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ABSTRACT To address the problems of low precision and poor real-time performance in the process of part
identification and positioning of production line assembly robotic arm, Ghost-SE YOLOv5, an assembly
part identification and positioning algorithm integrating lightweight network and attention mechanism is
proposed. First, the redundancy of feature map convolution is utilized, which solves the problems of large
number of model parameters and floating point operations by using Ghost convolution and Ghost Bottleneck
modules. Second, the attention mechanism SE Module is introduced in the backbone network to increase
the propensity of feature extraction. Last, the loss function is optimized to speed up the convergence of the
model. The results shows that the number of parameters, float operation per second and train time of the
proposed algorithm are reduced by 45.98%, 55.99% and 24.07%, respectively. And GPU use was reduced
from 7.61G to 6.43G. Furthermore, during the test the precision reached 98.6%, and the recall rate realized
95.3%. The real-time detection performance achieved 97.59 FPS, with an improvement of 34.53%. It can
be seen that Ghost-SE YOLOv5 algorithm has better practicality in the part identification and positioning
of robotic arm for production line assembly.

INDEX TERMS Deep learning, lightweight, attention mechanisms, machine vision, real-time detection.

I. INTRODUCTION
It is proposed in ‘‘Made in China 2025’’ that ‘‘high-
end computerized numerical control (CNC) and robotics’’
is listed as one of the ten key development areas, and
assembly part identification and positioning is an important
part of the CNC and flexible assembly robot (robot arm)
vision tasks [1]. Traditional identification and analysis
methods have low precision, slow efficiency and poor
real-time performance. With the development of intelligent
manufacturing and the breakthrough of key technologies
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of intelligent production lines in the new situation [2],
it has become an indispensable part of developing Chinese
manufacturing to solve the identification and positioning
of assembly parts through deep learning and machine
vision.

At present, machine vision technology and deep learning
methods continue to develop and innovate, and performance
continues to improve, in production line assembly robotic
arm part identification and positioning, it is important
to improve detection precision, reduce positioning errors,
and achieve higher performance in real-time detection for
enhancing the performance of intelligent manufacturing
production lines [3].
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Machine vision technology and deep learning methods
are not only applicable to the identification and positioning
of assembly parts in the production process, but also have
a wider application in the classification and recycling of
disassembled parts. In Ref [4], [5], the authors achieved
the identification and positioning of parts on the production
line through the YOLOv3 target detection algorithm, and
completed the auxiliary grasping of the intelligent assembly
robot, but the detection performance in the paper is weak and
does not reach the standard of real-time detection. In Ref
[6] combined the YOLOv5 algorithm with a micro aircraft
to achieve real-time detection and grasping of target objects
on the Unmanned Aerial Vehicle robotic arm, solving the
problem that embedded devices cannot achieve real-time
detection. In Ref [7] that a surface defect detection method
based on YOLOv7 is proposed based on full-dimensional
dynamic convolution, but the accuracy is only 88.7% and the
defect effect is poorly detected.

In Ref [8], the authors have effectively completed the
defect detection of printed circuit boards by high-precision
target detection. Similarly, in Ref [9], in order to solve the
problem of recognition and positioning of mechanical parts
in the assembly process, the authors optimization the Faster
R-CNN algorithm, which improves the precision. Similarly,
in Ref 10, the authors improved the YOLOv8 algorithm
to achieve feature detection of aperture radar images in
defense science and technology production lines, improving
the detection accuracy to 98%.

In the recycling and utilization of dismantled parts in the
production line, by combining machine vision technology
and deep learning method, Borold et al. [11] realizes
more efficient recognition and classification of automobile
disassembled parts. Furthermore, In Ref [12], the authors
analyze the strengths and weaknesses of YOLOv5 and
YOLOv7. The authors analyze the strengths and weaknesses
of YOLOv5 and YOLOv7, and prove that YOLOv7 is more
advantageous in some small target detection, but has poor
localization ability and some limitations, while YOLOv5 is
based on prediction strategy and has better detection ability.

However, the existing deep learning recognition and local-
ization algorithms have high hardware resource consumption,
low real-time detection efficiency, computational redundancy
and large model size, which are not suitable for embedded
development and application of robotic arm vision system
[13], [14].

To address the aforementioned problems, the Ghost-SE
YOLOv5 proposed in this paper improves and optimizes
on the basis of YOLOv5. While achieving a lightweight
model, the detection precision, recall and real-time detection
efficiency are improved, thus the main innovation and
contributions of this paper are as follows:
(a) By adjusting the overall structure of the network,

utilizing the redundancy characteristics of the con-
volutional feature map, using the lightweight Ghost
Conv [15] and Ghost Bottleneck [16] significantly
reduces the number of parameters, network layers,

FIGURE 1. Assembly part identification and positioning system.

floating point computations (Flops) and training time,
while improving GPU utilization and freeing up more
hardware resource space.

(b) The channel attention mechanism Squeeze and Excita-
tion Module [17] (SE Module) is introduced between
feature extraction and feature fusion network, which
not only improves the receptive field of feature
extraction, but also can fuse more channel features.
Thus the feature saliency and detection precision of the
detected object can be improved.

(c) The use of Swish nonlinear activation function [18]
to improve the neural network’s expressiveness of the
model. The loss function is also optimized to reduce the
loss value of training and to speed up the convergence
of the model [19].

The remainder of this paper is organized as follows.
Section II offers an assembly part identification and
positioning system. In Section III, Ghost-SE YOLOv5
network structure and its constituent modules are presented.
Sections IV introduce the object detection performance eval-
uation metrics, model training parameters and processes is
provided, and analyze the results of comparison experiments.
Finally, conclusions and future work are given in Section V.

II. IDENTIFICATION AND POSITIONING SYSTEM
During the assemble process of different products in the
production line, the robot arm relies on computer vision tech-
nology to identify the assembled parts [20]. The precision and
efficiency of assembly part identification directly affect the
production efficiency of the assembly process, so a scientific
and reasonable algorithmmodel, high detection precision and
real-time detection performance are the prerequisites to meet
the identification and positioning of assembly parts. It can be
seen that the identification and positioning of assembly parts
by deep learning methods and computer vision technology
has important theoretical research significance and practical
application value [21].
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As shown in Figure 1, the assembly part identification
and positioning system consists of two parts: assembly
part identification and positioning based on machine vision
technology and deep learning methods, robotic arm gripping
and mounting. This research focuses on the identification
and positioning of assembly parts. First, the machine vision
system in the robot arm completes the identification and
positioning of the assembled parts on the production line.
Second, the robot arm is commanded to grip and install
the assembly parts through a centralized control platform.
Last, the robotic arms of different functions work together to
complete the final assembly and production of the product.

During the production process, the working speed and
overall smoothness of the robot arm are influenced by
many factors, among them, mechanical speed and angle
are influenced by their own properties, while the real-time
detection speed and precision in the process of assembly part
identification and positioning are influenced by the model
performance and algorithm structure [22].

Therefore, this paper improves and optimizes the original
YOLOv5 algorithm, and the Ghost-SE YOLOv5 algorithm
is proposed that not only effectively compresses the training
time and model volume, reduces the hardware resource
consumption, and enables it to meet the requirements of
embedded robotic arm vision system, but also has higher
detection precision and high real-time detection speed
compared with the original algorithm, which meets the
requirements of identification and positioning of assembly
parts in the industrial production process [23], [24].

III. GHOST-SE YOLOv5 ALGORITHM
The YOLOv5 target detection algorithm is directly trained
end-to-end on the network, with excellent real-time per-
formance and simple network structure, which is a more
flexible algorithm in the current one stage algorithm, and has
strong advantages in the field of multi-target detection and
recognition [25]. Therefore, the proposedGhost-SEYOLOv5
algorithm will be improved and optimized based on the
YOLOv5 algorithm [26].

A. LIGHTWEIGHT CONVOLUTION AND MODULE
While the traditional convolution process generates many
similar feature maps, lightweight convolution makes full
use of the redundancy between feature maps, and achieves
lightweight by reducing the redundant computation between
feature maps [27].
As Figure 2 shows, Ghost Conv improves the efficiency

of feature extraction, reduces the algorithm’s demand and
consumption of hardware resources with a cheap linear
transformation operation. First, Ghost Conv generates m
intrinsic feature maps by traditional convolution based on
custom convolution kernels. Second, the m intrinsic feature
maps are enhanced feature extraction performing the cheap
linear transformation operations 8(i < m), so that each
intrinsic feature map generates s − 1 new feature maps.
Last, the m intrinsic feature maps generated by traditional

FIGURE 2. Ghost Conv and traditional convolution process.

convolution and the s − 1 new feature maps generated by
the cheap linear operation are stacked. At this point, the
lightweight operation is completed, and a total of m + m ×

(s− 1) feature maps are generated.
Suppose an input image and output image are x ∈ Rc×h×w

and y ∈ Rh
′
×w′

×ms, respectively. Therefore, the calculation
Ct of the traditional convolution can be calculated as

Ct = c× k × k × ms× h′
× w′ (1)

where, c is the number of input channels, ms is the number of
output channels. k × k is the size of the custom convolution
kernel, h×w and h′

×w′ are the height and width of the input
and output images.

Ghost conv has the advantages of simple structure design,
easy to operate, and can be used modularly. Therefore,
the same sizes of convolution kernels, convolution strides
and Padding are used in the Ghost Conv process as in the
traditional convolution, which ensures that the size of the
output feature map is the same as the traditional convolution.
Thus, the number of computations required by Ghost Conv is

Cg = c× k × k × m × h′
× w′

+ m× k × k

× (s − 1) × h′
× w′ (2)

In formula (2), c ≫ s is usually satisfied. Therefore the
theoretical speedup ratio rs and model compression ratio rc
of Ghost Conv and traditional convolution are as follows:

rs =
CT
CG

=
c×k×k×ms×h′

×w′

c×k×k×m×h′×w′+m×k×k×(s − 1)×h′×w′

=
c× s

c+ s− 1
≈ s (3)

rc =
c× k × k × ms

c× k × k × m+ m × k × k × (s − 1)
=

c× s
c+ s− 1

≈ s (4)
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FIGURE 3. Ghost bottleneck module.

In summary, Ghost Conv has more obvious advantages
of the lightweight compared to traditional convolution. The
calculation of Ghost Conv is about the 1/s of traditional
convolution, which greatly reduces the computation of
convolution process and significantly compresses the model
volume and training time.

Ghost Conv can replace traditional convolution to reduce
computation and compress model size. Thus, as shown in
Figure 3, the lightweight module Ghost Bottleneck with
Stride is 1 consists of Ghost Conv Module, Batch Nor-
malization (BN) layer, down sampling and ReLU activation
function.

The Ghost Bottleneck Module consists of two Ghost
Modules stacked on top of each other [28]. The input image
goes through the first Ghost Module to increase the number
of channels, and through the BN layer and ReLU activation
function by the second Ghost Module to reduce the number
of channels, which ensures that the number of channels does
unchanged, so it can be plug-and-play [29].

The proposed algorithm Ghost-SE YOLOv5 uses the
Ghost Bottleneck module to replace the cross-stage partial
network layers in the original algorithm, because fewer
convolutional and BN layers are used, so the number ofmodel
network layers is less, and the amount of model computation
and parameters is lower.

B. ATTENTION MECHANISM
In convolutional operations, the required information is
obtained by extracting or fusing multi-scale spatial features.
The introduction of the channel attentionmechanism Squeeze
and Excitation Module (SE Module) can improve the
relationship between channels, adaptively adjust and correct
the required feature weights in the feature extraction process,
and the corrected channels will be more sensitive to the
required feature information, thus improving the saliency of
the detected object.

Remarks: X denotes the input tensor, H ′
× W ′ represents

the height and width of the input image. C ′ indicates the
number of input channels. U denotes the intermediate tensor,

FIGURE 4. SE module structure.

X̃ means the output tensor. H × W indicates the height
and width of the input intermediate image and the out-
put image, C represents the number of channels of the
intermediate and output images, Ftr denotes conversion
function.

Figure 4 shows the operation process of SE Module. First,
the SE Module reduces the dimension of the input image,
and performs global average pooling on the feature map of
H × W × C , which achieves the purpose of compressing
the information of each feature map. Subsequently, the
global information is learned through feedforward networks
and the corresponding weights of each feature map are
obtained. Eventually, the obtained corresponding weights are
multiplied with the original feature map to obtain the final
feature information.

The operation of SEModule consists of two parts, Squeeze
and Excitation. During the Squeeze process, the input image
is adaptively average pool into the size of 1 × 1 × C , the C
dimensional vector is compressed to 1/r of the original, so the
Squeeze operation is

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (5)

where, zc denotes the output of the compression operation,
Fsq represents the compression function. uc is the c-th feature
map, and (i, j) denotes the height and width of the c-th feature
map.

The global information is obtained after compressing
the model. Therefore, during the Excitation process, the
nonlinear activation function ReLu is performed on the
compressed C/r dimensional feature vector, and the C/r
dimensional feature vector is raised to C dimension by the
full connection operation. Thus, the Excitation process can
be expressed as

s = Fex(z,W) = σ (g(z,W)) = σ (W2δ(W1z)) (6)

W1 ∈ R
C
r ×C , W2 ∈ RC×

r
C (7)
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where, Fex denotes the excitation function, s denotes the
output after excitation. z represents the output vector after
the compression operation, which is also the input vector for
the excitation operation. W denotes the mapping matrix, δ

represents the activation function.
The channel attention mechanism SE Module Squeeze -

Excitation process functions is as follows.

x̃c = Fscale(uc, sc) = scuc (8)

where, x̃c indicates the output of channel c after the image
has passed through the SE Module, Fscale denotes the entire
Squeeze-Excitation function, sc denotes the weight of the c-th
feature map.

In summary, the channel attention mechanism SE Module
completes the adjustment of feature weights through feature
Squeeze and Excitation, which is more conducive to obtain-
ing the desired information.

C. OPTIMIZED LOSS FUNCTION
In the output prediction head of YOLOv5 target detection
algorithm, the loss function consists of position error loss,
classification loss and confidence loss. In the YOLOv5
algorithm, the category loss and confidence loss follow the
BCE (binary cross-entropy) loss [30] function calculation
method in YOLOv3 and YOLOv4, but the position error loss
uses the generalized intersection over union (GIOU Loss)
[31] function calculation method.
The calculation of GIOU Loss is shown in formula (9).

LGIOU = 1 − GIOU = 1 − (IOU −
|C − A ∪ B|

|C|
) (9)

IOU =
|A ∩ B|

|A ∪ B|
(10)

where, suppose A denotes the ground truth box of the image,
B denotes the prediction box of the image, so A∩B represent
the intersection of ground truth box and prediction box (grey
shaded part), and A ∪ B represent the union of ground truth
box and prediction box. C indicates the smallest external
rectangular box of ground truth box and prediction box
(red box).

The corresponding diagram analysis in the GIOU Loss
is shown in Figure 5(a). GIOU Loss considers the case
where ground truth box intersects with prediction box and
has overlapping area. However, as shown in B1, B2, B3 in
Figure 5(a), when it appears that ground truth box contains
prediction box and the size of prediction box is exactly the
same, the A, B, C and difference sets in GIOU Loss are the
same. In this case, it is impossible to distinguish the relative
position relationship, which causes positioning errors and
affects the detection precision.

For this reason, this paper uses the complete intersection
over union (CIOU Loss) as shown in Figure 5(b) instead of
the original loss function, taking into full consideration the
overlap area, relative position relationship, centroid distance
and the prediction box aspect ratio, which is calculated as

FIGURE 5. Schematic of loss function.

shown below.

LCIOU = 1 − CIOU

= 1 − (IOU −
ρ2(Bgt ,Bbb)

C2
P

−
v2

(1 − IOU ) + v
)

(11)

v =
4
π2 (arctan

W gt

Hgt − arctan
W b

Hb ) (12)

where, Bgt and Bbb denotes the center points of the
rectangular boxes of ground truth box and prediction box,
respectively. ρ(Bgt ,Bbb) represent the Euclidean distance
between two center points.CP represent the diagonal distance
from theminimum external rectangular boxC of ground truth
box and prediction box.W gt and Hgt represent the width and
height of the ground truth box,W b andHb represent the width
and height of the prediction box.

It can be seen that CIOU Loss is more comprehensive than
GIOU Loss, with more precision positioning and lower error,
which is more in line with the requirements of production line
assembly parts identification and positioning.

D. GHOST-SE YOLOv5 MODEL STRUCTURE
The structure of the improved lightweight neural network
Ghost-SEYOLOv5 algorithm is shown in Figure 6. Ghost-SE
YOLOv5 replaces the focus module with a 6× 2 rectangular
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convolution with Strict is 2, reducing the number of channels
by 75%. At the same time, Ghost Conv and Ghost Bottleneck
are used to replace the CBL and CSP (Cryptographic Service
Provider) modules in the original algorithm, respectively,
significantly reducing the number of parameters and Flops.

In the Ghost-SE YOLOv5 algorithm, the feature extraction
backbone network completes down sampling through Ghost
Conv and Ghost Bottleneck, and the Neck network completes
feature fusion through Ghost Conv, C3 residual module and
up sampling.

With less convolution in the bottom network, it is able to
contain more location and detail information, and has better
feature resolution. However, in the high-level network, the
resolution and detail perception are lower, but with stronger
semantic information. Therefore, feature fusion networks can
combine the underlying detailed information and high-level
semantic information from the backbone network, each of
which can be used to improve the model expressiveness
performance.

Between the Backbone and Neck, adding the SPP_F
module can make full use of the feature information extracted
by the feature extraction backbone network, and introducing
the channel attention mechanism SE Module can not only
improve the feature extraction tendency of the model, but also
the feature weight adjustment can be done adaptively.

The Ghost-SE YOLOv5 algorithm structure is shown in
Figure 6. At the prediction output head of the network, three
tensors of different sizes (256, na × (nc + 5)), (512, na ×

(nc + 5)) and (1024, na × (nc + 5)) are generated, where
256, 512 and 1024 denote the number of input channels,
na × (nc + 5) denotes the number of output channels.
The number of anchors for each category and the number
of categories of detected objects are denoted by na and
nc, respectively. 5 denotes 4 localization parameters and
1 confidence parameter for each Anchor.

IV. MODEL TRAINING AND RESULT ANALYSIS
A. PERFORMANCE INDEXES
The performance evaluation metrics of the target detection
model include precision (P), recall (R), R− P curve, average
precision (AP), andmAP@0.5,mAP@0.5 : 0.95, harmonized
mean curve (F1), and real-time detection performance.

1) PRECISION AND RECALL INDEX
P and R measure the precision and coverage of the
model detection process, respectively. They are calculated as
follows:

P =
TP

TP+ FP
(13)

R =
TP

TP+ FN
(14)

where, TP (True positive) and FN (False negative) indicates
the part of the detected object that is correctly predicted and
incorrectly predicted, respectively. The FP (False positive)

indicates the part of the background object that is mistakenly
detected as the target object.

A R − P curve describing the average precision (AP)
is formed by P and R, showing the variation trend of the
algorithm model precision with recall during the training
process. The R − P curve can comprehensively evaluate the
reliability of the model, and the larger area under the R − P
curve line, the higher the AP of the model.

The mAP@0.5 represents the average value of AP in N
categories when the threshold IOU is taken as 0.5. Therefore,
the mAP@0.5 is calculated as follows:

mAP@0.5 =
1
N

N∑
i=1

APi(IOUth = 0.5) (15)

The mAP@0.5 : 0.95 defines the precision index under
different values of the threshold IOU in the N categories,
where j denotes the value taken during the change of the
threshold from 0.5 to 0.95 with the stride is 0.05. It can be
expressed as follows:

mAP@0.5 : 0.95 =
1
N

N∑
i=1

∑
j
AP(IOUth = j) (16)

2) HARMONIC MEAN INDEX F1
The F1 comprehensively considers the P and R of the
model, which is a harmonic mean calculation of the P and
R. It is usually a constant between 0 and 1. When F1
takes the maximum value, the robustness and comprehensive
performance of the model is best at this confidence level.

F1 =
2 × P× R
P+ R+ ε

(17)

where ε is a negligible minimum value, usually taken as e−16.

3) REALTIME DETECTION PERFORMANCE
Real-time detection performance reflects the detection capa-
bility of the trained model, real-time detection performance is
measured by the number of image or video frames processed
per second (FPS). The larger the FPS, the better the real-time
detection performance and the higher the efficiency.

FPS =
n
t

(18)

where, n denotes the number of frames processed of the image
or video in time t . Generally, the real-time detection speed is
requires to be greater than 30 FPS.

B. NETWORK MODEL TRAINING
The experiments in this paper are carried out using Python
3.8.5 environment and CUDA 11.3, under Intel Core i9-
10900k@3.7GHz, NVidia GeForce RTX 3080 10G and
DDR4 3600MHz dual memory hardware.

In this experiment, the image input is 2112 × 1419, the
learning rate is 0.01, the cosine annealing hyper-parameter is
0.1, theweight decay coefficient is 0.0005 and themomentum
parameter in gradient descent with momentum is 0.937.
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FIGURE 6. Ghost-SE YOLOv5 algorithm structure.

A total of 300 epochs and a batch size of 12 are used during
training.

Based on the original YOLOv5 algorithm, the lightweight
algorithm is named Ghost YOLOv5, which introduce Ghost
Conv and Ghost Bottleneck. On this basis, the algorithm
introduced the attention mechanism SE Module, and named
Ghost-SE YOLOv5.

C. EXPERIMENTS
To verify the rationality and applicability of the proposed
algorithm, experiments are conducted on Pascal VOC,
T-LESS and MVTec ITODD datasets in this paper.

The Pascal VOC dataset is the standard dataset with high
confidence for validating the proposed Ghost-SE YOLOv5
algorithm. The T-LESS and MVTec ITODD datasets contain
49 industrial assembly parts, which are masked from each
other, and without obvious texture and color distinction, and
thus can validate the utility of the model.

In this experiment, there are a total of 8832 images in the
industrial dataset, including 5888 images in the training set,
2644 images in the validation set, and 300 images in the test
set, and a total of 300 Epochs are trained iteratively. The

training process of the improved and optimized Ghost-SE
YOLOv5 algorithm is shown in Table 1.

1) IN PASCAL VOC STANDARD DATASET COMPARISON
EXPERIMENT
Based on the YOLOv5 algorithm, Ghost-SE YOLOv5
achieves lightweight through Ghost Conv and Ghost Bottle-
neck. Subsequently, taking into full consideration the overlap
area, relative position relationship, centroid distance and
the prediction box aspect ratio of the ground truth box
and prediction box, using a more reasonable CIOU Loss
to complete the position fitting. Last, the SE Module is
introduced to adjust the feature weights and speed up the
convergence of the loss function. Therefore, the results of the
ablation experiments on the Pascal VOC standard data set are
shown in Table 2.
During the training process, the lower the value of the

loss function, the higher the precision of the model, and
vice versa. Figure 7 shows the loss function convergence
curves and precision curves in Pascal VOC dataset. In the
Figure 7(a), compared to the original algorithm, it can be
observed that the proposed Ghost-SE YOLOv5 algorithm has
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TABLE 1. Training process of Ghost-SE YOLOv5.

lower loss function values at the early stage of training, which
indicates that the Ghost-SE YOLOv5 has more adequate
feature extraction and better information fusion capability,
learning performance and advantages is more obvious at the
pre-training stage. This is consistent with the precision curve
in Figure 7(b), where the loss function values are low and
the model precision is high in the early stage of the training
process.

2) IN T-LESS AND MVTEC ITODD INDUSTRIAL ASSEMBLY
PARTS DATASET COMPARISON EXPERIMENT
The identification and positioning of assembly parts in indus-
trial production lines require accurate identification, correct
positioning, and stable efficiency, meanwhile, to ensure
production efficiency should have high real-time detection
speed. So, to verify the reliability of the proposed algorithm
needs to take into account both R and P.

The R − P curve is an important performance metric,
it reflects the negative correlation relationship between R and
P. In T-LESS+MVTec ITODD assembly parts dataset, the
R − P curves of YOLOv5, Ghost YOLOv5 and Ghost-SE
YOLOv5 algorithms during training are shown in Figure 8.

As Figure 8 shows, compared to the YOLOv5 and Ghost
YOLOv5 algorithms, the Ghost-SE YOLOv5 algorithm has
a larger area under the R−P curve line, which shows that the
proposed algorithm has a higher average precision (AP) and
satisfies APGhost-SE YOLOv5 > APGhost YOLOv5 > APYOLOv5.
Figure 9 shows the average precision curves for different

IOU thresholds, which demonstrates the average variation
process of the precision of all the detected categories. It can be
observed that in mAP@0.5 and mAP@0.5 : 0.95 curves, the
Ghost-SE YOLOv5 algorithm has higher initial precision and
faster rise in the pre-training period and eventually converges.

FIGURE 7. Loss function convergence curves and precision curves in
Pascal VOC dataset.

FIGURE 8. R − P curves of different algorithms.

In the Figure 9(a), the final convergence value of
mAP@0.5 curve of YOLOv5 algorithm is 0.9645, while the
final convergence value of Ghost-SE YOLOv5 algorithm is
0.966, which is slightly higher than the original YOLOv5
algorithm. In the Figure 9(b), the convergence values of
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TABLE 2. Ablation experiments.

FIGURE 9. mAP@0.5 and mAP@0.5:0.95 curves.

YOLOv5 and Ghost-SE YOLOv5 in the mAP@0.5 :

0.95 curve are 0.8987 and 0.9077, respectively, and the
proposed Ghost-SE YOLOv5 algorithm is about 1% higher
than the original algorithm.

In summary, it can be seen from AP, R − P curves,
mAP@0.5 curves andmAP@0.5 : 0.95 curves that the Ghost-
SE YOLOv5 algorithm is higher than the original YOLOv5
algorithm in terms of precision and recall, which proves that
the proposed algorithm has better practicality for assembly

FIGURE 10. F1 curves of different algorithms.

part recognition and localization based onmachine vision and
deep learning.

The harmonic mean performance curve shows the trend of
harmonic calculation of model precision and recall during
training with different confidence thresholds. During the
training process, the F1 harmonic mean curves of YOLOv5,
Ghost YOLOv5 and Ghost-SE YOLOv5 algorithms are
shown in Figure 10.
As Figure 10 shows, during the change of the confidence

threshold from 0 to 1, YOLOv5 algorithm obtains the
maximum value F1 = 0.94 at confidence threshold Conf =

0.488, and Ghost-SE YOLOv5 achieves the maximum value
F1 = 0.96 at the confidence level Conf = 0.694. It can
be seen that with a confidence level is 0.694, the trade-off
calculation of P and R of Ghost-SE YOLOv5 algorithm is
more reasonable, and the comprehensive performance of the
model is more desirable.

D. ANALYSIS OF RESULTS
The confusion matrix represents the one-to-one quantitative
statistical correspondence between the model true labels and
the predicted category labels. The horizontal coordinate of the
confusion matrix is the true label of the detected object, the
vertical coordinate is the predicted class label, so the diagonal
line of the confusion matrix indicates the relationship of
the number of correct predictions during the training and
validation of the model, where the darker color indicates the
higher precision of the prediction [32].

As shown in Figure 11, in this paper a total of 49 industrial
parts and 1 background can be detected, for a total of
50 categories to be detected, and all the backgrounds are
considered as 1 category. Therefore, the confusion matrix is
50 × 50 and is one-to-one correspondence. Each of these
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TABLE 3. Parameters of each models.

TABLE 4. Comparison of other algorithms.

FIGURE 11. Confusion matrix.

categories has the potential to be detected as one of the other
49 categories, including the background (false detection).

As shown in the figure, taking the first column as an
example, it can only be considered as accurately detected if it
is detected as a category tagged by the label, i.e., the same as
the category in the first row, otherwise it is a false detection.

As can be seen from the figure, the assembly part
recognition based on machine vision and deep learning has
high detection precision, there are very few false detections,
but still can meet the needs of actual production.

As shown in Figure 12, during the training process with
the T-LESS+MVTec ITODD dataset, due to the lightweight
achieved by the Ghost-SE YOLOv5 algorithm, so the
number of parameters, Flops, and model volume are reduced
significantly compared to the YOLOv5 algorithm. Among

FIGURE 12. Training process comparison of different parameters.

them, the number of parameters and Flops are reduced by
about 22 million and 65.4 G respectively, and the model
volume is compressed by about 41.9 M.

However, the real-time detection performance of the
improved Ghost-SE YOLOv5 improved significantly, from
63.9 FPS to 97.59 FPS, an improvement of about 34.19 FPS.
In addition, the GPU occupancy is significantly lower, from
7.61G to 6.43G, a reduction of about 1.18 G.

Table 3 shows the parameters and test results of different
algorithm models. It is clear from the table that Ghost-SE
YOLOv5 not only reduces the GPU occupancy, but also the
training time by about 24.07%. Furthermore, the real-time
detection speed of 97.59 FPS is achieved, which is a 34.53%
improvement. Which is much greater than the 63.9 FPS in
the original algorithm and the 30 FPS required in real-time
detection. It can be seen that Ghost algorithm has a strong
advantage in detection precision and speed, and can meet the
requirements of assembly part identification.

The analysis of the experimental results shows that Ghost
YOLOv5 achieves a real-time detection performance of
103.56 FPS, because it introduces a light weight to optimize
the convolution process and model structure. However, after
the introduction of SE Module, the amount of computation
and the number of network layers are increased, so the real-
time detection performance is reduced to 97.59 FPS, but the
significance of the detected target increases and the detection
precision improves, due to the tendency of the channel
attention mechanism in the feature extraction process.

In addition, experiments were conducted in three different
algorithms, YOLOv5, YOLOv7 and YOLOv8, for assembly
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FIGURE 13. Test results of different assembly parts.

part identification and localization, and the results are shown
in Table 4.

As shown in the table, compared to Ghost-SE YOLOv5,
the YOLOv7 algorithm has lower real-time performance
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and recall due to the addition of non-maximal suppression.
Whereas YOLOv8 applies the unanchored network detection
header and the new loss function, so the precision and
mAP@0.5 are higher, but the real-time performance is
worse.

Finally, in order to verify the feasibility of the algorithm
proposed in this paper, different assembly parts were selected
for testing and validation under multiple scenarios, and the
comparison of the test results is shown in Figure 13.
In conclusion, the detection results show that the Ghost-SE

YOLOv5 algorithm locates more accurately, the recall rate
and label detection confidence are higher in the process of
assembly part identification and localization. In the case of
highly dense and highly overlapping, the missed detection
rate is lower and the detection effect is significantly better
than the original algorithm.

V. CONCLUSION
In this paper, in order to solve the problem of slow identi-
fication and localization of assembly parts under robot arm
vision on production lines, we propose Ghost-SE YOLOv5,
a recognition method that incorporates Ghost lightweight
neural networks and SE attention mechanisms. In addition,
the loss function is also optimized to effectively improve the
precision and real-time performance of the model.

Compared with the original algorithm, the improved
Ghost-SE YOLOv5 loss function converges faster, the
number of network layers is reduced by about 28.46%, the
precision is improved by about 0.8%, and the real-time
performance is improved from 63.90 FPS to 97.59 FPS. The
experimental results show that the proposed algorithm can
meet the identification and positioning of production line
assembly parts.

In future research work, we will try to combine deep
learning with reinforcement learning, which will enable
the model to have the ability of self-correction during
the learning process and thus further improve the model
performance.
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