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ABSTRACT Although GPS is commonly used for the autonomous flying of unmanned aerial vehicles
(UAVs), researchers mainly focus on image-based localization methods due to their tremendous advantages
when it comes to GPS-denied environments. In this study, we study the problem of image-based geo-
localization between UAV and satellite (known as cross-view geo-localization), which is an essential step
towards image-based localization. In cross-view geo-localization, extracting fine-grained features containing
contextual information from images is challenging due to the large gap in visual representations between
different views. Existing methods in this field often use convolutional neural networks (CNNs) as feature
extractors. However, CNNs have some limitations in receptive fields, which leads to the loss of fine-
grained information. Some researchers have implemented Transformer-based networks to overcome these
circumstances. However, these approaches only focused on understanding the meaning of each pixel based
on their attention and only partially utilized tokens that are produced from Transformer blocks. Therefore,
different from these works, we proposed a Vision Transformer-based network that takes advantage of local
tokens, especially the classification token. Through experiments, our proposed model has significantly
outperformed existing state-of-the-art models, which gave promising capabilities for developing this method
in the future.

INDEX TERMS Cross-view geo-localization, image retrieval, UAV localization, vision transformer, deep
neural network.

I. INTRODUCTION
The problem of developing a completely autonomous UAV
system has been a hot research topic in recent years due
to its vast applications in various fields. For example,
an autonomous UAV can fly into zones where humans can
not pass or use radio-controlled vehicles to explore. The
autonomous UAV would be convenient for rescue missions
in dangerous places [1]. However, precise navigation tech-
nology is necessary to achieve a completely autonomous
UAV system. Although Global Positioning System (GPS)
is commonly used for localization and navigation of most
autonomous UAVs, GPS tends to be inactive when operating
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in specific environments, such as urban canyons and dense
foliage. Additionally, GPS can experience signal disruptions
or outages due to jamming, interference, or adverse weather
conditions, leaving UAVs without reliable positioning infor-
mation [2].

Recently, image-based localization for autonomous UAVs
has become famous because of the rich information from cap-
tured images and the rapid development of image processing,
especially when deep learning has significantly improved the
accuracy and reliability of these tasks. This field comprises
two main approaches: relative visual localization (RVL)
and absolute visual localization (AVL) [3]. RVL is often
considered frame-to-frame localization, which focuses on
understanding the camera’s position and orientation relative
to a previously observed or mapped environment. The RLV
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FIGURE 1. Example of cross-view image geo-localization (UAV - Satellite).

includes popular methods such as Visual Odometry (VO) [4]
and Simultaneous Localization and Mapping (SLAM) [5],
and many of them have been put into practice [6], [7] [8].
However, RVL is heavily affected by error accumulation:
the error made in the prior pose estimation will impact the
accuracy of the following estimation. Thus, the UAV tends
to drift over time. This issue limits the capability of RVL in
long-time applications and complex environments.

On the other hand, absolute visual localization (AVL),
also known as frame-to-reference localization or geo-
localization, [9], [10], involves estimating the geographical
location of an image based on its visual content. This
image-based geo-localization aims to determine the precise
location from which an image was taken, typically using
a previously collected database of geo-tagged images with
known coordinates. In the context of autonomous UAVs,
this research approach has been addressed as cross-view
image matching for geo-localization (in short, cross-view
geo-localization) [11], which is the task of matching the
images from a UAV viewpoint with the satellite-view images
annotated with geographic locations (UAV - Satellite).
Figure 1 describes an example of this task. By finding
the satellite-view image that is truly matched the captured
image, the UAV can obtain the current geographic location
and operate autonomous localization without GPS. In this
paper, we mainly focus on alternative approaches to improve
the accuracy and reliability of the task of cross-view
geo-localization.

Early-stage of cross-view geo-localization-related works
applied traditional image processing methods such as SURF
[12] or SIFT [13] to create hand-crafted features, and
after that, discriminate images by calculating the similarity
score between these features. However, as the gap between
different views is enormous, these methods could have
gained better results than expected. In recent years, with
the advances of deep learning in computer vision, hand-
crafted feature-extracting methods have been replaced by
learnable, autonomous feature-extracting methods such as
convolutional neural networks (CNN). Thus, researchers in
fields of cross-view geo-localization have achieved some

remarkable results [14], [15] [16], [17]. However, the
crucial key to solving cross-view geo-localization is finding
relevant information between images and fully understanding
global contextual information, which is quite challenging
for CNNs as most CNN architectures often focus on small
discriminative features.

In order to overcome these drawbacks of CNN-based
methods in solving cross-view geo-localization, some works
have brought to attention modules [18], [19] [20], [21] -
which are famous for emphasizing the necessary parts and
suppressing irrelevant parts in feature maps, thus, enhance the
final contextual information. Additionally, with the evolution
of self-attention mechanism in nature language processing,
self-attention based network for vision processing - theVision
Transformer structure has been implemented in some cross-
view geo-localization related works [22], [23], [24], [25]
and achieved remarkable results. These methods used Vision
Transformer as a robust contextual information extractor
and processes input image at the pixel level (SGM [24]) or
focused on the attention level of the local tokens which are
embedded patches of input images (FSRA [25]). However,
these methods still need to fully utilize classification
tokens, which is also an essential component of the Vision
Transformer. As the deeper and more layers the Transformer,
the classification token can accumulate information from the
other tokens in the sequence. It can effectively contribute
to the performance of the Vision Transformer. Therefore,
utilizing this token may unlock numerous potential in various
applications. To investigate the effect of classification tokens
in combination with other local tokens on the cross-view
geo-localization problem, we mainly made the following
contributions:

• We introduced a new Vision-Transformer-based archi-
tecture, which used a token enhancement strategy
combining classification tokens and local tokens to
improve the accuracy of matching UAV and satellite
images.

• Our proposed model has shown outstanding per-
formance through several extensive experiments on
the benchmark dataset (University-1652) and greatly
exceeded the current state-of-the-art methods.

The rest of the paper is organized as follows. Section II
outlines the related research conducted in this field. In Sec-
tion III, we introduce our proposed model. Section IV
demonstrates the results of the experiments and some
discussions. Finally, Section V presents a summary and our
future challenges.

II. RELATED WORKS
In this Section, we review some famous approaches in
the field of cross-view geo-localization (Section II-A) and
introduce the applications of Transformer in computer
vision (Section II-B), along with recent token enhancement
strategies of Vision Transformer (Section II-C).
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FIGURE 2. The pipeline of cross-view geo-localization.

A. CROSS-VIEW IMAGE MATCHING FOR
GEO-LOCALIZATION
Previous works on cross-view geo-localization often focus
on two tasks: the task of matching panoramic street-view
images and satellite images (which were usually conducted
on CVUSA [26] and CVACT [27] datasets) and the task
of matching UAV-view images and satellite-view images
(which were conducted on University-1652 [11] dataset).
These works considered cross-view image matching for
geo-localization as an image-retrieval task: giving an image,
the matching model needs to retrieve the true-matched image
from a different view’s gallery. The pipeline of cross-view
geo-localization (UAV → Satellite) can be described in
Figure 2. At first, features from both query and gallery images
are extracted using different feature processing methods.
After that, the similarity of both query and gallery features
is computed by standard similarity measures such as Cosine
similarity or Euclidean distance [28]. These results are added
to a ranking list, later used to find the true-matched image
pair. Finally, the geo-tag in the true-matched gallery image is
used for the next phase of localization.

In some existing works, hand-crafted features extracted by
traditional feature processing methods have been applied [9],
[29], [30]. The development of cross-view geo-localization
continued to grow when deep learning methods were intro-
duced in this field. Feature learning-based models (CNNs)
and Metric learning methods are typical for learning image
representations. For example, in matching street-view and
satellite images, Workman et al. [31] adopted deep networks
for the first time in cross-view image matching and achieved
remarkable results. Hu et al. [14] designed a model that
applied NetVLAD - a famous CNNmodel in image retrieval,
with Siamese network architecture and trained it with metric
loss. Moreover, Liu et al. [27] proposed a Siamese network
to encode the orientation information of each pixel in the
images. Vo and Hays [32] proposed soft-margin ranking loss
in cross-view matching to overcome the margin issues of
margin triplet loss, and Hu et al. [14] further improved this
loss by introducing weighted soft-margin ranking loss, which
significantly reduced convergence in the training phase.
In the task of matching UAV-view images and satellite-
view images, Zheng et al. [11] proposed ResNet-based
models and optimized them with cross-entropy loss and

instance loss [33]. Ding et al. [34] considered this problem
a place classification task and solved it with an image
classification model. LPN [35] and MBSA [36] derived
the idea of utilizing part-based features from PCB [37]
and proposed a square-ring feature partition strategy, which
enabled networks to exploit small contextual information
fully.

B. TRANSFORMER IN COMPUTER VISION
The attention mechanism was first proposed as an effective
technique to help neural networks find out the most critical
region of an image, thus increasing the model performance
in feature learning. For several years, attention mechanism
has been deployed in various computer vision tasks, including
cross-view geo-localization. Recently, the power of the
self-attention mechanism in Natural Language Processing,
Transformer, has gained lots of attention from researchers.
Some of them tried to utilize its performance in vision
processing-related tasks. In 2020, Dosovitskiy et al. [38] was
the first to apply a Transformer in the image classification
task, known as Vision Transformer (ViT). Since then, Trans-
former has beenwidely developed inmanymainstream vision
processing problems, such as object detection, semantic
segmentation, and Person Re-Identification (Person Re-ID),
and has received a lot of remarkable results. For example, the
Vision Transformer has shown promise in object detection
tasks, which aim to locate and classify objects within an
image. Detection Transformer (DETR) [39] was the first
Transformer-based network for object detection tasks; Zhu et
al. [40] proposed the DeepViT, a model which incorporates
Vision Transformers into object detection frameworks like
YOLO and Faster R-CNN, showcasing superior performance
on object detection benchmarks.

Additionally, the self-attention mechanism in the ViT
also allows the model to effectively capture global context,
leading to more precise and contextually aware segmentation
results. Segmentation Transformer (SETR) [41] was the first
pure-transformer model for semantic segmentation; Carion
et al. [42] extended the ViT’s capabilities to semantic
segmentation, where they utilized a hybrid architecture
combining ViT with the DETR object detection model,
showcasing significant improvements over previousmethods.
In the field of Person Re-ID, TransReID [43] successfully
utilized the power of Transformer to achieve competitive
results compared to CNN-based methods; Lu et al. [44]
designed an end-to-end dual-branch Transformer network for
occluded person re-identification, which surpassed the state-
of-the-art results on benchmark Person Re-ID datasets.

For the cross-view geo-localization task, some researchers
started implementing Transformer-based methods for the
ground-satellite geo-localization. Yang et al. [22] proposed
a self-cross attention Transformer network to learn the
representations of both ground and satellite views. Zhu
et al. [23] designed TransGeo that utilizes the strengths
of Transformer related to global information modeling
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and explicit position information encoding, which achieves
state-of-the-art results on several datasets and takes less
computation cost than CNN-based methods. Tian et al. [45]
proposed a cross-view matching method called SMDT with a
new image alignment strategy combined with Transformer,
which is superior to existing methods. However, there are
only a few applications of Transformer in UAV-satellite
image matching problems. Inspired by TransReID, Dai et
al. [25] designed FSRA. This network automatically divides
regions based on the heat distribution of the Transformer’s
feature maps and aligns them in different views one on one.
Zhuang et al. [24] also shared the same idea with FSRA but
used a Swin-Transformer [46] backbone aligned the same
semantic parts of two images by classifying each pixel based
on the attention value of pixels.

C. LOCAL TOKEN ENHANCEMENT
The architecture of Vision Transformer by Dosovitskiy et
al. [38] composed of several Multi-Head Self-Attention
(MHSA) blocks that operate self-attention mechanism on
embedded patches of input images (known as tokens), which
are later used in Multi-Layer Perceptron (MLP) to perform
final classification. After the debut of Vision Transformer,
most Transformer-related studies focused on enhancing the
MHSA block [46], [47], [48], while some researchers paid
attention to the correspondence between these tokens. Beal
et al. [49] was the first to combine local tokens to create
spatial feature maps for object detection. After that, Jiang
et al. [50] proposed token labeling - a new training strategy
that labels tokens based on their attribution to take advantage
of all patch tokens. Yuan et al. [51] designed Tokens-to-
Tokens Vision Transformer (T2T-ViT), which introduced the
tokens-to-token (T2T) process to tokenize images to tokens
progressively and structurally aggregate tokens.

In this work, our approach takes inspiration from FSRA
[25], which combines local tokens using a jigsaw classifica-
tion branch, and especially the Locally-Aware Transformer
(LA-Transformer) from the work of Sharma et al. [52]. LA-
Transformer combined classification token with the local
tokens and re-arranged them in the form of a 2D image
grid like the strategy from PCB [37] to take advantage of
the 2D spatial locality of these tokens, which performed
successfully in the PersonRe-ID task. Both personRe-ID task
and cross-view geo-localization task used the same approach
of representation learning - which encouraged us to apply
this idea of LA-Transformer on a cross-view geo-localization
task.

III. PROPOSED METHOD
In Section III, we explain the details of our proposed
network: overview of the proposed network architecture
(Section III-A); the structure of the Vision Transformer
backbone (Section III-B); the Token Enhancement Process
(Section III-C); the Classifier Module (Section III-D) and
Loss Function (Section III-E).

FIGURE 3. Proposed network architecture.

FIGURE 4. Vision transformer backbone.

A. OVERVIEW OF PROPOSED NETWORK ARCHITECTURE
Figure 3 demonstrated our proposed network architecture
overview. The network consists of two branches. One
branch takes UAV-view images as input, and the other takes
satellite-view images as input. For the backbones, we apply
a basic Vision Transformer (ViT) on both branches, and
they all share initial weights that were pre-trained on the
ImageNet dataset. In both branches, we employ a token
enhancement strategy. All the feature outputs are transferred
to a classifier module composed of Fully-Connected (FC)
layers and Classifier layers (Cls), with Batch Normalization
and DropOut.

B. VISION TRANSFORMER BACKBONE
Figure 4 described the structure of the ViT backbone. Given
an input x ∈ RH×W×C , the model divided the input image
into N number of small flattened 2D patches:

x ip|i = 1, 2, · · · ,N (1)

where x ip ∈ RK2
·C , (H ,W ) is the resolution of the original

image, C is the number of channels, (K, K) is the resolution
of each image patch. The number of patches N is calculated
as follows:

N =
HW
K 2 . (2)

Herewe used the original ViT-B from [38], which has an input
size of 224×224 and an original patch size of 16×16. Thus,
the number of patches N will be 196. After that, the Linear
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FIGURE 5. The token enhancement strategy.

Projection Flatten Patches linearly converted these patches
into D dimensions using patch embedding function E :

E(x ip)|i = 1, 2, · · · ,N . (3)

Here, D is set to 768. Before transferring these patches to
the Transformer Encoder, an extra learnable embedding token
xcls, whose state at the output of the Transformer encoder
serves as the image representation, is added, and all the
tokens are fused with position embedding P to preserve the
positional encoding information. The final vector z0, which
composed of N number of patches and class embedding xcls
can be defined as follows:

z0 = [xcls;E(x1p );E(x
2
p ); . . . ;E(xNp )] + P (4)

After that, the final vector z0 was transferred through Trans-
former Encoder F , which consists of multiple Transformer
Blocks. The final output contained N + 1 feature vectors
(in this study, these are called tokens) and can be defined as
follows:

F(z0) = [f0, f1, f2, · · · , fN ] (5)

C. TOKEN ENHANCEMENT PROCESS
In this study, the token enhancement process follows the work
of LA-Transformer by Sharma et al. [52], which was also
inspired by the PCB technique of Sun et al. [37]. As explained
above, the Transformer encoder outputs N + 1 tokens:

F(z0) = [f0, f1, f2, · · · , fN ]. (6)

Here, we denote global token (classification token) as G =

f0 and local tokens as Q = [f1, f2, · · · , fN ]. We performed
token enhancement by combining local tokens with global
tokens: (Q+ k ∗G) and re-arranged them in the form of a 2D
spatial grid which contains

√
N = 14 tokens each row and

column (Figure 5). After that, the Global Average Pooling
(GAP) was performed on the 2D grid, and finally, we divided
the 2D spatial grid of tokens into N regions. The final feature
vector L obtained after the GAP process can be defined as
follows:

Li =
1
NR

(i+1)∗NR∑
j=i∗NR+1

Qj + k ∗ G
1 + k

i = 0, 1, · · · ,NC − 1

(7)

FIGURE 6. The classifier module.

where Qi, G are local and global tokens; NR and NC are
the total number of patches per row and column (which is
√
N ), respectively; k is the hyperparameter which indicates

the importance of global token G in the enhanced combined
token. The value of k is manually set before the training (see
Section IV-D2).

The final results of this process are 14 feature vectors; each
has a size of 1 × 768 .

D. CLASSIFIER MODULE
Finally, the feature vectors from the token enhancement
process are passed into the Classifier Module. The primary
purpose of the Classifier module is to predict the class (geo-
tag) of each image based on multiple feature vectors. The
Classifier module (described in Figure 6) has

√
N number of

FC layers (which is 14 in this study). Each Fully-Connected
(FC) layer has an input size of 768 and an output size of
512. All the final results are transferred to 14 Classifier layers
(Cls), each with an input size of 512 and an output size of 701
(the number of classes).

E. LOSS FUNCTION
For the training loss, we optimize the network by calculating
the Cross-Entropy loss (CE loss) on each branch of the
network:

LCE (p, y) =

{
−log(p), y = 1
−log(1 − p), y = 0

(8)

where p stands for the prediction result, and y stands for the
class’s ground-truth label (geo-tag). The final loss can be
formulated as follows:

Lfinal =

N∑
i=0

L iUAV + L iSatellite (9)

where LUAV and LSatellite are the total CE losses calculated in
each branch, and N is the number of feature parts (which is
14 in this work).

IV. EXPERIMENTS AND DISCUSSIONS
In Section IV, we first explain the details of the University-
1652 dataset (Section IV-A) and our implementation details
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TABLE 1. Detail information of the training dataset.

TABLE 2. Detail information of the testing dataset.

(Section IV-B). After that, we introduce several experiment
results in comparison with the state-of-the-art methods
(Section IV-C) and demonstrate some ablation studies
to get a better understanding of the proposed method
(Section IV-D).

A. DATASET DETAILS
Regarding the dataset, we use the University-1652 dataset
released by Zheng et al. [11], as it is the only benchmark
dataset in this field that acquires both satellite-view and UAV-
view images, which helps solve cross-view geo-localization
for UAV navigation. This dataset contains 1,652 geographic
targets from 72 universities all over the world. Each
target contains three views: satellite, UAV, and street view.
To reduce the high cost of collecting images by UAVs, Zheng
et al. collected all UAV-view and street-view images by a
3D engine named Google Earth, while Google Map captured
satellite-view images. All images in the dataset have geo-tags
as their class labels. A simulated camera view controlled the
view of UAVs in Google Earth, and the view height ranges
from 256 to 121.5m. Each target consisted of 1 satellite-view
image, 54 UAV-view images, and a few street-view images.
The dataset was split into the training set and testing set.
Notice that there are no overlapped classes between two
sets, which means that the images in the testing set are
entirely different from the training set, and the trained
model has never seen the images during the training. The
captured images have an original size of 512 × 512. The
data distribution details in each set are described in Table 1
and Table 2. Samples of UAV-view images and Satellite-view
images in the dataset were demonstrated in Figure 7.

B. IMPLEMENTATION DETAILS
For training, we resize all the input images to 224 224 to
match ViT’s original, as we want to utilize the pre-trained
weights on ImageNet of ViT. We apply three types of ViT
backbone: small scale-ViT, which has 8 Transformer blocks,
normal-scale ViT (ViT-B), which has 12 Transformer blocks
and large-scale ViT (ViT-L), which has 24 Transformer
blocks. These backbones were pre-trained on ImageNet-21K
[53]. The proposed model was trained over 120 epochs with a

FIGURE 7. Samples of UAV-view image (a) and Satellite-view image (b) in
University-1652 dataset.

FIGURE 8. The testing stage.

batch size of 16. We chose Stochastic Gradient Descent with
Momentum (SGDM) and used a momentum of 0.9 with a
weight decay of 5 × 10−4 as the optimizer for the training
phase. The initial learning rate is 10−4 for backbone layers
and 10−3 for other layers. All the programs were executed on
Nvidia Titan XP GPU using the Pytorch framework.

For the testing stage, 14 Classifier layers (Cls) in the
Classifier Module are removed, and the distance is calculated
using output feature vectors extracted from each branch.
As described in Figure 8, 14 feature vectors (1 × 512) are
concatenated into one feature vector (14 × 512). Euclidean
distance was applied to compute the similarity between
feature vectors from the query and gallery:

DEuclidean = ||FUAV − FSatellite||2 (10)

where F is the concatenated feature vector.
In this study, we evaluated our models on two tasks:

UAV Satellite and Satellite UAV. We used two common
measurements in cross-view geo-localization: Recall@K
and Average Precision (AP).Recall@K is computed by
calculating the ratio of the true-matched image in the top-K
results of the ranking list. On the other hand, AP is a popular
metric in measuring the precision of a retrieval system, which
measures average retrieval performance with multiple ground
truths. The higher Recall@K and AP, the better the model
performs. We also measure the inference time of each model
in the testing phase.
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TABLE 3. Comparisons with state-of-the-art methods on University-1652. ViT-B represents the normal-scale ViT, ViT-S represents the small-scale ViT, and
ViT-L represents the large-scale ViT. Swin-Tiny represents the small-scale Swin Transformer [46]. Inference time is measured compared to LPN [35]. The
best accuracy is highlighted in bold.

TABLE 4. Ablation study on the influence of global and local tokens with different backbones. ViT-B represents the normal-scale ViT, ViT-S represents the
small-scale ViT, and ViT-L represents the large-scale ViT. Swin-B represents the small-scale Swin Transformer. The best accuracy is highlighted in bold.

C. COMPARISONS WITH THE STATE-OF-THE-ART
In Table 3, we demonstrated the performance of our proposed
model compared with other state-of-the-art works. Our
proposed model reached 87.33% of R@1 and 89.28% AP on
UAV Satellite, 90.16% R@1 accuracy, and 86.93% AP on
Satellite UAV data, which significantly exceeded the state-
of-the-art MBSA [36] by a large margin of about 5% on
the UAV Satellite task, and surpassed all other ResNet-50
based methods. This result confirmed that Transformer-based
structures can achieve the same performance as CNN-based
models and perform better with a proper feature enhancement
strategy. Compared with other Transformer-based methods,
our proposed model surpassed SGM [24] and FSRA [25] by
nearly 5% and 3%, respectively. Additionally, with the same
Transformer backbone (ViT-S) and input image resolution
(224 × 224), our proposed model still achieved better
results than FSRA. Especially, our proposed model with
the large-scale ViT backbone (ViT-L) achieved the highest
accuracy of R@1 and AP on the UAV Satellite task: 88.18%
and 89.99% (nearly 4% accuracy improvement compared to

all the existing state-of-the-art methods). It should be noted
that the proposed model did not see the classes of testing
set during the training, but the proposed model still achieved
high matching accuracy. Furthermore, the inference time of
the proposed model (ViT-S backbone) is only 0.89× of the
ResNet-50-based model, which is faster than most existing
models but still reaches competitive results.

D. ABLATION STUDIES
1) ABLATION ON THE EFFECT OF TOKEN ENHANCEMENT
STRATEGY IN DIFFERENT TRANSFORMER-BASED MODELS
To further understand the influence of global and local tokens
in Transformer-based models, we evaluated the performance
of models that used different Transformer-based backbones
and different token combinations. Here we performed several
experiments on different scales of ViT (small, base, and
large) that have different numbers of Transformer blocks
(8, 12, and 24, respectively), and the backbone of Swin
Transformer [46], which is a novel Transformer-based model
that exceeded ViT on the ImageNet classification task.
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In Swin-based models, the output size of the feature vector
has N = 49. Thus, the number of classifiers in these
models is changed to

√
N = 7. As described in Table 4,

the token enhancement strategy has a positive effect on all
the ViT-based models in both tasks: about 5% of accuracy
increase in ViT-S and ViT-B based models, and around 1 to
3% of accuracy increase in ViT-L based models. From these
results, we assumed that the global token, which contains
the whole input image information in ViT, can also heavily
affect the final feature representation, and a 2D grid PCB-like
strategy in ViT is more effective than the re-arrangement of
tokens in FSRA and SGM.

On the other hand, whenwe applied the token enhancement
on the Swin-based models, except the Swin-S-based models,
the accuracy of R@1 and AP dropped on the UAV Satellite
task and had about 1% accuracy increase on the Satellite UAV
task. This result concluded that the token enhancement strat-
egy did not positively affect Swin-based models. Regarding
this phenomenon, we assume that the reason lies within the
difference in the way the Swin Transformer model applies
the self-attention mechanism. Swin Transformer is built
by replacing the standard multi-head self-attention (MSA)
module in a Transformer block with a module based on
shifted windows. These shifted windows build hierarchical
feature maps (feature maps that are merged from layer to
layer), which effectively reduce the spatial dimension of the
feature maps from one layer to another. However, the tokens
produced from these operations do not reserve the spatial
information from the original input patch as in ViT, which
makes us believe that it heavily affects the 2D grid PCB-like
strategy in the final process of our proposed method.

2) INVESTIGATION ON THE EFFECT OF GLOBAL TOKEN
The hyperparameter k is an essential indicator in the token
enhancement strategy. It implies the importance of global
tokens in the final results. By default, we deploy k = 8.
To verify the influence of k on the accuracy of R@1 and AP,
we conducted several experiments with different values of k
(in the range of 0.5 to 20) with ViT-Bas backbone, and the
results are described in Figure 9. For the task ofUAVSatellite,
the accuracy of both R@1 and AP raised when the value of k
increased and reached the highest accuracy (87% and 89%)
when k = 12, dramatically dropping after that.

On the other hand, in the task of Satellite UAV, the accuracy
of R@1 and AP have an increasing tendency when k is
lower than 6, and there is an enormous instability when k
increases. From these results, we assume that when k is
getting bigger, the information of the global classification
token may overwhelm the contextual information of local
tokens and, thus, affect the feature representations that are
extracted in each patch. Thus, selecting k in the training
phase is quite important, and more investigations on this
phenomenon should be conducted in the future.

FIGURE 9. Compare the effect of the hyperparameter k on two task: UAV
Satellite (blue line) and Satellite UAV (orange line). (a) Show the effect of
hyperparameter k on the accuracy of Recall@1. (b) Show the effect of
hyperparameter k on the accuracy of AP.

3) ABLATION OF OFFSET AND SCALE
To verify the robustness of the proposed model against offset
and scale in comparisonwith existingmethods, we performed
two ablation experiments on this problem. For the first
experiment, the image was shifted from 0 to 20 pixels to
the right to offset the geographic target from the center view.
Experiment results were compared with the results of SGM
[24]. The results of the first experiment are shown in Table 5.
When the offset increased from 0 to 10, on the task of
UAV Satellite, the accuracy of our model dropped about 2%
in accuracy (83.98% R@1 and 86.41% AP), and dropped
lightly 1% when the offset increased to 20 (82.34% R@1
and 85.05% AP). Furthermore, the accuracy on the task of
Satellite UAV did not change much (around 91% R@1 and
86% AP). Meanwhile, the accuracy of SGM [24] dropped
dramatically on both tasks and dropped below 80% when the
offset decreased to 20. This proves that our model was robust
to offset and especially has consistency on the task of Satellite
UAV.

In the second experiment, we tested the robustness of
the model to different scales on the task of UAV Satellite.
The scale of the UAV-view image in University-1652
changed dynamically during the flight. Thus, we divided the
Query-UAV images into three groups: short, medium, and
long, which respectively demonstrated the distances between
UAV and geographic targets. Table 6 demonstrated the results
of the second experiment. The model performs worse on
short and long distances, achieving 83.88% and 83.74%R@1
accuracy, respectively. However, on the middle distance,
the accuracy of the model surpassed the average accuracy
(87.87% R@1 and 89.74% AP). The proposed model did not
have a considerable margin in any level of distance. Thus,
we believe the model is robust to scale and may be adapted
to real-environment situations.
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TABLE 5. Ablation of shifting query images during inference in
comparison with existing methods.

TABLE 6. Ablation of using drone images with different distance to
geo-graphic target in comparison with existing methods.

FIGURE 10. Visualization of qualitative result on the task of Satellite −→

UAV.

FIGURE 11. Visualization of qualitative result on the task of UAV −→

Satellite.

4) VISUALIZATION OF QUALITATIVE RESULT
To further verify the reliability of our proposed model,
twe visualize some retrieval results of our proposed methods
on two tasks (UAV Satellite and Satellite UAV).We randomly
put two images of different places from UAV and Satellite
query data into the proposed models. Then, we took
out the top-5 most similar images from the gallery data.
The true-matched images are in yellow boxes, and the
false-matched images are in blue boxes. On the Satellite UAV
task (Figure 10), our proposedmodels retrieved all the correct
results from the gallery from only one query image. On the
UAV Satellite task (Figure 11), even though there is only one
correct answer in the gallery, the proposedmodel can still find
the accurate satellite image.

E. DISCUSSIONS
We conducted a thorough examination of our proposed
model’s retrieval performance through extensive experiments
in two primary tasks: UAV Satellite and Satellite UAV.
In general, the Transformer-based model shows outstanding
performance compared to traditional CNN-based methods.
Furthermore, the participation of both global and local tokens
during the retrieval phase contributed to improved image
representation learning. Inference time was shortened by
using a smaller ViT model (ViT-S), but the proposed model
still achieved competitive results in comparison with other
methods.

However, it is essential to address some certain short-
comings in our proposed method. Vision Transformer-based
networks typically require high computational resources
(e.g., ViT-S comprises approximately 21 million parameters,
and ViT-B contains around 86 million parameters), posing
several challenges for real-time mission training and deploy-
ment. Additionally, dividing extracted features into multiple
parts also requires additional computational costs. Therefore,
designing a lightweight Vision Transformer-based network
to meet the limited computing resources on UAVs remains
a significant challenge in our future research. Another issue
to consider is that Vision Transformers are less robust
to occlusion compared to other methods. Although ViT
performs reasonably well against occlusions (ViT achieves
60% top-1 accuracy on ImageNet even when 80% of the
image content is randomly occluded [54]), real-life missions
may encounter situations where UAV views are obstructed by
weather conditions or objects. To enhance model robustness,
especially in scenarios with multiple occluding objects,
we plan to further explore the correspondence between local
and global tokens for representing contextual information in
cross-view images.

V. CONCLUSION
With the rapid development of UAV technology, the need for
autonomous control of UAVs, especially navigating UAVs
without usingGPS signals, is increasing rapidly. Image-based
localization has been a critical solution to this problem. This
paper focused on solving the cross-view image matching
tasks for geo-localization. We revealed the shortcomings of
existing CNN and Transformer-based methods and proposed
a new Transformer-based method that utilized the local
tokens and global tokens of Vision Transformer. The
proposed model’s performance was verified on a benchmark
dataset (University-1652), and the experiment results demon-
strated the outstanding performance of our model compared
to the previous existing state-of-the-art methods. Notably, our
method’s tokenization process exhibited robust performance,
promising significant potential for various applications in
future Vision Transformer-related research. In the upcoming
phases, we will continue to explore how to further improve
the matching accuracy, especially on real UAV image data,
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and seek to optimize the Transformer model for practical
applications in UAVs.
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