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ABSTRACT Despite technological progress and the tendency for automation, the majority of manufacturing
workplaces still rely on human labor. Although industrial tasks are frequently composed of simple operator
actions, non-ergonomic execution of such repetitive tasks has been reported as the primary cause of
musculoskeletal disorders. Considering the sizes of manufacturing halls and large numbers of employees,
there is an increasing need for tools that can improve the recognition of unsafe acts. Herein, a deep learning-
based procedure for pose safety assessment is proposed and validated using monocular videos captured
with a conventional IP camera. The two key composing components of the proposed pipeline are the three-
dimensional (3D) pose estimator and mesh classifier. The proposed method was validated experimentally by
considering three different methodologically selected industrial tasks: a laborious task that requires all-body
effort (pushing and pulling), a task that requires an upper-limb action comprising intensive interaction and
motion control (drilling), and a typical collaborative task (polishing with a collaborative robot with variable
mechanical impedance). Accuracies of 84.67%, 92%, and 98%, respectively, were achieved. Besides higher
accuracy, the proposed method has shown practical advantages over existing alternatives based on analyzing
the parameters derived from the human poses. Particularly, we report that the proposed procedure is generic,
and it works directly with 3D human body poses, which significantly increases applicability while reducing
the complexity and effort needed for data annotation and output interpretation by non-experts.

INDEX TERMS Artificial intelligence, human-centric industry 5.0, industrial engineering, workplace safety.

I. INTRODUCTION
Although automation has brought tremendous progress in
many manufacturing sectors (automotive, electronics manu-
facturing, welding, etc.) over the past decades, the practice
has shown that there are still many tasks and workplaces that
cannot be adequately or fully automated. As an alternative,
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there is a trend of supplementing laborious manufacturing
workplaces with robots that can collaborate with human
operators to reduce the physical load and enhance operator
performance [1]. Furthermore, collaborative robot technolo-
gies are underexploited in the industry because a reliable
and efficient understanding of human intention prediction in
collaborative tasks is lacking.

The awareness of human roles in Industry 4.0 is increasing
and authorities from both academia and industry have agreed
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that Industry 5.0 will be highly human-centered [2]. Hence,
there is an increasing need to improve the interface between
human operators and technology while ensuring the highest
standards of workplace safety and the well-being of human
operators in an industrial environment.

At the international level, workplace safety is regulated
by Occupational Safety and Health (OSH). OSH currently
covers a wide range of topics, and the overall goal is to
improve safety by reducing the occurrence of workplace
hazards, injuries, illnesses, and fatalities. Together with the
Hierarchy of Controls, proposed by the Occupational Safety
and Health Administration [5], optimizing workplaces for
ergonomics is a major preventive measure for injuries in the
industry. Ergonomics aims to adapt the workplace to comple-
ment human capabilities and minimize discomfort, physical
exertion, stress, and risk of injury due to work.

Despite the application of preventive measures, work-
related musculoskeletal disorders (WMSD) occur fre-
quently [6]. The timely detection of unsafe postures
that lead to WMSD is challenging. In contrast to, for
example, the misuse of personal protective equipment
or unsafe conditions that can be instantly detected and
mitigated [7], [8], WMSD must be considered as the
long-term accumulation of negative effects caused by repeti-
tive unsafe acts [9]. Studying and preventing the repetition of
unsafe acts is important from various perspectives. In addition
to forced retirement and job loss, WMSD have negative
long-term consequences such as permanent disabilities and
the inability to perform everyday activities (which have neg-
ative sociological and economic impacts) [10]. According to
World Health Organization reports, approximately 1.71 bil-
lion people have musculoskeletal conditions worldwide [11].
Reports indicate that 33% of European workers (42% of male
workers and 24% of female workers) have unnatural body
postures for>25%of their working time [12]. Approximately
126.6 million Americans - one in two adults have a mus-
culoskeletal disorder, costing an estimated $213 billion in
annual treatment, which is 1.4% of the United States’ gross
domestic product [13].
The critical role in ensuring the implementation of safety

and ergonomic recommendations is accomplished by onsite
managers (supervisors), who are also responsible for the
monitoring of workers. Considering the sizes of manufactur-
ing halls and the number of employees that move across halls,
manual supervision ofworkers is expensive, time-consuming,
and ineffective. Thus, there is an increasing need for comput-
erized tools that can ease or automate the process of detecting
unsafe acts in industrial environments. Accordingly, the aim
of this study was to develop a computer vision procedure for
enabling the recognition of unsafe acts in industrial environ-
ments by fusing algorithms for pose estimation and shape
analysis.

The rest of the paper is organized as follows. Section II
gives an overview of related work. The experimental setups
and the proposed procedure for unsafe acts recognition are
presented in Section III, followed by the results in Section IV.

The obtained results are discussed and compared to the
previous studies in SectionV. Lastly, the paper ends with con-
cluding remarks and future work perspectives in Section VI.

II. BACKGROUND RESEARCH
Recognition of unsafe acts represents a visual task. It is a
well-studied topic in the field of computer vision that has
rapidly evolved with the advancement of deep learning [14].
In this section, we review studies in which computer-vision
techniques or sensor technologies were used to assess work-
place safety or recognize unsafe acts.

To analyze and optimize ergonomics, Kim et al. uti-
lized wearables (electromyography) and motion-capture sys-
tems [15]. To identify physical risk factors, in addition
to a detailed human model and overloading joint torques,
the same group of authors introduced compressive forces
and a fatigue index [16], [17]. Han and Lee proposed a
framework for detecting unsafe actions on construction sites
(ladder climbing) using three-dimensional (3D) landmark
points (reconstructed from two-dimensional (2D) human
skeleton points) andmotion templates to detect several climb-
ing actions through pattern recognition [18], [19]. Another
approach for safety assessment of ladder climbing tasks was
presented that aimed to achieve real-time unsafe-behavior
recognition using videos, considering dynamic behavior as a
static posture, and using a mathematical model of the human
skeleton to identify unsafe behaviors according to value
ranges of joint parameters [20], [21]. In previous studies,
safety analysis of industrial workers was performed by con-
sidering ergonomic parameters obtained from reconstructed
3D body poses from monocular videos [22]. Ding et al.
developed a hybrid model that integrated a convolutional
neural network (CNN) and long short-term memory (LSTM)
for offline detection of safe and unsafe actions conducted by
workers from stereo videos [23]. Seo et al. offered a compre-
hensive review of computer vision-based systems for object
detection, object tracking, and action recognition to iden-
tify unsafe acts and violations of safety and health rules on
construction sites by using 2D and 3D images [24]. To mon-
itor and automatically assess worker activities by integrating
red-green-blue (RGB), optical flow, and gray stream CNNs,
an improved CNN was proposed [25]. Fang et al. developed
an algorithm using a faster region-based CNN for detecting
the presence of construction workers and a deep CNN for
determining whether they are wearing a safety harness to pre-
vent falls from heights [26]. An individualized system based
on CNN classifiers and the Weighted Average of Selected
Classifiers (WASC) was presented [27]. It uses human skele-
tal data for real-time action recognition of assembly workers
and correcting mistakes, thus enhancing task performance.
Ciccarelli et al. developed SPECTRE (Sensor-independent
Parallel dEep ConvoluTional leaRning nEtwork), a learning
model that uses CNN to classify human postures in the work-
place and assess ergonomic risks in body segments [28].

As an alternative to computer vision, there are various
approaches for recognizing human activities using sensor
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data. Yang et al. proposed a method in which a penal-
ized naive Bayes classifier and radiofrequency identification
(RFID) sensor data are used to classify human activities in
known classes [29]. Hofmann et al. used LSTM for recog-
nizing wasteful activities in production [30]. The considered
activities were walking, sitting, standing, and jogging, and
the reported accuracies >98%. Ordóñez et al. proposed the
DeepConvLSTM framework (based on convolutional and
LSTM recurrent units), which was reported to be suitable for
multimodal wearable sensors [31].
Unsafe acts have a wide variety of forms and may

depend on the nature of a particular task or environ-
ment. Although there are recommendations that cover, for
example, minimum safety and health requirements for the
workplace (89/654/EEC [32]), manual handling of heavy
loads (90/269/EEC [33]), manual handling of pushing and
pulling (ISO 11228-2 [34]), and collaborative robots (ISO/TS
15066 [35]), these directives and standards are too broadly
defined for application to highly specific workplaces. Thus,
their main purpose is to help practitioners optimize work-
places, while safety monitoring for unsafe acts relies on the
subjective judgment of onsite supervisors.

However, industrial applications of computerized proce-
dures from the reviewed literature remain limited, as they
commonly represent empirical models developed in labo-
ratory conditions (which differ from manufacturing halls).
In many studies, Kinect [19], [27] or motion capture sys-
tem [15] was used to assess body pose and shape, which gives
more accurate results in laboratory settings but is not suitable
for application in big industrial halls because of its complex-
ity and price. Even though sensor systems for human-activity
recognition can successfully classify activities [29], they can-
not identify some subtle differences - therefore, this kind of
system cannot determine whether someone is conducting a
task correctly. An additional limitation of existing procedures
is that they frequently rely on 2D pose estimation, which
suffers from body-part occlusions, the inability to ensure the
optimal viewpoint, etc. Moreover, the proposed body param-
eters derived from 2D [18] or 3D [19] poses can be difficult
for non-experts to interpret in industry practice.

The contribution of this research is a generic two-step
procedure for unsafe acts recognition that solves the afore-
mentioned problems. It contributes to the state-of-the-art by
presenting an innovative approach that: 1) utilizes videos of
arbitrary unsafe acts (captured with conventional devices,
e.g., smartphones) and 2) employs realistic 3D silhouettes
of a body as inputs/outputs so that analysis and interpreta-
tion of pose safety are intuitive for a broad audience. The
proposed method is validated on several methodologically
selected industrial tasks. For all considered tasks, we assumed
that one IP camera is enough to cover the operator’s move-
ments so that there is no need for tracking operator through
the manufacturing hall. From the end-user viewpoint, the
workflow of the proposed solution has three steps: 1) collec-
tion of videos that correspond to safe and unsafe execution
of the considered task; 2) training of the pose classifier;

3) obtaining the information about the operator’s pose safety
by inferencing the pipeline on corresponding hardware (that
consists of IP camera connected to PC with GPU).

III. MATERIALS AND METHODS
A. EXPERIMENTS AND DATA ACQUISITION
To demonstrate the generality and versatility of the proposed
approach, three industrial tasks were selected to cover the
entire body and specific body parts, as well as different inter-
action dynamics: 1) pushing and pulling (P&P) of handcarts,
2) two-handed drilling, and 3) polishing with a collaborative
robot. Such diverse tasks were selected to cover the safety
challenges of various industries, as workplaces vary from
static to dynamic and from collaborative to manual. Collec-
tion and processing of data used in this study were done in
accordance with the relevant guidelines proposed with the
Declaration of Helsinki - after obtaining ethical approval
from the Faculty of Medicine, University of Belgrade, Ser-
bia (Approval No. 1322/X-42) and informed consent from
all participants. All experiments were designed to replicate
experiments found in the literature in an industrial environ-
ment and involved five healthy male participants (age: 29.7±

4.7 years; body mass: 80.1 ± 10.2 kg; height: 1.77 ± 0.1 m)
with no prior experience working in the industry and with no
previous health conditions related to WMSD or workplace
injuries. Each task was conducted under controlled condi-
tions and repeated multiple times, with each repetition lasting
2-5 min. The experiments were guided Workplace safety and
ergonomics experts guided the experiments, ensuring that
the acquired video sequences involved both safe and unsafe
actions and body postures. The first task - handcart P&P
(Fig. 1a) was performed using a dedicated experimental hand-
cart (100 kg), as described in previous work [21]. The second
task - standing two-handed drilling (Fig. 1a) was performed
in a vertical plane using a power tool. The third task - collab-
orative polishing (Fig. 1a) was performed with the support
of Franka Emika Panda Robot, controlled in the impedance
mode with its end-effector stiffness set as 1500 N/m along all
translational axes and 100 Nm/rad along all rotational axes,
as described in detail in previous work [37]. The experiments
were recorded using four DAHUA IPC-HFW2831TP-ZS
8MP WDR IR Bullet IP cameras, with a DAHUA PFS3010-
8ET-96 8port Fast Ethernet PoE switch. The host PC had
an 1151 Intel Core i3-8100 3.6-GHz 6-MB BOX CPU. From
the collected videos, we extracted the 3D poses of the oper-
ators using the algorithms described in Section 2.2 (Fig. 1b).
By observing the obtained 3D meshes and video streams,
safety experts selected 500 safe and 500 unsafe poses for each
task (Fig. 1c). These datasets were used to train the mesh
classifiers.

B. CLASSIFICATION OF SAFE AND UNSAFE ACTS
The proposed procedure for recognizing unsafe acts is pre-
sented in Fig. 1. The key components of the pipeline are
1) database creation and annotation (incorporation of experts’
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FIGURE 1. Considered industrial tasks and an overview of the proposed procedure.

domain knowledge needed for recognition of unsafe acts in
a particular workplace), 2) 3D human pose reconstruction,
3) mesh decimation, and 4) mesh classification. The first two
steps are interconnected and rely on a deep-learning module
to reconstruct human body shapes from monocular videos.

The VIBE architecture is used to solve the 3D pose recon-
struction problem in an adversarial manner [38]. It recon-
structs 3D actions from videos using previously detected
2D body landmark points (a pre-trained Mask R-CNN key-
point detector is employed) [39]. The pose-generator part 2̂

is trained to compete with the discriminator part DM until
the discriminator cannot identify the difference between the
obtained motion and realistic motion(s) from the AMASS
database (∼11000 movements of ∼300 subjects) [40]. The
use of temporal encoder results in reliable pose estimations
because the algorithm makes reconstructions by consider-
ing a series of neighboring frames, which is important to
compensate for glitches and errors caused by the temporary
overlapping of particular body parts. The resulting body
shape of the generator 2̂ is forwarded to the discrimina-
tor’s self-attention layers, which are used to increase the
influence of the dominant frames. The final linear layer
returns the probability that the predicted manifold 2̂ belongs
to the group of realistic human actions by minimizing the
loss function, which is composed of four components that
account for the 3D pose error, back-projection error, error

of body pose and shape, and likelihood that the obtained
motion (sequence of 3D poses) corresponds to motions in
the AMASS database. The 3D poses were represented using
a Skinned Multi-Person Linear (SMPL) body model, which
is a parametric surface representation of a human shape
composed of 6890 Quad4 elements. Thus, in addition to
3D body landmarks, we obtained body shapes containing
anatomical information, facilitating the data annotation for
human experts. Finally, the comparison with the state-of-
the-art approach is given where we computed a series of
parameters from the reconstructed 3D landmark points that
were used as ergonomic indicators [22].

Data annotation was performed with the help of three
workplace safety and ergonomics experts, whose task was
to classify reconstructed body shapes into ‘‘Safe acts’’ and
‘‘Unsafe acts’’ datasets (Fig. 1c). As safety assessment
is a subjective task, the experts reached a consensus so
that intra-observer and inter-observer variabilities of the
data-annotation process were eliminated. By considering the
recorded videos, obtained 3D shapes, and corresponding
body-pose parameters, we developed datasets comprising
500 safe acts and 500 unsafe acts for each considered task.

To make the system more efficient, we simplified a
triangular human bodymesh usingQuadric ErrorMetric Dec-
imation [41]. This algorithm iteratively replaces two vertices
with one by applying a pair collapse operator, causing the
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FIGURE 2. SMPL models and considered ergonomic parameters.

neighboring faces to degenerate. The initial output of the
VIBE estimation, i.e., the SMPL mesh, had 20666 edges
(13776 faces and 6890 vertices), and after applying the deci-
mation, it had approximately 750 edges (Fig. 1d). Simplified
meshes were used as inputs for the next stage of the pipeline
(pose mesh classifier).

In contrast to previously proposed methods for the classi-
fication of unsafe acts using images and videos [26], [42],
this study investigated the possibility of using inherent infor-
mation contained in 3D body meshes. Although CNNs are
effective for solving problems represented by regular struc-
tures (e.g., images, videos, voxels), extending the paradigm
to work with irregular structures (e.g., triangular meshes) is
challenging. In this study, the decimated SMPL meshes were
classified using the MeshCNN module (Fig. 1e), which was
composed of customized convolution and pooling operations
designed to work with 3D mesh edges [45]. By account-
ing for mesh geodesic connections, convolutions processed
edges, whereas pooling layers preserved the surface topology
through edge collapse. Through successive mesh convolution
and pooling, valid mesh connectivities were iteratively gen-
erated via learning to discard and collapse redundant features
while preserving important ones.

During training, each dataset was randomly split into train-
ing (70%), validation (15%), and test (15%) sets. The training
was performed using the Adam optimization algorithm [46].
The learning rate of theAdam algorithmwas set to 0.0002 and
the group norm (g = 20). Data augmentation was performed
with 5% edge flips and 15% slide vertices.

IV. RESULTS
All experiments were performed using the Python 3.7.4 pro-
gramming language, along with PyTorch 1.6.0, Torchvision
0.7.0, andCuda 10.1GPU. The computationswere performed
on aworkstation with anAMDThreadripper 3970X (32-core,
3.79 GHz processor) CPU with 128 GB of random-access
memory and two Titan RTX (24GB) + NVLink GPUs.
The proposed method was assessed using the following

statistical metrics for the binary CNN classification (Table 1):
accuracy (percentage of correct classifications, ACC), sen-
sitivity or true positive rate (percentage of true positives
classified correctly, TPR), specificity of true negative rate

TABLE 1. Performance for recognizing safe/unsafe acts in various
industry tasks.

(percentage of true negatives classified correctly, TNR), pre-
cision or positive predictive value (percentage of correct
positive classifications, PPV), negative predictive value (per-
centage of correct negative classifications, NPV), and F1
score (harmonic mean of PPV and TPR). For the studied
problem, we adopted that unsafe acts belonged to class 1
(positive), and safe acts belonged to class 0 (negative).

For comparison with the state-of-the-art approach, from
the reconstructed 3D poses, landmark points were used to
compute a series of ergonomic parameters. For each task,
we computed various parameters, and several of them are
presented in Fig. 2: 1) the angle of the spine (15, 16, 17)
for P&P handcarts (α); 2) the angle of the right knee (1, 2,
3) (β); 3) the angle of torsion between the shoulders and
the hips (13, 14, 12, 9) (γ ); 4) the angle of the left elbow
(10, 11, 12) (δ); 5) the angle of the right elbow (7, 8, 9) (ε);
6) the angle between the left upper arm and the torso (11,
12, 14) (µ); and 7) the angle between the right upper arm
and the torso (13, 9, 8) (θ). Fig. 3 presents the outputs of
the proposed procedure - SMPL meshes marked green (safe)
and red (unsafe), with the corresponding input data (T is
frame number). Fig. 4-6 represents time series of ergonomic
parameters extracted from the part of the video sequence
for P&P, two-handed drilling, and collaborative polishing,
respectively (the x-axis represents the frame number and the
y-axis the angle in degrees). In these figures, green and red
lines indicate time points of safe and unsafe acts and directly
correspond to SMPL meshes presented in Fig. 3.

V. DISCUSSION
The performance metrics of the proposed method are pre-
sented in Table 1. As shown, the performance of the
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FIGURE 3. Sample inputs and corresponding outputs of the proposed procedure for the three considered industry tasks: (b,d,g,k,l) safe - green;
(a,c,e,f,h,I,j) unsafe -red.

procedure was lower when the task involved a larger degree
of movement. The most dynamic task (P&P of handcarts) had
the lowest ACC, TPR, TNR, PPV, NPV, and F1-score values,
whereas the most static task (collaborative polishing) had
the highest values. This indicates that the procedure is more
suitable in situations where one IP camera is enough to cover
the operator’s movements and workplace, and where there
are a limited amount of movements that one needs to make
to accomplish a task. Among the considered metrics, the
sensitivity had the highest value, indicating that the proposed
procedure is robust for practical applications, as the primary
aim is to recognize unsafe acts correctly.

Referring to the high diversity of industrial tasks and
the unavailability of appropriate public datasets considered
in the literature, a direct comparison of performance met-
rics between various studies was not doable - although
we outperformed them by a considerable margin on the
tasks considered in this study. Nevertheless, a compara-
tive overview of literature (which used computer-vision

techniques or sensor technologies) for assessing workplace
safety or recognition of unsafe acts is presented in Table 2.

In terms of acquisition devices used, only a few relied on
the use of conventional monocular cameras [22], [23], [25],
[26]. Compared to the previous study focused on analyzing
pushing and pulling tasks [22], this study proposes the use of a
mesh classification module instead of the traditional analysis
of body parameters extracted from 3D human poses.

Fig. 4-6 illustrate the limitations of the existing prac-
tice that depends on the assessment of various parameters
extracted from 2D or 3D body poses. Following previous
studies, we extracted numerous ergonomic parameters that
may be used for assessing the ergonomics of different tasks.
Interpretation of these ergonomic parameters is shown to be
very complex. Even for an expert, it is non-intuitive to make
a decision if a particular position is unsafe as several param-
eters should be considered simultaneously. On the other side,
concluding whether an act is safe or unsafe from a 3D human
model is considerably more intuitive, as shown in Fig. 3.
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TABLE 2. Comparative overview of related studies.

Body parameter-dependent approaches commonly use
human models and consider joint angles as parameters for
detecting unsafe acts [20], [21]. Similarly, researchers have

recommended safety assessment based on a complex human
model obtained from a motion-capture system, and wear-
able sensor information has been presented [15]. Although
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FIGURE 4. Ergonomic parameters for the P&P task and corresponding acts – safe (green) and unsafe (red) from sample outputs presented in Fig 3.

motion-capture systems (compared with closed-circuit televi-
sion cameras) provide more accurate results under laboratory
conditions, their price and complexity of use limit their
applicability in conventional industrial environments. In gen-
eral, previous studies on vision-based recognition of unsafe
actions have been restricted to specific and predefined actions
[18], [19]. While there are reviews on the use of computer

vision for safety and health monitoring on construction
sites [24], differences in task execution and their implications
for the derived ergonomic parameters were not considered

A. PROGRESS BEYOND STATE-OF-THE-ART
To the best of our knowledge, this was the first study
in which deep-learning techniques were used to assess

VOLUME 11, 2023 103413



A. M. Vukicevic et al.: Deep Learning-Based Recognition of Unsafe Acts in Manufacturing Industry

FIGURE 5. Ergonomic parameters for the drilling task and corresponding acts – safe (green) and unsafe (red) from sample outputs presented in Fig. 3.

workplace safety via 3D body mesh analysis. Previously,
CNNs were used to integrate RGB, optical flow, and gray
stream data to automatically assess worker activities on con-
struction sites (walking, transporting, and steel bending), with
an average accuracy of 85% [25]. Similarly, a combination
of a CNN and LSTM was proposed for classifying safe and
unsafe actions in ladder climbing according to image features,
and an accuracy of ∼92% was achieved [23].

In practice, conclusions drawn by visually observing
images of complex 3D shapes (including human bod-
ies) are known to be biased. This is the major reason
why previously proposed procedures considered workers
from a profile viewpoint, where 2D key points of the
human body could be reconstructed and tracked more
precisely. This technical limitation of 2D pose estima-
tion algorithms increases the complexity of determining

103414 VOLUME 11, 2023



A. M. Vukicevic et al.: Deep Learning-Based Recognition of Unsafe Acts in Manufacturing Industry

FIGURE 6. Ergonomic parameters for the collaborative polishing task and corresponding acts – safe (green) and unsafe (red) from sample outputs
presented in Fig 3.

the optimal camera viewpoint and avoiding body-part
occlusions.

The obtained results confirmed the hypothesis of this study
that the direct consideration of 3D body poses can resolve the
aforementioned limitations and accelerate the development
of general-purpose solutions for assessing workplace safety.
Although CNNs have proven to be effective for solving
problems represented by regular structures (e.g., images),

extending the paradigm to irregular structures (e.g., 3D
meshes) is a challenging topic. In comparison with the more
straightforward analysis [47] and classification [48] of point
clouds, polygonal meshes, although more complex, provide
a more efficient and hierarchical representation of 3D body
shapes. In particular, they explicitly capture the body shape
surface and topology, accounting for the volumetric parame-
ters and body constitution, which are individual parameters
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that can be used for personalizing the safety assessment.
Moreover, since input features of MeshCNN are similarity-
invariant, applying rotation, translation, and isotropic scaling
does not affect input meshes, which is a significant advantage
compared to conventional deep CNN (one mesh contains
information equal to several input images from different
angles).

B. IMPLICATIONS AND APPLICABILITY OF THE FINDINGS
With regard to practical application and adopting a procedure
developed for safety assessment of a task-specific method for
assessing other tasks, the major challenges that all computer
vision-based procedures face are intra-observer and inter-
observer variability of data labeling and risk assessment.
In a study focused on this problem, it is reported that expe-
rienced safety engineers could only achieve 70% accuracy
in labeling safety-rule violations of complex scenes [49].
The proposed procedure overcomes this limitation because
it is based on direct 3D body shape analysis, which ensures
intuitive annotation of data and analysis and interpretation of
results. Although it is straightforward to calculate and extract
numerous ergonomic parameters from 2D or 3D body shapes,
simultaneous tracking and interpretation of the correspond-
ing time series are difficult, even for ergonomics experts
(Fig. 4-6). More importantly, parameter selection and anal-
ysis are highly task-dependent (parameters relevant for one
taskmay be irrelevant for another), which explains the limited
industrial applications of such procedures.

Although international organizations have proposed indus-
trial and ergonomic standards to facilitate the analysis and
optimization of workplace ergonomics, the inability of safety
experts to track and detect unsafe acts in real-time remains the
primary cause of workplace injuries. Moreover, owing to the
large number and variability of workplaces in the industry,
many cases are not precisely covered by standards, leaving
onsite supervisors to judge unsafe acts. Accordingly, there is
a practical need for a computerized tool that allows practi-
tioners to intuitively collect, visually define, and classify safe
and unsafe acts for specific tasks.

From a methodological perspective, the proposed method
is the first to allow the direct derivation of a model from the
collection of safe/unsafe videos. In most industries, videos
can be acquired from existing surveillance systems, although
the use of a conventional smartphone camera is also suitable.
Thus, the analysis of three separate industrial tasks indicated
that the proposed procedure is generic. In contrast to previ-
ously reported methods that depend on parameters derived
from pose estimation [20], [21], our deep-learning pipeline
implicitly considers ergonomic parameters from shapes.

The proposed pipeline offers a significant advantage by
diminishing the reliance on safety/ergonomics experts when
it comes to creating or adjusting computerized procedures for
the automatic detection of unsafe acts. This advantage is a
key characteristic of the pipeline, as it allows practitioners to
employ the proposed method in real-world scenarios without
relying heavily on the expertise of safety or ergonomics pro-

fessionals. Additionally, the utilization of 3D representations
within the pipeline enhances its versatility, making it suitable
for a wide range of applications in various industries. The
potential for expanding the use of these 3D representations
to other fields and industries further highlights the flexibility
and scalability of the proposed method. As a result, practi-
tioners can benefit from the proposed pipeline by effectively
addressing safety concerns and recognizing unsafe acts in
diverse real-life situations, having the potential to extend its
application beyond its current scope.

C. LIMITATIONS OF THE PRESENT STUDY AND FUTURE
WORK
Finally, we report the major drawbacks of the proposed study,
which are directions for future research on this topic. Since
two modules in the pipeline are independent deep learn-
ing architectures that perform distinct tasks, data exchange
and redundant computations slow down the execution time.
Furthermore, considering the recent progress of 3D human
pose estimation from monocular videos, there is a possibility
for improving the speed of the pose estimation module by
considering alternatives to the VIBE algorithm (which cur-
rently represents the bottleneck for real-time applications).
Moreover, there is a possibility of applying point-cloud clas-
sification instead of mesh classification, which was used
in this study as the VIBE outputs were in structured mesh
form. Another possible improvement that needs to be made is
the incorporation of temporal information into the decision-
making, which could be done by using the LSTM modules
(enabling one to consider safe/unsafe acts as action classi-
fication instead of posture classification). In this sense, it is
important to compare such approaches with deep learning
models that perform action classification directly from videos
(e.g. 3D ResNet).

According to the insights gained in this study, it is more
likely to expect that application of such solutions will be
first made for static workplaces – while to be able to cover
dynamic workplaces the pipeline should also consider opera-
tor tracking, which is not the subject of this study and arises
other issues, such as workers’ privacy and identification in
manufactures. To enable further progress towards mentioned
challenges, the major prerequisite is a development of an
appropriate public data set, which could enable objective
evaluation of developed procedures as well as their improve-
ment by the scientific community.

VI. CONCLUSION
In this study, we proposed a deep learning-based approach for
pose safety assessment from monocular videos. The experi-
mental results showed that the proposed method has better
performance while providing practical advantages over exist-
ing procedures based on 2D pose estimation.

Specifically, the proposed procedure offers a more intuitive
and comprehensive approach to a safety assessment by direct
classification of 3D body shapes. It allows for more accurate
annotation of data, analysis, and interpretation of results.
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Furthermore, the procedure reduces the reliance on safety and
ergonomics experts, making it more accessible and adaptable
for real-world scenarios. The versatility and scalability of the
proposed method make it suitable for various industries and
tasks, addressing safety concerns and recognizing unsafe acts
in diverse real-life situations.

We report the pose estimation stage as a bottleneck of this
algorithm. When a partial occlusion happens (left or right
arm or leg), especially if it lasts more than a few frames,
body parts that are missing from the video cannot always be
correctly evaluated. The imprecisely estimated SMPL model
is propagated through the whole algorithm and can lead to
misclassification (which influences the accuracy).

Further improvements in procedures for 3D pose recon-
struction from monocular videos are expected to play a key
role in improving the limitations of the proposed approach.
As an alternative to the classification module, the use of
more conventional point-cloud classification and analysis can
also be considered. Accordingly, our future research will be
directed toward 1) the evaluation of more diverse industrial
tasks, 2) enabling the recognition of unsafe acts of multiple
people simultaneously, 3) improving and testing new 3D
pose and shape estimation and classification algorithms, and
4) modifying the architecture to develop more robust decision
support systems while enabling real-time data process-
ing [36]. To reach these goals, the development of appropriate
public datasets will be crucial in enabling progress within the
scientific community focused on the application of artificial
intelligence for improving workplace safety.
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