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ABSTRACT Quantum neural networks constitute one of the most promising applications of QuantumMachine
Learning, as they leverage both the capabilities of classical neural networks and the unique advantages of
quantum mechanics. Moreover, quantum mechanics has demonstrated its ability to detect atypical patterns
in data that are challenging for classical approaches to recognize. However, despite their potential, there
are still open questions such as barren plateau phenomenon and the challenges of scalability and the curse
of dimensionality, which become particularly relevant in Reinforcement Learning (RL) when working in
environments with high-dimensional state and action spaces. This study delves into the critical realm of
representing classical data as quantum states, a topic of keen interest across the scientific community. The
aim is to construct streamlined circuits for efficient execution on quantum computers and simulators using
minimal qubits and entanglement gates to evade barren plateau phenomena and reducing computational
times. Our investigation examines and validates the efficacy of three strategies for data management and
dimensionality reduction in real-world, large-scale environments for Quantum Reinforcement Learning,
particularly in energy efficiency scenarios. The techniques encompass amplitude encoding, linear layer
preprocessing, and data reuploading, supplemented by trainable parameters. This research sheds light
on the potential of quantum machine learning in enhancing real-world environments, including energy
efficiency scenarios and showcases the capabilities of quantum neural networks in the reinforcement learning
landscape.

INDEX TERMS Energy efficiency, quantum neural networks, quantum encoding, quantum reinforcement
learning, variational quantum circuits.

I. INTRODUCTION
Quantum machine learning (QML) [1], [2] is one of the key
fields that could reap advantages from near-term quantum
devices, alongside optimization and quantum chemistry.
Quantum Neural Networks (QNNs) [3], [4], are of particular
interest to this manuscript owing to their significant potential
in this area, and their ability to compete with current state-of-
the-art classical algorithms based on artificial neural networks
(ANNs) [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Byung-Gyu Kim.

QNNs are models inspired by both neural networks and
quantum mechanics. They are implemented as Parametrized
Quantum Circuits (PQCs) or Variational Quantum Circuits
(VQCs). QNNs have shown success in various domains,
including supervised learning [6], [7], [8] and unsupervised
learning [9]. While research on Quantum Reinforcement
Learning (QRL) is still in its early stages, recent studies have
demonstrated that QNNs can outperform classical models
in Reinforcement learning (RL) scenarios, achieving better
cumulative rewards with fewer parameters to be learned [10].
However, being compared to classic Artificial Neural

Networks (ANNs) that have led to significant advancements
in various fields, such as AlphaGo [11] and other remarkable
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achievements [12], [13], quantum approaches to RL still
have ample room for improvement. Ongoing advancements in
deep reinforcement learning (DRL) and quantum computing
technologies, such as Google’s Cirq, IBM’s Qiskit, and
Xanadu’s Pennylane, have contributed to the increasing
interest in QML and QRL among researchers [14], [15].

VQC refers to a class of hybrid classical-quantum algorithm,
which are based on a quantum circuit with learnable
parameters optimized using classical algorithms. These
models have the capability to approximate any continuous
function, similar to classical neural networks [4], [16].
In Quantum Reinforcement Learning, VQCs can be used
as function approximators for the agent’s policy π(a|s) or
Q-values Q(s, a). The trainable parameters are optimized
using either gradient-based or gradient-free methods.
The VQC model consists of three main components:

1) An encoding layer responsible for translating classical
data into quantum states to be managed by the quantum
system; 2) A variational layer (ansatz) in charge of the
approximation of an objective function (cost function), whose
parameters are trained with classical optimizers, and 3) The
definition of observables that will be considered as circuit
outputs. The selection of the encoding strategic is crucial
for the construction of efficient and accurate quantum neural
networks. The use of an appropriate ansatz with the minimum
number of qubits, layers and entanglement gates is essential
to deal with noise and barren plateaus phenomenon. In QRL,
these considerations are particularly important when working
with feature-rich environments.

Prior research has showcased the capability of variational
quantum circuits to approximate deep Q-value functions
for decision-making and policy selection [17], [18]. These
studies have leveraged techniques such as Grover’s algorithm
for encoding the policy probability distribution [19] and
have even extended the approach to encompass multi-agent
scenarios [20].
In the field of energy efficiency and energy management,

there is a wide range of approaches in the state-of-the-art of
RL. In datacenter environments, RL has been applied to tasks
such as efficient resource allocation/deallocation in response
to workload variations [21], [22], task scheduling [23], [24],
predictive and efficient routing schemes [25], and minimizing
power usage of resources [26].
In the case of energy efficiency in buildings, RL has

been used for climate control in commercial buildings,
such as the application of the Zap Q-learning algorithm to
maintain temperature comfort within the desired range while
reducing energy consumption [27]. Wang et al. proposed an
RL controller based on actor/critic models using recurrent
neural networks (LSTM) for HVAC control in buildings [28].
A comprehensive survey on RL applied to energy efficiency
in buildings can be found in [29].

Despite the reported success of RL andDeep Reinforcement
Learning (DRL) in various energy efficiency and management
scenarios, most of the approaches rely on the development
of simulation environments that implement digital twins of

real devices, often using historical data. Simulation tools
like EnergyPlus [30] and Modelica [31] play a fundamental
role in training and testing models before deploying them
in real energy systems. RL environments are built on
top of the simulation software, as for example, Sinergym
[32], Gym-EPlus [33], or EnerGym [34], which model
energy consumption and control in buildings, simulate energy
management in electrical vehicles (EVs) [35], [36], and
simulate EV charging stations [37]. Various environments
are described and analyzed in [32].

RL algorithms typically operate in large-dimensional action
and state spaces, which presents amajor challenge for quantum
and classical computing implementations. Past studies have
endeavored to address this concern by incorporating diverse
encoding and dimensionality reduction strategies within
the context of OpenAI Gym challenges. These strategies
encompass techniques like data re-upload [38], amplitude
encoding [39], and the transformation of pixel inputs into
quantum data [4]. Building upon these foundations, we extend
our investigation to more expansive environments, thereby
assessing the scalability of Quantum Reinforcement Learning
within real-world scenarios.

In this article, we show that using quantum circuits with the
minimum possible number of qubits can not only accurately
represent the required information, but also achieve superior
performance metrics compared to circuits that require more
qubits. This finding is particularly relevant as qubits are a
limited resource subject to noise in quantum computers and
time consuming in simulators. Furthermore, circuits with more
qubits are more susceptible to falling into barren plateaus,
emphasizing the importance of optimizing quantum circuits
for reinforcement learning. Additionally, across all conducted
experiments, it consistently emerges that a quantum model
surpasses the classical model.
The presented manuscript tackles these challenges by

introducing and comparing three strategies for managing
classical data and reducing dimensionality in the context of
Quantum Reinforcement Learning. The first strategy involves
incorporating a classical linear layer before the encoding
circuit, where the number of input neurons matches the
variables in the state space and the number of output neurons
matches the actions. The second strategy is a variant of the
first, incorporating data re-uploading and scaling techniques
with trainable parameters in the encoding circuit. Finally,
we propose an efficient circuit that accurately represents
classical information by utilizing a logarithmic scaling of the
number of variables in the state space, rather than using a
classical layer.
The manuscript is organized as follows: Sections II

provide an overview of Artificial Neural Networks, Quantum
Neural Networks, and Reinforcement Learning, respectively.
Section III explains the proposed methods used to build
QRL agents. Section IV describes the experimental setup and
analysis of the results. Finally, he discussion and conclusions
of the proposal and their results in QRL energy efficiency
scenarios are presented in Sections V and VI, respectively.
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II. BACKGROUND
For article self-completeness, this section provides a brief
introduction to Artificial Neural Networks (ANNs), Quantum
Neural Networks (QNNs), and Reinforcement Learning (RL),
which are the main topics covered in this work. Firstly,
Section II-A, describes the fundamentals of Artificial Neural
Networks. This includes an overview of the basic structure
and functioning of ANNs. Then, Section II-B, introduces
Quantum Neural Networks, and finally Section II-C presents
the basics of Deep Reinforcement Learning (DRL) to learn
optimal policies for sequential decision-making problems.

A. ARTIFICIAL NEURAL NETWORKS
Artificial Neural Networks (ANNs) [5] are computational
models inspired by the structure and functioning of the human
brain. They are used for a wide variety of tasks, including
classification, regression, and pattern recognition. ANNs
can be viewed mathematically as a directed graph, where
each node represents an artificial neuron, and each edge is
assigned with a weight that determines the strength of the
connection between two nodes. Based on the connection
pattern or architecture, ANNs can be classified into two broad
categories: feed-forward networks and recurrent networks.
In feed-forward networks, the graphs have no loops and the
information flows in only one direction, from input to output.
Recurrent networks, on the other hand, have loops because of
feedback connections, which allow them to handle time-series
data and sequential processing [40].
In the most common family of feed-forward networks,

called multilayer perceptron (MLP) whose graphical represen-
tation is shown in Fig. 1, neurons are organized into layers
that have unidirectional connections between them. Typically,
there are three or more layers: an input layer where data are
presented to the network through an input buffer, an output
layer with a buffer that holds the output response to a given
input, and one or more intermediate or ‘‘hidden’’ layers [41].

B. QUANTUM NEURAL NETWORKS
Quantum Machine Learning (QML) models constitute one
of the most promising applications of near-term quantum
computers [4], [42]. One of the main tools in QML
are Quantum Neural Networks (QNNs), which can be
implemented as Variational Quantum Circuits (VQCs). VQCs
are a class of hybrid algorithm based on a quantum circuit
with trainable parameters optimized using classical algorithms.
They are able to approximate any continuous function like a
classical neural network [4], [16], therefore, they can perform
optimization, approximation and classification tasks. The
trainable parameters are optimized using gradient-based or
gradient-free methods. Fig. 2 shows the general schema of a
VQC. This hybrid methodology encompasses the following
steps [1]:

1) Pre-processing (CPU): In this step we start from a
classical input data x, and targets at preparing the
classical data before its encoding into a quantum
state. The step encompasses classical preprocessing

techniques such as normalizations, changes of scale,
etc., with a classical neural network (Fig. 5).

2) Quantum Embedding (QPU): The objective of the
encoding layer, also known as quantum embedding, is to
map the classical data to quantum states |x⟩ by means of
an encoding circuit using parameterized quantum gates.
There are different encoding strategies depending on the
problem nature, such as the basis encoding, amplitude
encoding, or tensor product/angle encoding, among
others. In this manuscript, we use the tensor product
encoding technique [43] and probability encoding, as an
efficient and novel encoding technique that uses a
reduced number of qubits.

3) Variational Layer (QPU): The quantum state |x⟩ is the
input of the variational layer (ansatz), which implements
the internal hebabiour of Quantum neural Networks
and it is composed of entanglement and rotation gates
parameterized with learnable parameters θ . A classical
optimization algorithm will optimize these parameters,
aiming at minimizing a given cost function. The choice
of the encoding strategy, as well as the construction of
this layer, are crucial to obtain optimal results. In this
work we use the same composition of rotation and
entanglement gates in all experiments, and it is inspired
by previous works [10], [44], [45].

4) Measurement Process (QPU/CPU): In this final step,
the quantum state provided by the ansatz is measured
and decoded to obtain the desired output. The critical
point in quantum measurement is to find an optimal
way to associate outputs of the observations with target
classes. The selection of the observables used to read
out information from the quantum model is crucial to
achieve a good performance. In this work, we calculate
as output the expectation of the σz observable. The value
of this observable is in the range [−1,+1], where the
bound +1 means that ket |0⟩ is always returned, and
−1 means that ket |1⟩ is always returned as output.
In addition, we use for the second proposal the state-
vector, since the number of qubits is less than the number
of outputs.

5) Post-processing (CPU). This step gathers the outputs
returned by the QPU and make required transformation
to the data before returning the outcomes to the user and
to the cost function during the learning process.

6) Learning (CPU). This last step computes the cost
function optimizes the ansatz parameters θ with a classic
optimization algorithm (Adam, SGD, etc.). We remark
that gradient-free approaches such as COLYBA or
SPSA can also be used to approximate the update
direction of the parameters.

The selection of the coding strategy and the observables are
essential for the construction of efficient and accurate models.
Building expressive but simple circuits plays a fundamental
role to deal with noise and barren plateaus phenomenon, which
refers to gradients that vanish exponentially, similar to what
happens in classical neural networks, but which are becoming
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FIGURE 1. Example of a Multilayer Perceptron with 3 inputs, 2 layers with
2 neurons each, and 1 output.

even more present in VQC, and increasing exponentially with
the number of qubits, layers, and entanglement gates. This
effect is specially relevant when the number of input features
or variables is large. In this work, we propose a compact circuit
design as a potential solution to mitigate the risk of falling into
a barren plateau, as well as to reduce the model complexity.

C. DEEP REINFORCEMENT LEARNING
Reinforcement learning [46] is a type of machine learning
inspired by behavioral psychology. A decision-making entity,
named the agent, will modify its behavior considering the
rewards and penalties it receives from its interaction with
an unkwnown environment. RL provides the fundamental
basis to describe how intelligent agents learn autonomously to
take actions in unknown environments in order to maximize
the notion of cumulative reward. DRL unifies classic RL
algorithms together with neural networks, and its general
schema is shown in Fig. 3: When an Agent interacts with an
environment, the state of the latter is unknown to the former
except for the environment observation it can perceive. At a
given time instant t , the environment observation is written
as st . Then, the agent selects an action at from an available
action set, and performs it over the environment. After that,
the environment evolves to the next state and returns the new
state observation st+1 and a reward rt to the agent. The reward
informs the agent how good the choice of the conditioned
action has been; and it is used to enhance its performance in
the next interaction.

This sequential process is modeled with a Markov Decision
Process (MDP). An MDP is characterized by the tuple〈
S,A,P, r

〉
, where S and A are the set of states and

actions respectively, P is the probability of state transition
P(s′|s, a) = P

[
st+1 = s′|st = s, at = a

]
; i.e., the probability

of transitioning from the state st at time t to state st+1 at time
t + 1 using action at selected at time t , and r(st , at , st+1) is
the reward function for executing action at at state st and then
performing a transition from st to st+1.
The objective of the agent is to maximize its total reward

over a sequence of agent–environment interactions τ starting
at time t0, called the return and defined in Equation (1), where

γ is a hyperparameter to establish how important recent or
older rewards are for the learning, known as discount factor.
In order to maximize R(τ ), it is necessary that the agent learns
the best action a to be performed at a given state s, i.e., the
policy π (a|s), this function models the agent’s behavior in the
environment, and gives the probability of taking action a in
a given state s. In RL we consider two important functions:
the value of a state–action pair Q(s, a) in Equation (2) (the
expected return obtained in the trajectory starting from state s
and action a), and the value of a state V (s) in Equation (3) (the
expected return obtained in the trajectory starting from state s).
A third relevant concept is the advantage of the state–action
pair Adv(s, a) (Equation (4)), which returns the advantage of
choosing action a in state s with respect to the other actions
available in the action set for the same state s.

R(τ ) =
∞∑
t=t0

rtγ t−t0 (1)

Q(s, a) = Eτ∼π (R(τ )|st = s, at = a)

=

∑
s′
p(s′|s, a)(r(s, a, s′)+ γ

∑
a′

π (a′|s′)Q(s′, a′))

(2)

V (s) = Eτ∼π (R(τ )|st = s) =
∑
i

R(τi)π (ai|s) (3)

Adv(s, a) = Q(s, a)− V (s) (4)

Deep reinforcement learning attempts to use a (deep)
artificial neural network to learn the optimal policy. In the
literature, two main families of algorithms have been
highlighted in the last few years: deep Q-networks (DQN)
[48] and policy gradient [49]. DQN approximates the function
Q(s, a) by training an artificial neural network, while policy
gradient directly learns an optimal policy.
In this paper, we have utilized the DQN algorithm, its

training is inspired by the classic Q-learning method, and
aims to minimize the loss function in Equation (5), where
Q̂(s, a) represents the a-th output value of the neural network
given input s. This algorithm employs two separate networks
to facilitate the learning process. The first is the DQN-deep
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FIGURE 2. General VQC Schema. The dashed gray line encompasses the steps executed in a Quantum Processing Unit (QPU) and the dashed blue
line shows the steps executed in a CPU.

FIGURE 3. General reinforcement Learning diagram [47]. The agent at time t
perceived the state st and considering this state selects an action at . The
environment evolves to a state st+1 returning to this agent this state and a
reward rt+1.

neural network, which takes the current state s as input and
generates an approximate action-value function (Q-value)
for each possible action. The second network is called the
target network, which is a copy of the original network and is
updated with a delayed frequency to reduce correlations with
the target. Additionally, the algorithm employs experience
replay, a biologically inspired mechanism that randomizes
data, eliminating correlations in the observation sequence
and smoothing over changes in the data distribution. This
approach helps stabilize the learning process, which has
several causes: the correlations present in the sequence of
observations, the fact that small updates toQmay significantly
change the policy and therefore change the data distribution,
and the correlations between the action-values (Q) and the
target values r + γmaxa′Q(s′, a′) [48].

MSE =
∑
t

(
r(st , at , st+1)

+ γmaxat+1
[
Q̂(st+1, at+1)

]
− Q̂(st , at )

)2 (5)

III. METHODOLOGY
In this manuscript we adopt a hybrid quantum-classical
schema for the agent with a set of parameters θ = (θ1, . . . , θk )
that are learned through interaction with a classical

(non-quantum) environment, as depicted in Fig. 4. At the
beginning of an episode, the quantum–classical hybrid agent
receives the environment state st and uses this information to
select an action at based on its policy πθ (a|s). Subsequently,
the agent applies this action to the environment perceiving a
reward rt and the next environment state st+1. The policy πθ

is given by a VQC that runs on a quantum processing unit
(QPU). The optimization of this policy is achieved by updating
the parameters θ , which is performed by a classical learning
algorithm running on a central processing unit (CPU), with
the aim of minimizing a cost function [10], [45].

In this study, we propose three different QRL architectures
for analysis and comparison against classical and compacted
models. The architectures are illustrated in Fig. 5, Fig. 6 and
Fig. 7, and the aim is to evaluate their performance relative
to classical models, while demonstrating the potential of
compacted models requiring fewer qubits than other hybrid
architectures. The primary hypothesis is that compacted
models offer superior performance due to their ability to map
classical input data accurately without loss of information and
their reduced susceptibility to barren plateaus problems.

Through comprehensive experiments and analyses, we aim
to demonstrate the efficacy and trade-offs of these archi-
tectures and provide valuable insights into their practical
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FIGURE 4. QRL schema. Example of hybrid agent and classical/quantum interaction to optimize the trainable
parameters of the policy using a classical learning algorithm.

application in real-world settings. Specifically, we present
three hybrid quantum-classical architectures.
The first model utilizes a hybrid architecture for the

agent’s policy, using a linear layer that serves to reduce the
dimensionality of the state space. The number of input neurons
of the linear layer corresponds to the dimension of the state
space, while the number of output neurons corresponds to the
dimension of the action space. As a result, the quantum circuit
that follows this layer contains a number of qubits equal to the
dimension of the action space, as depicted in Fig. 5. Tensor
product encoding is employed to convert the observation
st into a quantum state |st ⟩. In this work, we calculate as
output the expectation of the σz observable, i.e., the operation
⟨φ| σz |φ⟩, for each qubit. The value of this observable is in the
range [−1,+1], where the bounds +1 means that ket |0⟩ is
always returned, and −1 means that ket |1⟩ is always returned
as output.

The second model builds upon the first one by incorporating
the data-reuploading and scaling technique. As discussed in
section II-B, an important aspect of designing VQCs is how
classical data can be encoded.While several encodingmethods
have been proposed in the literature [43], recent studies on the
expressiveness of quantum circuits suggest the advantage of
repeated encodings also referred to as data-reuploading [50],
[51], in a similar way that a classic ResNet architecture works
[5]. The use of this technique, in conjunction with trainable
weights on inputs, can lead to the creation of richer models
that have the potential to approximate the objective function
more accurately. Quantum models have a natural ability to
learn periodic functions in data, then, using repeated gate
encoding can increase the frequency spectrum of the model,
allowing it to represent a wider range of data. However, it is
important to ensure that the data is scaled appropriately to
fit within the period of the function being learned, thereby
enabling the model to learn and represent the data effectively.

Furthermore, classical neural networks take several times the
same input when processing the data within hidden layers,
therefore and considering the non-cloning theorem, the use of
data-reuploading makes sense [50], [51], [52]. This technique
enhances the model’s ability to represent classical data
accurately and approximate the objective function effectively.
It involves multiple re-uploadings of the encoding layer, where
each re-uploading utilizes trainable parameters to improve
the data encoding process. This model is structured with
interleaved encoding layers that consist of Rx gates, and
variational layers that consist of Ry,Rz, and Cz gates. The
layout of this model is depicted in Fig. 6. Each layer is
comprised of one encoding circuit and one ansatz circuit,
repeated for the number of layers specified.
Finally, the third model uses a variational quantum circuit

with log2N qubits to encode N features without loss of
information, in contrast to a linear layer. This encoding
technique is known as Amplitud encoding, which is achieved
applying cRy and Ry rotations over the qubits. To be
more specific, a combination of gates is employed to map
|0 . . . .0⟩ → |x⟩ =

∑
i ai |i⟩ where |i⟩ is the ith entry of the

computational basis. The data used in this approach must be
normalized, such that

∑
i |ai|

2
= 1. Fig. 8 depicts an example

of the circuit encoding for a system with two qubits. As an
example, four features can be represented as follows:

|00⟩ → a00 |00⟩ + a01 |01⟩ + a10 |10⟩ + a11 |11⟩ (6)

With two qubits previously initialized to |0⟩ and applying a
single qubit rotation gate U (θ ) defined in Equation (7) on the
fist qubit, we OBTAIN:

U (θ ) =
(
cos θ − sin θ

sin θ − cos θ

)
(7)

U (θ1) |0⟩

⊗ |0⟩ (8)
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FIGURE 5. First proposed architecture. Hybrid classical/quantum neural network. The pre-processing stage utilizes a
linear layer, for dimensionality reduction purposes, that is dimensioned with as many input neurons as the
observation space dimension and as many output neurons as the action space dimension. This ensures that the
expected output dimension is consistent with the dimension used in the quantum circuit. The output of the
pre-processing stage is then fed into the encoding circuit, followed by the variational layers. The final output is
obtained by measuring each qubit in the computational z-basis and post-processed using a Softmax function.

FIGURE 6. Second proposed architecture. Hybrid classical/quantum neural network. This architecture incorporates a linear layer to reduce the
dimensionality of the input data, along with data re-uploading and scaling techniques. The encoding circuit of this architecture is composed of several
unitary gates that are interleaved with the ansatz circuits. The λ-input scaling parameters and the θ-weights are the learnable parameters for the
encoding and ansatz circuits, respectively. It is worth noting that the number of encoding and ansatz circuits is determined by the number of layers
defined in the model, which is three layers in the example shown in this figure.

=

√
1− (|a10|2 + |a11|2 |00⟩ +

√
|a10|2 + |a11]2 |10⟩

(9)

=

√
|a00|2 + |a01|2 |00⟩ +

√
|a10|2 + |a11]2 |10⟩ (10)

where θ1 is given by:

arcsin (
√
|a10|2 + |a11|2) (11)

Then, applying a controlled-rotation U (θ2) on the second
qubit, with as control the fist qubit, where θ2 is chosen as:

cos (θ2) =
a00√

|a00|2 + |a01|2
, sin (θ2) =

a01√
|a00|2 + |a01|2

(12)

Finally, applying controlled-rotation U (θ3) on the second
qubit, with the first qubit being 1 as control. Choosing θ3 such

that:

cos (θ3) =
a10√

|a10|2 + |a11|2
, sin (θ3) =

a11√
|a10|2 + |a11|2

(13)

Therefore, the complete operation will be:√
|a00|2 + |a01|2 |0⟩ ⊗ U (θ2) |0⟩

+

√
|a10|2 + |a11|2 |1⟩ ⊗ U (θ3) |0⟩

= a00 |00⟩ + a01 |01⟩ + a10 |10⟩ + a11 |11⟩ (14)

The diagram in Fig. 9 depicts an example of the encoding
process for 2 qubits and 4 features. The general algorithm
used for amplitude encoding is outlined in Algorithm 1.
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FIGURE 7. Third proposed architecture. This architecture involves a pre-processing step in which the classical data is
normalized, a necessary requirement for the subsequent encoding strategy. Then, the encoding circuit illustrated in Fig. 8
is applied, which employs only log2N qubits, where N is the dimension of the observation space, in order to obtain the
corresponding quantum state that will feed the ansatz circuit. Finally, the resulting state-vector of this quantum system is
subject to post-processing using a classical linear layer, which transforms the dimension obtained with 2n where n is the
number of qubits, into the action space dimension.

FIGURE 8. Encoding circuit for the data n = 0.2, 0.3, 0.4, 0.1). Using the decomposition of cRy gates.

FIGURE 9. Example of amplitude embedding and probability amplitudes decomposition for the data n = (0.2, 0.3, 0.4, 0.1).

Regarding the ansatz layer, it is worth noting that all
models employ a combination of rotation and entanglement
gates, which have demonstrated favorable outcomes in various
algorithms [44]. The primary aim is to construct circuits with
a high level of expressivity, enabling a close approximation of
the objective function. This is achieved by employing rotation
and entanglement gates, as well as increasing the number of
layers in the circuit. However, there is a point of diminishing
returns, where increasing these components beyond a certain
limit can actually have a negative impact on the convergence
of the algorithm. We remark that the selection of encoding and
read-out strategies significantly impact the convergence of the
algorithm. In our first proposed approach, we employed PauliZ
gates on all qubits for measurement, aligning the number of
qubits with the number of outputs. In contrast, for the second
approach, where the number of outputs exceeds the number
of qubits, we opted for a different strategy. We leveraged the

state-vector in the measurement process and employed a linear
layer to ensure the desired output dimensionality. Specifically,
we employed 2N neurons for N qubits, and matched the
number of output neurons to the dimensionality of the action
space.

IV. EXPERIMENTATION
In the literature we can find different energy-efficiency and
management scenarios. Simulation tools such as Energy
Plus [30] or Modelica [31] play a fundamental role in the
training and testing of models before deploying them in real
energy systems. RL environments are built on top of this
simulation software, for example, Sinergym [32], Gym-EPlus
[33], or EnerGym [34] to model energy consumption and
control in buildings.
In this section, we will test quantum reinforcement

learning algorithms in various energy efficiency scenarios.
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Algorithm 1 Amplitude Encoding Algorithm
Input: NQubits, x ▷ x is the classicData x, NQubits is

the number of qubits
Output:StateVector

Require: x = | x∑n
i xi
| ▷ Normalization of ClassicData

1: ConditionList ← {ϵ, s|s ∈

(1|0)|(1|0){2}|(1|0){3} . . . |(1|0){NQubits− 1}} ▷ for
2 qubits: [’’,’1’,’11’,’10’,’0’,’01’,’00’]

2: for basis in [0 to len(x)] do
3: basisStates← binary(basis,NQubits) ▷ Building

the basis States for ClassicData
4: end for
5: for conditioning in ConditionList do
6: currentq← len(conditioning)
7: sum← 0
8: prob1← 0
9: for state in basisStates do

10: if state startsWith(conditioning) then
11: p← x[state] ▷ the value of x normalized in

state (basisState)
12: sum← sum+ p
13: if state[currentq] = ’1’ then
14: prob1← prob1+ p
15: end if
16: end if
17: end for
18: prob1← prob1/sum ▷ After iterating over the

basis states for the current conditioning, we compute the
angles.

19: circuit ← ϵ
20: if conditioning = ϵ then ▷ Ry over first angle and

qubit 0
21: circuit ← circuit +

Ry(2asin(
√
prob1), qubit = 0)

22: else
23: for j in conditioning do
24: if conditioning[j] =′ 0′ then
25: circuit ← circuit + PauliX (qubit = j)
26: end if
27: end for
28: controls← [0, 1, . . . , currentq] ▷ cRy gates

implementation for the rest of angles
29: circuit ← circuit + Ry(asin(

√
prob1, qubit =

currentq)
30: circuit ← circuit +

ControlledPauliX (controlQubits =

controls, targetQubit = currentq)
31: circuit ← circuit + Ry(−asin(

√
prob1, qubit =

currentq)
32: circuit ← circuit +

ControlledPauliX (controlQubits =

controls, targetQubit = currentq)
33: for j in conditioning do
34: if conditioning[j] =′ 0′ then
35: circuit ← circuit + PauliX (qubit = j)
36: end if
37: end for
38: end if
39: end for

Our goal is to compare the results of all proposed models,
including the classical MLP, and verify whether QRL and
quantum technologies are appropriate for energy efficiency in
environments with a large number of variables. Through this
experiments, we aim to demonstrate that efficient encoding
strategies and hybrid techniques can successfully handle high
dimensionality, enabling us to achieve better results than their
classical counterparts. We evaluate the influence of different
design choices on learning performance through numerical
simulations in three classical benchmarking environments
related to energy efficiency. These environments are available
in Sinergym, an EnergyPlus-supported simulator that contains
reference problems for energy efficiency and HVAC control
in buildings and facilities. Section IV-A addresses a use
case of classic control of HVAC energy-saving in buildings;
Section IV-B solves a datacenter environment; and, finally,
Section IV-C addresses a warehouse environment with a small
office.
Lastly, using cumulative reward as the basic metric for

analysis and comparison of QRL models, which are trained
with the same DQN algorithm, allows us to assess QRL
performance uniformly and fairly across all three use cases,
and also enables us to compare QRL with classical RL
regardless of the specific use case, making it easier to
analyze the results in a more general and comprehensive
manner.

A. USE CASE 1: 5-ZONES-BUILDING
1) PROBLEM STATEMENT
The target building in this study is the environment Eplus-
demo-v1 and focuses on the scenario 5ZoneAutoDx [32].
This building is based in Pittsburgh, PA, USA, consists of a
single-floor rectangular of 100 ft with five zones, four exterior
and one interior, regularly occupied by officeworkers; oriented
30 degrees east of north (see Fig. 10). The overall building
height is 10 feet; there are windows on all four facades, single
and double panel constructions with 3mm and 6mm glass
and argon or 6mm or 13mm air gap; the window-to-wall
ratio is approximately 0.29. The south and north facades have
glass doors. The walls are wooden shingles over plywood,
R11 insulation, and Gypboard; The south wall and door have
overhangs. The roof is a gravel built-up roof with R-3 mineral
board insulation and plywood sheathing and finally, the floor
area is 463.6 m2 (5000 ft2).
A state s in this environment represents a sequence of

historical observations of this building (e.g., outdoor air
temperature and room temperatures). The goal is to maximize
an aggregation of KPIs (key performance indicators) regarding
energy usage and user comfort. The detailed features are
described below:

• State space: The state space contains 20 features;
16 are described in Table 1 and 4 are reserved for the
environment.

• Action space: The action space contains a set of
10 discrete actions described in Table 2. The bounds for
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FIGURE 10. Zone building plan.

TABLE 1. Observation variables for Use case 1, comprising 16 variables,
with an additional 4 empty variables reserved for cases where they are
necessary based on the specific requirements of the problem.

heating and cooling setpoint temperature are [15, 22.5]
and [21, 30] respectively.

• Reward function: Reward is always negative. This
means that the perfect reward would be 0, indicating
perfect power consumption and temperature comfort.
In addition, there are two temperature comfort ranges
(winter and summer) and a weight of energy and comfort.
Therefore, the total reward is calculated as the sum
of reward of energy and comfort multiplied by their
respective relevance weights, given by Wenergy, as a
hyperparameter. The reward function is the same for all
three use cases but can be customized and added to the
environment.

reward = Wenergy × rewardenergy
+ (1.0−Wenergy)× rewardcomfort (15)

In this experimentation we design a classic multilayer
perceptron (MLP) neural network agent with 20 inputs

TABLE 2. Action variables.

(environment state dimension) and 10 outputs (environment
action dimension), training the agent in the Eplus-demo-v1
environment with the Deep Q-Network algorithm (DQN)
[48]. After that, we also train three different quantum agents
designed with the methodologies described in Section III, and
configure each model as described in the following section.
Finally, the settings for the environment and DQN algorithm
remain the same for the classic baseline and quantum agents,
to make a fair performance comparison.

2) EXPERIMENTAL SETTINGS
In this section we evaluate the three proposed architectures for
quantum agents, comparing them to the classical feedforward
multilayer perceptron (MLP). The first implementation for the
agent’s policy is a hybrid architecture with one linear layer and
one variational quantum circuit 5; the second proposal using
the same architecture adding data-reuploading and scaling
methods 6 and finally the third approach using encoding
strategies achieves to use a compacted and simplest model but
very expressive representing all the information included in
the features of the environment, showed in Fig. 7.
In the present study, we employed the DQN RL method

to train our agents. To ensure the validity and robustness of
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our results, we conducted 10 independent runs, each with
distinct initial random seeds. The DQN algorithm utilizes
two distinct networks to facilitate the learning process. The
first network is the DQN-deep neural network, which takes
the current state s as input and generates an approximate
action-value function (Q-value) for each possible action. The
second network is known as the target network, and it is
parameterized by a copy of the original network. This target
network is initialized with the same weights as the DQN
network and is updated with a delayed frequency, thereby
reducing correlations with the target. Additionally, uses a
biologically inspired mechanism termed experience replay
that randomizes over the data, thereby removing correlations
in the observation sequence and smoothing over changes in
the data distribution. This approach helps stabilize the learning
process, which has several causes: the correlations present in
the sequence of observations, the fact that small updates to
Q may significantly change the policy and therefore change
the data distribution, and the correlations between the action-
values (Q) and the target values r + γmaxa′Q(s′, a′) [48].

The configuration details for all models are summarized
in Table 3. In the first solution, the quantum agent utilizes
a total of 10 qubits, with each qubit corresponding to a
possible action selection. Initially, the environment state,
consisting of 20 values, is inputted to a linear layer with
20 input neurons employed to compute a linear combination,
enabling dimensionality reduction and facilitating subsequent
processing with 10 qubits. This is followed by a ReLU
activation function. Subsequently, the input information is
scaled to the range of [−π/2, π/2] prior to being fed into
the quantum embedding process. The encoded information
from the input layer is then passed through five consecutive
quantum variational layers, as described in Section III. Finally,
the expectation value of the σz operator is separately measured
for each qubit, yielding the Q-value associated with each
action. In this particular case, the Q-networks employed in
the algorithm consist of a total of 300 parameters. This
parameter count is calculated as follows: 20 × 10 = 200
(pre-processing layer) + 5 (number of layers) × 2 (learning
parameters used in Ry and Rz) × 10 (number of qubits). The
second solution, which is a variant of the previous approach,
incorporates data-reuploading and scaling methods. In this
case, the Q-networks consist of a total of 350 parameters:
20 × 10 = 200 (pre-processing layer) + 5 (number of
layers) × 1 (learning parameter used in Rx for encode the
data) × 10 (number of qubits) + 5 (number of layers) × 2
(learning parameters used in Ry, Rz for ansatz circuit) × 10.
In the third solution, the architecture consists of encoding
and ansatz circuits composed of 5 qubits, where the number
of qubits is determined by log2N , with N representing the
number of features in the observation space, in this particular
environment, N is equal to 20. The total number of parameters
in the third solution’s architecture is 225: 15 (number of
layers) × 3 (learning parameters used in Rx, Ry and Rz for
ansatz circuit) × 5 (number of qubits). Finally, the classical
network consists of an input layer with 20 neurons, a hidden

FIGURE 11. Boxplots illustrating the distribution of average total reward
obtained from four different approaches in Use case 1, arranged from left
to right as follows: a VQC with Amplitude encoding (5 qubits), VQC with
linear layer pre-processing, VQC with data-reuploading and scaling
methods, and MLP.

FIGURE 12. Learning curves obtained from four distinct methods in Use
Case 1. The approaches are: VQC with Amplitude Encoding using 5 qubits,
VQC with a linear layer at pre-processing, a variant of the latter approach
which incorporates data-reuploading and scaling methods, and the use of
MLP.

layer of 100 neurons, and an output layer with 10 neurons.
The total number of parameters in this case is 3110: 20 × 100
(weights) + 100 (bias) + 10 × 100 (weights) + 10 (bias).

It is worth highlighting that the total number of parameters
needed for the quantum approach is significantly lower than
the number of parameters required to train the classical
agent. This observation suggests that, in theory, the quantum
agent exhibits lower complexity compared to its classical
counterpart. The reduced parameter count in the quantum
agent implies a potential advantage in terms of computational
efficiency and resource utilization.

3) RESULTS
In this section we present the results from the four models.
Table 4 provides a comprehensive summary of the average,
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TABLE 3. Structure of DQN classical/quantum networks used in use case 1.

TABLE 4. Results obtained by MLP and VQC agents in the use case 1. Column 1: MLP agent (classic) and the different VQC agents proposed (quantum);
Column 2: Average total reward after training; Column 3: Best total reward after training; Column 4: Worst total reward after training; Column 5:
Computational time in seconds; Column 6: Total reward (test with deterministic policy).

best, and worst total accumulated reward obtained by the
MLP and the VQC models, along with the corresponding
computational time required for each experiment, measured
in seconds. The evaluation of the results is based on the total
accumulated reward obtained by the agent in each episode,
which encompasses the summation of the reward function
described in Equation (15) over all steps of an episode. The
average accuracy is defined as the mean total accumulated
reward calculated across the 10 different runs conducted.
One significant observation derived from the outcomes

presented in Table 4 is consistently, at least one quantum
agent outperforms the MLP model across all evaluated
categories. However, it is noteworthy that the computational
time for the VQC models was comparatively higher due to the
utilization of simulators instead of real quantum computers.
Despite this trade-off in computation time, the quantum
agents demonstrated superior performance across all evaluated
metrics, solidifying their effectiveness and potential in this
domain.

The results clearly indicate that use of amplitude encoding,
such as the third quantum approach, outperform those that
do not utilize this technique in terms of average, worst and
test reward. This finding highlights the significant potential
of amplitude encoding as coding strategy and underscores the
importance of matching the use of compacted and expressive
circuits to the learning task at hand.
Based on the boxplot analysis presented in Fig. 11,

several conclusions can be drawn. Firstly, the VQC with
amplitude encoding, as indicated by its narrow interquartile
range, demonstrates high robustness. Although it shows one
outlier, this model consistently performs well across different
experimental runs. Secondly, the MLP model exhibits the
presence of an outlier and a concentration of values in a single
region, indicating its robustness even in the presence of an
outlier. The fact that most of the data points are clustered
together suggests that the MLP model is relatively stable

and consistent in its performance. Despite this outlier, both
models demonstrate resilience and remain robust in their
performance. It is closely followed by VQC with trainable
input weights and Data-Reuploading. The VQCwith 10 qubits,
it is characterized by a higher variance in the data, exhibiting
the poorest performance among the models considered. The
data points for this model have a wider dispersion compared
to the previous models, indicating a larger range of variability
probably. This could be attributed to the model’s sensitivity
to initial conditions and hyperparameters, leading to different
outcomes in each experimental run.

Finally, from Fig. 12, it is noticeable that the model utilizing
amplitude encoding displays the best learning curve. This is
indicated by a decreasing standard deviation of total rewards
across episodes in the final iterations, suggesting a more
stable and consistent learning process. Following closely
is the Data-reuploading and scaling methods, which also
demonstrate a relatively favorable learning curve, albeit with a
slightly higher standard deviation. These findings highlight the
effectiveness of amplitude encoding and the potential benefits
of incorporating data-reuploading and scaling techniques in
improving the learning performance of quantum agents.

B. USE CASE 2: DATACENTER
1) PROBLEM STATEMENT
The target building in this study is the Eplus-datacenter-mixed-
discrete-v1 environment, which is one of the environments
available in the Sinergym simulator [32]. Specifically, the
study focuses on the scenario 2ZoneDataCenterHVAC.
This building model is based in NYC, USA. It comprises

two zones: the West zone, with a dimension of 232.26 m2, and
the East zone, with a dimension of 259.08 m2. The building
structure consists of mass walls, a regular slab floor, and a
regular roof without windows. The IT equipment in the data
center is air-cooled. Each zone within the building is served
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FIGURE 13. The figure illustrates the HVAC components used in the Zone
Datacenter. The components include Air Economizer, Direct Evaporative
Cooler, Indirect Evaporative Coolers, Single Speed DX Cooling Coil, Chilled
Water Coil, and VAV with No Reheat Air Terminal Unit. These components
play a crucial role in the data center’s cooling system, providing different
cooling mechanisms and control options to maintain optimal temperature
conditions.

by its own airloopHVAC system. The air loops are equipped
with a DX cooling coil and a chilled water cooling coil, which
are responsible for the cooling process in the respective zones
(see Fig. 13).

This specific building configuration provides a realistic
representation of a data center environment, allowing for the
analysis and evaluation of energy efficiency and HVAC system
performance in such settings.
The state space is presented in Table: 5, while the action

space remains consistent with Use case 1 as described in
Section IV-A. The reward function is defined by equation (15).

In this particular use case, we developed a classic multilayer
perceptron (MLP) neural network agent with 29 input nodes
representing the environment state, and 10 output nodes. The
agent is trained in the Eplus-datacenter-mixed-discrete-v1
environment. Additionally, we train three quantum agents
using the methodologies outlined in Section III. It is important
to note that the environment settings and DQN algorithm
parameters are kept consistent across all agents to ensure a
fair performance comparison.

2) EXPERIMENTAL SETTINGS
For this experiment, we employ four models with identical
architectures as those used in the previous use case,
as described in Section III. The first model is a hybrid
model, which incorporates a linear layer for dimensionality
reduction. In this model, the Q-networks comprise a total
of 390 parameters:29 × 10 = 290 (pre-processing layer) +
5 (number of layers) × 2 (learning parameters used in

Ry and Rz) × 10 (number of qubits). The second solution,
a variant of the previous model, incorporates data-reuploading
and scaling techniques. In this model, the Q-networks are
composed of 440 parameters: 29× 10 = 290 (pre-processing
layer) + 5 (number of layers) × 1 (learning parameter used
in Rx for encode the data) × 10 (number of qubits) +
5 (number of layers) × 2 (learning parameters used in Ry,
Rz for ansatz circuit) × 10. The third solution utilizes an
architecture composed of encoding and ansatz circuits, with
5 qubits corresponding to the logarithm base 2 of the number of
features in the observation space (N= 29 in this environment).
The number of parameters in this model is 250: 25 (number
of layers) × 2 (learning parameters used in Rx, Ry for ansatz
circuit) × 5. Finally, the classical network consists of an
input layer with 29 neurons, a hidden layer with 100 neurons,
and an output layer with 10 neurons. Consequently, the total
number of parameters in this classical network is 4010: 29 ×
100 (weights)+ 100 (bias)+ 10× 100 (weights)+ 10 (bias).
The configuration details for these models are presented in
Table 9.

At this stage, we can infer that the quantum proposal
requires significantly fewer total parameters compared to
classical agent. Consequently, the VQC models and, therefore,
the quantum agents exhibit a more compact structure when
compared to their classical counterparts.

3) RESULTS
The performance results are presented in Table 7, which
provides an overview of the average, best, and worst total
accumulated reward achieved by the three quantum agents
and the MLP. Additionally, the table includes the computation
time of each experiment, measured in seconds. The average
accuracy refers to the average total accumulated reward
obtained from 10 independent runs, where different but fixed
seeds were used to ensure reproducibility.
One notable observation from the results presented in

Table 7 is the consistent performance of at least one
quantum agent compared to the MLP model across all
evaluated categories. Despite the higher computation time
associated with VQC due to the use of simulators instead of
real quantum computers, the quantum agents demonstrate
superior performance. In particular, the VQC model with
5 qubits, utilizing efficient encoding with amplitude encoding,
excels for execution time, mirroring the findings from the
previous use case. This model showcases the ability to
maintain expressiveness and effectively approximate the
objective function even with a smaller number of qubits
(log2N for N features). As a result, it proves to be a
highly competitive and promising option for the given
task.
Continuing with the analysis and examining the boxplot

in Fig. 14, we can observe that the VQC agent with 5 qubits
exhibits a relatively moderate interquartile range, indicating a
reasonable range of variability in its performance. Although
the range is not extremely narrow, the absence of outliers and
the proximity of the median to the center suggest a consistent
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TABLE 5. Observation Variables for Use case 2, comprising 25 variables, with an additional 4 empty variables included to accommodate specific usage
scenarios that require them.

TABLE 6. Structure of DQN classical/quantum networks used in Use case 2.

and stable performance. This suggests that this agent achieved
the best result in robustness. Following closely is the VQC
agent with 10 qubits, although it shows two outliers. The MLP
model performs relatively well, with a moderate interquartile
range and no outliers. However, the median of the MLP
model is located above the box in the boxplot, indicating a
slightly higher performance compared to the center of the
interquartile range. Lastly, the VQC agent with 10 qubits
and the data-reuploading and scaling technique displays a
wider dispersion of data points, indicating a larger range of
variability in its performance.

Finally, to conclude the analysis of results and regarding
learning, in the Fig. 15 we can observe a good evolution of
learning with very similar curves for all the agents. Notably,
there is a decrease in variance in the later episodes, indicating
increased stability and convergence in learning. This suggests
that the chosen methodologies and architectures successfully
capture the environment’s patterns and dynamics. Overall,
the learning curves exhibit reliable and consistent learning
performance, highlighting the agents’ capability to adapt to
the task.

C. USE CASE 3: WAREHOUSE
1) PROBLEM STATEMENT
The focus of this use case is the Eplus-warehouse-mixed-
discrete-v1 environment, which is one of the environments
available in the Sinergym simulator [32]. Specifically, this
study concentrates on the ASHRAE9012016-Warehouse-
Denver scenario.

The building in this study is located in Denver, USA, and has
a total area of 49,495 square feet (330 ft x 150 ft). It consists
of three zones: bulk storage, fine storage and office. The office
area, which is the only section with windows, is enclosed on
two sides and at the top by the fine storage zone. The exterior
walls are constructed with a metal surface, wall insulation and
gypsum board. The roof is also made of metal surface with
roof insulation. Additionally, there are skylights present over
the bulk and fine storage areas (see Fig. 16).
The state space is represented in Table: 8, which provides

an overview of the variables included in the state space
for this use case. The action space is the same as the
previous use cases IV-A and the reward function is defined in
Equation (15).
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TABLE 7. Results obtained by MLP and VQC agents in the Use case 2. Column 1: MLP agent (classic) and the different VQC agents proposed (quantum);
Column 2: Average total reward after training; Column 3: Best total reward after training; Column 4: Worst total reward after training; Column 5:
Computational time in seconds; Column 6: Total reward (test with deterministic policy).

TABLE 8. Observation Variables for Use case 3. Comprising 19 variables, with an additional 4 empty variables included to accommodate specific usage
scenarios that require them.

FIGURE 14. Boxplots illustrating the distribution of average total reward
obtained from four different approaches in Use case 2, arranged from left
to right as follows: a VQC with Amplitude encoding (5 qubits), VQC with
linear layer pre-processing, VQC with data-reuploading and scaling, and
MLP.

2) EXPERIMENTAL SETTINGS
For this experiment, we utilize four models with an identical
architecture, as detailed in Section III. The first model, referred
to as the VQC-10 qubits model, incorporates a linear layer for
dimensionality reduction. The Q-networks within this model

FIGURE 15. Learning curves obtained from four distinct methods in Use
case 2. The approaches are: VQC with Amplitude Encoding using 5 qubits,
VQC with a linear layer at pre-processing, a variant of the latter approach
which incorporates data-reuploading and scaling methods, and the use of
MLP.

are composed of a total of 330 parameters:23 × 10 = 230
(pre-processing layer) + 5 (number of layers) × 2 (learning
parameters used in Ry and Rz) × 10 (number of qubits).
And the second solution, a variant of the previous model,
incorporates data-reuploading and scaling techniques to the
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FIGURE 16. Warehouse plan. Illustrating bulk storage, fine storage, and an adjacent
office area within the fine storage section.

solution. This variant consists of a total of 380 parameters:
23×10= 230 (pre-processing layer)+ 5 (number of layers)×
1 (learning parameter used in Rx for encode the data) ×
10 (number of qubits) + 5 (number of layers) × 2 (learning
parameters used in Ry, Rz for ansatz circuit) × 10. For
the third solution, the architecture consists of encoding and
ansatz circuits with 5 qubits, where the number of qubits is
determined by log2N with N being the number of features in
the observation space, which is 23 in this environment. The
total number of parameters in this model is 100: 10 (number
of layers) × 2 (learning parameters used in Ry, Rz for
ansatz circuit) × 5. Finally, the classical network used in this
experiment comprises an input layer with 23 neurons, a hidden
layer with 150 neurons and an output layer with 10 neurons.
Consequently, the total number of parameters in this classical
network is 5110: 23× 150 (weights) +150 (bias) + 10 ×
150 (weights)+ 10 (bias). The detailed configuration of these
models can be found in Table: 9.

Once again, it is evident that the quantum proposal requires
significantly fewer parameters compared to the classical
agent. This indicates that the quantum agent exhibits a lower
complexity compared to its classical counterpart. The reduced
number of parameters in the quantum agent suggests a more
efficient and compact representation of the model, which
can have advantages in terms of training efficiency and
computational resources required.

3) RESULTS
The performance results for the third use case are summarized
in Table 10. This table presents the average, best and worst
accumulated reward achieved by the three quantum agents and
the MLP model. The computation time for each experiment is
also included, measured in seconds. Furthermore, the average
accuracy, defined as the average total accumulated reward
over 10 different runs with fixed seeds for reproducibility,
is reported.

Once again, the results highlight the superior performance
of the quantum models compared to the classical model.
The quantum agent with data-reuploading and trainable
input weights achieved the highest average and test reward
values, indicating its effectiveness in maximizing rewards.
On the other hand, the quantum agent utilizing amplitude
encoding demonstrated the best and worst total reward values,

FIGURE 17. Boxplots illustrating the distribution of average total reward
obtained from four different approaches in Use case 3, arranged from left
to right as follows: a VQC with Amplitude encoding (5 qubits), VQC with
linear layer pre-processing, VQC with data-reuploading and scaling
methods, and MLP.

showcasing its potential achieving both exceptional and
suboptimal outcomes.
Furthermore, the robustness analysis presented in Fig. 17

demonstrates that the agent utilizing amplitude encoding
exhibits the highest level of robustness among all the models.
This is evident from the absence of outliers and the positioning
of its median in themiddle of the box, indicating consistent and
stable performance. The MLP model also performs relatively
well in terms of robustness, with a narrower interquartile range.
However, it does have two outliers, suggesting some variability
in its performance. Finally, the VQC model with 10 qubits and
VQC with data-reuploading and trainable input weights show
a similar level of robustness. The former, although without
outliers and with the median very close to the center, exhibits
a larger interquartile range, while the latter has a narrower
interquartile range but a higher median and an outlier.
To conclude the analysis, Fig. 18 demonstrates that all

the models exhibit good learning curves, with a decrease in
variance in the later epochs. It is worth noting that the MLP
model shows a relatively poorer learning curve compared to
the other models.
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TABLE 9. Structure of DQN classical/quantum networks used in use case 3.

TABLE 10. Results obtained by MLP and VQC agents in the Use case 3. Column 1: MLP agent (classic) and the different VQC agents proposed (quantum);
Column 2: Average total reward after training; Column 3: Best total reward after training; Column 4: Worst total reward after training; Column 5:
Computational time in seconds; Column 6: Total reward (test with deterministic policy).

FIGURE 18. Learning curves obtained from four distinct methods in Use
case 3. The approaches are: VQC with Amplitude Encoding using 5 qubits,
VQC with a linear layer at pre-processing, a variant of the latter approach
which incorporates data-reuploading and scaling methods, and the use of
MLP.

V. DISCUSSION
We introduced three distinct architectures for quantum agents
in our study, each designed to address the challenge of
dimensionality reduction. These architectures encompassed
approaches involving a classical layer for dimensionality
reduction, as well as methods employing efficient encoding
techniques to effectively manage the high-dimensional feature
space. These three proposed architectures were applied
to three distinct use cases focusing on efficient energy
efficiency management. In order to evaluate their performance,
we compared them against state-of-the-art classical RL
methods.
An overarching insight derived from the analysis of the

results across the three use cases is the feasibility and
effectiveness of employing quantum reinforcement learning
approaches in decision-making processes. These quantum

approaches demonstrate the ability to achieve superior per-
formance compared to their classical counterparts, while also
exhibiting reduced complexity (requiring fewer parameters
during the training). Additionally, the quantum reinforcement
learning approaches investigated in this study offer various
strategies for addressing the challenge of dimensionality
reduction, achieving excellent results, particularly through
the utilization of compact circuits with the minimum
number of required qubits. This highlights the versatility
and efficiency of quantum algorithms in effectively handling
high-dimensional observation spaces, enabling the agents to
make informed decisions while minimizing computational
complexity. The combination of superior performance and
reduced dimensionality further reinforces the potential of
quantum reinforcement learning as a powerful tool for tackling
complex decision-making problems. During the training
process, all the agents demonstrated stability with lower
standard deviation in terms of the total reward. However,
consistently across all use cases, the VQC agent utilizing
amplitude encoding emerged as the top-performing agent. This
agent not only achieved the highest performance in terms of
total reward but also showcased superior robustness compared
to other agents. Its ability to consistently outperform other
models in various use cases highlights the effectiveness and
versatility of quantum reinforcement learning with amplitude
encoding.
On the other hand, it is important to acknowledge that

the computation time of quantum reinforcement learning
approaches is typically longer compared to their classical
counterparts. This is primarily due to the utilization of
quantum simulators instead of real quantum computers.
Although quantum models offer the advantage of reduced
model complexity, the simulation of quantum systems
introduces additional computational overhead. Furthermore,
it is worth noting that the proposed quantum models were not
evaluated on contemporary noisy intermediate-scale quantum
(NISQ) hardware. Accessing and conducting large-scale
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experiments on current quantum devices presents challenges,
and the inherent noise in these systems can impact the
performance and reliability of the models. These limitations
underscore the need for ongoing advancements in quantum
hardware and improved accessibility to facilitate real-world
testing and validation of quantum reinforcement learning
algorithms.

VI. CONCLUSION AND FUTURE WORK
In this work, we conducted an investigation into the
potential of quantum deep reinforcement learning for
energy efficiency scenarios. Our study revealed that the
hybrid quantum-classical algorithmic setup offers superior
performance compared to the classical deep reinforcement
learning baseline. The quantum models showed improved
performance, with the compact model utilizing amplitude
encoding standing out. However, it is important to note that the
training duration of the quantum models was longer compared
to the classical baseline due to the utilization of quantum
simulators, as explained in the previous section.
The selection of an appropriate encoding strategy plays

a crucial role in the convergence of the quantum rein-
forcement learning algorithm. In our study, we employed
data-reuploading and scaling techniques [50], [51] and
amplitude encoding. These strategies proved to be effective,
yielding promising results across the three quantum archi-
tectures. Notably, the agent utilizing amplitude encoding
consistently outperformed the other architectures, exhibiting
superior performance across all the use cases studied in this
work.

Addressing the scaling behavior of quantum reinforcement
learning methods in real-world environments with a large
number of variables has been a significant challenge. Most
of the existing research and benchmarking in this field
have focused on small-scale OpenAI environments. Our
work complements the existing body of research by not
only addressing the challenges encountered in small-scale
environments but also paving the way for the analysis of
intricate and large-scale and real-world scenarios, we make
three key contributions.

Firstly, we demonstrate the feasibility and effectiveness of
efficient encoding techniques in quantum deep reinforcement
learning. This involved employing circuits with fewer
qubits, enabling dimensionality reduction without sacrificing
model effectiveness or essential information retention. This
successful endeavor addressed challenges related to scalability,
thus facilitating the application of quantum reinforcement
learning in high-dimensional scenarios.

Secondly, we highlight the potential application of quantum
reinforcement learning in energy efficiency and management
scenarios, which has been previously demonstrated in our
earlier work [10]. By leveraging the power of quantum
algorithms and combining them with reinforcement learning
techniques, we showcase the capabilities of quantum agents
in addressing complex decision-making problems in the field
of energy efficiency.

And finally, we have addressed critical technical challenges,
such as barren plateaus [53], potencially leading to prolonged
convergence times and, in some cases, impeded optimization
altogether, We have successfully mitigated the barren plateau
issue through the application of higher or adaptive learning rate
techniques, allowing us to overcome the stagnation commonly
associated with flat regions of the optimization landscape.
Additionally, the strategic selection of quantum circuits with
optimal qubit counts played a pivotal role in alleviating barren
plateau-related convergence issues. Our investigation revealed
that by carefully designing circuits with the appropriate
number of qubits, we were able to circumvent the most severe
instances of plateau-induced optimization difficulties. These
solutions have not only improved convergence but have also
laid the foundation for more stable and efficient quantum
neural network training. However, despite these solutions,
further research is necessary to comprehensively address
the barren plateau challenge in quantum neural networks.
Exploring alternative parameter initialization methods and
novel optimization strategies remains an open area of
investigation.
It is important to note that the inherent instability of the

DQN algorithm, which in these use cases has been solved
using adaptive learning rates and/or a higher number of layers,
highlights the need for alternative neural network models
that offer greater stability. Brain-inspired neural network
models, for example, hold promise as they bridge the fields of
neuroscience, artificial intelligence, and quantum computing.
Research efforts should be directed towards exploring these
models and investigating their potential in quantum deep
reinforcement learning scenarios.

Another important consideration is that all our experiments
were conducted using quantum simulators, which allowed
us to isolate the noise typically present in current quantum
hardware. However, a noteworthy challenge arises from the
substantial time required for simulations. The complexity
of emulating quantum operations on classical hardware
contributes to these extended execution times. To address this
challenge, we have adopted an approach that strategically
employs compact quantum circuits with fewer qubits, layers,
and entanglements or hybrid models with classical layers to
reduce the number of qubits. This optimization allows us to
mitigate the computational demands of simulations, effectively
reducing execution times. Future research should focus on
optimizing libraries and simulators, as well as exploring
techniques for efficiently combining quantum simulators and
quantum hardware in training setups. This would enable more
practical and efficient experimentation, ultimately paving the
way for real-world applications.

Lastly, it is our strong belief that the progress made in
the areas of deep reinforcement learning (DRL), quantum
neural networks (QNN), and future developments in quantum
computing hardware will play a pivotal role in advancing the
field of quantummachine learning and quantum reinforcement
learning. The synergy between DRL and QNN holds great
promise for addressing real-world challenges that are beyond
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the capabilities of classical approaches. By harnessing the
power of quantum computing and combining it with the
sophisticated learning capabilities of DRL, we can expect
significant advancements in various domains, including
optimization, pattern recognition, and decision-making.
Quantum machine learning and quantum reinforcement
learning have the potential to unlock new insights, uncover
hidden patterns, and provide innovative solutions in areas such
as drug discovery, financial modeling, logistics optimization,
and more.
In conclusion, future research in quantum machine

learning and quantum reinforcement learning should focus
on addressing the challenges posed by barren plateaus,
exploring alternative neural network models, optimizing
simulation techniques, and leveraging advancements in
quantum hardware. By pursuing these avenues, we can
anticipate significant advancements in the fields of quantum
machine learning and quantum reinforcement learning, with
broad implications for various real-world applications.
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