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ABSTRACT The information of cropland is obtained efficiently and accurately as the basis for achieving
precision agriculture (PA). As the boundary between cropland and other types of land in remote sensing
images with different resolutions is fuzzy, the characteristics of cropland are easily confused when extract-
ing cropland, resulting in inaccurate identification and extraction of cropland under large and complex
backgrounds and rough localization of marginal areas. We proposed a two-path multiscale attention self-
supervised network with the perception of four directions in pixel space, called the multiscale bilateral
spatial direction-aware network (MBSDANet), to solve these problems and improve the model’s ability to
extract cropland in small samples. One path extracts attentional feature maps by spatial directions to preserve
detailed direction-aware information and generate high-resolution features; the other path obtains local-to-
global information through pyramid pooling and attention awareness to capture dense multiscale cropland
features to separate targets in complex contexts. The features of the two branches at different levels are fused
by weighting the multi-aware information. Triangular self-supervised and boundary-aware losses are used to
achieve fine segmentation and extraction of cropland in small samples. We tested the extraction method on
cropland in Denmark and the Hebei Province of China, demonstrating its effectiveness and generalization.
Compared to other neural network models, MBSDANet achieves better accuracy with a precision of 0.9481,
an IoU of 0.8937, and an F1 score of 0.9438.

INDEX TERMS Cropland extraction, remote sensing images, multi-aware information, spatial directions-
aware, two-path branch.

I. INTRODUCTION
Cropland is closely related to the development of human
society and economy in terms of quantity, quality, and spatial
distribution [1], [2]. At present, remote sensing technology is
widely used in digital precision agriculture (PA), such as crop
area statistics, crop pest monitoring, crop yield prediction,
etc. [3], [4], [5], [6]. The identification and extraction of crop-
land are crucial for the subsequent acquisition of cropland
change and cropland utilization information, which is helpful
for crop growth monitoring and yield prediction [7], [8].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenming Cao .

Manual mapping is an early method of cropland extraction.
When monitoring scattered and large-scale farmland, manual
mapping is not only time-consuming and laborious but also
affects the accuracy of data. At present, methods based on
deep learning show performance that is difficult for tradi-
tional methods to achieve in some scenarios. However, due
to the large differences in scale, shape, and other aspects of
different cropland regions, cropland extraction is still faced
with some difficulties at this stage: First, the resolution of
remote sensing images is limited, and errors often occur when
extracting cropland in low-resolution images, thus affecting
the accuracy of subsequent studies; Second, the spectral char-
acteristics of the same type of cropland may be different
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or similar to those of other types of land, so there may be
omissions or errors in the extraction of cropland; Third, the
positioning of the edge region is very rough, and the boundary
will be blurred.

Cropland extraction methods based on remote sensing
images are mainly in the three most common types of
learning: unsupervised learning [9], semi-supervised learn-
ing [10], and supervised learning [11]. Xue et al. [12] applied
the simulated submerged watershed method to merge the
cropland division units. Their method is designed to incorpo-
rate objects that are pre-segmented well from high-resolution
images. In [13] and [14], some object-based methods are
proposed to pick out cropland in high-resolution remote
sensing images. To improve discontinuity and maintain the
smoothness of the divided fields, normal and uniform ker-
nels are used to filter internal fields and boundary areas.
Hong et al. [15] designed a set of mathematical methods
for extracting land-level boundaries from regularly arranged
agricultural areas. Pen et al. [16] Although multi-temporal
spectra, NormalizedDifference Vegetation Index (NDVI) and
Normalized Difference Water Index (NDWI) have different
effects on multi-temporal classification, the expression of
spatial shape features is ignored, which cannot effectively
eliminate the influence of spectral-spatial heterogeneity,
resulting in poor mapping accuracy. The cropland boundaries
extracted by these methods are quite detailed. However, it is
usually necessary to artificially design features or parameters
in combination with prior knowledge of the size, shape, and
texture of cropland in multi-source remote sensing images.
For large-area farmland extraction, it is a difficult task to
accurately classify the objects in the farmland using unsuper-
vised methods.

Graesser and Ramankutty [17] proposed a semi-supervised
edge detection method to detect a single cropland plot from
Landsat images with time series, but the image resolution
limited the accuracy of cropland boundary and area. Telu-
guntla et al. [18] used Random Forest (RF) method to extract
and classify the cropland area of different agroecological
zones (AEZs) in Australia and China on Google Earth Engine
(GEE) platform. Waldner et al. [19] added feature interpola-
tion to the decision tree algorithm to generate farmland maps,
thereby improving the stability of unsupervised classifiers.
These methods have the problem of low accuracy of culti-
vated land extraction and are prone to the wrong and missing
cropland extraction. However, semi-supervised learning can
reduce the cost of manpower, time, and resources, and is of
great significance to the research of cropland extraction.

With the rise of deep learning, new opportunities have
been brought to natural image applications, and some mature
algorithms have been applied in remote sensing [20], [21],
[22], [23]. Shelhamer et al. [24] proposed a fully convolu-
tional network (FCN) on the basis of convolutional neural
network (CNN), which realizes pixel-level classification of
images by replacing the last fully connected layer of the
network with the upper sampling layer. Since then, many

segmentation algorithms have extended FCN, from the initial
convolutional neural network U-Net [25], [26] to deep neu-
ral network models such as pyramid scene parsing network
(PSPNet) [27], [28] and Deeplabv3+ [29], [30].
Most of the existing cropland extraction methods based on

deep learning are supervised learning. Garcia-Pedrero et al.
[31] used global boundary probability to obtain the bound-
aries of farmland plots. Masoud et al. [32] redesigned
a new super-resolution semantic contour detection net-
work on the basis of the FCN, and realized the division
of cultivated land boundary by using spatial background
information, thus improving the spatial resolution of culti-
vated land boundary output. Lu et al. [33] proposed a dual
attention and scale fusion network (DASFNet) to extract
cultivated land from GaoFen-2 images of Aral City, south-
ern Xinjiang, China. However, the low-resolution feature
map of this network may lose some key features dur-
ing the up-sampling process, resulting in blurred bound-
aries. Yang et al. [34] performed multi-source fusion of
RGB images and multi-spectral images collected by drones,
and combined with a deep learning algorithm, accurately
extracted soybean planting areas on the scale of farmland.
However, this method often aimed at a single crop and needed
to perform spectral feature statistics on a large number of
crops when extracting multi-crop farmland. Zhang et al. [35]
improved PSPNet and combined depth distance features with
shadow local features to provide more detailed predictions.
Sun et al. [36] proposed successive pooling attention network
(SPANet), using continuous pooling operators to connect
intermediate pooling features of different scales to extract
deeper semantic features. Huan et al. [37] proposed Multiple
attention encoder-decoder network (MAENet), embedding
dual-pooling efficient channel attention (DPECA) module
into the trunk. A dual-feature attention (DFA) module is
designed to extract the context information of advanced fea-
tures. Cao et al. [38] combined semantic segmentation net-
work U-Net and feature extraction residual network (ResNet)
into an improved Res-UNet network for extracting spatial
and spectral features of remote sensing images. Xu et al. [39]
proposed a high-resolution context extraction network (HRC-
Net) based on a high-resolution network (HRNet), which
uses HRNet structure to retain spatial information and
significantly improves boundary and segmentation perfor-
mance, with an overall accuracy of 92.0% and 92.3%,
respectively.

The above methods provide convincing segmentation
results but have not been evaluated on multi-resolution
remote sensing images and complex mountain cropland.
We propose the multi-scale bilateral spatial direction aware-
ness network (MBSDANet) based on the direction-aware
spatial background (DSC) [40], which trains pre-models with
a small number of labeled farmland samples. The cropland
can be accurately extracted from remote sensing images
with different resolutions and complex scenes. Through
many experiments, the performance is compared with that of
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several commonly used methods. The main contributions are
as follows:

1) We constructed a two-path multi-aware network struc-
ture to acquire features at different levels in two paths to
achieve better global multi-level feature extraction.

2) We proposed a pyramidal multiscale attention module
(PMAM) and a spatial directional attention module (SDAM).
PMAM combined a multiscale global averaging pool and a
multi-attention mechanism to improve the attention to differ-
ent scales of cropland information and the ability to extract
critical information. The SDAM analyzes detailed features
of cropland from different directions in pixel space, thus
enabling the network to focus better on the cultivated region
and its surrounding areas with structural information.

3) We designed a triangular self-supervised training strat-
egy based on feature perturbation to train a small number of
samples and designed boundary loss using the Roberts cross
operator to optimize the edge details so that the model can
focus on the boundary pixels.

II. MATERIALS AND METHODS
A. EXPERIMENTAL SETTINGS
The proposed method is performed on an Ubuntu 18.04 sys-
tem with NVIDIA GeForce RTX 3090 GPU and 16 GB
RAM. We set up a training process with 100 epochs and use
the Adam algorithm to improve the training, The batch size
is set to 4. If the epoch is too small, the training parameters
cannot be optimized, and if the epoch is too large, the training
parameters can be overfitted. We dynamically observe the
accuracy of the model on the validation set after each epoch
and find that the highest accuracy is achieved when epoch is
around 100. Set up a batch size of 4 to match epoch strike
a balance between the efficiency of memory and memory
capacity. Using a low learning rate can ensure that we do
not miss any local minima, and the learning decay rate is
usually more than 100 times the learning rate, so we choose
0.00015 as the initial learning rate, and the learning decay rate
is 0.92.

B. STUDY AREA AND DATASET
Denmark’s agricultural region is dominated by arable
land [41], accounting for about 91% of the total arable land,
mainly cereals, oilseeds, and protein crops, especially cere-
als (1.5 million hectares), which accounts for more than
half (55%) of the total agricultural area. The cropland label
for the selected area was derived from the Danish ’Marker’
open dataset in the 2016 Land Parcel Identification Sys-
tem (LPIS), taken during the May 2016 growing season
and consisted of already-trimmed Sentinel-2A images with a
spatial resolution of 10m.We randomly selected 2000 images
from the cultivated data of LPIS for the experiment, where the
ratio of the training set, test set, and validation set is 6:3:1 and
the size of each image is 640 × 640.
Hebei Province is located in the north of China, close

to the Yellow River Valley, and the central and southern

parts belong to the North China Plain, with good lighting
conditions and more planting types [42]. Compared with
other provinces such as Guizhou, Hebei Province has superior
cropland conditions, obvious structure distribution, and a
high degree of intensification. The cropland area accounts for
41.8% of the total land area in Shijiazhuang. We collected
10 m resolution cropland images (Sentinel-2A dataset) of
Shijiazhuang City from Sentinel-2A and mixed them with
4m spatial resolution images (Google Earth dataset) col-
lected from Google Earth to obtain 1400 images. The two
groups of data account for 50% each. We flipped and cropped
some images to increase sample diversity. The ratio of the
training set, verification set, and test set is 5:1:1. At the
same time, we collected 700 images with spatial resolution
of 0.5-2 m from the GaoFen-2 (GF-2 dataset) of complex,
irregular mountain cropland in Hebei Province, China, in
2019 and 2020. The ratio of training set, verification set,
and test set is 3:1:1. We resample downloaded Sentinel 2A
data into ENVI format through SNAP and then use the Layer
Stacking tool in ENVI 5.3 to fuse the converted data and
perform band stacking. The ROI tool was used to crop the
region of interest of the fused image to 512× 512 size. Each
sample set consists of two 512×512 images and correspond-
ing binary labels of cropland.

FIGURE 1. The structure of the MBSDANet for cropland extraction.

C. METHODS
We proposed a two-path fused multiscale attention network
with four spatial directions for extracting cropland, called a
multiscale bilateral spatial direction-aware network (MBS-
DANet), which has the structure shown in Figure 1. The
MBSDANet performs cropland segmentation and extraction
in an end-to-end way. The model adopts HRNet [43] as
the backbone network for feature extraction, maintains a
high resolution, and performs down-sampling and fusion
to generate feature maps with multiple resolutions in the
end. After high-resolution feature extraction, two branches
are formed, namely the multi-scale sensing path and spa-
tial direction path. In multiscale awareness paths, features
with different resolutions are extracted by PAMA, which
can increase the perceptual field to obtain effective global
contextual a priori information. Spatial direction paths extract
the output of the high-resolution features from the previous
stage from different pixel directions to refine the contextual
feature extraction and obtain detailed information about the
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cropland in the image and use spatial attention to achieve a
contextual correlation of the spatial scope of pixels and depict
various complex scenes in remote sensing images. In order
to make better use of the complementarity between the two
path features, the feature fusion of the two paths is carried
out to obtain the final feature map. Two convolution layers
are added to the output end after feature fusion, and bilinear
interpolation is used to restore the original input size image.

We compute the supervised loss LCE using the image label
Plabel and the segmentation result of the main network feature
fusion p. In addition, we perform a direct transformation of
the encoded features for the unlabeled images with a training
strategy based on feature perturbation triangulation. We use
the Roberts cross operator to obtain the corresponding bound-
ary mapping as a boundary loss to enhance the boundary
detail pixel prediction.

1) MULTISCALE AWARENESS PATHS
There are significant differences between cropland in differ-
ent areas in remote sensing images, such as cropland plots
between urban and rural areas having uniform tones, mod-
erate brightness and texture, and regular shapes. However,
cropland in complex areas has irregular shapes and a wide
range of land types, and the information features in the feature
maps are mixed with a large amount of redundant infor-
mation. The PMAM integrates local features and non-local
semantic associations of cultivated plots in complex scenes in
the deep feature map by coupling multiscale global average
pooling and multi-attention mechanisms.

FIGURE 2. The structure of Pyramid Multiscale Attention Module (PMAM).

The structure of PMAM is shown in Figure 2, where the
high-resolution features E ∈ iC×H×W extracted from the
previous stage are multi-scale pooled with a pooling size of
1 × 1, 2 × 2, 3 × 3 and 6 × 6. The multi-scale pooling can
reduce the overhead of model computation and capture the
multi-scale features of cropland information and information
that varies between different subregions. The dimensions
of the pooled features are directly up-sampling by bilinear
interpolation to obtain a feature map X ∈ iC×H×W with the

same scale as the original feature map, and the features of
different levels are concatenated into pyramidal pooled global
features.

The semantic association of pooled centers with single-
point pixels is established by the channel attention module
(CAM) [44]. Xp is projected onto three different spaces and
reshaped directly intoX1 ∈ iC×N ,X2 ∈ iC×N andX3 ∈ iC×N ,
where N = H ×W is the number of pixels.

The correlation matrix M between the reshaping matrices
X1 and X2 is calculated and named the channel attention map.

Mb,a =
exp

(
X2a · XT1b

)∑C
a=1 exp

(
X2a · XT1b

) (1)

whereMb,a measures the a channel’s impact on the b channel.
The reshaping matrix X is weighted and added to E to obtain
the aggregated features Y ∈ iC×H×W :

Yi = β

C∑
a=1

(
Mb,a · X3a

)
+E (2)

where β is the scaling factor, and the parameter is updated
adaptively during the training.

PMAM uses the attention mechanism to focus on the
feature retrieval and sifts out a small amount of truly valu-
able information from the images by establishing spatial
or channel dimensional semantic associations to obtain a
more consistent global semantic response feature. Finally,
the original input E1 is connected with the final attentional
aggregated features Y by a connection layer and output by a
3 × 3 convolutional layer.

O = W1 (concat (E1,Y )) (3)

whereW1 denotes the linear transformation.

2) SPATIAL DIRECTION PATHS
The existing cropland extraction methods have the problems
of fuzzy cropland edge information extraction and difficulty
to distinguish forest land and cropland in satellite images.
In order to solve the above problems, we added the SDAM
to comprehensively extract large areas of cropland, under-
stand the context information of the global image, analyze
the details of different spatial directions, and further extract
the texture features between different croplands, improve the
extraction accuracy of edge information, and strengthen the
extraction ability of context information and detail features.
The structure of the spatial directional attention module is
shown in Figure 3. The three-layer residual block (RB) in
SDAM further extracted the high-resolution features Ea of
the previous stage, and the DSC summarized the results of
the four directions (the row and column information of the
pixel) to obtain the spatial attention map Sa.
The DSC module produces an attention-aware map of

the cropland from the input feature. The Sa is coupled with
the three-layer RB to obtain the first global spatial context
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FIGURE 3. The structure of Spatial Directional Attention Module (SDAM).
Blocks of the same color are the same operation module.

feature Ea1, where each spatial attention maps coupling oper-
ation is expressed as follows:

Ea1 = Wres(x) · Sa1(x) + x (4)

whereWres(x) is the feature input to the RB through the three
convolutional layers parameter. In the process of obtaining
the spatial attention map of the DSC module, the global
spatial background feature is obtained after two calculations
by convoluting the feature map in four directions: up, down,
left and right. The local features fi,j at the location (i, j) are as
follows:

f directioni,j = max(αdirectionfi,j−1 + fi,j, 0) (5)

where α denotes the weight parameter in the convolution
operation, and i, j denotes the spatial location index, i =

1, 2, · · · ,H × W and j = 1, 2, · · · ,N . The global spatial
contextual features Sa. are calculated as:

W direction
i,j = f directioni,j ×W direction

i,j (6)

Sa = W total
× f (x) + x (7)

where x is the input feature map and Wtotal is the atten-
tion weight map. Concatenating the four direction weights
gives Wtotal = concat(Wright ,Wleft ,Wup,Wdown). The value
of each element in the attention map indicates how much
attention should be assigned to the pixel.

Spatial four-directional contextual attention helps to deter-
mine the characteristics of the spatial relationship and
location of cropland, making it easier to distinguish spectrally
similar plots to enhance texture detection between cultivated
and non-cropland.

3) BILATERAL FEATURE FUSION
In order to get the highest-level feature map, we fuse the
features extracted from the multi-scale perceptual path and
the spatial direction path. The structure of two-path feature
fusion is shown in Figure 4. The former parts of FPMAM
contain different scales of contextual semantic features, and
the latter features of FSDAM provide spatial detail informa-
tion. We used the attention module in squeeze-and-excitation
network (SENet) [45] to multiply with the input features and

FIGURE 4. The Structure of two-path feature fusion.

the spatial attention map Sa to complete the information fil-
tering and guide the attention of MBSDANet to the cropland
information so that the spatial dimensional feature responses
that are more useful for cropland information identification
can be retrieved.

4) OPTIMIZATION OF EDGE DETAILS AND TRAINING
To calibrate the accuracy of the segmentation for cropland,
we utilized the cropland edge information as a constraint
term, which optimizes the boundaries between cultivated and
non-cropland. We used the edge loss function as an auxiliary
supervision term to optimize the training process for effective
boundary prediction.

Since the segmented images are binary, i.e., cropland non-
cropland, we choose the most straightforward and fastest
edge detection operator [46], the Roberts cross operator,
to extract the edge information. The Roberts cross operator
is the first-order derivative edge detection operator, and its
computational form is equivalent to the convolution operation
of each image pixel with two pseudo-convolution kernels.
The pseudo-convolution kernels of the Roberts cross operator
are shown as follows:

gi =

[
1 0
0 −1

]
, gj =

[
0 1

−1 0

]
(8)

The model output of the cropland binary segmentation
result is convolved with the Roberts operator to get the
edge prediction value, and binary edge cross-entropy loss is
applied as an auxiliary function to optimize the training.

g(pi,j) =
∣∣gi ∗ pi,j∣∣ +

∣∣gj ∗ pi,j∣∣ (9)

Ledge = −

N∑
i=1

[
ei log(g(pi)) + (1 − ei) log(1 − g(pi))

]
(10)

where ei is the binarized edge label of the extracted cropland
and pi,j is the model prediction output.

LCE (plabel, p) = −

1∑
i=0

plabelwi log(pi) (11)

We use the results of the main network output p ={
pl, pul

}
to supervise the pseudo label pseudo of the subnet-

work PMAM sub-output and the spatial attentional feature
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map Sa =
{
S la, S

ul
a

}
derived from the labeled data to supervise

the pseudo label pseudo, where l represents the dataset con-
sisting of labeled images, ul represents the dataset consisting
of pseudo images. The triangular self-supervised cross loss
(TCSLoss) consists of the attention supervision loss Ls−1 and
the pseudo-supervised loss Ls−2.

Ls−1 =
1

|Nl |

∑
l

1
H ×W

H×W∑
i=0

(
LCE(plabel, S la)

+LCE(S la, p
l)
)

(12)

Ls−2 =
1

|Nul |

∑
ul

1
H ×W

H×W∑
i=0

(
LCE(pul, pseudo)

+LCE(Sula , pseudo)
)

(13)

LTCS = Ls−1 + λLs−1 (14)

where λ is the trade-off weight.

Ltotal = LCE + Ledge + LTCS (15)

where pseudo is the binarized mask of the corresponding true
label and |Nl | is the number of output pixels. LCE takes the
form of a cross-entropy loss function as the main supervised
term for training. The model training integrated loss function
is Ltotal .

III. EXPERIMENTS AND RESULTS
A. ACCURACY ASSESSMENT INDEXES
The performance of the model was estimated in the experi-
ments with the evaluation metrics of the binary classification
task, which included precision Pre, recall Re, F1 score, and
intersection over union (IoU) Iou.

Pre =
TP

TP+ FP
× 100% (16)

Re =
TP

TP+ FN
× 100% (17)

Iou =
TP

TP+ FN + FP
× 100% (18)

F1 =
2 × Pre × Re
Pre + Re

× 100% (19)

where TP and TN are the pixel counts of successfully classi-
fied cropland information and other non-cultivated.

Land information, respectively, and FP and FN are the
pixel counts of the cropland and other non-cropland that
are not detected, respectively. Pre denotes the proportion of
the examples classified as positive cases that are positive
cases, and Re evaluates the proportion of TP over entire
cropland pixels in the actual land distribution. The F1 score
is a weighted numerical evaluation that takes into account
precision and recall. The Iou represents the ratio of intersec-
tion and union of predicted cropland and indeed cropland.
To further assess the performance of different segmentation
networks in extracting cropland information and measure the
accuracy of classification, the separated kappa coefficient

Ka (SeK) [47] and Iou are used to construct a compre-
hensive extraction evaluation score Sc with the following
equation.

Ka =
2e(Iou−1)

× (TP× TN − FN × FP)
(TP+ FP)(FP+ TN ) + (TP+ FN )(FN + TN )

(20)

Sc = γ Iou + (1 − γ )Ka (21)

where γ represents the influence proportion of each item in
the composite score, γ = 0.3.

B. EXPERIMENTAL RESULTS
We evaluated the proposed approach using experiments on
datasets from Denmark and parts of China. Several models
with excellent performance in semantic segmentation and
cropland classification are selected as comparison methods,
which are PSPNet [48], DeepLab-v3+ [49], U-Net [26],
SPANet [36], andMAENet [37] The superiority of our model
is verified by comparison and quantitative evaluation of crop-
land extraction results obtained by different models.

1) DIFFERENT METHODS IN PARTS OF DENMARK
We first tested the dataset for Denmark using various
methods. Figure 5 illustrates the extracted cropland results
from DeepLab-v3+, MAENet, U-Net, PSPNet, and SPANet.
While DeepLab-v3+ extracted a large area of cropland,
the results were imprecise. MAENet and U-Net maintained
the forecast integrity of the cropland distribution and had
advantages in processing marginal details. However, all three
methods, including SPANet, had a highmissed detection rate.
Although all six methods achieved good results in cropland
extraction, our proposed MBSDANet model outperformed
the others by identifying cropland and refining its edge
information more completely. This was due to our model’s
enhanced boundary constraints and attention to detailed tex-
ture information.

The comparative results of quantitative evaluation on the
Danish dataset are shown in Table 1, which shows the
cropland extraction results of different models in terms of
precision, recall, IoU, Kappa coefficient, and comprehensive
classification evaluation score Sc. As can be seen from the
table, most indices of SPANet and MBSDANet outperform
other models. Although SPANet also achieved good results
under the dual-path fusion structure, our proposed method
improved both accuracy and recall by more than 1%. Com-
pared with the SPANet index, the accuracy, F1 score, and
IoU of the proposed method increased by 1.33%, 1.69%, and
2.75%, respectively.

2) DIFFERENT METHODS IN PARTS OF HEBEI
We employed a total of 6 highly effective methods to extract
cropland from images captured by Sentinel-2A, GF-2, and
Google Earth. We meticulously examined and evaluated the
obtained results and quantitatively assessed the extracted
data from a mixed dataset in Hebei Province. The cropland
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FIGURE 5. Examples of cropland extraction results obtained by different methods in the region of Denmark(The red dotted line box in the figure is used
to emphasize the differences of cropland extraction results by different methods): (a) Original image; (b) Area of real cropland; (c) results of the SPANet;
(d) results of the MAENet; (e) results of the U-Net; (f) results of the PSPNet; (g) results of the DeepLab-v3+; (h) results of the proposed method
(MBSDANet).

TABLE 1. Quantitative evaluation for different methods in the Denmark.

extraction outcomes of the fivemethods in Shijiazhuang City,
China, are presented in Figure 6 and Figure 7, the red dotted
line box in the figure is used to emphasize the differences
of cropland extraction results in Shijiazhuang by different
methods. Figure 6 displays the cropland extraction results
obtained from the Sentinel-2A satellite (resolution 10m),
while Figure 7 shows the results from the Google Earth
satellite (resolution 4m). It can be seen from Figure 6 and
Figure 7 that SPANet has a poor effect on extracting details.
Compared with the real label b, some of the ridges of the
field are wrongly classified as cropland, as shown in the small
red box below the subgraph in the first row of Figure 6.
MAENet’s prediction results for cropland extraction were
incomplete, indicating poor contextual detail acquisition.
U-Net and PSPNet’s predictions were similar, and despite
their internal model structures with contextual information
aggregation modules, they still could not fully detect large
areas of cropland. DeepLab-v3+ failed to accurately pre-
dict divided land types and could not completely extract
cropland. Compared with other methods, our method uses
edge constraints and multi-scale spatial context information

extraction, which is conducive to paying attention to the
aggregation of bilateral multi-sensory information, making
the plot edge more refined, and extracting cultivated land
information more complete.

Figure 8 presents the outcomes of five different extraction
methods in the analysis of complex mountain-cropland data
from the GF-2 satellite. Compared with the real cropland (b),
SPANet, MAENet, and U-Net cropland extraction results
have higher missing and error detection rates. Although
PSPANet reduces the missing detection rate, the error detec-
tion rate and edge information loss are serious. Our model
pays more attention to detailed information, thus enhanc-
ing the accuracy of extracting cropland information. While
Deeplab-v3+ uses extended Convolution and extended space
pyramid pool modules, its single inverse convolution in fea-
ture extraction disregards the correlation between adjacent
pixels, leading to errors in edge prediction. Additionally,
the simple global pool in the multi-scale feature fusion
module overlooks the spatial context information of some
feature maps. Our model addresses these issues by enhancing
boundary constraints and focusing on texture details, result-
ing in significantly improved identification and refinement
of complex farmland edges. Through the above analysis, the
proposed method can locate the cultivated land boundary
more accurately under different scenarios, which proves the
effectiveness of this method in extracting cropland.

Table 2 and Table 3 show the quantitative evaluation results
of the Hebei mixed dataset and GF-2 dataset under dif-
ferent methods respectively. PSPNet uses a pyramid pool
module to combine global features and context information
and obtains better prediction results. However, PSPNet and
U-Net have some classification errors on roads and cropland
edges. SPANet uses bidirectional continuous pooled attention
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FIGURE 6. Comparative results of different methods to obtain examples of cropland extraction in the region of Hebei, China from Sentinel-2A (The red
dotted line box in the figure is used to emphasize the differences of cropland extraction results by different methods): (a) Original image; (b) Area of
real cropland; (c) results of the SPANet; (d) results of the MAENet; (e) results of the U-Net; (f) results of the PSPNet; (g) results of the DeepLab-v3+;
(h) results of the proposed method (MBSDANet).

FIGURE 7. Comparative results of different methods to obtain examples of cropland extraction in the region of Hebei, China from Google Earth (The red
dotted line box in the figure is used to emphasize the differences of cropland extraction results by different methods): (a) Original image; (b) Area of
real cropland; (c) results of the SPANet; (d) results of the MAENet; (e) results of the U-Net; (f) results of the PSPNet; (g) results of the DeepLab-v3+;
(h) results of the proposed method (MBSDANet).

modules to merge low-level and high-level features to achieve
target extraction, which is superior to MAENet in small-scale
target segmentation. MBSDANet makes the segmentation
of cultivated and non-cropland more accurate by enhancing
the extraction of spatial pixel context features. MBSDANet
reduces the segmentation error rate by cross-supervision and
edge refinement. Under the Hebei Province mixed (GF-2
dataset), our method obtained 94.81% (90.85%) accuracy,
89.37% (84.07%) IoU, and 86.51 (79.92) scores. Compared
with SPANet with superior performance, F1 scores were
1.73% (1.41%) higher. IoU increased by 3.06% (1.27%).

Our model has better ability to extract common cropland
than complex cropland under GF-2 dataset. However, com-
pared with other models, it can still extract complex cropland
information more thoroughly. At the same time, our model
also has better prediction results than other models under
different-resolution mixed datasets. These data show that our
model has stronger generalization ability and robustness.

In order to show the superiority of our model more intu-
itively. We used root mean square error (RMSE) to represent
the extraction accuracy of different models under Sentinel-2A
and GF-2 data sources, as shown in Figure 9. The figure
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FIGURE 8. Comparative results of different methods to obtain examples of cropland extraction in the mountainous region from GF-2: (a) Original
image; (b) Area of real cropland; (c) results of the SPANet; (d) results of the MAENet; (e) results of the U-Net; (f) results of the PSPNet; (g) results of the
DeepLab-v3+; (h) results of the proposed method (MBSDANet).

TABLE 2. Quantitative evaluation for different methods in the HeBei.

TABLE 3. Quantitative evaluation for different methods on the GF-2.

shows that the model proposed in this paper has the low-
est RMSE (36.96 and 47.77) under different data sources,
indicating that its extracted area value is closest to the mea-
surement label.

3) RESULTS OF CROPLAND EXTRACTION
We used the proposed method to extract uncropped cropland
data in Denmark and Hebei Province, China, and visually

FIGURE 9. Comparison of geometric accuracy of different models.

demonstrated the cropland extraction capability of our pro-
posed method. Figure 10 shows the extraction results of
farmland near Odense, Denmark (the central city of Fyn
Island) with uneven distribution and irregular edges, and
cropland near Wuji County, Shijiazhuang, Hebei Province,
with uniform distribution and regular edges extracted by
our method, where (a) is cropland near Odense, Denmark
(the central city of Fyn Island); (b) The results of MBS-
DANet method in field extraction in Odense, Denmark;
(c) Cropland in Wuji County, Shijiazhuang City, Hebei
Province; (d) Extraction results of MBSDANet from crop-
land in Wuji County. From the extraction results, our model
can not only completely extract cropland with complex dis-
tribution and fuzzy edge information, but also accurately
extract cultivated land with complex distribution and reg-
ular edge information. This also verifies that our method
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FIGURE 10. The results of cropland extraction in the study area: (a) The
area around Odense, Denmark; (b) Results of the MBSDANet method on
cultivated land extraction in Odense, Denmark; (c) The area around Wuji
County, Shijiazhuang, Hebei Province, China; (d) Results of the MBSDANet
method on cropland extraction in Wuji County.

has great application prospects for the efficient and accurate
acquisition of cultivated land information, as well as farmland
protection and agricultural yield estimation.

IV. DISCUSSION
A. CHOICE OF BACKBONE
The current excellent methods for extracting cropland, such
as SPANet, MAENet, and PSPNet, utilize ResNet [50]
as the backbone network. We conducted a comparison of
ResNet and HRNet [51] as the encoder to determine a
superior backbone for our model. Even though ResNet has
strong feature encoding capabilities, HRNet performs than
ResNet when parameters are similar. HRNet makes use of
high-dimensional semantic information and low-dimensional
semantic information that contains spatial information and
integrates features of different levels to obtain feature maps
with rich spatial information.

In order to demonstrate the superiority of our backbone
network HRNet in cropland extraction, we compare it with
ResNet under different datasets. Table 4 summarizes the
evaluation results obtained by ResNet and HRNet under two
datasets. The bolded scores are the optimal results. HRNet-
w32 had an accuracy of 0.82% higher than ResNet-18 and
1.42% higher than IoU in Denmark. In China, HRNet-w32
had an accuracy of 1.85% higher than ResNet-18 and 2.62%
higher than IoU. HRNet (HRNet-w32) had a precision of
94.81% in the last three stages, IoU reached 89.37%, and the
overall evaluation score was 86.51 points. HRNet has better
cropland extraction capability than ResNet in our network
model, and HRNet-w32 is more suitable for our backbone
network.

TABLE 4. Quantitative results of different backbone.

TABLE 5. Accurate assessment of the comparison of different modules in
ablation experiment.

B. ABLATION EXPERIMENT
To verify the design of MBSDANet, HRNet was selected
as the baseline model and kept the same number of labeled
samples as the Hebei Province dataset. The comprehensive
extraction evaluation score Sc was adopted to assess the
effectiveness quantitatively. The detailed evaluation results
of the ablation experiment are summarized in Table 5, The
bolded scores are the optimal results. The model performance
was significantly improved by adding the attention mecha-
nism module to PAMA. The addition of the SDAM module
for the parallel fusion of features to capture the multiscale
background significantly enhanced a score increase of 4.38%,
implying that fusing cross-level elements is more advan-
tageous than single-feature extraction. The binary edge
cross-entropy loss (BeLoss) significantly improves the per-
formance compared to the commonly used cross-entropy
loss, with a 0.99% increase in score. In addition, with the
triangle self-supervised cross-loss strategy, the model score
was increased by 3.75%.

C. SMALL SAMPLE TRAINING
We validated the feasibility of small samples through exper-
iments. Table 6 shows the quantitative evaluation results of
the datasets composed of different proportions of labels 1/2,
1/4, 1/8, and 1/16 of the 1000 images in the Hebei mixed
data training set were selected as the labeled data to construct
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TABLE 6. Quantitative evaluation of label data of different proportions.

the small sample dataset. The bolded scores are the optimal
results. That is to say, the number of {labeled, unlabeled}
samples in the Hebei mixed data training set are respectively
{500, 500}, {250, 750}, {125, 875}, {63, 937}.

We compare supervised learning methods MAENet and
SPANet with semi-supervised learning methods SDLED [51]
and MBSDANet. The mentioned appeal methods are
evaluated quantitatively to verify the superiority of the
semi-supervised learning methods and our model. SPANet
extracts significant features through continuous pooling and
highlights edge information more than MAENet. Compared
with SPANet, F1 (Kappa) of the proposedmodel increased by
6.76% (3.90%), 2.17% (2.89%), 1.27% (2.47%) and 3.99%
(6.62%) respectively under the ratio of 1/2, 1/4, 1/8 and 1/16
data in Hebei province. Compared with SDLED, the model of
F1 (Kappa) on four ratios was increased by 0.68% (1.59%),
1.20% (1.51%), 0.94% (1.07%), and 1.28% (1.81%). The
smaller the sample size, the more obvious the superiority
of our model over other models. When 1/2 of the labeled
data is used, the F1 of the model can still reach 90.01%.
The proposed method can effectively use unlabeled data for
training and improve the ability of cropland extraction. The
feasibility of the model’s semi-supervised learning method
and its strong robustness and generalization ability to small
samples are verified.

V. CONCLUSION
We proposed a deep learning segmentation model MBS-
DANet for cropland extraction, which structurally extracts
different levels of features through two different paths.
PMAM enhances the multiscale representation and global
semantic consistency of the model. The multiscale perception
determines the generalizability of the model to different sizes
of cropland, and the attention mechanism focuses on the
retrieval of features to filter a small amount of meaningful
information from a large amount of information by estab-
lishing channel-dimensional semantic correlations. SDAM
aggregates a single pixel’s non-local target spatial contextual
features by calculating the correlations among all pixels in
four directions in each pixel space to obtain detailed infor-
mation on the cropland. It also changes the attention scope
of cropland feature extraction from local to global so that
the high-value information in the high-dimensional depth
features of cropland in the image can be extracted quickly.
We use a semi-supervised approach to reduce reliance on

large samples. Compared with other methods, our model has
the best performance for image extraction with different res-
olutions in complex scenes. In conclusion, MBSDANet can
automatically extract cropland from high-resolution images
efficiently and accurately. With the development of urban
construction, the cropland area has been greatly reduced in
Hebei Province, China, because of construction occupation
and agricultural structure adjustment, and the cropland area
has changed over the years. Rapid and accurate extraction
of cultivated land based on MBSDANet shows potential
for applications in the classification of cropland utilization,
yield prediction of agricultural products, and agricultural land
resource conservation.
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