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ABSTRACT Deep learning can be used for audio signal classification in a variety of ways. It can be used
to detect and classify various types of audio signals such as speech, music, and environmental sounds. Deep
learning models are able to learn complex patterns of audio signals and can be trained on large datasets to
achieve high accuracy. To employ deep learning for audio signal classification, the audio signal must first
be represented in a suitable form. This can be done using signal representation techniques such as using
spectrograms, Mel-frequency Cepstral coefficients, linear predictive coding, and wavelet decomposition.
Once the audio signal is represented in a suitable form, it can then be fed into a deep learning model. Various
deep learning models can be utilized for audio classification. We provide an extensive survey of current deep
learning models used for a variety of audio classification tasks. In particular, we focus on works published
under five different deep neural network architectures, namely Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), Autoencoders, Transformers and Hybrid Models (hybrid deep learning
models and hybrid deep learning models with traditional classifiers). CNNs can be used to classify audio
signals into different categories such as speech, music, and environmental sounds. They can also be used
for speech recognition, speaker identification, and emotion recognition. RNNs are widely used for audio
classification and audio segmentation. RNN models can capture temporal patterns of audio signals and
be used to classify audio segments into different categories. Another approach is to use autoencoders for
learning the features of audio signals and then classifying the signals into different categories. Transformers
are also well-suited for audio classification. In particular, temporal and frequency features can be extracted to
identify the characteristics of the audio signals. Finally, hybrid models for audio classification either combine
various deep learning architectures (i.e. CNN-RNN) or combine deep learning models with traditional
machine learning techniques (i.e. CNN-Support Vector Machine). These hybrid models take advantage of
the strengths of different architectures while avoiding their weaknesses. Existing literature under different
categories of deep learning are summarized and compared in detail.

INDEX TERMS Audio, speech, music, emotion, noise, classification, recognition, deep learning, CNNs,
RNNs, autoencoders, transformers, hybrid models.

I. INTRODUCTION
Audio classification is the analysis and classification of
audio signals into various categories. It is an important
tool in audio signal processing as it helps to organize, ana-
lyze, and understand audio signals. By classifying audio

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

signals, it is possible to better understand the underlying
signal, its structure, and content, which can be useful for a
variety of applications. There are various audio classifica-
tion applications such as virtual assistants, automated voice
translators, environmental sound classification applications,
music genre identification, and text to speech. In general,
audio classification can be broadly grouped into acoustic
data classification, speech classification, music classification,
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environmental sound classification and natural language
classification [1].

Audio classification technology can help make everyday
life easier by improving the accuracy of voice recognition
technology used for hands-free device control. This can make
it easier for people with disabilities or limited mobility to
control devices in their home, enabling them to do things
like turn on lights, adjust the thermostat, and open the door
without having to physically move. It can also help improve
the accuracy of voice-enabled digital assistants used in smart
homes, cars, and other technology, enabling users to access
the information they need quickly and easily.Moreover, audio
classification can enable everyday life more convenient by
allowing people to identify sounds quickly and accurately.
For example, a smartphone application can use audio clas-
sification to recognize when a baby is crying and alert the
parents. Audio classification technology can also be used
to quickly recognize different types of music, enabling easy
music streaming. In addition, audio classification can be used
for security purposes, such as detecting intruders in a home
or business place, and for automated customer service, such
as providing automated responses to customer inquiries.

To achieve successful audio classification, the first step is
to obtain annotated audio data. The model should be trained
with annotated data to learn how to recognize and categorize
different sounds. Despite the progress made in audio classi-
fication, it is still challenging to teach a machine the nuances
of sound and classify it accordingly.

Traditional audio classification methods such as Support
Vector Machines (SVM), K-Nearest Neighbors (KNN), Arti-
ficial Neural Networks (ANNs) and hidden Markov models
(HMMs), have been used since the early 2000s. These meth-
ods are used to extract features from audio recordings and
then use the features to classify the audio into different
classes. An SVM is a powerful supervised machine learning
algorithm that uses hyperplanes to separate data points into
categories for classifying audio recordings with high accu-
racy [2], [3], [4], [5], [6], [7], [8], [9] KNN is a supervised
learning algorithm for classification. It is used to find the
nearest neighbors of an input instance and then uses the class
of most of the neighbors to classify it. It is suitable for audio
classification as it can use the features of the audio signal
to accurately classify the signal [11], [12], [13], [14], [15].
ANNs are computational models based on the structure and
functions of biological neural networks. They can be used for
audio classification by learning the characteristics of audio
samples and then using these characteristics to classify the
samples into different classes [16], [17], [18], [19], [20].
Logistic regression is used to classify data into two classes
for audio classification tasks such as speech recognition and
music genre classification. In audio classification, it takes
an audio signal as input, extracts features from it, and then
classifies it into the desired output class [21]. The Naive
Bayes classifier is a probabilistic classifier that is used to
calculate the probabilities of each class for a given data point

and then assigning the class with the highest probability. It is
also relatively fast and simple to implement, making it a
common choice for audio classification [22], [23], [24], [25].
HMMs are also commonly used to classify audio data. HMMs
are particularly well-suited for audio classification because
they can learn the underlying structure of the audio data
and model the temporal dynamics of the audio signal [26],
[27], [28], [29], [30]. A Gaussian Mixture Model, is a type
of probabilistic model for audio classification with which
each data point is assumed a mixture of different Gaussian
distributions, which are then used to classify the audio test
input data [11], [31], [32].

Deep learning is becoming increasingly popular for speech
classification.With its ability to learn complex patterns, it can
achieve better accuracy than traditional approaches. Tradi-
tional approaches usually divide audio classification into two
processes: feature extraction and classification [33]. In the
feature extraction process, relevant features are extracted
from the audio data, then these features are used in the clas-
sification process to identify the audio data. However, deep
learning models require large audio datasets for training the
network and learning the features of each class automatically.
Once trained, the model can be used to classify new audio
samples.

Deep learning models perform better than traditional audio
classification models. However, deep learning models for
audio classification are capable of automatically extracting
the high-dimensional features of samples from a large-scale
dataset without manual feature extraction, as long as the
input data contain all the relevant information of the original
data [34]. Deep learning models are capable of achieving
higher accuracy rates than traditional models. This is due to
their ability to learn complex patterns and recognize subtle
differences in audio data. Most deep learning models can
learn faster and more accurately than traditional models,
which makes them ideal for real-time audio classification and
analysis. Obviously, deep learning models are more reliable
when trained with a large number of samples to learn the
task-specific features than the traditional machine learning-
based method, especially for transformer-based methods,
without local inductive bias in CNN. This is especially useful
when dealing with audio data, which can be expensive and
time consuming to label. Despite this, deep learning models
can adapt to new data without requiring major modifications
to the model architecture. Overall, deep learning is a powerful
and flexible approach to audio classification since it is capa-
ble of surpassing traditional approaches in terms of accuracy,
performance, reliability, scalability, and adaptability.

There are also some drawbacks of deep learning. Deep
learning models require significant computing resources,
including powerful graphics processing units and a large
amount of memory, to train, which can be expensive and
time consuming. Moreover, training and evaluation of audio
classification systems with deep neural networks (DNNs) is
only possible with a large amount of audio data; without
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a large dataset, the system can be unsuccessful [35]. Over-
fitting occurs when a model has been over-trained on the data
it has already acquired, leading to poor performance with new
unseen data [36]. On the other hand, under-fitting may occur
if a model has not been trained enough.

The deep learning models are heavily dependent on the
quality of the data they are trained on. If the data are
noisy, biased and incomplete, the model’s results can be
significantly impacted [37]. The utilization of deep learning
models necessitates the handling of large amounts of data,
raising concerns about data privacy and security. If data are
misused by unscrupulous individuals, it can lead to serious
repercussions, such as identity theft, financial loss and an
infringement of one’s privacy [38]. Therefore, deep learning
models for audio classification have become widespread for
their potential to solve complex tasks. However, there are
some limitations such as high computational cost, lack of
interpretability, over-fitting, data privacy and security con-
cerns, lack of domain expertise, dependence on data quality,
and unforeseen datasets [35], [36], [37], [38], [39].
The application of audio classification using deep learn-

ing has become increasingly common in various domains
such as computer vision, natural language processing (NLP),
healthcare, and industrial signal processing. This success has
extended to speech recognition and music recommendation
tasks. Deep learningmodels can also be used to detect anoma-
lies in audio signals, such as background noise or other
unwanted sounds. The need for automated sound classifi-
cation systems is growing as their importance in our daily
lives cannot be underestimated. Such systems are used in a
wide range of areas, such as surveillance, voice assistance,
chatbots, smart safety devices, and various real-world envi-
ronments, including engineering, industrial, domestic, urban,
road, and natural.

We provide an extensive survey of current deep learning
models that are applied to a variety of audio classification
tasks such as speech, noise, music, emotion, environmental
sound, and acoustic scene. In particular, for audio classifi-
cation, we review literature under five different deep learn-
ing architectures such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), autoencoders,
transformers and hybrid models (hybrid deep learning mod-
els, such as CNN-RNN and hybrid deep learning models
with traditional classifiers such as CNN-SVM). For each type
of architecture, detailed information about the architecture
components is also given. In addition, the existing litera-
ture in each deep learning architecture is summarized and
compared in detail. Moreover, we also briefly discuss dif-
ferent audio datasets for classification tasks. Although there
have been surveys on traditional audio classification methods
[41], [42], [43], [44] and deep learning-based methods [40]
[45], [46], [47], [48], [49] for specific audio classification
task, none compare in detail to the literature on deep learn-
ing models with different deep learning architectures with
varying applications, which is the contribution of this work.
Corrêa et al. [44] provides an overview of the keymethods for

classifying music genres and exploring the symbolic repre-
sentation of musical data. Fu et al. [43] also provides a survey
of audio features and traditional classification methods for
music classification. Dandashi and AlJaam [42] provide a
review of audio processing and classification methods on
the basis of acoustic events, genres, and scenes, as well as
combinations of them. Reshma and Rajasree [41] briefly dis-
cuss different feature extraction techniques and classification
algorithms for speech emotion recognition. Other surveys
were conducted for deep learning models. Akinpelu and
Viriri [40] provide a survey of approaches for classification of
emotions from speech. Bansal and Garg [45] discuss research
on environmental sound classification, covering topics such
as pre-processing, feature extraction, and classification tech-
niques. Bhangale and Kothandaraman [46] provide a survey
of deep learning models for speech processing. They divide
the literature into different learning groups; supervised, unsu-
pervised, semi-supervised, and reinforcement learning. They
also discuss applications in these domains. Roger et al. [47]
outline the deep learning models for speech processing tasks.
Abeßer [48] reviews deep learning-based methods for acous-
tic scene classification. Khan et al. [49] conducted a survey
of CNN architectures for image and video classification, and
speech recognition.

Previous surveys either focus on traditional classification
methods [41], [42], [43], [44] or outline the deep learning
models in a particular field, such as emotion recognition
[40], [41], acoustic scene/event classification [42], [48], envi-
ronmental sound classification [45] and speech processing
[46], [47], [49]. Different from these surveys, we provide a
broad discussion of audio classification using deep learning
models. In addition, we divide the literature into differ-
ent deep-learning architectures; CNN, RNN, autoencoders,
transformers and hybrid models. For each architecture type,
the main components of the deep learning architectures were
explained and then methods that use these deep learning
architectures were discussed and compared in detail. On the
basis of the literature, we analyzed application areas for each
deep learning architecture and explain commonly used audio
datasets. Under each deep learning architecture, we compared
the methods in terms of input data type, deep learning model,
used dataset(s), performance and application area. In this
way, more insights can be learned such as preferred input data
types for different deep learning models, which deep learning
models are more suitable for various audio classification
tasks, suitable datasets for a particular task, and performance
analysis. Furthermore, we outline future directions of deep
learning in audio classification. We believe that this makes
our survey stand out from other numerous surveys on audio
classification.

To summarize, comparing our survey to other related sur-
veys in the field, several distinct advantages and limitations
come to light. Our survey paper distinguishes itself through
its detailed exploration of deep learning architectures for
audio classification, encompassing modern deep learning
models and discusses application areas. While coverage of
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various deep learning models for audio classification, includ-
ing hybrid models, makes it a valuable resource for those
seeking insights into different architectures. In terms of lim-
itations, our survey covering a broad spectrum of models on
audio classification might limit the depth of analysis. Some
other surveys focus on a specific domain ([40], [41], [42],
[45], [46], [47], [48], [49] to conduct more comprehensive
examinations.

Overall, our survey summarizes the current trends in audio
classification using deep learning and provides future direc-
tions. We believe that it will help readers and researchers in
this context.

The rest of the paper is organized as follows. Section II
provides information on different deep learning architec-
tures used in audio classification, Section III discusses the
available audio datasets for classification and section IV elab-
orates on the discussion of all deep learning models.

II. AUDIO CLASSIFICATION USING DEEP LEARNING
The history of deep learning for audio classification dates
back to the late 1990s. In 1998, Yann LeCun, at AT&T Bell
Labs, proposed the use of CNNs for recognizing speech [1].
Since then, various audio applications have used CNNs such
as for speech recognition, audio classification and music
recommendation systems. In 2004, Sukittanon et al. [50]
presented a method for speech detection using convolutional
networks and a network architecture in the detection process
that captures both long-term and short-term temporal and
spectral correlations of speech. In 2006, Graves et al. [51]
introduced a new and general method for temporal classifica-
tion using RNNs in the speech recognition domain. In 2012,
Abdel-Hamid et al. [52] published the first paper on speech
recognition using CNNs. In the past decade, CNNs became
increasingly common for audio classification, with research
focusing on improving the accuracy and speed of these mod-
els. Researchers have applied various deep learning models
such as RNNs, long short-term memory (LSTM) networks,
autoencoders, transformers and hybrid models that combine
different deep learning models to a variety audio classifica-
tion tasks. These models have produced impressive results in
various audio classification tasks.

In the following sub-sections, we categorize the litera-
ture in accordance with different deep learning architectures.
We observed that CNNs, RNNs, autoencoders, transformers
and hybrid models are commonly used for audio classifi-
cation (Figure 1). Therefore, deep learning-based methods
are explained under these categories. After investigation of
audio classification methods, we observed that some deep
learning methods use a single deep learning architecture such
as CNN only, RNN only, autoencoder only or transformer
only. In the review, methods that use a single deep learn-
ing architecture are explained under the specific architecture
type. On the other hand, many deep learning methods com-
bine various deep learning architectures to produce hybrid
deep learning models. For example, many RNN methods
initially use CNN for feature extraction, and then output of

FIGURE 1. Classification of related work on different deep learning
architectures.

the CNN is given to the RNN. Similarly, autoencoders can
be combined with RNNs (i.e. LSTM) or CNNs. Therefore,
we considered such methods as hybrid deep learning models.
Finally, a standalone deep learning model can be combined
with traditional classifiers such as SVM, KNN or HMMs. For
example, feature extraction can be achieved by a CNNmodel,
and then classification is performed by using a traditional
classifier like SVM. We consider these deep learning models
with traditional classifiers as hybrid models as well. Accord-
ing to this categorization, methods are reviewed under these
deep learning architectures. We first explain the architectural
properties of these different deep learning architectures and
then summarize related work for each category.

The most commonly used evaluation criteria for all clas-
sification methods, including deep learning, are evaluation
metrics evaluation. Metrics are a set of measures used to eval-
uate the performance of deep learning models to determine
how well a model can learn from training data and to identify
areas of improvement to optimize the model’s performance.
The most common of these metrics are accuracy, precision,
recall, F1-score, ROC curve (receiver operating character-
istic), and AUC (area under the ROC curve) score. Other
metrics, such as confusion matrix, sensitivity, and specificity,
may also be used to evaluate the performance of deep learning
models [53], [54], [55].

Accuracy is the percentage of correctly classified data
points by an algorithm compared with all data points,
as shown by the following equation:

Accuracy =
Number of correct predictions
Total number of predictions

=
TP + TN

TP + TN + FP + FN
, (1)

where TP,TN,FP, and FN denote true positive, true nega-
tive, false positive, and false negative, respectively. Precision
is the ratio of correctly predicted data points to the total
predicted data points and defined as:

Precision =
TP

TP + FP
(2)

Recall and sensitivity measure the proportion of correctly
classified data points belonging to a particular class out of all
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data points classified belonging to that particular class in the
dataset and calculated as:

Recall/Sensitivity =
TP

TP + FN
(3)

Specificity is a metric for measuring the accuracy of a
classifier in correctly identifying all the TNs in the dataset
and can be calculated as:

Specificity =
TN

TN + FP
(4)

F1-score measures the overall performance of a model
by taking the harmonic mean of precision and recall and
calculated as:

F1-score =
2 (Precision ∗ Recall)
Precision + Recall

=
TP

TP + 1/2(FP + FN)
(5)

Area under curve (AUC) and Receiver operating character-
istic curve (ROC), on the other hand are graphs that illustrate
TP and FP rates for a given classificationmodel. These graphs
are used to evaluate the performance of a model regarding its
ability to correctly classify true positives and true negatives.

A. CNN-BASED METHODS
In this section, we discuss CNN-based methods for audio
classification.

1) CNN ARCHITECTURES AND INPUTS TO CNN
CNNs are commonly used for speech recognition, audio
classification, music recommendation, audio source separa-
tion (i.e. separating different audio sources from a single
recording), and many more application areas. CNNs have
revolutionized the field of audio classification and enabled a
wide range of applications. Inputs to CNNs are audio/speech
signals; however, CNN-based methods usually do not use
the raw one-dimensional (1D) signals as input. As a pre-
processing stage, 1D audio/speech signals are converted
from 1D signal to 2D signal. The 2D representation of the
audio signal is then input to a CNN model. This 1D to 2D
conversion is generally executed to generate spectrograms.
Spectrograms capture spectrum frequencies of an audio sig-
nal since the audio signal varies with time [56], [57], [82].
Fast Fourier Transform (FFT), short-term Fourier Transform
(STFT), Mel-Frequency, log-Mel-frequency, wavelet trans-
form, and many other types of spectrograms can be used to
convert 1D audio signals to a 2D representation, as shown in
Figure 2. Discrete Fourier Transform (DFT) is a technique
that is used for extracting features from raw audio signals.
Particularly, it converts signals from the time domain to the
frequency domain to acquire the phase and magnitude of
every frequency component. However, DFT is not optimized
and difficult to apply to real-time discrete signals. FFT, how-
ever, is an optimized application of DFT that can be applied
to real-time discrete signals and defined as:

S(k) =

∑N−1

n=0
S (n) e−j

2π
N kn (6)

FIGURE 2. Sample spectrogram representation of an audio signal [69].

The magnitude spectrum, |S(k)| of a signal is the magni-
tude of its frequency bin or frequency component number (k)
at a given sample number (n). It is usually a complex
value [82].
STFT is an improved form of Fourier Transform (FT)

to provide temporal details of signals in both the time and
frequency domains. Using a window in STFT, the signal is
divided into fixed-sized time-domain segments. Each seg-
ment is then subjected to FT to reveal different features of
the signal. In essence, STFT uses equally spaced, identical,
and symmetrical bandpass filters in the frequency domain
to analyze the signal. The mathematical formulation of any
signal s(t), can be written as:

S(f , t) =

∫ T

−T
s (τ )w (τ − t) e−j2π f τdτ (7)

To obtain this representation, signal s (t) is partitioned into
segments, over a windowing function w (t) in Equation 7.
The window length must be the same as the length of the
signal segments, and it is assumed that the signal does not
change (stationary) inside a window duration. The spectro-
gram is obtained by using STFT by taking the magnitude
squared value of the time-frequency representation [82],
[157], expressed as

Spectrogram = |S(f, t)|2 (8)

A Mel-spectrogram, however, can be obtained using the
raw signal. Using the human auditory system, the Mel scale
provides a linear scale in relation to Hertz using the following
equation [55], [161].

M (f ) = 2595log10(1 +
f

700
) (9)

where M (f ) is the Mel frequency for a given frequency (f ).
It is derived from a logarithmic scale and related to the
way humans perceive sound [161]. The formula is based
on the assumption that frequencies have a logarithmic rela-
tionship to pitch, so it is used to convert frequencies into a
Mel-frequency scale, which better represents how humans
perceive pitch.
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FIGURE 3. Structure of CNN [62].

In contrast to the STFT, the Continuous Wavelet Trans-
form (CWT) does not rely on the dimensions of the analysis
window and time-shift to establish time and frequency reso-
lutions. Instead, the CWT employs a fundamental waveform
known as a ‘‘wavelet’’ to facilitate the dissection of the speech
signal. This method involves convolving the signal with shift
and compressed iterations of the wavelet, achieved through
temporal shifting.

CWT (u, s) =
1

√
S

∫
∞

−∞

X (t)ψ∗(
t − u
s

)dt (10)

where, x(t) denotes the speech signal, u and s correspond to
the shift and scale parameters, respectively, ψ represents the
mother wavelet or base function, and ∗ represent complex
conjugate operation. In the context of study [57], the selected
mother wavelet is the Morlet wavelet.

To summarize, raw 1D audio signals or spectrograms can
be utilized as input to a CNN model.

CNNs are generally comprised of multiple convolutional
layers, a Rectified Linear Unit (ReLU), pooling layers, fully
connected layers (i.e., dense layers), and a Softmax layer as
shown in Figure 3. A convolution layer is a layer in a DNN
that applies a filter of convolution operation to the input signal
to produce feature maps, and then passes the obtained feature
maps to the next layer.

To extract the significant features from the obtained feature
maps in a convolution layer, the ReLU activation function can
be applied. In a ReLU, negative input values become 0 and
the same input value remains for the non-negative numbers.
Therefore, a ReLU enhances the non-linearity of the model,
as well as, prevents over-fitting to the trained input samples.
A ReLU is the most commonly used activation function in
CNNs, although there are other activation functions such as
sigmoid activation and, tanh activation and others.

A pooling layer is a layer in a CNN to reduce the size of
the input while still retaining important information. This can
be achieved by the pooling layers reducing the dimensions
of the input feature map. This enables the model to focus on
more important features, thus improve the accuracy. Themost
commonly used pooling layers are max and average pooling.

A fully connected layer in a CNN is used to connect all neu-
rons in a previous layer to all neurons in the next layer. Fully
connected layers generally come after the convolutional layer.
A fully connected layer is a neural network layer with a fully
connected configuration, and it is used to process the output
of the convolutional layer after the flattening operation.

A softmax layer in a CNN is a type of output convolutional
layer that uses a softmax activation function, which is a type
of logistic sigmoid function used to turn arbitrary real-valued
scores into a probability distribution. In the softmax layer,
the output layer produces a probability distribution over the
possible classes for a given input. This enables the model to
predict which class a particular input signal belongs to on the
basis of the probabilities it produces. It is also a good choice
for multi-class classification problems because it produces
probabilities that sum to 1, making it ideal for assigning a
class label to an input.

A CNN is very useful to analyze and classify images,
and has produces promising results for a variety of speech
analysis applications since 1D audio signals are generally
converted into 2D patterns (spectrograms) for the analysis
using a CNN.

2) DEEP-LEARNING-BASED METHODS THAT USE CNNs
Shin et al. [59] used different CNN architectures for
inter-floor noise classification. Features were first extracted
from the audio signals using log-Mel spectrograms.
The generated spectrograms were then input to various
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deep learning models such as ResNet, DenseNet, Effi-
cientNet, ResNet, and Inception models. The performance
of these models for noise classification ranged between
91.43–95.27%. These results indicated that the best accuracy
(95.27±2.30%) was achieved with ResNet.

Another deep learning based method for inter-floor noise
classification and position classification was proposed by
Choi et al. [60]. They also investigated log-Mel spectrograms
and different deep learning models (i.e. VGG16, AlexNet,
ResNet50 V1). Experiments on Floor Management Center
dataset indicated that VGG16 achieved the best classification
accuracy of 99.5% and the best position classification accu-
racy of 95.3%.

Khamparia et al. [61] used spectrogram images with a
CNN and a CNN with a tensor deep stacking network
(TDSN) for environmental sound classification. A TDSN
appliesmatrixmultiplication of hidden output layers. Authors
conducted experiments on two environmental sound datasets,
ESC-10 and ESC-50. Results showed that the CNN achieved
an accuracy of 77%, whereas the TDSN achieved an accuracy
of 56% on the ESC-10 dataset.

Park and Lee [62] used a CNN and noise spectrogram
images for environmental noise classification, which is input
to hearing aids. They first collected ten types of noise sounds
from living environments then converted noise audio signals
into spectrogram images. They also applied a sharpening
mask that enhances the sharp features as well as a median
filter to the generated noise spectrogram images. Experiments
on a self-recorded dataset showed that the best classification
accuracy of 99.25% was obtained when both sharpening
mask and median filter was applied.

Mu et al. [63] used a temporal-frequency attention-based
CNN (TFCNN) for environmental sound classification. They
first converted environmental sounds to images using log-
Mel spectrogram. They also conducted an experiment on
the frequency-band characteristics of different environmental
sounds. They observed that specific frequency bands are inac-
tive. To extract the active bands from log-Mel spectrograms,
they applied a masking. Then input, the clipped spectrogram
images to the TFCNN. Subsequently frequency-attention and
temporal-attention models are applied to the spectrograms
and combined their outputs before giving them to the CNN
model. Using the combined time-frequency attention with the
CNN, their model improved in performances on two public
datasets, UrbanSound8k and ESC-50.

Al-Hattab et al. [64] used the Mel-Frequency Cepstral
Coefficients (MFCC) of audio signals as input to a simple
CNN for environmental sound classification. The proposed
CNN model has only three layers. Through fine-tuning of
input parameters, however, the lightweight CNN has an
accuracy of 95.59%, and produces competitive results com-
pared to deep-learning models on UrbanSound8k.

Salamon and Bello [65] proposed a CNN with data aug-
mentation for environmental sound classification. They first
converted audio signals to Mel-spectrogram images then

attempted to alleviate the data scarcity problem by apply-
ing different data augmentation techniques such as time
stretching, pitch shifting, and dynamic range compression.
When data augmentation was combined with the CNN, they
achieved the best results on UrbanSound8K with 79% classi-
fication accuracy.

Another study on environmental sound classification
was introduced by Mushtaq et al. [66]. They utilized
Mel-spectrogram images as input to different CNN mod-
els; a CNN model with 7 layers, a CNN model with
9 layers, ResNet-152, and DenseNet-161. They also applied
data augmentation to increase sample features. Experiments
conducted on three datasets, UrbanSound8k, ESC-10, and
ESC-50. ResNet-152 achieved the best classification accu-
racy of 99.04% on ESC-10 and 99.49% on UrbanSound8k.
DenseNet-161 obtained an accuracy of 97.57% on ESC-50.

Hershey et al. [67] used different CNN architectures
for soundtrack classification. They investigated AlexNet,
ResNet, VGG, and Inception models using log-Mel spec-
trograms of soundtracks. They conducted experiments on a
video dataset consisting of 100M videos from Youtube with
30,871 video labels. The results indicated the effectiveness of
various CNNs for soundtrack classification.

Cheng et al. [68] applied noise-spectral characteristics to
analyze and classify modified loud exhaust sounds from
vehicles passing by. They used STFT spectrograms to con-
vert sound signals to images then AlexNet for classification.
Experiments on a self-recorded dataset showed that their
approach can classify cars passing by if (a) they have or (b)
do not have modified loud exhaust with an accuracy of 96%.

Dong [69] proposed a CNN-based method for music genre
classification. The author first divided music signals into
segments. Then obtained Mel-spectrograms of the segments
were input the CNN model for classification. Finally, the
author combined the predictions of all segments to perform
the classification task. On the GTZN music dataset, the
method achieved a human-level accuracy of 70%.

Costa et al. [70] used a CNN for music classification on
three music datasets, ISMIR 2004, LMD, and ethnic African
music, with distinct characteristics. To assess suitability for
different classifiers for music classification, they compared
the CNNwith other classifiers by fusing various hand-crafted
features. Experiments demonstrated that the CNN performed
significantly better than the other classifiers in different sce-
narios and achieved an accuracy of 92%.

Yang and Zhang [71] used a duplicated CNN for music
genre classification. They used a Mel-scale spectrogram as
input to the CNN. The duplicated convolutional layers extract
different information of Mel-scale spectrogram images by
applying various pooling layers (i.e. average, max). They
then extract features and subsequently combined them for the
final classification. They also added a residual connection
between layers to improve classification accuracy. Experi-
ments on GTZAN demonstrated that their approach achieve
an improved accuracy of 90.7%.

106626 VOLUME 11, 2023



K. Zaman et al.: Survey of Audio Classification Using Deep Learning

Matocha and Zieliński [72] investigated CNNswith stereo-
phonic signals as input for music genre classification.
Authors utilized the spectrograms of two-channel stereo
signals as input to different CNNswith various network archi-
tectures. They also compared the performance of different
CNNs with traditional classifiers such as a SVM. Experi-
ments on the FMA music dataset showed that two-channel
stereo signals did not improve classification performance.
These findings suggest that monaural signals can be more
suitable to input to CNNs for music genre recognition. On the
FMA dataset, the proposed method obtained an accuracy
of 60%.

Abdoli et al. [73] presented a 1D CNN that classifies
environmental sounds directly from raw audio signals. One
of the challenges of using audio signals as input to a 1D
CNN is varying the length of the audio signals. Authors
addressed this problem by splitting a signal into overlapping
frames by using a sliding-window technique. They tested
various CNN architectures with different input sizes. The first
layer of the CNN model was a convolutional layer with a
gammatone filterbank to simulate the human auditory filter
response. Experiments on UrbanSound8k showed that 1D
CNN achieved an accuracy of 89%. Another advantage of
their model is that it is more lightweight (reduced training
times).

Mughal et al. [74] used a CNN with MFCC-spectrogram
images for music genre classification of Urdu music from
Pakistan. They investigated various CNN architectures; a
CNN with batch normalization layers, a CNN with global
average pooling, and VGG16. An Urdu music dataset was
generated from YouTube videos. The results indicated that
the CNN with batch normalization achieved the best classifi-
cation accuracy of 92.6% compared with the other models.

Suo [75] used a CNN with STFT and Mel-frequency
spectrogram images for music genre classification. They
investigated VGG16 with different optimizers (Adam and
stochastic gradient decent) on GTZAN with these spectro-
gram images. The results showed that the CNN achieved
human level accuracy of 68%.

Ozer et al. [76] introduced a CNN-based method for
sound classification under noisy conditions. They utilized
spectrogram image features (SIFs) that can provide better
performance in an ambient noise environment. They obtained
SIFs by applying a series of processes: First, FFT spectro-
gram of the sound signals were obtained. Normalization and
conversion to gray-scale was then applied to find linear quan-
tized images. Subsequently, image re-sizing was applied and
the obtained features were input to a CNN for classification.
Experiments on RWCP Sound Scene datasets demonstrated
that their method achieved an accuracy of 98.63%.

Lesnichaia et al. [77] proposed a CNN-based method for
classifying different foreign-language English accents, par-
ticularly Germanic, Slavic, and Romance languages. They
proposed using linear scale amplitude Mel-scale spectro-
grams that are more powerful for representing accent features

compared with logarithmic Mel-scale spectrograms. They
found that Mel-spectrograms with 64 bands are better suited
for classification. The features extracted using the amplitude
Mel-spectrograms were then input to a CNN for classifica-
tion. Experiments on the SpeechAccent Archive revealed that
they achieved an accuracy ranging between 96.4 to 98.7% on
different accents.

Malla [78] used a CNN for Kashmiri accent classifica-
tion. The author first converted audio signals into Mel and
MFCC spectrograms. Then input to the CNN for classifica-
tion. To test the CNN, the author generated a dataset. When
the CNN was combined with Mel spectrograms, the model
achieved an accuracy of 98.66%.

Grahm [79] conducted experiments using spectrograms
and CNNs to learn whether a sample English speech was
spoken by a native English, Dutch, Japanese, Polish or French
person. The experiments were conducted on the IViE corpus,
a Cambridge English Corpus using the LeNet CNN model.
The results indicated that CNNs can identify the background
language with high accuracy.

Hussain and Haque [80] introduced a lightweight and fast
1D-CNN called SwissNet for speech/music/noise classifi-
cation. SwissNet uses MFCC spectrograms as input to the
1D-CNN and contains two parallel blocks of convolutional
layers with gated activation (sigmoid and tanh functions); one
block uses traditional convolutional layers and the other block
use separable convolutional layers that can be trained faster.
The features extracted from both parallel blocks are then
combined and extra convolutional layers are applied. Evalua-
tions on the MUSAN corpus and GTZAN demonstrated that
SwissNet achieved high classification accuracy (above 97%).

Salehghaffari [81] proposed a CNN-based method for
speaker/non-speaker verification. This method trains a CNN
in an end-to-endmanner to identify background features from
the speaker’s speech. The author used the Siamese model and
tested the method on the VoxCeleb dataset.

Zaman et al. [82] used a CNN with STFT spectrogram
images for harmful speech classification in hearing aid
devices. The STFT spectrogram of the speech was first
obtained then classified into clean speech and five different
noise types using CNN models with varying complexity.
Experiments on a custom dataset generated from the Com-
monvoice Mozilla dataset showed that their model can
correctly classify harmful speech with an accuracy of up
to 99%.

Ballesteros et al. [54] proposed a CNN called Deep4SNet,
for fake-voice recognition. They separately trained fake and
original speech histograms using Deep4SNet. They also
trained the same speech data by using a machine learning
model using hand-crafted features. On a custom dataset, their
model achieved an accuracy of 98.5%.

Vrebcevic et al. [83] proposed a CNN with a spectrogram
for emotion classification. They first converted speech signals
into spectrogram images and applied various data augmenta-
tion techniques, such as down sampling and noise, to increase
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the training data size. They evaluated their model on the
Berlin database.

Si et al. [84] proposed using a CNN to handle audio
classification on low-resourced datasets such as those with
low training data prone to over-fitting. They investigated
the variational information bottleneck (VIB) to suppress
irrelevant features using the CNN. They conducted exper-
iments on various audio datasets and yielded substantial
improvements in classification accuracy of up to 5.0% in
low-source settings compared with baseline models. VIB is
adaptable and can be easily usedwith other advanced network
architectures.

Hussain et al. [85] compared a DNN and CNN for acoustic
scene classification. The contribution of their work lies in
combining the features of MFCC and log-Mel spectrograms
as input to the DNN and CNN. Experiments on the DCASE
(Detection and Classification of Acoustic Scenes and Events)
2017 dataset demonstrated that the combination of MFCC
and log-Mel spectrogram features outperformed the com-
pared models; The DNN achieved an accuracy of 83.45% and
the CNN achieved an accuracy of 83.65%.

Dang et al. [86] developed a CNNwithmulti-scale spectro-
gram images for acoustic scene classification. They converted
speech signals into MFCC and log-Mel spectrograms. They
then concatenated these two spectrograms and fed to them to
the CNN for classification. Experiments on the TUTAcoustic
Scenes 2016 dataset showed that these multi-scale features
improved the accuracy to 85.9% comparing with baseline
methods.

Nguyen and Pernkopf [87] proposed an ensemble CNN for
acoustic scene classification using the nearest neighbor filter.
They first converted speech signals into different log-Mel
spectrograms using the nearest neighbor filter or audio
chunks without overlap. They then input these spectrograms
to a series of different CNNs for feature extraction. Finally,
they ensemble the extracted features for classification. Exper-
iments on the DCASE 2018 Challenge demonstrated that
their model with the nearest neighbor filter for feature extrac-
tion was significantly good.

Vafeiadis et al. [88] investigated two models for acoustic
scene classification: A hybrid SVM-HMM and a CNN. In the
CNN, log-Mel spectrograms were normalized and then fed to
the model. Data augmentation techniques were also used to
increase the size of the training samples. The CNN provided
promising results compared with the baselines.

Pham et al. [89] proposed an ensemble CNN for acoustic
scene classification. They combined three spectrograms into
one image that was used for the training of their ensemble
CNN. Specifically, log-Mel, gammatone filter and constant
Q spectrograms were combined using an add layer, convolu-
tional layer, and DNN blocks. In the ensemble CNN, feature
extraction was executed using the CNN, then the extracted
features were input to two DNN blocks for classification.
Experiments on DCASE 2016 demonstrated that their model
was effective (90%), significantly outperforming traditional
models.

Jena et al. [90] proposed a multi-modal CNN architecture
for music genre classification. They specifically used two
types of speech inputs; spectrogram and wavelets. Inside
the CNN model, features extracted from multi-modal inputs
and fused for classification. Experiments on GTZAN and
Ballroom datasets demonstrated that their architecture with
multi-modal inputs achieved an accuracy of 81% on GTAZ
and 71% on Ballroom datasets.

Arias-Vergara et al. [57] proposed a new time-frequency
representations of audio signals by combining continuous
wavelet transform, Mel-spectrograms, and Gammatone spec-
trograms to form a new 3D-channel spectrograms for the
applications to analyze speech in automatic detection of
disorder speech of cochlear implant (CI) users. During the
training of CNN model speech signals from both cochlear
implant (CI) users and HC were used while using the pro-
posed new time-frequency representations to conduct binary
classification. Based on the findings, the best performance
was achieved when training CNN with 3D-channel spectro-
grams extracted from off-set transitions.

Lopac et al. [175] also utilized different time-frequency
representations and proposed a method that uses Cohen’s
time-frequency representations (TFRs) and deep learn-
ing algorithms (CNNs) to classify noisy non-stationary
time-series signals. Subsequently, computed 12 distinct
time-frequency representations (TFRs) from Cohen’s class
using the original noisy time-series data. These TFRs served
as the input to train three convolutional neural network archi-
tectures such as ResNet-101, Xception, and EfficientNet.
The classification results obtained from this approach signif-
icantly improved as compared to those achieved by a baseline
model trained.

B. RNN-BASED METHODS
In this section, we discuss RNN-based methods for audio
classification.

1) RNN ARCHITECTURES
RNNs are a type of neural network (NN) that can learn from
the temporal context of a sequence of data. Traditional NNs
have the problem of gradient vanishing. For sequences of
data, NNs forget the past input. RNNs tackle this problem
by using recurrent processing of data, where the output of
the NN is also input to the NN, and these NNs are called
Recurrent NNs (RNNs). Therefore, RNNs can take sequence
of data as input and process one element at a time and extract
features. This enables them to capture the temporal context
of data, such as a sentence or a time series. RNNs are used
in a variety of tasks including image captioning, language
translation, language modeling, and speech recognition.

RNNs can be used to classify audio signals, such as detect-
ing speech or music in a sound recording. In this case, RNNs
are trained to recognize patterns in the audio signal over time.
By processing audio frames sequentially, RNN can learn to
recognize the characteristics of different sounds, enabling
it to accurately classify the audio. RNNs enable computers
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TABLE 1. Comparison of CNN-based methods.
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TABLE 1. (Continued.) Comparison of CNN-based methods.

to understand the content of audio data due to their ability
to capture the temporal context of an audio signal. RNNs
can be used to classify audio signals by extracting features
from the signal, such as the frequency, amplitude, and phase.
Additionally, RNNs can be used to classify music genres by
analyzing the acoustic features of a song, such as rhythm,
pitch, and timbre.

Although RNNs are successful for data sequences, such
as speech signals, they have a short-term memory. In dif-
ferent cases, we might need short-term dependencies or
long-term dependencies. For longer sequences of inputs,
Long Short-Term Memory (LSTM), which is a type of RNN,
is used to remember longer-term dependencies in the input
data. In LSTM, instead of a single NN, there are four layers,
interacting with each other to keep relevant information in the
cell state (memory), as shown in Figure 4. These four layers
are: Cell state, forget gate, input gate, and output gate. The
cell state transfers the vector coming from previous hidden
layers to the next LSTM layer. The forget gate is a NN
with sigmoid activation to determine which current input to
include or forget (remove) from the cell state by using vector
multiplication. The input gate contains two NNs; one with
the sigmoid activation and the other with the tanh activation.
NN with the tanh activation selects the candidate inputs to be
included after applying matrix multiplication with the output
of the NN with the sigmoid activation. The output vector
is then added to the cell state by applying vector addition.
The output gate is responsible for producing an output vector
with the NN with sigmoid activation. With the recurrent
configuration of LSTM layers (output of one LSTM layer is
an input to the other), long-term dependencies can be learned
from sequences of input data. LSTM has been applied to
many speech classification tasks.

2) DEEP-LEARNING-BASED METHODS THAT USE RNNs
Scarpiniti et al. [91] proposed a deep RNN (DRNN)
using recurrent LSTM for construction site audio recording

FIGURE 4. LSTM cell architecture.

classification. The input of the DRNN is composed of
multiple spectral features such as MFCCs, Mel-scaled spec-
trograms, chroma, and spectral contrast. It achieved an overall
accuracy of up to 97% on the test set and surpassing other
models.

Yu et al. [100] presented a Bi-RNN model with an
attention mechanism. They also implemented two different
attention-based models, serial and parallelized, to compare
their performance using STFT spectrograms. The results indi-
cated that the parallelized attention model is more effective
and yields better results than the serial attention model.

Gan [101] introduced an RNNmodel with a channel atten-
tion module for classifying music features. This model uses a
combination of GRUs and Bi-RNNs, such as Bi-LSTM, and
utilizes an attention mechanism to allocate varying attention
weights to the outputs of the RNN at diverse points. This
is to more accurately capture the general characteristics of
the music. Proposed RNN achieved a classification accu-
racy of 93.1% on GTZAN and AUC score of 92.3% on the

106630 VOLUME 11, 2023



K. Zaman et al.: Survey of Audio Classification Using Deep Learning

TABLE 2. Comparison of RNN-based methods.

MagnaTagATune multi-label labeling dataset, which is better
than other compared models.

Banuroopa and Shanmuga Priyaa [111] proposed a finger-
printing approach for audio signals by using the mean of the
MFCC spectrum. The spectrum is then converted to a binary
image and input to a LSTM network for classifying environ-
mental sound. Experiments on UrbanSound8K revealed that
the processed and modified fingerprint images with LSTM
achieved an accuracy of 98.8%.

C. AUTOENCODER-BASED METHODS
In this section, we discuss autoencoder-based methods for
audio classification.

1) AUTOENCODER ARCHITECTURES
An autoencoder is an unsupervised learning technique that
uses ANNs to learn compressed data representations (encod-
ings) of unlabeled data. It consists of two steps (Figure 6):
An encoder first transforms the input data into a lower-
dimensional representation, then a decoder recreates the
output data from the encoded input representation. Autoen-
coders use backpropagation to learn an encoding of input
data that can be used to recreate input representation with
minimal information loss. This encoding is referred to as
the ‘‘latent representation’’ or ‘‘latent space’’ of the data.
Autoencoders are effective in learning important features of a
dataset with a reduced feature set. In addition, autoencoders
are also effective in detecting outliers and anomalies in the
data.

Autoencoders are types of ANNs that can be used to learn
features from audio data, such as frequency components or
temporal patterns. Autoencoders first encodes the audio fea-
tures into a compressed representation, then uses the encoded
features to train a classification model. Themodel can then be
used to classify audio signals on the basis of their compressed
representations. Autoencoders are especially useful for audio
classification tasks with high-dimensional input data, such as
speech classification or music classification. They can also
be used to identify subtle changes in audio samples, such
as changes in pitch or tempo, which can then be used to
distinguish between different classes of audio samples. As a

FIGURE 5. Autoencoder architecture [113].

pre-processing step, autoencoders can be utilized before other
deep-learning models, such as CNNs, to improve classifi-
cation accuracy. Autoencoders can also be used to decrease
input data complexity, which can help reducing the amount
of time and resources needed for training and inference.

To conclude, autoencoders are NN architectures used
for unsupervised learning and data compression. They take
an input dataset and learn the essential features to cre-
ate a compressed representation by using fully connected,
convolutional, and pooling layers, which reduces the dimen-
sionality and complexity of the input. This representation is
then reconstructed using decoding layers and output to an
output layer to generate a reconstructed output that closely
matches the original input.

2) DEEP-LEARNING-BASED METHODS THAT USE
AUTOENCODERS
Amiriparian et al. [115] proposed a recurrent autoencoder
architecture for acoustic scene classification. They first gen-
erated different Mel spectrograms from audio signals then
input separate spectrogram sets into parallel autoencoder
networks. Finally, they fused the extracted features from
different autoencoders then feed them to the MLP for clas-
sification. They conducted experiments on DCASE 2017 and
showed that their architecture is effective.

Huang et al. [116] applied image masked autoencoders
(known as MAEs) to audio signals for speech classification.
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TABLE 3. Comparison of autoencoder-based methods.

Authors used Mel spectrograms to represent raw audio sig-
nals then applied different masking strategies to divide Mel
spectrograms into different patches, such as time, frequency,
and time-frequency patches. Both encoder and decoder net-
works consist of transformers, particularly standard 12-layers
vision transformers. They conducted experiments on four
datasets. Key findings of the experiments were that MAE
performed surprisingly well for audio spectrograms, stronger
representations can be learned with local self-attention in
the decoder, masking can be executed during pre-training,
and fine-tuning can help increase accuracy and decreasing
training time.

Atahan et al. [118] introduced a combined autoencoder and
digital signal processing (DSP) method for music genre clas-
sification and recommendation. They applied various DSP
methods for feature extraction on GTZAN then generated
and input MFCC spectrograms in an autoencoder for feature
extraction for music genre classification. Finally, they applied
different classifiers, such as an SVM, Random Forest (RF),
and MLP, for the classification. The results from this process
were then used for music recommendation.

Qi and Van hamme [119] used factorized hierarchi-
cal variational autoencoders (FHVAEs) for speech disorder
classification. They extracted both sequence-based latent
variables and content-based data for disorder representation.
Evaluations on Torgo and COPAS datasets showed that better
results are achieved when latent variables are combined at
sentence and word level.

Sawhney et al. [121] considered the idea of learning a
latent representation of musical genre from raw input audio
by using hybrid neural networks with both autoencoding and
classification components. After the training, MLP is used
for classification. Authors found that musical genre is closely
related to style, suggesting that such a representation can be
learned directly from audio.

Saldanha et al. [123] aimed to provide a solution to
the imbalanced dataset problem for respiratory disease

classification. They investigated the use of different vari-
ational autoencoders (VAEs) for synthesizing respiratory
sounds for imbalanced classes. They compared theMultilayer
Perceptron VAE, Convolutional VAE, and conditional VAE
for data augmentation to improve classification accuracy.
They conducted their experiments on ICBHI sound datasets,
and the results showed that VAEs can improve the accuracy
when using data augmentation.

D. TRANSFORMERS AND SPECTROGRAM
TRANSFORMERS
In this section, we discuss transformers for audio
classification.

1) TRANSFORMER ARCHITECTURES
Transformers are a type DNNs with an attention mech-
anism. Transformers were initially designed for NLP for
language models [131] then applied to images using vision
transformers. Recently, transformers have been applied to
audio signals using spectrogram transformers. In particu-
lar, new transformer-based methods have been introduced
using an attention mechanism to significantly improve audio
classification by enabling the model to be aware of the
global context [135]. Transformer-based methods, compared
with CNN-based methods, can handle input-length variance,
which is one of the advantages of transformers. This can be
achieved due to the ability of the multi-head self-attention
mechanism to work with variable lengths of input sequences.
Therefore, transformer-based methods can promptly capture
useful global-context information, regardless of the audio
length. Transformers are generally referred as data hungry
since they require a large amount of training data. In cases
where labeled data are limited, many audio transformers use
pre-training models and fine-tuning. The Patchout faSt Spec-
trogram Transformer (PaSST) [133] and Audio Spectrogram
Transformer (AST) [132] are two of the leading models for
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audio classification. The AST [132] is the first transformer
model for audio classification and adapts pre-trainingweights
from the image classification network of vision transformers
(ViTs) [134]. The PaSST reduces the computation and mem-
ory complexity of training transformers for the audio domain.

FIGURE 6. Architecture of transformer [137].

The use of transformers for audio classification has gained
attention due to their promising results. To use transform-
ers effectively, the following steps are generally taken into
consideration. First audio signals are converted into visual
spectrograms using feature extraction techniques such as
using STFT, Mel-spectrograms, and log-Mel spectrograms
and MFCCs. Spectrograms contain time-frequency infor-
mation and serve as the input to a transformer. Next,
spectrograms are often divided into small, fixed-length seg-
ments known as ‘‘patches’’. These patches are then treated as
individual input tokens, similar to thewords in NLP. Then, the
transformer architecture is composed of a stack of encoder
layers, each consisting of self-attention mechanisms and
feed-forward neural networks, as shown in Figure 7. The orig-
inal transformer models do not have convolutional layer but
contain feed-forward layers. A residual connection and layer
normalization are then applied. The self-attention mechanism
helps the model capture the dependencies between different
patches in the spectrogram, the same as with the original
transformer model. Global average pooling and max pooling
are common techniques used to aggregate information across
the time dimension after the encoder layers and provide a
fixed-length representation of the audio. This reduces the
temporal dimensionality of the input audio. The pooled rep-
resentation is then fed into one or more dense layers (fully
connected layers). The output of these layers is then passed
through a softmax activation function, which produces class
probabilities as the output. Finally, by pre-training on large
amounts of unlabeled audio data using techniques such as
self-supervised learning or contrastive learning, transformers
for audio classification can gain useful audio representations.
These representations can then be used to fine-tune the model
on specific audio classification tasks using labeled data.

2) DEEP LEARNING METHODS THAT USE TRANSFORMERS
Zhang et al. [135] presented a spectrogram transformer that
is a combination of various feature extraction strategies for
environmental sound classification. They first converted the
audio signals into spectrogram images using FFT. Then
applied various attention blocks to enhance the extracted
features from the time and frequency domains using a trans-
former encoder. They tested different attention mechanisms
and obtained the best results using the temporal-frequency
attention block on ESC-50 without pre-training.

Luo et al. [136] investigated the impact of the patch-level
feature fusion approach using ViTs for different audio clas-
sification tasks. They first obtained a Mel spectrogram of
the audio signal and divided it into patches then input these
patches to the ViT encoder for feature fusion. From the fused
patches, new patches were then generated and input to an
MLP for classification. They investigated the effectiveness of
this approach on various classification tasks using ImageNet
and AudioSet pre-trained model weights.

Nogueira et al. [53] conducted a comprehensive analy-
sis of using transformers against different baseline CNN
models for urban sound classification. They investigated
the performance of a transformer, baseline CNN, DenseNet,
Inception-V3, and pre-training options together with data
augmentation. As a transformer, they used the spectrogram
transformer proposed by [137] for comparison. Experiments
on UrbanSound8K, ESC-50 and ESC-10 demonstrated that
a transformer model using transfer learning from AudioSet
achieved the best accuracy.

Elliott et al. [138] tackled the problem of efficiency versus
large parameters. Many deep learning models, such as CNNs
for audio classification, require large parameters, meaning
large storage for testing. However, many microcontrollers
do not have such memories to operate. To overcome this
problem, they proposed a tiny transformer for audio clas-
sification using a BERT-based transformer (designed for
language model) that is trained on Mel-spectrogram images.
They also investigated various data augmentation techniques.
The proposed tiny transformer contains around 6000 param-
eters and achieved an accuracy of 99.85% for environmental
sound classification on ESC-50.

Gong et al. [139] improved upon their previous study on an
ASTwith a self-supervised learning strategy. Although trans-
formers are effective, they require large amounts of training
samples to learn the feature maps. In small domains where
the training samples are limited, transformers might not be as
effective as CNNs. Therefore, authors tried to alleviate this
problem by integrating a self-supervised learning framework
into the AST. They proposed a generative model that learns
from masked spectrogram patches. Experiments showed that
the proposed model improved the accuracy on unlabeled
audio data from the AudioSet and Librispeech datasets.

Koutini et al. [140] focused on the problem of efficient
training of transformer models. Since transformers require
large amounts of training audio samples, and the complexity
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of the training increases quadratically as the input increases.
To alleviate this, they presented a novel approach for opti-
mizing and regularizing transformers on audio spectrograms
using a patchout spectrogram transformer to provide efficient
training. Experiments on Audioset demonstrated that their
patchout spectrogram transformer outperform CNNs in both
performance and training speed.

Zhao et al. [141] proposed a swin transformer that contains
a self-supervised pre-training method for music genre clas-
sification. Swin transformers merge smaller patches as they
go deeper in the architecture. They first converted audio sig-
nals into spectrograms and applied data augmentation Then
applied self-supervised pre-training using transfer learning
and pre-training. They input these patches into the swin
transformer. Experiments on GTZAN demonstrated that swin
transformer improved the accuracy.

Due to the data hungry nature of transformers, many trans-
formers for audio classification use pre-trained models from
the image domain such as ImageNet. Atito et al. [142] tack-
led this problem and proposed a self-supervised transformer
called ASiT, which reduces the dependency on pre-trained
models from the image domain. Specifically, general audio
representations are obtained with local and global context by
applying group-masked model learning and self-distillation.
They evaluated ASiT for audio/speech classification and
achieved state-of-the-art performances.

Liu et al. [143] presented the Causal Audio Transformer
(CAT), a model that utilizesMulti-ResolutionMulti-Featured
(MRMF) feature extraction with an acoustic attention block
for improved audio modeling. The CAT also includes a causal
module to reduce over fitting, facilitate knowledge transfer,
and enhance interpretability. Experiments show that the CAT
achieved superior or comparable results compared to the
other models on ESC50, AudioSet, and UrbanSound8K and
can be easily adapted to other transformer-based models.

Zhuang et al. [145] proposed one of the early
transformer-based method for music genre classification.
They first converted the audio data to log-amplitude Mel
spectrograms and applied the original multi-head attention
transformer to GTZAN. The results indicated that transform-
ers can be used for music genre classification.

Qiu et al. [146] proposed a bi-directional transformer with
amasked predictivemodel for music genre classification. The
transformer also uses a pre-processing called Pitch-to-Vector
(Pitch2Vec) that converts audio signals into vector sequences.
The masked predictive encoder then extracts bi-directional
representations about the music with an unsupervised
learning strategy. Experiments demonstrated that the trans-
former can achieve good accuracy.

Verma and Berger [147] proposed a transformer-based
architecture to process raw audio signals without the need for
convolutional layers for audio classification on the FSD50K
dataset. Compared with ASTs, in this approach raw wave-
forms are input to the transformer for the classification task.
They investigated the performance of the transformer-based
architecture by comparing it with that of a CNN.

The advantage of their architecture is that no unsupervised
pre-training is used as well as, pooling techniques fromCNNs
andmulti-rate signal processing ideas fromwavelets are used.

Chen et al. [148] proposed a hierarchical token semantic
audio transformer (HTS-AT) to tackle the problem of high
memory/long training time as well as the need for pre-trained
models from the image domain. HTS-AT uses a hierarchi-
cal structure to reduce the amount of require memory and
training time. It also uses a semantic module to map into
class feature maps for audio event detection. Evaluations
on AudioSet and ESC50 demonstrated that HTS-AT can
achieve state-of-the-art performance on speech-command
recognition.

Primus and Widmer [149] investigated the performance of
the PaSST against two CNNs in zero-shot learning settings.
In zero-shot learning, the model attempts to predict unseen
classes with adaptable class representations. In particular,
authors investigated the performance of PaSST with two
CNNmodels (VGG and a custom CNNmodel). Experiments
on three datasets, namely AudioSet, ESC-50 and OpenMIC,
illustrated that the PaSST outperformed CNN counterparts in
zero-shot learning in all tasks.

Ghosh et al. [150] integrated multi-scale feature hierar-
chies into an AST called a multi-scale AST (MAST) for
audio classification. This MAST involves multiple patchify-
ing (dividing the spectrograms into patches); as the network
goes deeper, new patches are generated and the patch sizes
increase. Thus, the number of patches decreases. There-
fore, a pyramidal structure is obtained. The initial MAST
layers handle high temporal resolution/low embeddings,
whereas the deeper layers capture high-level information.
Experiments demonstrated that MAST performed better than
an AST.

Another MAST was proposed by Zhu and Omar [151] that
incorporates a hierarchical learning model into an AST. This
MAST uses both 1D and 2D pooling operations to reduce
feature dimensions and the number of tokens. Experiments
on various datasets demonstrated that proposed MAST is
effective for different audio classification tasks.

Akbari et al. [152] proposed a convolution-free transformer-
based framework that learns representations from multi-
modal data, such as video, audio and text, in a kinetics
environment. This framework receives data from video,
audio, and text, and fuses them in multi-modal representa-
tions using a transformer from unlabeled data. Audio data
are input as raw wavelets and audio data are fine-tuned in
accordance with AudioSet. They conducted several experi-
ments to test the efficiency of their framework, revealing that
it is effective.

E. HYBRID MODELS
In this section, we discuss hybrid models. According to the
reviewed methods, we observed that hybrid models can be
divided into two categories: (1) Hybrid deep learning models
that combine various deep learning architectures such as
CNN-LSTM, CNN-transformers and others. (2) Hybrid deep
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TABLE 4. Comparison of transformer-based methods.
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learning models with a traditional classifier, where feature
extraction is performed by a deep learning model and the
classification is achieved by a traditional classifier like SVM,
KNN and others. According to this categorization, methods
are reviewed under these hybrid deep learning categories as
follows.

1) HYBRID DEEP LEARNING MODELS
In the literature, we found cases of hybrid models that var-
ious deep learning architectures can be combined to create
more powerful audio classification models. The aim of these
hybrid models is to combine the strengths of different deep
learning models. For example, many RNN methods initially
use CNN for extracting features from spatial inputs such as
spectrogram images, and then output of the CNN is given to
the RNN network like LSTM. While the recurrent layers are
trained to identify patterns in temporal inputs such as audio
or time series data. A sample CNN-LSTM architecture is
given in Figure 7. Similarly, autoencoders can be combined
with RNNs (i.e. LSTM) or CNNs. Transformers can also be
combined with CNNs. These combination of models enables
efficient processing of both spatial and temporal information.
These hybrid models are used in different applications such
as music genre classification, environmental sound classifi-
cation, acoustic scene classification and so forth.

FIGURE 7. Sample CNN-LSTM architecture [112].

a: DEEP LEARNING METHODS THAT USE HYBRID MODELS
Sang et al. [92] presented a CNN-LSTM network for urban-
sound classification that takes time-domain waveforms as
input. This model integrates CNN and a two layer LSTM
model to extract sound features and temporally aggregate
them. Experiments on UrbanSound8k dataset indicated that
their model performed well.

Liao et al. [93] proposed an effective sequential
CNN-LSTM architecture for automatic music classification.
The output of the CNN is fed to a two-layer sequential
LSTM layers. Proposed architecture demonstrated a higher
classification accuracy of 92.1%, outperforming the baseline
models of CNN and RNN alone.

Asatani et al. [94] developed an approach to categorize
respiratory sounds. First, spectrograms are generated from

respiratory sound data using STFT. Then, spectrograms are
fed to a CNN and bi-directional LSTM (Bi-LSTM) net-
work for classification. Their approach demonstrated an
improved average accuracy of 0.73, which is better than other
approaches.

Zhang et al. [95] introduced a frame-level attention
model that uses a CNN and bi-directional gated recurrent
unit (Bi-GRU) for environmental sound classification using
spectro-temporal features and temporal correlations. This
model applies an attention mechanism to learn distinguishing
feature representations from the sound data. Sound data are
first converted to Log Gammatone Spectrograms (Log-GTs).
Then input to a CNN. The output of the CNN is fed to a Bi-
GRU. This model achieved an accuracy of 93% and 86.1%
for ESC-10 and ESC-50 respectively.

Choi et al. [96] proposed a CNN-RNN for classifying
music tags. This model also takes advantage of both CNNs
and RNNs, enabling effective local feature extraction and
temporal summarization of features. Results illustrated that
the method provided excellent results in terms of required
parameters and training time, demonstrating the potency of
the combination of CNNs and RNNs for extracting music
features for summarization purposes.

Federico et al. [97] conducted a study to assess how pro-
ductive an architecture that combines CNNs and LSTMs for
general purpose audio event classification and detection using
STFT of audio signals. This architecture was examined on
DCASE for general purpose audio tagging based on different
principles.

Nasrullah and Zhao [98] investigated the use of a tem-
poral architecture for music artist classification. Their work
uses STFT signals of music songs and inputs them to a
CNN. To capture temporal features, a GRU model is used.
Using a CNN-GRU architecture, they applied the work to
the artist20 music artist identification dataset by varying
audio clip length, dataset split, and feature level. The results
indicated that an overall F1-score of 93.7% was obtained
over three independent tests, showing the usefulness of their
approach.

Feng et al. [99] presented a combined architecture for
music genre classification using parallel CNN and Bi-RNN
blocks. Spatial features can be extracted using the CNN, and
temporal features can be extracted using the Bi-RNN. The
outputs of these two blocks are then united to form a sig-
nificant representation for classification. A parallel network
was designed to ensure that the generated features are good
representations for music genre classification.

Srivastava et al. [102] proposed the utilization of
CNN-GRU and CNN-LSTM for classifying audio signals.
MFCCs are used to represent the audio data. The results indi-
cated that the accuracy of the CNN-GRU was 85.7%, while
that of the CNN-LSTM was 87.5% on the tested GTZAN.

Nigro et al. [103] evaluated the effectiveness of a Time-
Frequency-Energy-emphasis method with respect to Mel
spectrograms for acoustic scene classification using a CNN-
RNN. Evaluations showed that their method reduced the
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number of training parameters by half while maintaining
better accuracy than using Mel spectrograms.

Qiao et al. [104] introduced a novel sub-spectrogram seg-
mentation method with a CNN-RNN model and score fusion
strategy for environmental sound classification. To enhance
classification accuracy, their method incorporates score-level
fusion method. They conducted experiments to identify the
ideal amount and relevant band ranges of sub-spectrograms.
Evaluations on ESC-50 revealed an accuracy of 81.9%, which
is 9.1% better than the baseline methods.

Jallet et al. [105] applied a CNN-GRU model for acous-
tic scene classification. Two CNN-GRU models were used;
using CNNs as feature extractors and using gated recurrent
layers to model the temporal context. Evaluations on DCASE
2017 showed that the accuracy of the two models was 78.9%
and 80.8%, respectively, which are higher than the baseline
accuracy of 74.8% using a feed-forward NN.

Adavanne et al. [106] introduced a CNN-Bi-LSTMmethod
for sound event classification using low-level spatial features
from multi-channel audio signals. To learn multiple types of
features, CNNs with Bi-LSTM were used. It was observed
that on the TUT-SED 2016 and TUT-SED 2019 datasets,
spatial features achieved better F-scores, 6.1% and 2.7%,
compared with the monaural features. They suggested that
the best approach is to present the features of each channel as
separate layers vectors, instead of concatenating them into a
single feature vector.

Yang et al. [107] proposed a parallel CNN-Bi-RNN for
music genre classification in mobile devices. In the model,
two separate blocks (one CNN and one Bi-RNN) extract
features in parallel from the STFT spectrograms of the music
signals. The extracted features from the CNN and Bi-RNN
are then fused to form a vector. The fused vector is then
used for the Softmax layer for classification. Evaluations on
GTZAN and Extended Ballroom datasets showed that a CNN
with a one-layer RNN and a CNN with a two-layers RNN
produced the best results compared with other models.

Mounika et al. [108] compared the performance of CNNs
and RCNNs for music genre classification. The performance
was evaluated using frame acquisition on handmade and
GTZAN datasets. They concluded that music information
retrieval is challenging as it requires the audio files to be
sorted in accordance with their genre.

Gupta et al. [109] proposed a hybrid modeling technique
to investigate the performance of various hybrid models for
bird species classification. This strategy combined a CNN
that uses Mel-frequency and STFT spectrograms as input.
The output of the CNNs are then input to different RNNs
to combine across time-points. For example, a CNN is com-
bined with LSTM and GRU with Legendre Memory Units
(LMU). Results indicated that the hybrid models obtained
the most noteworthy accuracy, with an average of 67% and
highest accuracy of 90%.

Sang et al. [92] proposed a CNN-LSTM for urban envi-
ronmental sound classification. The model uses time-domain

waveforms as input. CNN was used for feature extraction
and the output of the CNN was input to 2-layer LSTM for
aggregation of features. They used public UrbanSound8k and
their model achieved a classification accuracy of 79.07%.
This work also demonstrated that raw waveforms perform
better.

Zhang [110] proposed 1D-CNNs with Bi-RNNs for music
style classification. To classify music styles, timbre and
melody features are generally extracted from music signals.
The author claims that the timings are also an important
feature for the classification of music style. Therefore, the
author first input melody and tonal features to two parallel
CNNs. The features extracted from the 1D-CNNmodels were
then input to two Bi-RNNs, and subsequently combined for
classification. Experiments on GTZAN demonstrated that
their method is effective and obtained an accuracy of 91.99%.

Naranjo-Alcazar et al. [114] presented a convolutional
autoencoder model with multi-layer perceptron (MLP).
Audio signals are first converted to log-Mel spectrograms.
And processed using a convolutional encoder block consist-
ing of three convolution blocks (convolution, batch normal-
ization and ReLU). After obtaining the latent representation,
a feature set was input to the convolutional decoder block.
The learned latent space representations of the autoencoder
were then input to theMLP for classification of audio signals.
Both autoencoders (unsupervised) and combined autoen-
coder and MLP architectures (unsupervised-supervised) set-
tings were experimented, which showed that they can achieve
an accuracy of 99%.

Abeßer et al. [117] introduced a smart city monitoring
system in urban environments for acoustic scene classifica-
tion using autoencoder-CNN model. Their system consists
of two parts; sensors and server-side. Sensors collect audio
recordings from an urban environment using a stacked
autoencoder. On the sensor-side, spectrograms patches are
extracted, compressed using a denoising autoencoder, and
sent to the server-side for classification. For classification,
different CNN models are used that were designed to handle
dimensionality reduction (that was applied part of encoding).
They tested their system to classify five audio classes in real
world settings and achieved an accuracy of 75%.

Lin et al. [120] proposed a convolutional capsule autoen-
coder network (CCAN) to cluster domestic activities from
audio recordings. They first converted audio recordings to
MFCC spectrograms and input them to an encoder with a
convolutional block. The feature embeddings were learned
by the decoder and input to a clustering layer. The embed-
dings were then fed to a decoder with a fully connected
layer and deconvolution block. The CCAN was evaluated on
DCASE 2018.

Qiu et al. [122] proposed a deep 3D convolutional denois-
ing autoencoder (3D-DCDAE) for music genre classification.
Their proposed work is an unsupervised learning model that
uses latent music representations. To extract latent repre-
sentations, unlabeled MIDI files were utilized and input to
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3D-DCDAE for denoising and reconstruction. After training,
the decoder was replaced with an MLP for classifica-
tion. They evaluated their autoencoder on the Lakh MIDI
dataset.

Another VAE approach was introduced by Latif et al.
[124] for speech emotion classification. This is believed to
be the first study that applied VAEs for speech emotion
classification. They used log-Mel features and VAE-LSTM
models for feature representations. Experimental results on
the IEMOCAP dataset indicated that features learned using
VAEs can achieve superior performance in speech emotion
classification compared with other methods.

Asni et al. [125] proposed a convolutional autoencoder
for speaker differentiation. They first converted the audio
signals into MFCC spectrograms and input them into their
convolutional autoencoder. The aim was to classify the audio
signals into six categories such as 2-person conversation
and 3-person conversation, so forth. They created a custom
dataset and evaluated their model. The model achieved an
accuracy of 99.29%, 97.62%, 96.43%, 93.43%, and 88.1%
for the six categories.

Wilkinghoff and Kurth [126] proposed a deep convolu-
tional autoencoder (DCAE) for acoustic scene classification.
They first converted audio signals into log-Mel spectrograms
and input them to their model. They conducted experiments
on DCASE 2019. The results indicated that on the compared
models, their model achieved a significantly higher score of
62.1% on the evaluation dataset of the challenge, which was
an improvement from 47.6%.

Irfan et al. [127] introduced a new underwater dataset
called deepShip for acoustic scene classification. The dataset
consists of real-world underwater sounds of passing by ves-
sels with varying noise levels. In addition, authors proposed
a separable convolution autoencoder model for the classifi-
cation of recordings. Authors investigated various features
for the proposed model. Experiments on the proposed dataset
showed that the proposed model achieves 77.53% accuracy
using CQT feature and outperforms the performance of other
methods.

Arniriparian et al. [128] proposed a model by combining a
deep convolutional generative adversarial network (DCGAN)
with a recurrent sequence to sequence autoencoder (S2SAE)
for acoustic scene classification. The features are learned
with their model and classification is achieved with an MLP.
Authors investigated the effectiveness of their model on
DCASE 2017; their model improved the accuracy on the
development set to 88.5 % when using only the S2SAE and
to 91.1% after fusion.

Another sequence-to-sequence autoencoder toolkit called
auDeep was proposed by Freitag et al. [129] for audio
processing using combined RNN-autoencoder. It is an
open-source toolkit for learning audio representations from
spectrograms. The toolkit is freely available to use.

Czyżewski et al. [130] used CNN-autoencoder for unsu-
pervised classification of traffic events. To achieve this,
a two-dimensional representation of traffic sounds, created

using a one-dimensional convolution layer, is input to an
autoencoder then classified with a feed-forward NN.

Gong et al. [137] introduced the first convolution free
AST for audio classification, which is a purely attention-
based model, and evaluated it on various audio classification
benchmarks. They first converted the audio signals into spec-
trograms then divided the spectrograms into patches and
linearly input them to an encoder transformer with position
embeddings. They investigated various attention mechanisms
and transformers with and without CNN. Their results indi-
cated that AST achieved the best results.

Zeng et al. [144] proposed a method that consists of
decision fusion called transformer and causal dilated convo-
lutional network (TCDCN) for audio event recognition. They
first converted audio signals into Mel-spectrogram images
and input them to the dilated CNN for feature extraction.
They then input the extracted features to an attention module
for classification. For the audio recognition task, they cropped
data from YouTube audio clips to form a custom dataset.
The results indicated that the TCDCN outperformed NNs and
other fusion models.

2) HYBRID DEEP LEARNING MODELS WITH TRADITIONAL
CLASSIFIERS
In this section, we discuss hybrid deep learning models with
traditional classifiers for audio classification. In the literature,
we found cases of hybrid models that combine different deep
learning models with traditional machine learning methods to
create new and more powerful models. The aim with hybrid
models is to combine the strengths of deep learning models
with those of traditional machine-learning methods such as
those using SVMs and KNN [160], as shown in Figure 8.

FIGURE 8. Hybrid models for audio classification.

Hybrid models with traditional classifiers generally use
deep learning models such as CNNs and RNNs for feature
extraction. Instead of classification in an end-to-end net-
work, the extracted features are then flattened and input to
traditional classifiers. Hybrid models are used in different
applications such as audio classification, NLP, image recog-
nition, and autonomous driving.

a: DEEP LEARNING METHODS THAT USE HYBRID MODELS
WITH TRADITIONAL CLASSIFIERS
Demir et al. [153] proposed a pyramidal concatenated CNN
for environmental sound classification. Sound signals are
first converted to spectrogram images using STFT. Then,
various deep learning models are used for feature extraction,
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TABLE 5. Comparison of hybrid deep learning models.
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TABLE 5. (Continued.) Comparison of hybrid deep learning models.

TABLE 6. Comparison of hybrid deep learning models with traditional classifiers.

such as DesNet201, VGG16, and VGG19. Since during the
feature extraction process, the feature vector is quite large,
a pyramidal approach is used by using feature concatena-
tion and reduction. Therefore, feature vector size decreases.
Instead of classification in an end-to-end deep learning
network, the obtained features are input to an SVM for clas-
sification. On ESC-10, ESC-50, and UrbanSound8K, their
model achieved an accuracy of 94.8%, 81.4% and 78.14%,
respectively.

Phan et al. [154] developed a powerful technique for scene
classification from audio using DRNNs. The audio scene is
first converted into a series of label tree embedding feature
vectors then segmented into various sections. To classify the

subsequences, a deep GRU based RNN is used. To obtain the
overall label for the whole sequence, the outputs of the seg-
ment classifications are combined. The output is then input
to a linear SVM for classification. Therefore, this is a hybrid
model that extracts features using an RNN but classification
is achieved using a traditional classifier, e.g., an SVM. The
LITIS Rouen dataset tests showed that the hybrid model of
RNN-SVM achieved an F1-score of 97.7%.

Li et al. [155] investigated a dilated CNN for music
genre classification that combines a CNN with different
traditional classifiers such as an SVM, RF and Gaussian
Discriminant Analysis (GDA). They used spectrograms that
use MFCCs as input to the dilated CNN. In the dilated
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CNN, convolution filters are applied with a gap between
them, hence dilating the convolution operation and extracted
features. After training the dilated CNN model, they input
the extracted features to different machine learning classifiers
for classification. Experiments on GTZAN demonstrated that
their hybrid model improved the classification accuracy and
achieved 91%. It also performed better than the dilated CNN
only.

Vamsi et al. [55] proposed an autoencoder-based hybrid
model for bird species classification from sound recordings.
They first applied pre-processing to identify pitch in the
audio signal then using the frequency waves, converted the
pre-processed audio signals intoMel frequency spectrograms
and input them to an autoencoder for feature extraction.
Finally, classification was achieved using the traditional clas-
sifiers RF and SVM; the extracted features were input to RF
and the SVM for classification. Experiments on a bird species
dataset showed that their hybrid model was effective.

Falah and Jondri [156] proposed a hybrid model that com-
bines stacked autoencoders with an SVM for lung sound
classification. They used the continuous wavelet transform
of lung sounds as input to stacked autoencoders for feature
selection. They then used the SVM for classification. Addi-
tionally, discrete wavelet transform was also compared. The
results indicated that their hybrid model with the continuous
wavelet transform achieved 86.51% accuracy.

Ullo et al. [157] developed a hybrid model for environmen-
tal sound classification using a CNN and different traditional
classifiers. They first converted audio signals into spectro-
grams using STFT. Then applied feature extraction from
spectrograms using two pre-trained models such as AlexNet
and VGG-16. For classification, the extracted features were
input to various classifiers; decision trees, SVMs, KNN, and
softmax. Experiments on ESC-10 demonstrated that the CNN
with softmax layer and CNN with KNN achieved the best
results.

Tang and Chen [158] proposed a hybrid model for music
genre classification by combining an RCNN with a broad
learning (BL) technique. They first converted audio signals
intoMel-spectrograms then, using the RCNN, carried out fea-
ture extraction. Finally, for the classification, Broad Learning
(BL technique receives the extracted features and predicts
the music genre. Experiments on GTZAN, Ballroom, and
Emotion, showing that their hybrid model is effective.

Fulzele et al. [159] also presented a hybrid model that
is a combination of LSTM and an SVM for music genre
classification. They utilized LSTM for feature extraction and
the SVM as a classifier on GTZAN. Evaluations indicated
that their hybrid model performed better than individual per-
formances of LSTM and the SVM and achieved an accuracy
of 89%.

III. DATASETS
An audio dataset is a collection of audio recordings that can
be used to train a deep learning model to recognize and
classify different types of audio content/signals. We collected

information on several audio datasets commonly used by
various researchers for audio classification.

One of the popular datasets that is used for environmental
sound classification is ESC-50 [162]. This dataset con-
sists of 2000 environmental audio recordings organized into
50 semantically-uniform classes of common sound events,
such as Dog, Rain, Sea waves, and Thunderstorm, with each
class containing forty 5-second recordings. As Figure 9 illus-
trates, the dataset provides a comprehensive taxonomy of
sounds related to the forest environment. Similarly, ESC-10
is a subset of ESC-50 dataset’s taxonomy [163], and com-
posed of ten classes, representing three general sound groups:
1) transient/percussive sounds with meaningful temporal pat-
terns (sneezing, dog barking, clock ticking), 2) sound events
with harmonic content (crying baby, crowing rooster), and
3) structured noise/soundscapes (rain, sea waves, fire crack-
ling, helicopter, chainsaw).

FIGURE 9. ESC-50 dataset [162].

UrbanSound8k [164] was designed for urban sound clas-
sification and sound event detection. It is a well-known and
widely used dataset. It consists of 8732 labeled audio samples
of urban sounds from 10 classes and falling into different
sound categories, as shown in Figure 10.

FIGURE 10. Urbansound8K dataset [162], [164].

GTZAN is another common dataset used for music genre
classification. It includes audio tracks from ten music genres:
Rock, Pop, Country, Blues, Jazz, Latin, Reggae, Classical,
Hip-Hop, and Metal [165]. This dataset can be used for both
supervised and unsupervised learning tasks, enabling explo-
ration of genre relationships, comparison of genre trends,
and identification of similarities between different genres.
It contains over 7,500 audio tracks.
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The YouTube-100M audio dataset is a comprehensive
collection of audio files from YouTube videos, with over
100 million tracks spanning a range of genres and topics [67].
It contains audio in a variety of formats, includingMP3,WAV,
and FLAC, and organized into a hierarchical structure by
genre, artist, and album.Metadata such as artist name, release
date, and track length, are also provided.

The Mozilla Common Voice dataset is a dataset for
various speaker classification tasks including speech recogni-
tion, speaker recognition, and language identification [166].
It includes audio samples that are labeled as having back-
ground noise or silence.

The VoxCeleb dataset contains an extensive collection
of over 100,000 utterances from 1,251 different celebri-
ties [167]. While designing the dataset, gender-balance was
considered; 55% male speakers and 45% female speakers.
The dataset is composed of speakers of various ethnicities,
accents, professions and ages.

The EmoDB dataset is a collection of emotion-annotated
audio recordings of German-speaking actors for emotion
recognition from speech [168]. It consists of over 600 sen-
tences spoken by 10 actors in 4 different emotional states
(anger, boredom, happiness and sadness). Each sentence is
labeled with one of the four emotion states. The corpus
also contains additional information such as gender, age, and
dialect of the speaker.

The MUSAN dataset consists of 109 hours of music,
speech, and noise audio recordings [169]. It is broken down
into speech, music, and noise folders and organized by the
source website from which the recording was downloaded.
All audio files are available as 16-kHz WAV files.

The Respiratory Sound Database [170] is a collection of
audio samples acquired from research in hospitals in Portugal
and Greece for disease classification. The database contains a
total of 5.5 hours of recordings from 126 subjects, including
6898 respiratory cycles, 1864 of which containing crackles,
886 containing wheezes, and 506 containing both.

For acoustic scene classification and event detection,
the TUT Sound Events 2017 [171] and TUT Sound
Events 2016 [172] datasets are widely used. TUT Sound
Events 2017 was generated in a street environment and con-
sists of 24 audio recordings in 6 different classes: People
speaking, people walking, brakes squeaking, car, children,
and large vehicle. TUT Acoustic Scenes 2016 was designed
for sound event detection and is a collection of binaural
recordings in 15 different acoustic environments. It includes
recordings in residential areas and home environments and
manually annotated with the label, onset, and offset of sound
events.

AudioSet is a collection of 10-second sound clips
obtained from YouTube videos labeled by human annotators.
To acquire the data, YouTube content was searched, and seg-
ments were created for annotation, which was then verified
by human annotators. The dataset contains a wide variety of
sounds such as musical instruments, human speech, animals,
and environmental sounds.

The Speech Commands dataset [173] contains spoken
words and designed to assist keyword spotting systems. Key-
word spotting is a task to identify a single spokenword among
other words with high accuracy.

The DCASE dataset is an audio dataset created to support
research in sound event detection and classification [174].
First launched by QueenMary University of London in 2013,
the DCASE dataset encompasses a wide range of acoustic
scenes and events, from environmental, urban, and domestic
sounds, and includes a variety of real-world scenarios and
recording conditions. Thus far, the dataset has seen several
editions, such as DCASE 2013, DCASE 2016, DCASE 2017,
DCASE 2020, DCASE 2021, and DCASE 2022.

IV. DISCUSSION OFDEEP LEARNING-BASED METHODS
Audio classification using deep learning models, includ-
ing CNNs, RNNs, autoencoders, transformers, and hybrid
models (hybrid deep learning models and hybrid deep learn-
ing models with traditional classifiers), has emerged as a
promising approach for analyzing and classifying audio data.
We first explained (a) the main components of different deep
learning architectures for audio classification and then dis-
cussed (b) the deep learning-based methods that apply these
models. In this section, we highlight the important features of
these different deep learningmodels in terms ofmethod, input
data/feature, architectures, datasets, model performance, and
model application. Figure 11 shows the distribution of
the reviewed methods using different deep learning mod-
els. It was observed that a CNN was the most preferred
deep learning architecture. Autoencoders, transformers and
hybrid models such as CNN-LSTM, CNN-Bi-RNN, CNN-
autoencoders are also preferred. Although transformers are
relatively new compared with other deep learning architec-
tures, it is expected that more transformer-based methods will
emerge in future.

FIGURE 11. Number of publications for each type of architecture.

The following are our observations according to the struc-
tured review of different CNN-based methods for audio
classification. CNN-based methods have shown to have high
performance in different applications such as classification of
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FIGURE 12. Application areas of CNNs.

FIGURE 13. Application areas of RNNs.

inter-floor noise, environmental noise, environmental sounds,
soundtrack music genre, English accent, emotion, acoustic
scene, and speech classification, as shown in Table 1. Com-
mon audio classification application areas of CNN-based
methods are illustrated as a pie chart in Figure 12. Environ-
mental sound classification (22%), music genre classification
(21%) and acoustic scene classification (15%) are the top
three application areas. However, different researchers have
used different feature extraction techniques for CNNs, but
the most common ones are using Mel spectrograms, MFCCs,
and STFT. Different techniques are generally used for CNN
architectures; such as custom CNNs and some methods use
common CNNs such as VGG16 and DenseNet.

Beyond CNN-based methods for audio classification,
hybrid CNN models with other deep learning architec-
tures have advanced significantly in the audio classifica-
tion domain. In particular, many RNN, autoencoder and

FIGURE 14. Application areas of autoencoders.

FIGURE 15. Application areas of transformers.

transformer-based methods utilize CNN to form a hybrid
deep learning model.

As mentioned above and illustrated in Table 5, only few
standalone RNN methods are used for audio classification.
Many methods do not use RNNs alone but combine them
with CNNs such as convolutional and bi-directional models.
In terms of application areas of RNN-based methods, music
genre classification (45%) is the most common.

Comparative analysis of methods based on autoencoders
is shown in Table 3. It has been observed that different
researchers used autoencoders to classify audio signals using
various datasets and feature extraction techniques. The most
commonly used autoencoder architectures include VAEs, and
autoencoders with an MLP. In terms of application, acoustic
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FIGURE 16. Application areas of hybrid deep learning models.

FIGURE 17. Application areas of hybrid deep learning models with
traditional classifiers.

scene classification (15%) and music genre classification
(29%) are common for autoencoders, as shown in Figure 14.

The comparative analysis of transformer-based methods
for audio classification is summarized in Table 4. It has
been observed that different transformers are applied to audio
data such as ASTs and PaSSTs, and other types of trans-
formers have been emerging for various audio classification
tasks. As a future extraction generally, spectrograms are used.
Transformer-based methods are generally used for music
genre classification, environmental/acoustic scene classifica-
tion and various other tasks, as shown in Figure 15.

Comparison of hybrid models for audio classification is
shown in Table 5 and 6. Hybrid models that combine the
strengths of deep learning with other different deep learning
models or traditional classifiers. Hybrid models are used
for different application areas; music genre classification
and environmental/acoustic scene classification are the most
common, as shown in Figure 16 and 17.

V. CONCLUSION AND FUTURE DIRECTIONS
We mainly focused on audio classification while using
different deep learning models such as CNNs, RNNs, autoen-
coders, transformers, and hybrid models. We provided a
comprehensive overview of the recent advancements for
audio classification using deep learning. To implement a deep
learning model, the first step is to convert the 1D audio signal
to a 2D spectrogram. This can be achieved using feature
extraction techniques such as using STFT,Mel-spectrograms,
Log-Mel spectrograms, and other time-frequency represen-
tations. An appropriate deep learning model can then be
used to classify audio signals. We examined the research
on audio classification, focusing on input feature extraction,
deep learning architectures, datasets, performance, and appli-
cation area. This review suggests that deep learning models
are powerful tools for audio classification. These models
produced promising results in various audio classification
applications, including speech classification, music genre
classification, environmental sound classification, noise clas-
sification, acoustic scene classification, and speech-emotion
classification.

CNNs have proven to be highly effective for extracting
spatial features from audio signals, making them suitable for
tasks such as music genre classification and environmental
sound classification. The remarkable success of CNNs in
this field is due to their ability to capture high-level features
from the audio data. RNNs are particularly well-suited for
tasks that require temporal dependencies, such as speech
classification and audio-sequence classification. This is due
to their ability to capture time-dependent information in the
data. Autoencoders can be used for unsupervised learning of
features and reducing the dimensions of audio data. By recon-
structing the input signal, these models can learn to identify
and capture the important characteristics of the audio data,
enabling accurate classification. Transformer-basedmethods,
specifically spectrogram- and MFCC-based representations,
have become common for audio classification tasks due to
their ability to provide a concise and meaningful represen-
tation of audio signals. This representation enables efficient
model training and accurate classification. This survey high-
lighted the potential of hybrid models for audio classification
that combine different deep learning models with traditional
classifiers. Hybrid models leverage the strengths of multiple
architectures, enabling more comprehensive feature extrac-
tion and capturing both spatial and temporal dependencies in
audio data.

Regarding feature extraction, we highlighted and summa-
rized the significance of spectrogram-based representations
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such as STFT, Mel-spectrograms, Log-Mel spectrograms,
MFCCs, and other time-frequency representations, as effec-
tive features for audio classification. These features encode
important spectral and temporal information, enabling deep
learning models to learn discriminative representations.

This survey also highlighted the significance of datasets
with high-quality, diverse labels for training and evaluating
audio classification models. The emergence of large-scale
datssets, such as UrbanSound8, GTZAN, DCASE, ESC-50,
Urban Sound, Common voice Mozilla and Audio Set, has
enabled progress in audio classification research and bench-
marking. Nevertheless, there are still challenges that need
to be addressed, including class imbalance, limited domain-
specific datasets, and privacy issues related to audio data.

In summary, this survey focused on deep learning models,
including CNNs, RNNs, autoencoders, transformers, and
hybrid models, which hold great promise for audio classifica-
tion tasks.We expect to see more transformer-based methods.
Many transformer-based methods have been proposed that
are combined with other deep learning models. In future,
we expect to see more hybrid models using transformers.
The findings of this survey can guide researchers in selecting
appropriate methods, architectures and datasets as well as
inspire future research directions to address the challenges
and advance audio classification while using deep learning
models.
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