E-08 | -0.01025
child#006 -8.50475E-05 | -4.07014E-07 | -0.0017
child#007 -6.38112E-05 | -7.54145E-08 | -0.00464
child#008 -6.03971E-05 | -1.14231E-07 | -0.00226
child#009 -6.68974E-05 | -1.83219E-07 | -0.002
child#010 -8.80842E-06 | -5.85201E-08 | -0.00395

into three groups: adults, adolescents and children, with
10 subjects each [25]. The parameters of patients were
obtained from the academic edition of the commercial
UVA/PADOVA simulator version 2008, according to the
developer [63]. This simulator is based on the Open AI Gym
standard [64], which is compatible with RL algorithms and
easy to adapt to various kinds of research. It also provides
different types of CGM sensors, insulin pumps, and a random
meal scheduler with noise. SimGlucose has been previously
used in similar studies [8], [13], [26], [27]. We trained DT and
TT with the datasets generated by our baselines previously
described.

1) DATA GATHERING

Initially, we generated three groups of datasets for training
the offline RL agents. Each dataset contains five features:
observation, action, reward, terminal, and timeout. An obser-
vation is the current CGM state; an action is an amount of
delivered insulin, and the reward is genereated according the
reward function in eq. (1), described in [12]. A terminal is
True when the patient’s BG is under 10 or over 1,000 mg/dL,
which is considered a catastrohpic failure and timeout is True
when a patient survived for 10 days, that is, there was no
catastrophic failure in the 10 days. In the first stage, we used
the datasets generated from baselines - PPO and PID-IF.
The size of each dataset is one million samples per patient,
so we generated 30 million samples in total. The second
stage considers a combination of PPO and PID-IF datasets,
since we hypothesize that if we combine data from multiple
sources, the agents may learn better. Thus, we sorted the
datasets by the highest rewards and then mixed the datasets
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as follows: the first one with 80% samples from PPO and
20% from PID-IF 20%, and a second one with 50% of PPO
and 50% of PID-IF. A new mixed dataset for each patient
was generated. Finally, to test the influence of the dataset
size in the learning process, in the final stage, we generated
new datasets from the sorted baselines ones, by reducing
the number of samples to one hundred thousand and ten
thousand. In total, there are three groups of datasets for each
patient: two baseline datasets, two combined datasets, and
two reduced datasets, as shown in 1.

2) TRAINING

We trained the offline RL agents for each patient and
dataset with the original hyperparameters from its code
repositories [32], [33]. Hyperparameter tuning has not been
considered for this work because, first, we are concerned
at this point about whether offline RL is a feasible method
for BG regulation and the general factors that may have
influence in the training process independently of the
particular algorithm used; and second, because adding a
hyperparameter optimization process on top at this stage was
unfeasible due to the time and resources needed to test all
the combinations of algorithms and datasets considered in
this work. Once we have identified a promising algorithm
We intend to perform a thorough hyperparameter tuning on
it, using advanced methods such as the one in [65].

3) EVALUATION

We evaluated all the offline RL agents and dataset com-
binations, as well as the baselines, using 20 simulation
replications with different seeds, per patient. Each replication
is run for 10-days of simulation time, so each episode is
10-days long. The observation frequency is 45 minutes,
30 minutes, and 15 minutes, for adults, adolescents and
children, respectively. The termination due to catastrophic
failure (BG level under 10 or above 1,000 mg/dL) is identical
to the one used in the training process. TIR or euglycemia
fraction of time as well as hyperglycemia, hypoglycemia
fractions and Clarke’s risk index [66] are the metrics used for
evaluation and comparison between DT and TT with different
datasets.

IV. RESULTS

In the following sections we compare the different alterna-
tives. A paired t-test has been done with the results for pairs
of alternatives, between both offline RL and against the PPO
and PID alternatives. In all the cases, it has been found that
there are significant differences, with a p-value below 0.05,
except for the combination of datasets.

A. EPISODE LENGTH

Our first test is to determine whether offline RL agents are
able to avoid catastrophic failures. We simulate each virtual
patient for a fixed duration of 10 days in order to compare the
performance of different methods. Although blood glucose
control is a continuous task that lasts indefinitely, this
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FIGURE 1. Schema of data generation from PPO and PID-IF algorithms.

limited episode length allows us to assess and compare the
percentages of euglycemia achieved by the different methods
within a standardized timeframe.

Our results in Fig. 2 show that offline RL Trajectory and
Decision Transformers cannot outperform PID-IF and online
RL PPO-RNN, and cannot reach ten days as the baselines,
which means that BG level reaches a value outside the 10-
1000 mg/dL. Traj-PPO achieves the longest average episode
length. It reaches an average episode length of over 4,000
steps (8 days of simulated time) in every age group. There
are notable differences for each group and method, without a
clear trend. In the following sections we look at the fraction of
time spent at each state during the episode and discuss reasons
for this behavior.

B. RISK INDEX AND GLYCEMIC STATES

We now compare the glycemic state, that is, the fraction
of time spent in each BG range. In Fig. 3a, we show all
methods for all age groups. Traj-PPO achieves the highest
median euglycemia of offline RL methods. Its median and
75 percentile slightly outperform the PID-IF baseline. On the
contrary, when trained with PID-IF trajectories, Traj-PID-
IF, it exhibits a poor performance. The performance of the
Decision Transformer is bad with all the datasets tested. The
results show clearly that offline RL cannot learn properly
how to control with PID-IF trajectories. In fact, Decis-PID-
IF has the highest hyperglycemia fraction, while Traj-PID-
IF has the highest hypoglycemia fraction. We can see in
Fig. 3b the glycemic state by age group. Traj-PPO shows
good performance across all age groups and even its median
hyperglycemia in all groups is better than the original online
PPO. However, its hypoglycemia median and 75 percentile
are high and have a broad range, meaning that Traj-PPO
implies a high low blood glucose risk, a serious concern
in modern AP products. Decis-PPO, in its turn, shows
unacceptable high ranges for both hypoglycemia in adults and
hyperglycemia in adolescents and children.

Actually, the risk index, evaluated in Fig. 4, provides a
more summarized view of the relative danger of hyper and
hypoglycemic states, and shows that the riskiest method
when attending to hyperglycemia is Decis-PID-IF, while
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FIGURE 2. Fraction of completed 10-day evaluation reached for each
method and group.

hypoglycemia is more frequent in adults, adolescents, and
children when using Decis-PPO, Traj-PPO, and Traj-
PID-IF, respectively. The information of the risk index is
complemented by the percentage of time spent in severe
hyperglycemia (>250 mg/dL) or hypoglycemia (<50 mg/dL)
shown in Fig. 5. It can be seen that Traj-PPO spends slighly
less time in severe hyperglycemia than the other methods,
but more time in severe hypoglycemia, which is adequately
captured by the risk indexes.

As summary from this section we can conclude that Traj-
PPO provides a level of performance similar to online PPO
and PID-IF, but it has serious issues with hypoglycemia, that
is, tends to inject too much insulin. In the following sections
we come back to this matter.

C. COMBINATION OF PPO AND PID-IF DATASETS

We compare the Decis-PPO, Decis-PID-IF, Traj-PPO and
Traj-PID-IF with the combined datasets of PPO and PID-IF
with two different ratios: eight to two (PP82) and five to five
(PP55). In Table 2, we show the variation in percentage of
the average episode length. We can see that the use of mixed
datasets does not improve TT. On the contrary, it worsens
its performance for all glycemic states. For DT, the mixed
dataset slightly increases its performance for children and
adolescents compared to Decis-PID-IF, and very clearly for
adults. In Fig. 6 the global euglycemia in all methods is about
the same level at 40%. However, the DT with both datasets
performed well in avoiding hypoglycemia. TT has the same
high and low glycemic risks. In terms of RI, from Fig. 7,
we can see all DT and TT cases with mixed datasets range in
20-40 and they are outperformed only by the previous Decis-
PID-IF.

In Table 3 we show the average daily dose of insulin
injected by each method. As can be seen, there is a
direct correlation, as expected, between the daily dose and
the time spent at each glycemic state shown in Fig. 3a.
Moreover, in Table 4 we show, in percentage, whether the
catastrophic events of each method are due to hyperglycemia
or hypoglycemia.

From these data, we see that the average insulin dose
of Traj-PPO is higher than that of PPO and that all the
catastrophic events of Traj-PPO are due to hypoglycemia,
while in Decis-PPO they are practically balanced. When
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mixing the datasets, the proportion of catastrophic events due
to hyperglycemia increases for all the methods.

With these tests our aim is to decide if the offline agents
may improve their performance when trained with a “more”
distributed dataset, that is, with a dataset with a potentially
wider range of states and actions. Our results show that
transformers cannot generalize adequately. We conclude that
more care has to be put in selecting the trajectories for the
datasets. For instance, when ordering the trajectories we just
look at the highest rewards, but the average BG level of those
trajectories is not taken into account. Traj-PPO only has
catastrophic events due to hypoglycemia because it tends to
keep patients on a low BG level. Due to our reward function,
such kind of trajectories may have a reward which is high but
equal to other trajectories that keep the patient on a higher BG
level, which would be better. Such considerations have to be
taken into account when creating the training datasets.

D. DATASET SIZE

The dataset size is important because one cannot realistically
expect to collect samples from patients for years and so we
want to test how much we can reduce the dataset to get
good enough results. Interestingly, from Table 5, both DT
and TT with 100k size have longer episode lengths than 1M
size on average. This is due to the fact that we sorted and
use only the best trajectories. And the average euglycemia
percentage is almost the same level as the 1M dataset. The
difference in euglycemia for TT is 0.47% and 1.8% for
DT. While hyperglycemia between 100k and 1M datasets
in TT decreases, in DT it increases by almost 10%. As a
result, TT globally improves performance with 100k and
has better RI than 1M, because it is able to reduce severe
hypoglycemia, as shown in Fig. 5, but DT with 100K slightly
decreases an already poor performance. Clearly, DT and
TT are less effective when the amount of data was reduced
to 10k. Both methods had a decrease of more than 10%
in TIR and a significant increase in RI. Additionally, the
computational time is also affected: a dataset comprising 1M
samples required approximately 26 hours of training time per
patient. For a dataset of 100k samples, this value was reduced
to approximately 21 hours, and further decreased to around
19 hours for a dataset of 10k samples.

E. HYPERPARAMETER TUNING FOR DECISION
TRANSFORMER

So far, we have shown that DT systematically performs
worse than its alternatives. We have checked whether the
DT bad performance is due to an incorrect selection of
hyperparameters. DT takes a subset of the trajectory t as
input, specifically, the K most recent time steps. Each time
step consists of three items: the return-to-go, state, and action.
The default value K = 20 is considered in the algorithm
implementation. Consequently, we conducted experiments
by setting K to different values, namely 10, 50, and 100,
and training two agents with different performance, using a
PPO dataset comprising 100K samples. Table 6 illustrates the
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FIGURE 3. Comparative fraction of time spent in glycemic states. (a) global glycemic state. (b) glycemic state by group.

TABLE 2. Increase/reduction of completed 10-day episodes of mixed datasets reaced for each method and group.

Method Group | PDP55/PID | PP82/PID | PP55/PPO | PP82/PPO
children -42.35% -45.09% -68.17% -69.69%
Trajectory | adolescents -48.19% -44.23% -59.60% -56.52%
adults -29.03% -2.33% -45.31% -24.74%
children 20.13% 12.71% -20.28% -25.20%
Decision adolescents 1.92% 3.64% 5.68% 7.47%
adults 4.01% 2.55% 72.90% 70.49%

TABLE 3. Average daily insulin dose.

Method Average daily dose
Decis-PID-IF 6.9
Decis-PP-55 7.7
Decis-PP-82 8.5
Decis-PPO 9.5
PID-IF 10.7
PPO 10.9
Traj-PID-IF 9.7
Traj-PP-55 16.3
Traj-PP-82 16.0
Traj-PPO 13.3

impact of different K values on performance. As can be seen,
the performance remains quite consistent, particularly when
comparing K=10 and K=20.

V. DISCUSSION

In our previous paper, [12] and similar works [13], PID and
PPO agents performed considerably well for BG control in
the T1D simulator, so our hypothesis was that offline RL
with these datasets should have comparable performance.
Our results show that at least Traj-PPO has a performance
similar to that of online PPO in most of the metrics,
which is promising, since the main goal of this work is to
determine whether offline RL can be a realistic alternative for
data-driven BG control, before attempting clinical trials with
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TABLE 4. Type of catastrophic events by methods (boldface highlights the
higher risk of each algorithm).

Method Hyper% | Hypo%
Decis-PID-IF 80.10% 19.90%
Decis-PP-55 84.18% 15.82%
Decis-PP-82 82.70% 17.30%
Decis-PPO 51.68% 48.32%
Traj-PID-IF 58.11% 41.89%
Traj-PP-55 25.11% 74.839%
Traj-PP-82 35.76% 64.24%
Traj-PPO 0.00% 100.00%

real patient data. Our results also agree quantitatively with
the work of [4], which shows a similar level of performance,
although tested with fewer patients and different algorithms.
Our evaluation also shows that training offline RL is not
straightforward: neither all the algorithms tested nor the
datasets used were equally effective in learning. It suggests
that a better understanding of the influence of different data
aspects and careful planning and design of the data-gathering
is still necessary before collecting real-patient data for further
tests, which is a complex and time-consuming task.

More research is needed to correct some of the observed
deficiencies of offline RL methods. Most importantly,
to prevent the inability to achieve full episode length without
catastrophic failures. Unlike the baselines, the average
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episode length cannot reach the full 10 days, even though the
best one, Traj-PPO, reaches almost 9 days globally.

In Table. 4, the catastrophic event of Traj-PPO is 100%
due to hypoglycemia, while no catastrophic hyperglycemia
occurred. Thus, additional research is needed to ensure that
Traj-PPO is able to avoid hypoglycemia and thus able to
achieve the full episode length and higher TIR. A direct next
step is to further improve the quality of the training dataset to
avoid hypoglycemic trajectories, as discussed below.

From our results, it is also clear that DT is not able to
deliver good performance in this task, showing unacceptable
high hyperglycemia levels in some groups. A simple reason
may be that we have not optimized the DT hyperparameters,
in particular, the minibatch sequence length, to which DT
is sensitive for several tasks. However, the preliminary tests
conducted to check if that was the case, seem to rule it
out. There may be the need for deeper adaptations, such
as pretraining or architectural changes, which have been
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shown to improve the basic DT performance [67], [68],
[69], [70]. We leave the improvement of DT behavior as
future work. Training with the PID-IF dataset did not yield
satisfactory results for any of the algorithms. It seems that
PID-IF generates too many out-of-distribution samples, that
is, actions that move the state to not previously seen states
which degrade the performance [14].

We sorted data by reward and length of the episode,
then combined sorted PID and PPO datasets to determine
if we can improve the learning process of the offline
RL. Unfortunately, just a crude mixing, even with sorted
trajectories, is not enough to improve the performance. It was
partially effective with DT, slightly improving an already
quite bad performance. It suggests that it may have potential
but our results also imply that it is actually the quality of the
datasets what actually brings the improvements.
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TABLE 5. Evaluation of influence of dataset size (boldface highlights the best performance of each algorithm).

Method Trajectory transformers Decision transformers
Dataset size 10k 100k 1M 10k 100k 1M
Episode Length | 81.50 £+ 2.55 | 96.03 + 1.28 | 87.37 + 2.31 | 74.92 £ 2.90 | 86.69 £+ 2.23 | 71.85 + 3.05
Euglycemia 52.14 £ 1.36 | 67.80 £+ 0.91 68.27 +£ 0.84 | 40.79 + 1.73 | 48.68 + 1.72 | 50.48 4+ 1.45
Hyperglycemia | 36.00 + 1.59 | 24.29 + 0.91 | 22.47 + 0.77 | 54.34 + 1.88 | 48.84 + 1.82 | 38.75 + 2.04
Hypoglycemia 11.84 £ 0.70 | 7.91 &+ 0.56 9.26 + 0.77 2.85 + 0.40 2.47 + 0.31 10.76 + 1.42
Risk index 20.24 + 1.27 | 9.75 £ 0.50 10.41 + 0.60 | 31.71 + 1.97 | 24.39 £+ 1.67 | 24.08 + 1.45

TABLE 6. Hyperparameter K tuning for Decision Transformer (boldface highlights the best performance of each algorithm).

Subject K EpLength | Euglycemia | Hyperglycemia | Hypoglycemia RI

Original (K=20) 100% 87.43+1.13 2.21+0.33 10.36£1.02 3.33+0.15

adolescent£001 10 100% 86.97+1.17 2.49+0.42 10.55+0.9 3.4£0.17
50 100% 82.3£1.09 2.99+0.4 14.71£0.97 4.184+0.14

100 100% 85.81+0.98 3.77+£0.43 10.4240.95 3.5940.17
Original (K=20) 92% 55.674+0.93 40.97+0.97 3.36£0.72 16.39+0.43

adolescent#002 10 100% 56.02+0.72 42.39+1.02 1.59+0.58 16.78+0.4
50 95% 52.39£1.46 45.96+1.62 1.65+0.58 18.12+0.69
100 100% 49.04+1.69 49.99+1.86 0.97+0.57 20.1940.76

In fact, the importance of having good trajectories is
obvious: if the dataset size is reduced but only the best
trajectories are kept, the performance can be even improved.
The average TIR in the 100k-sample dataset is at a value
similar to the 1M-sample datasets. The episode length is
increased because of sorting trajectories and keeping the
best ones, which can be seen in the results obtained from
combining datasets and dataset size reduction. However,
offline RL algorithms can not learn from datasets when the
size is down to 10k samples. We have found a good trade-off
with a dataset size of 100k samples, which also agrees with
the work of [4] and [20]. But we may further improve the
results by filtering appropriately the datasets, that is keeping
the best ones, and removing the trajectories with undesirable
characteristics. For instance, removing the trajectories that
result in high hypoglycemic and hyperglycemic fractions,
even if they have a good accumulated reward. This can be
done by shrinking the target TIR, for example, to be in
the range of 90-100 mg/dL. Alternatively, we can redesign
the reward function to punish more hypoglycemia and high
hyperglycemia.

Although the offline RL with Transformers architecture
does not outperform clearly the baselines, the main advantage
of offline RL is that it does not require interaction with
the environment, as compared to online RL, which needs to
interact with the patient to collect data for training. Offline RL
emerges therefore as a safer and promising alternative for RL,
being a practical application of automated and customized
glycemic control.

The next phase of research is further optimizing current
methods to adapt the algorithms to learn how to better control
blood sugar to normal levels and to make it more effective.
However, a potential solution in which the patient or caregiver
simply collects its own CGM data over time and converts it
into a customized training dataset for offline RL still leaves
multiple open questions. In particular, for the best performing
model, we have used datasets generated from a simulated
environment and from an optimal agent that was previously
trained also on a simulated environment. But for real patients,
to generate the dataset we would need to collect their CGMs

VOLUME 11, 2023

and insulin doses, delivered according to the insulin regime
the patients use, which is assumed to be not optimal in
the first place. And, since exploration is not possible in
offline RL [14], we can only expect marginal improvements
over the patient actual insulin regime. A potential avenue,
tested in this paper, is to generate the training datasets by
mixing trajectories from different sources. For instance, from
real patient data and an optimized agent from a simulated
environment customized to the patient class. Our results
with mixed datasets in this paper have not been satisfactory,
so mixing deserves further attention.

Only when those issues and others have been clarified,
we can expect to conduct clinical trials with healthcare
professionals to collect datasets, and test and evaluate them
in real patients.

VI. CONCLUSION

In this paper we have carried out a thorough evaluation of
two recent offline RL algorithms for automated BG control
of T1D patients. We have evaluated the influence on training
and performance of the method that generated the datasets,
as well as the influence of the type of trajectories used (single-
method or mixed trajectories), the quality of the trajectories
and the size of the datasets, and compared it with typically
used baselines: PID and online RL methods.

Our results show that a Trajectory offline RL trained with a
previous optimal PPO agent data performs at the level of the
baselines, which supports that offline RL can be a realistic
alternative for data-driven BG control. However, we have also
shown several shortcomings of the tested methods, discussing
potential avenues for improvement and next steps.
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