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ABSTRACT In recent years, Generative Adversarial Networks (GANs) have gained worldwide interest and
have marked a breakthrough in deep learning, encouraging detailed studies in generating artificial images.
A new Generative Adversarial Networks (GAN) is proposed to unveil how Human visual perception takes
place, focusing on how human beings perceive images, firstly, coarse structures and then their details. The
network called 3G-AN consists of three generation stages and a single Discriminator. In this paper, a novel
three-branch generator is proposed, which takes into account Coarse, Medium, and Fine structure of a given
image.CoarseRGB decomposition image provides the general structure, whileMediumRGB stage provides
general-fine structure. Finally, Fine RGB decomposition provides fine details of the image. The proposal
is tested on MNIST, CIFAR10, and Celebrity faces databases, generating realistic images with almost no
anomalies. The RGB decomposition into coarse, medium, and fine, allows to understand the composition
of an image from a structural point of view. The qualitative analysis carried out in this research paper
outperforms the six most competitive models existing in the literature.

INDEX TERMS GAN, artificial intelligence, deep learning, fake images.

I. INTRODUCTION
Artificial intelligence has made significant advances in the
last 20 years, both in the field of machine learning and
deep learning. Supervised learning has been a major focus
of research and development, however, unsupervised learning
is still an open problem for researchers. Recently, deep
learning techniques (based on artificial neural networks)
have opened an important beta in unsupervised techniques,
particularly with Generative Adversarial Networks (GANs)
[1]. GANs are the most common learning model for both
supervised and unsupervised learning. In theory, GANs
adopt a supervised learning approach to perform fake data
generation. The principle of GANs, the training of two
simultaneous networks, can be summarized as: the generator
network denoted byG and the discriminator network denoted
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by D. The latter is a binary classifier that learns to classify
real and generated data as genuinely as possible. Conversely,
G confuses D by generating real data. These two networks
are sectioned, and finally, G produces realistic data, and D
specializes to predict fake data.

GANs have started to be used in different fields, mainly
related to two- and three-dimensional images, however, their
use has been extended to other fields such as audio and video
[2], [3], [4]. Thus, GANs have been applied in image combi-
nation [5], image manipulation [6], image enhancement and
inpainting [7], Content Based Image Retrieval (CBIR) [8],
changing faces over time [9], face completion [10], human
poses [11], face expression recognition based on generative
adversarial networks [12], object detection [13], 3D image
synthesis [14], texture synthesis [15], sketch synthesis
[16], image-to-image transition [17]; speech and language
synthesis [18], music generation [19], and applications to
video [20]. Finally, there are also efforts to identify fake
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images that have been generated by GANmethods [21], [22],
[23], [24] where authors present algorithms used to create
deepfakes and, methods to detect them.

There are some works that have some proximity to our
proposal, by namely, the so-called Triple-GAN [25], Triple-
BigGAN [26], and Triple Discriminators - Equipped GAN
[27]. These proposals use three elements in a GAN network,
a generator, a discriminator, and a classifier. However, these
works do not address the triple generation in a GAN network.
Other works that use 3 or more discriminators or generators
focus on a region of the image [28], [29], multi-resolution
image [30], and Hyper-spectral image [31] to discriminate or
generate. It should be noted that generators are implemented
with exactly the same settings (kernel size, deconvolution,
normalization, activation), having as inputs another image or
part of the image.

In this paper, a new approach to fake image generation
based on GAN scheme is presented, proposal called 3G-
AN (Three-Generative Adversarial Network) consists of
three generation stages and a single Discriminator. 3G-AN
was designed over three-branch generator scheme, which
takes into account Coarse, Medium, and Fine structure of
a given image. Two views are presented for the Coarse,
Medium, and Fine decomposition from a structural point
of view, i.e., what elements contribute structurally to each
layer. On the other hand, an analysis is presented from the
combination of the RGB color components of each Coarse,
Medium, and Fine stage. We emphasize that Coarse RGB
decomposition image provides the general structure, while
Medium RGB stage provides general-fine structure. Finally,
Fine RGB decomposition provides fine details of the image.
The proposal is tested on MNIST, CIFAR10, and Celebrity
faces database, generating realistic faces with almost no
anomalies.

The rest of the paper is organized as follows. In section II
and III, the methodology and its implementation are pre-
sented. Results are shown in section IV. Finally, conclusions
and future works are given in section V.

II. METHODOLOGY
The proposed methodology is based on the general structure
of a GAN network (see Fig. 1), three Generators and a
Discriminator. The Discriminator is trained with image
databases (described later), the output of the Discriminator
will be either zero or one, indicating that the image is ‘‘Real’’
or ‘‘Fake’’. In the case of the Generator comprising of
three stages (Coarse, Medium, and Fine, and a weighted
summation) starts from a vector of 100 randomly initialized
values. As iteration proceeds, the values of the vector will be
adapted until it starts generating images as close as possible
to the training base. In the ideal case, the images of the
Generator will be sufficiently similar to the training images
(fake images). Discriminator will not be able to differentiate
between real and fake images. It is precise at this point that the
vector is taken, corresponding to a ‘‘genetic fingerprint’’ VE

FIGURE 1. General 3G-AN structure.

that gives rise to a particular type of image, i.e. man, woman,
smiling man, or smiling woman.

Returning to the Goodfellow notation [1], 3GAN cost
function is defined as

min︸︷︷︸
3G

max︸︷︷︸
D

V (D, 3G) for GAN:

V (D, 3G) = EX∼pdata(x) [logD(x)]

+ EZ∼pz(z)[log(1 − D(3G(z)))]

= EX∼pdata(x) [logD(x)] + EZ∼pz(z)[log(1

− D({α · GC (z) + β · GM (z) + γ · GF (z)}))],

(1)

where:
D(x) = Discriminating network stage for real images.
Ex is the expected value over real images.
3G(z) is the image generated by whole generator stage,

given a noise vector z
D(3G(z)) is the estimator of the probability that the

artificial image is real.
Ez is the expected value over all false images G(z).
GC (z) is the image generated by coarse stage, given a noise

vector z
GM (z) is the image generated by medium stage, given a noise
vector z
GF (z) is the image generated by fine stage, given a noise

vector z
GC (z),GM (z), and GF (z) are ∈ RW×H×3

W × H are height and width image dimension
α, β, and γ are weighted constants ∈ [0, 1], and α + β +

γ = 1.
Z is a random noise vector following a standard normal

distribution, having mean = 0 and standard deviation = 1.
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Gradient optimization of equation 1 taking over a Mini-
batch of size NB can be expressed as:

∇2(D, 3G)
[

1
NB

∑
X

[log D(x)] +
1
NB

∑
Z

[
log(1

− D({α · GC (z) + β · GM (z) + γ · GF (z)}))
]]

. (2)

In order to get a minimum error from equation 1 and using
gradient estimation according to equation 2, the minimum
error can be reached when p(X ) = p(Z ). The set of original
images X should be the same as the set of generated images
(fake) Z . In such condition, the fake generated images can
trick the discriminator, passing themselves off as original
ones.

The whole training procedure takes into account 2 as
trainable parameter for the Discriminator and Generator
stages.

A. PROPOSED 3G-AN STRUCTURE
Proposed 3G-AN architecture is based on 3-stage for
Generator task, and 1-stage for Discriminator.
Discriminator is comprised of eleven layers; four 2D con-

volutions, four LeakyReLu operations, one Flattening, one
Dropout and one Dense operations. Summary Discriminator
model is presented in Fig. 2 where it can be seen that
the InputLayer are images of 64 × 64 × 3 size. Image
features are then convolutioned and downsampled through
2D convolution (stride= 2), and LeakyReLu as, ((64×64) ⇒

(32 × 32) ⇒ (16 × 16) ⇒ (8 × 8) ⇒ (4 × 4) ⇒

flatten(1024) ⇒ dropout(1024) ⇒ dense(1)).
RegardingGenerator task, it is conformed through 3 stages

called Coarse, medium, and Fine. As it can be seen in Fig. 1
(bottom part), the same input noise vector (dimension = 100)
passes throughout three deep learning models (see Fig. 3).
1) Coarse task: For the first one (right side of Fig. 3),

input vector is Densely linked to a (64 × 64 × 3)
12, 288 vector, after that, a batch normalization and
an activation functions (LeakyReLu) are applied. After
LeakyReLu function, a reshape is applied to a (64 ×

64 × 3) dimension. Three more operations are applied
to, a 2D convolution (stride = 1, filter = (5 × 5)),
a batch normalization and, a LeakyReLu operation.
The output of this Coarse task is an image of size
(64 × 64 × 3) in RGB format.

2) Medium task: For the second one (medium side
of Fig. 3), an input vector is Densely linked to
a vector of 14, 400 elements. After dense opera-
tion, a batch normalization and a LeakyReLu oper-
ations are applied. Then, reshaping is applied to
(4 × 4 × 900), besides, two deconvolution2D-
batchNormalization-LeakyReLu tasks are applied, out-
put image size is (64 × 64 × 3).

3) Fine task: The third task (Fine) (left side of
Fig. 3), starts linking input random vector Z to
a vector of 16, 384 elements (Dense operation).

FIGURE 2. Proposed Discriminator of 3G-AN model.

After Dense operation, a batch normalization and a
LeakyReLu operations are applied. Then, reshaping
is developed to a (4 × 4 × 1024) dimension.
Besides, three deconvolution2D-batchNormalization-
LeakyReLu tasks are applied, output image size is
(64 × 64 × 3).

4) Weighted summation: The output of each Coarse,
Medium, and Fine stages are summed weighted to
generate the final image. According to the theory
of face human perception [32], [33], Coarse-to-fine
theories of vision propose that the coarse information
carried by the low spatial frequencies (LSF) of visual
input guides the integration of finer, high spatial
frequency (HSF) detail.
The Weighted summation equation is expressed in
equations 3 and 4 (See Figure 3, three lines before the
end).

Image =

[
α · Coarse(R,G,B)

+ β ·Medium(R,G,B)

+ γ · Fine(R,G,B)
]
,

(3)

Stand α = 0.5, β = 0.3, and γ = 0.2

Image =

[
(0.5) · Coarse(R,G,B)
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FIGURE 3. Proposed 3-Generators of 3G-AN model (Coarse-Medium-Fine).
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FIGURE 4. Some examples of MNIST dataset.

FIGURE 5. Some examples of CIFAR-10 dataset.

FIGURE 6. Some examples of celebrity face dataset.

+ (0.3) ·Medium(R,G,B)

+ (0.2) · Fine(R,G,B)
]
.

(4)

TheWeighted summation layer output is an image size
of (64 × 64 × 3).

FIGURE 7. Convergence plots of the proposed 3G-AN model.

B. IMAGE DATABASE
In order to validate the proposed model, three image datasets
were used: MNIST [34], Cifar-10 [35], and CelebA [36],
as follows:

• MNIST [34] is a widely dataset used in the field
of pattern recognition, image processing, and machine
learning. MNIST contains ten hand-written digits
(from 0 to 9), which is divided into 60, 000 digits
for training and 10, 000 digits for testing, each dataset
containing a label type. The height and width of the
image are 28 × 28 pixels (see Fig. 4 as an example).
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FIGURE 8. Generator of images from 3G-AN model.

FIGURE 9. One hundred fake faces generated using 3G-AN model.

FIGURE 10. Comparation of 3G-AN model versus five competitive GANs.

• CIFAR-10 [35] contains 50,000 training samples and
10,000 testing samples, where each image is in RGB
format and the size of 32 × 32 pixels. The dataset
contains 10 classes corresponding to 10 natural scenes
–airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck (see Fig. 5 as an example).

• CelebFaces The sub Large-scale (celebA) dataset was
used [36]. The dataset is composed of 200, 000 faces

FIGURE 11. Color RGB components for 3 output layers: Coarse (first line),
Medium (second line), and Fine (third line).

(see Fig. 6 as an example). In CelebFaces are men,
women, smiling men, smiling women, blonde women,
African-American women, among others.
The CelebFaces image database (composed of 200K
faces) was processed as follows: firstly, the face is
located in each image, then, the face is cropped (using
OpenFace [37]) and standardized to a size of (64 × 64)
pixels, all in color, in RGB format.

C. METRICS
In order to give a measure of generated images, two metrics
are applied,mean squared error -MSE- (see eq. 5) andFrechet
Inception Distance -FID- (see eq. 6).

MSE =
1

M × N

M−1∑
i=0

N−1∑
j=0

[R(i, j) − F(i, j)]2, (5)

stand R(i, j) real image, F(i, j) fake or generated image, and
[M × N ] the image size.

FID = ||µR − µF ||
2
+ Tr[6R + 6F − 2 · (6R · 6F )1/2].

(6)

stand µR is the mean value of the real image, µF is the mean
value of the fake image, 6R is the variance/covariance matrix
of the real image, 6F is the variance/covariance matrix of the
fake image, Tr is the trace of amatrix (the sum of the elements
along the main diagonal of the square matrix).

D. 3G-AN TRAINING PARAMETERS
The training parameters of the GAN network were as follows.

a) loss = ‘binary_crossentropy’,
b) optimizer = Adam(lr = 0.0002, beta = 0.5),
c) metrics = [‘loss, accuracy’],
d) batch_size = 512,
e) epochs = 4, 00,
f) sample_period = 200.
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FIGURE 12. Color RGB components for the 3 output stages from proposed 3G-AN model: Coarse (first line), Medium (second
line), and Fine (thirtd line).

The cost function of the equation (1) is optimized
throughout the cross-entropy derivative.

III. SYSTEM IMPLEMENTATION
The project was implemented on an Alienware Aurora
R13 Gaming Desktop 2 Gen Intel
Core™i9 − 12900KF ,
Windows 11 Home, NVIDIA®GeForce RTX™3090, 24 GB
GDDR6X, 64 GB, DDR5, 4400 MHz, dual-channel; up
to 128 GB, 512GB NVMe M.2 PCIe SSD (Boot) + 1TB
7200RPM SATA.

3G-AN was implemented in Python 3.9, using the
following libraries:Keras, 3.7.2 version (used as a backbone),
Tensowflow (2.1 version), matplotlib (3.6 version), and
numpy (1.23 version).

IV. RESULTS
In this section, we train and evaluate our 3G-AN model in
its correct implementation and operation. After obtaining
the well-trained 3G-AN model, fake image generation is
performed. Then, Full model image generation is analyzed

according to a Coarse, medium, and Fine RGB image
generation. The training of the entire proposed 3G-AN
network is explained as follows:

A. 3G-AN MODEL TRAINING
Once the 3G-AN model and the training database were
defined, 3G-AN training was performed for the three
Generators (Coarse, Medium, and fine) as well as for the
Discriminator. Fig. 7 show the loss and accuracy plots.
Fig. 7(a) presents accuracy and loss functions for training
over real faces (Discriminator 1, D1), whereas, Fig. 7(b)
showsmetrics for training over fake images (Discriminator 2,
D2). Finally, Fig. 7(c) provides the result figures for
Generator.

Learning stage was done up to 4,000 epochs, in the three
graphs it can be seen that the error decreases and the accuracy
increases as a function of the epochs. The errors of both
the Discriminators and the Generator are close to zero.
Regarding the accuracy in the Discriminators D1 and D2,
they are close to one, while for the Generator it is close
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FIGURE 13. Example of 50 generated images from proposed 3G-AN model.
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TABLE 1. Quantitative comparison on the three datasets, mean squared
error (MSE) and frechet inception distance (FID).

to 0.5. In conclusion, 3G-AN Model training was developed
as expected (according to the theory).

B. FAKE IMAGE GENERATION
Given a well-trained GANmodel, having the weights of both
the Discrimination and Generation (see Fig 8) models, one
hundred images were generated from one hundred random
vectors (Z = 100×100 dimension). Fig. 9 shows one hundred
fake images, as it can be seen, fake images are closely similar
to original CelebFaces. As it can be seen in Fig. 9, there are
smiling, serious, men, women, among other characteristics.
Finally, the variation of light on the faces can be highlighted.
Metric evaluation
According to two metrics defined, MSE and FID (see

eq. (5) and (6)), Table 1 shows measure values for three
datasets, CIFAR-10, MNIST, and CelebFaces. As it can be
seen, mean squared error is close to zero.

C. COMPARISON OF 3G-AN MODEL VS 5 COMPETITIVE
GANs
Nowadays, different GAN-based models have been proposed
to generate fake faces of human beings. Among all, the five
most competitive models [24] are ATTGAN, proposed by
He et al. [6], another competitive GAN model is proposed
by Cho et al. GDWCT [38], Choi et al. proposed StarGAN
model [39] and StarGAN-v2 model [40], Style- GAN [41],
and the StyleGAN2 [42]. Fig. 10 shows six DeepFake images
for each model, as you can see, proposed 3G-AN model (left
side) generates only the face, showing red lips, colorful eyes,
and different types and colors of hair can be seen. In 3G-AN
model, fake generating images results are realistic faces with
almost no anomalies.

Qualitative Analysis
Table 2 illustrates a comparison of our proposal versus

the most competitive methods reported in the literature.
Table 2 gives FID measure for two datasets, CIFAR10 and
CelebFaces. Our proposal outperforms 6 most competitive
models, reaching 1.60 forCIFAR10, and 1.20 forCelebFaces.
Since MNIST is not a complicated dataset to generate, the
most competitive models give the same FID value.

D. RGB ANALYSIS OVER COARSE-MEDIUM-FINE FACE
DECOMPOSITION
The contribution of this article is the understanding of the
conformation of a face in its Coarse, medium, and Fine
components, firstly, the case of a single face in its RGB
components.

TABLE 2. Quantitative comparison of the two datasets using frechet
inception distance (FID).

An RGB woman fake face decomposition is shown in
Fig. 11. A fake CelebFaces type is generated from a
gaussian noise vector (Z ) as it is shown in Fig. 11(a). The
decomposition of RGB Coarse is shown in Fig. 11(b), RGB
Medium image is shown in Fig. 11(b), and RGB Fine image
is shown in Fig. 11(d).

The Coarse component is expected to provide the general
structure of the face, while theMedium and Fine components
provide the structure and details of the face.

Another example is presented in Fig. 13 for 50 images. As
it can be seen, Fig. 13 (b) shows Coarse components where
general face structure can be remarked. Fig. 13 (c) General
characteristics of Medium components with other details are
presented in Fig. 13(c). Finally, Fig. 13 (d) contents Fine
components, minimal face complementarity can be observed.

V. CONCLUSION AND FURTHER WORK
In this paper, a new GAN model, called 3G-AN has been
proposed that consists of three generation stages and a single
discriminator. The proposal has worked properly at each of
its stages, it was tested on MNIST, CIFAR10, and Celebrity
faces databases, generating fake images realistic with good
quality and almost no anomalies, superseding the five most
competitive models reported in the literature.

A gain of decomposing a face through a novel three-branch
generator (Coarse, Medium, and Fine) from a given face
is Coarse RGB decomposition face provides the general
structure, while Medium RGB stage provides general-fine
structure. Finally, Fine RGB decomposition provides fine
details of the image.

The RGB decomposition Coarse, medium, and Fine,
allows to understand the composition of an image from a
structural point of view.

Our proposal outperforms 6 most competitive models for
CIFAR10 and CelebFaces datasets.
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As a future work, the human validity of the Coarse,
Medium, and Fine decompositions will be analyzed together
with neuropsychologists in vision.
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