IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 21 August 2023, accepted 17 September 2023, date of publication 22 September 2023,
date of current version 28 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3317896

==l RESEARCH ARTICLE

Parallelized Particle Filter With Efficient
Pipelining on FPGA for Real-Time
Ballistic Target Tracking

DAEYEON KIM*“'', HEONCHOEL LEE “'!, (Member, IEEE), HYUCK-HOON KWON "2,
YEJI HWANG2, AND WONSEOK CHOI?

! Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi-si 39177, South Korea
2PGM Research and Development Laboratory, LIG Nex1, Seongnam-si 13488, South Korea

Corresponding author: Heonchoel Lee (hclee @kumoh.ac.kr)

This work was supported by the Theater Defense Research Center funded by the Defense Acquisition Program Administration under Grant
UD200043CD.

ABSTRACT In this paper, the problem of a real-time ballistic target tracking is addressed. Because the
tracking process can be affected by the uncertainty in models and disturbances, probabilistic filters have been
applied to solving the ballistic target tracking problem. Particle filters (PFs) can be used as a probabilistic
filter because of their advantages of dealing with non-Gaussian models. However, since the PFs require too
much computational costs, it is hard to apply the PFs to real-time systems for ballistic target tracking. The
Graphic Processor Unit (GPU) can be considered to accelerate the PFs in the parallelization manner. But,
the GPU-based parallelization requires too much power consumption, which means that it is difficult to be
applied to the ballistic target tracking system due to the heat problem caused by the excessively increased
power consumption. This paper proposes a practical approach which is a parallelized particle filter based
on a heterogeneous processing system including a field-programmable gate array (FPGA) to accelerate the
ballistic target tracking process by parallelizing the PFs while avoiding the heat problem. The evaluation
results with a real heterogeneous processing system showed that the proposed approach could successfully

conduct the ballistic target tracking and accelerate the PFs over four times.

INDEX TERMS Embedded systems, FPGA, parallel processing, particle filters, target tracking.

I. INTRODUCTION

Ballistic target tracking has been known as a crucial aspect
of defense systems and has seen remarkable advancements
with the advent of new methodologies. It involves the pre-
diction and determination of the trajectory of a projectile or
other object in flight, usually for the purposes of intercep-
tion or evasion. One technique that has been prominently
employed in this domain is the use of particle filters [1].
Several compelling advantages are offered by particle filters
in solving the ballistic target tracking problem. Non-linear
and non-Gaussian problems which are frequently encoun-
tered in real-world tracking scenarios [2] are handled adeptly
by them. Unlike the Extended Kalman Filter (EKF) which

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski

assumes a Gaussian noise distribution and linear system
dynamics, the particle filter is better suited for the complex
dynamics and uncertainties found in ballistic target track-
ing [26]. Multi-modal distributions and multiple hypotheses,
which permit more accurate and versatile tracking [3], are
also features of particle filters. Moreover, their inherent
recursiveness, which allows for real-time applications and
continuous tracking without requiring all data to be present
initially, is a key advantage [4].

However, despite these significant advantages, certain
drawbacks are associated with the use of particle filters.
The most notable among these is the computational intensity
of particle filters, which can be prohibitive, particularly for
real-time applications with resource-constrained devices [5].
This issue can be further compounded in scenarios where
many particles are required to achieve acceptable estimation

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

104830

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0009-0009-0558-6876
https://orcid.org/0000-0003-2962-3474
https://orcid.org/0000-0003-2773-0145
https://orcid.org/0000-0001-6829-2263

D. Kim et al.: Parallelized PF With Efficient Pipelining on FPGA

IEEE Access

accuracy [6]. The challenges posed by these factors are
addressed, and effective solutions to enhance the efficiency
and accuracy of ballistic target tracking using particle filters
are proposed in this paper. Most research has largely focused
on the acceleration of Particle Filters using Graphics Process-
ing Units (GPUs) [7], [8], [9]. Significant results in terms
of increased computational speed have been yielded by this
approach, but it causes the problem of power consumption
[10]. The power consumption in GPU-based systems can be
substantial, which can be particularly problematic when the
target tracking system is integrated into an airborne platform.

Strict power constraints are often imposed on airborne
platforms, establishing power efficiency as a critical concern
alongside computational performance [28]. The high-power
demand of GPU-based systems can, therefore, present a
significant limitation in such applications. As a result,
methodologies that both achieve computational acceleration
and efficiently manage power consumption are needed.

Acceleration of the algorithm can primarily be achieved
through three methods, each offering different approaches
to enhance system performance. According to Table 1, the
first method involves pipelining and parallelization, consid-
ering the spatio-temporal complexity of the algorithm. The
implementation of the entire algorithm in hardware has been
proposedin [11],[12], [13], and [14], while the pipelining and
parallelization of resampling processes have been suggested
in [15], [16], [17], and [18]. The second method focuses
on algorithmic modifications, wherein the algorithm itself
is optimized or transformed to enhance efficiency. Accel-
eration was achieved through a combination of pipelining,
parallelization, and algorithmic modifications as described
in [19], [20], [21], and [22]. Lastly, significant performance
improvements can be realized by optimizing the interaction
between hardware and software, thereby reducing associ-
ated overheads. In other words, efforts have been undertaken
to reduce overheads, which have resulted in improvements.
A Stream-like protocol for enhancement has been utilized in
the proposed method.

Our main contributions are as follows:

1) A hardware-software co-design approach was pro-
posed to accelerate the conventional particle filter for
ballistic target tracking by parallelizing several parts,
which can improve the real-time performance.

2) The unavoidable overhead resulting from data
exchange between heterogeneous processors can be
reduced by optimizing data exchange and communica-
tion protocols. Therefore, more efficient data transfer
and processing between processors can be conducted.

3) The performance of the proposed approach was ver-
ified by successfully conducting co-simulations on a
real evaluation board with heterogeneous processors.

The paper is organized to begin with a comprehensive
description of the problem, where the application of the par-
ticle filter is introduced. This sets the stage for a thorough
understanding of the context and the complexities involved.

VOLUME 11, 2023

Next, the proposed method is explored in detail, with a focus
on three techniques for hardware-software co-design. Each
method is explained in detail. Finally, the evaluation results
are presented, including a meticulous performance analysis
and an in-depth ablation study. This section is intended to
corroborate the effectiveness of the proposed methods and
provide a tangible measure of their impact.

Il. PROBLEM DESCRIPTION

The main goal of a tracking filter for a fast-moving object
such as ballistic missiles is to estimate the target states in
real time. At first, a ballistic missile trajectory is required
in order to evaluate the performance of the tracking filter.
Unlike outside the atmosphere, the aerodynamic forces such
as drag in addition to gravity have an important influence
on determining the ballistic missile trajectory in the reentry
phase. We assume that the ballistic missile is a point mass
describing in three-dimensional Cartesian coordinate system.
A nonlinear dynamic equations including gravitational and
aerodynamic forces as follows.

x = Vcosycosy D
y = Vcosy sinyr 2)
7z = —Vsiny 3)
V— (T — D — mgsiny) @)
m
. (Lcos¢p — mgcosy)
y =)
mV
Lsing
=— ©)
mVcosy

where D = $pV2-Cp-S,L = 3pV?-CL-S

As shown in Fig 1, x,y, z are position of missile, and
V., v, ¥ represent velocity, flight path angle, heading angle,
respectively. m is mass of missile, g is the gravitational
acceleration, and T represent thrust. The aerodynamic forces
D, L are drag and lift force, where consist of air density
p, drag coefficient Cp, lift coefficient Cy, and reference
area S. At last, ¢ means bank angle, which is the direction
of lift force. In the paper, thrust is set to O and therefore
mass is assumed to be constant because the combustion of
propulsion system is generally completed before the reentry
phase. In addition, since the effect of lift force is relatively
small compared to drag force in non-maneuvering missile, L
is assumed to be 0.

A. PARTICLE FILTER MODEL FOR REENTRY PHASE

For target-tracking estimations, several simplified target
models have been proposed. In this paper, the widely used
Singer model assuming that the target acceleration is a zero-
mean, first-order, stationary Markov process was used [24]
and [25]. The state-space formulation of the continuous-time
Singer model is as follows.

x=Fx+ Gw 7

104831

IEEE Access

D. Kim et al.: Parallelized PF With Efficient Pipelining on FPGA

TABLE 1. Overview of related works detailing various approaches to particle filter applications.

Reference Method Platform Application Target Device Accelerated Part
[11]-[14] Pipeline and parallelize HW Tracking FPGA Fully accelerated
[16]-[18] Pipeline and parallelize HW Tracking FPGA Resampling
[7] Pipeline and parallelize HW/SW Ballistic target tracking CPU, GPU Prediction
[15] Pipeline and parallelize HW/SW Object tracking CPU, FPGA Resampling
[81-[9] Pipeline and parallelize HW/SW Object tracking CPU, GPU Resampling
Pipeline, parallelize and . .
[19]-[20] algorithmic modification HW Tracking FPGA Resampling
[21] Plpelime, .paralleFlze an d HW Tracking FPGA Fully accelerated
algorithmic modification
[22] Plpel.me, Paralle%lze a'nd HW/SW Crack detection CPU, FPGA Fully accelerated
algorithmic modification
Proposed Pipeline and parallelize HW/SW Ballistic target tracking FPGA Prediction
z where S,, is power spectral density and S,, and Qg is white
A y noise jerk model. For the integral of the jerk over a time step
’ At, the acceleration increment is represented in Eq. (10).
There are three types of information that can be measured
by the radar system: elevation, azimuth, and range. Three
measurements can be calculated using the relative position
between a target and radar system.
T T d d dqT
[7x Iy " = I[px Py pl’ = [p; P; p;]
(1)
| g where the superscript rd denotes radar system and the state
r represents the relative position between a target and radar

FIGURE 1. An illustration of the ballistic missile trajectory with
parameters.

where

X = [x Py Pz Vx Vy Vz Gy Qy

03 & 03 03
F=103 03 Iz and G = | 03
03 03 —-I3 / T Iz

Here, x represents states including position, velocity, and
acceleration, w means the zero-mean white Gaussian noise.
And 7, I3 indicate the time constant of acceleration and
identity matrix of order 3, respectively. For filter design, the
following discrete-time equivalent is needed.

X = Pp_1xk—1 +wi—1, withwy_1 ~ N (0, O) .

(®)
Oy >~ 1+ FAt 9
AP At AP
20413 73[3 Tz 3
Ok~ SuQo =Sy | 881, ACp AL (10)
AP Ar? Adl
6 3 213 3

104832

system. Based on the relative information, two angle mea-
surements and one range measurement can be described as

follows.
20 (rz/\/ +ry)+nG€+n9
2y ry/rx +ng,y +ny (12)

%R JrE il g

where 79, zy and zg are elevation, azimuth and range mea-
surement, respectively. And as main error components,
the receiver noises of radar system(ng, ny, and ng) and
non-Gaussian glint noises(ng,¢ and ng,y) are generated [26].

B. THE LIMITATION OF REAL-TIME IMPLEMENTATION
Particle filter algorithm has been widely used due to its high
estimation accuracy and consistency [29]. However, for high
accuracy, a large number of particles are required, which
exponentially increases the computation burden. However,
against high-speed targets such as ballistic missile, the target
estimation should be executed in real time. To cope with the
problem, we suggest FPGA-based acceleration method for
particle filter application.

VOLUME 11, 2023

D. Kim et al.: Parallelized PF With Efficient Pipelining on FPGA

IEEE Access

.
Calculate

Weights

Initialize Particles
. J
/—+—\
Model
Propagation

(N
[Noise Modeling ||Initiali i tResamplmg ’

~—

FIGURE 2. Flow diagram of our particle filter application illustrating the
sequence of operations for ballistic target tracking.

Particle Initialize

Input Stream

Data Package
Parallized and Pipelined

Model Propagation
Pseudo Random

Number Generator

Output Stream

Particle Filter Process

FIGURE 3. Overview of the proposed methods.

If the particle filter algorithm is executed on the CPU,
all the iterative parts of a number of particle are computed
sequentially. On the other hand, the repetitive calculation
caused by many particles can be parallelized in the FPGA.
Therefore, a considerable amount of computation burden
can be greatly reduced when we adopt FPGA approach for
particle filter algorithm. Although additional overhead time
is required for FPGA approach, an appropriate parallelization
technique should be suggested considering the computational
efficiency.

lll. PROPOSED METHOD
Fig. 2 illustrates the flowchart of our application for ballistic
target tracking. As previously mentioned, by configuring a
system to operate efficiently using the characteristics and
resources of a limited system, it is possible to expect an
increase in real-time performance due to a reduction in exe-
cution time.

Therefore, to accelerate the particle filter, we propose
a system that parallelizes the algorithm for computation.
Fig. 3 illustrates the structure of the proposed system, which
incorporates the following methods for hardware latency
and heterogeneous processor intercommunication for data
exchange.

A. PARALLELIZATION AND PIPELINING

In our endeavor to minimize latency, a comprehensive anal-
ysis was conducted on the spatiotemporal complexity of the
algorithm. This process led us to apply a strategic combina-
tion of pipelining and parallelization techniques that aimed to
enhance the efficiency of the system. Upon profiling the exe-
cution time, it was evident that the section requiring the most
computational time was the model propagation, as despite in
Fig. 4.

VOLUME 11, 2023

TABLE 2. Pseudo code of baseline particle filter.

_Algorithm 1 Particle Filter for Ballistic Target Tracking
N: number of particles
Zy,: measurements
Zpar: predicted measurements

l: x, < Initialize Particles
2. Xpar < Model Propagation

31 ng,ny,ng,nge, NG,y < Noise Modeling
P, < Calculate Weights for particles
for i in range (1:N):

1 (zm[0]-Zpar[0 [iD?
B AT
3 P \/21‘[6‘2) ZGP

(Zm[1]-zpar [1][lDZ)

1
. «— exp (
6: Po Znoé 269

Pw < L exp (_ (Zm[z]_zbar[z][i])2>
7 ¥ \/2“0121; Zaﬁ,
8: Pulil < Pp X Po X Py
9: Porsum ™ Porgum T Poli]
10: end
11: for i in range (1:N):
12: polil < —pi‘*’[”
13: end

14: X< Sequential Importance Resampling (SIR)
for i in range (1:N):

15: Random value generation

16: Combining cumulative weights with random
values

17: Pair creation and sorting

18: Compute resampled index

19: xp < Update(xpar)

20: end

In Table 2, line 17 refers to the sorting process within
the Sequential Importance Resampling (SIR) method [30],
and line 9 refers to the cumulative summation operation
during weight calculation. Both operations, especially the
sorting process and the cumulative summation, are not inher-
ently conducive to parallel computation due to their intrinsic
data dependencies. Additionally, when entering parallel pro-
cessing, the I/O overhead can be significant. Hence, it’s
imperative to exercise careful consideration and discretion
when determining which operations are viable candidates
for acceleration. However, model propagation involves a vast
number of independent computations, making it worthwhile
to pursue parallel processing despite the I/O overheads.

Therefore, to enhance efficiency, the model propagation
procedure, typically consisting of addition and multiplication
tasks on a 9 x 9 matrix and a 9 x 1 matrix, underwent
a redefinition. As depicted in Fig. 5, the 9 x 9 matrix

104833

IEEE Access

D. Kim et al.: Parallelized PF With Efficient Pipelining on FPGA

Exec. Time of Baseline Particle Filter [s]

Model Propagation I 20.376
Resampling M 1.560
Weighting Function B 0.797
Others | 0.121
Initialize Particles | 0.084
Noise Modeling 0.002

FIGURE 4. Profiling results of the particle filter application execution
time, highlighting the model propagation step as the most time intensive.
The figure emphasizes the suitability of parallelization and pipelining for
the Model Propagation step due to its nature of performing
multi-dimensional matrix product with large continuity.

Redefined In Parallel

i - -

| | 1 1

p1| N Ay A ml Ag Ag 1 1l Than |

W= - - - -7 1 1

Tp2 Agi|Ag| "7 [| Agg | Agg 1 @hara :
1

X : -

. I_ l

1 1

Tps Agi|Asa| """ | |Ass|Asg 1\ Ebars| 1

1 1

Tpg Agy|Aga| "7 | |Ags|Agg 1 haro| !

N ==

FIGURE 5. Efficiency optimization methods in matrix operations.
Redefinition of the 9 x 9 filter covariance and motion model matrices
enable efficient parallel computations in matrix multiplication.

was ingeniously split into separate rows, thereby facilitating
parallel computations within the system. In circumstances
where data dependencies were unavoidable, pipeline methods
were integrated to further optimize the process and reduce
latency.

B. A SHIFT TOWARDS LIGHTWEIGHT LFSR ALGORITHMS
Various algorithms for pseudorandom number generation
exist, with the Mersenne Twister algorithm being the most
prevalently used [23]. Despite this, its high computational
complexity often renders it unsuitable for real-time opera-
tions and maintaining responsiveness in embedded systems.
Table 3 shows our lightweight pseudo random number gener-
ator. In the context of particle filtering, the random numbers
employed are not purposed for cryptography, thus paving the
way for lightweight pseudorandom number generation. This
can be accomplished by suitably integrating a seed into algo-
rithms such as the Linear Feedback Shift Register (LFSR).
In our research, the capability of a 32-bit LFSR pseudoran-
dom number generation algorithm has been harnessed.

The measurement serves as the seed input, as shown in
Fig. 6. Given that particle filtering necessitates normally dis-
tributed random numbers, and the Box-Muller transformation
integrated to generate the required random numbers.

104834

TABLE 3. Pseudo code of proposed random number generator.

Algorithm 2 Pseudo Random Number Generator
INTPUT: seed

OUTPUT: rand,,

Initialization of variables: assign number i

1: While (i < random numbers) do

2 lf sr, < LFSR(seed) // 32bit random number
3: lf sry, < LFSR(If s7y,) // 32bit random number
4: rand,, rand, < dist(l{fsr,, [fsr,) ~U(0,1)

5 rand, < box-muller(rand,, rand,) ~ N(0,1)
6: end
7: returnrand,

FIGURE 6. Schematic of the 32-bit LFSR used for random number
generation.

FIGURE 7. An illustration of the implemented stream-like protocol is
shown, enabling parallel processing of multiple particles, with a last
signal activation denoting the end of the stream.

C. STREAM-LIKE DATA EXCHANGE PROTOCOL

The need to design a data exchange protocol between the
CPU and FPGA is a critical aspect of our work. This can be
implemented using a structure that is reminiscent of a stream-
like format, owing to its parallelism. The choice of structure
largely depends on the volume of data that needs to be
exchanged. For instance, a simple structure is apt when there
is a requirement to exchange large amounts of data at once.
On the other hand, a stream-like structure is more appropriate
when the data exchange needs are less intensive. Given that
our research involves parallel processing, which necessitates
the exchange of significant amounts of data concurrently,
a stream-like structure is deemed most suitable, as depicted
in Fig. 7.

IV. EVALUATION RESULTS

The setup for the system environment used in our research
is as follows: The Xilinx ZYNQ ZC706 evaluation board
was used for testing purposes, and the Xilinx Vitis tool,

VOLUME 11, 2023

D. Kim et al.: Parallelized PF With Efficient Pipelining on FPGA

IEEE Access

TABLE 4. Resource utilization of the proposed method on FPGA.

Particles 8 16 32 64 128
LUT 22291 24433 29297 31844 52222
LUTRAM 823 833 841 1022 1020
FF 28442 33195 42584 61327 97105
BRAM 5 5 5 5 5
DSP 192 192 192 192 192
BUFG 1 1 1 1 1
POWER 2.194W 2.247TW 2.273W 2372W 2.537TW

a prominent software platform for accelerating applications,
was employed for co-simulation. When the proposed method
was implemented, the utilization of FPGA resources was as
presented in Table 4. In this table, “Particles” refers to the
number of particles processed in parallel in the implemented
hardware.

A. RESULTS OF HIGH-SPEED TARGET TRACKING

A tracking scenario for a ballistic missile is proposed to
verify the effectiveness of the proposed acceleration method.
For the target trajectory, the dynamic equations in Eq. (1) to
Eq. (6) are used and missile specification including aerody-
namic drag were set as in [27]. The sampling interval and
total simulation time are set to be 0.01second and 2second
yielding 200 intervals. The standard deviation of the radar
receiver noises were set to be 0.1°(ng), 0.1°(ny,), and 1m(ng),
respectively. Glint noises such as ng gand ng,y are mixtures
of Gaussians as follows.

p(x) = = &) pg, +¢epg,. (13)

where ¢ is the glint probability and is set to be 0.3. pg, and
DG, are Gaussians in pg, ~ N(0, 0.52)° and pg, ~ N(0, 52)°
at the range of 100m in respectively [26]. Under the general
assumption that the radar is fixed on the ground, the Singer
model is used for target tracking. The velocity of a ballistic
missile varies with time due to the gravitational force and
aerodynamic drag, which is well shown in Fig. 8. The number
of particles for tracking filter is set to be 15000. It can be
shown that although the initial estimation is very inaccurate,
the tracking filter follows the true value in a short time.
In Fig. 9 and Fig. 10, the estimation results for position
appear, which shows a satisfactory tracking performance.

B. PERFORMANCE ANALYSIS OF PROPOSED METHOD

1) PIPELINING AND PARALLELIZE

Fig. 11 provides a detailed depiction of the timing diagram,
representing the hardware implementation that was derived
from the proposed methodology. During the implementation
process, data dependencies were carefully considered, and
pipelining was applied specifically to the prediction operation
for each individual particle to ensure that the operation was
carried out efficiently. However, it’s important to note that

VOLUME 11, 2023

- (23

(2 (=3

o o
T

=N
(2
o

Estimated

N Velocity (m/s)
o

0 0.5 1 1.5 2
Time (sec)

1000 -

D Velocity
1
i
i
-
2
]

Estimated

o

0 0.5 1 1.5 2
Time (sec)

FIGURE 8. Estimating target velocity compared to true velocity.

10.25

10.2

Downrange (km)
N

- o

° o

- (3]

-
o
o
a

-
o
2

O Measurement | |
Estimated

9.95 ‘ | |

0 0.5 1 1.5 2
Time (sec)

FIGURE 9. Estimating target downrange compared to measurement and

true value.

4 T
————— True
35 O Measurement| |
- Estimated
= 37
€
=
S25¢
2
=
< 2l
151
1 , . .
0 0.5 1 1.5 2

Downrange (km)

FIGURE 10. Estimating target altitude compared to measurement and
true value.

the process of data exchange with the CPU, as visualized
in the diagram, introduces an inherent overhead. While this
overhead is unavoidable, it is a necessary part of the system’s
operation, facilitating the crucial communication between the
CPU and other hardware components.

104835

IEEE Access

D. Kim et al.: Parallelized PF With Efficient Pipelining on FPGA

Prediction of particle 1 l
Prediction of particle 2 |

Receive data llnit s;éd""-v.:l
from CPU) [
nit.
valuable
nit.

[Predicti t;f particle n-1 [Send data to
‘ PRNG | F iction of particle n | CPU

Clock
FIGURE 11. Results of the implemented pipeline and a timing diagram

are presented, demonstrating efficient execution of operations on
multiple particles within a single task.

3000

2500 1

2000 [

1500

Frequncy

1000 -

500 -

Value

FIGURE 12. Results of random number generation using our proposed
method.

2) RESULTS OF GENERATE GAUSSIAN RANDOM NUMBERS
Fig. 12 depicts a histogram of 24 numbers that were ran-
domly generated by the proposed method. The adherence
of these generated numbers to a suitable standard normal
distribution, crucial for their use as inputs in the particle filter,
is demonstrated. Moreover, the ease of implementation and
efficiency in terms of resource usage are attributes associated
with the LFSR structure, making it advantageous in terms of
hardware implementation.

3) COMPARISON IN COMPUTATION TIME OF VARIOUS
RANDOM NUMBER GENERATOR

In Table 5, a comparison of execution times is presented, fea-
turing the Mersenne Twister (MT19937), the 64-bit Mersenne
Twister (MT19937-64bit) pseudo-random number genera-
tors, and the method proposed, within the context of an Intel
Core i9-12900K desktop environment. A period of 219937-
1 is exhibited by the Mersenne Twister algorithm, which is
much longer compared to the period of 232-1 of the pro-
posed method. Although the period of the Mersenne Twister
algorithm is difficult to predict, a sufficient period for our
application is still provided. A clear demonstration of the
efficiency of the proposed algorithm is provided by the com-
parison, as it shows approximately twice the speed in terms

104836

TABLE 5. Execution time of various random number generators.

Method Exec. Time (s)
Proposed 2.72610.086
MT19937 7.22940.186

MT19937-64bit 8.049+0.872

of execution time compared to the other two algorithms.
These results demonstrate that the numbers generated by the
proposed pseudo-random number generation algorithm not
only adhere to a suitable standard normal distribution, but
they also do so more efficiently.

4) COMPUTATION TIME ACCORDING TO THE

NUMBER OF PARTICLES

In Table 6, the overall execution time of the algorithm, based
on the number of particles, is provided. The most significant
speed improvement is shown to result from the application of
pipelining. Additionally, speed enhancement is also found to
be contributed by the sequential co-design approach. How-
ever, when all proposed methods are applied and the number
of particles processed in parallel is increased, a bottleneck
is observed. In conclusion, significant speed improvement
is exhibited by the algorithm, particularly on a hardware-
software co-design system, where the total execution time is
seen to be approximately four times faster than the baseline.
This substantial improvement is attributed to the successful
application of parallelization, pipelining, and data processing
techniques. Considering FPGA resource usage and power
consumption, a particle filter system suitable for specific
objectives can be selected based on these results.

C. DISCUSSION
Our experiments with various hardware implementation
techniques and hardware-software (HW/SW) co-design
approaches were conducted, showing their substantial contri-
bution to system acceleration. This is particularly evident in
the application of particle filtering for ballistic target tracking,
where the necessity of reducing execution time is highlighted.
The hardware implementation section was focused on
pipelining, parallelization, and array redefinition. Among
these, pipelining was found to be the most impactful, leading
to a significant reduction in hardware latency. Importantly,
when all hardware acceleration methods were collectively
applied, a substantial speedup was achieved by the sys-
tem, exceeding a factor of 33. In the HW/SW co-design
section, methods including stream-like protocols and pseudo-
random number generation algorithms were explored. Again,
significant contribution to the reduction of execution time
was observed from all methods, achieving a speedup of
approximately four times when used collectively. These
findings underscore the crucial role of hardware and soft-
ware co-design in the optimization of particle filters for

VOLUME 11, 2023

D. Kim et al.: Parallelized PF With Efficient Pipelining on FPGA

IEEE Access

TABLE 6. Comparison of total execution time of particle filter according to the number of particles and the proposed method.

Exec. Time (s) according to the number of particles processed in parallel

Number of Particles Method

8 Particles 16 Particles 32 Particles 64 Particles 128 Particles

Only CPU 22.940 (for all cases)

1024 CPU+FPGA (Only pipelining) 6.392 (for all cases)
CPU+FPGA (Sequential) 14.677 11.299 9.618 8.771 8.355
CPU+FPGA (Proposed) 4.942 4.822 4.768 4.738 4.729
Only CPU 45.947 (for all cases)

2048 CPU+FPGA (Only pipelining) 13.254 (for all cases)
CPU+FPGA (Sequential) 29.820 23.064 19.702 18.008 17.177
CPU+FPGA (Proposed) 10.351 10.111 10.002 9.941 9.924
Only CPU 69.486 (for all cases)

3072 CPU+FPGA (Only pipelining) 19.485 (for all cases)
CPU+FPGA (Sequential) 44.344 34.210 29.167 26.627 23.380
CPU+FPGA (Proposed) 15.141 14.781 14.617 14.527 14.500
Only CPU 92.674 (for all cases)

4096 CPU+FPGA (Only pipelining) 25.694 (for all cases)
CPU+FPGA (Sequential) 58.840 45328 38.604 35.216 33.554
CPU+FPGA (Proposed) 19.902 19.423 19.204 19.084 19.048
Only CPU 115.726 (for all cases)

e CPU+FPGA (Only pipelining) 32.851 (for all cases)
CPU+FPGA (Sequential) 74.270 57.381 48.975 44472 42.662
CPU+FPGA (Proposed) 25.598 24.999 24.725 24.575 24.531

real-time operation in ballistic target tracking systems. The REFERENCES

proposed methods are a significant advancement in this
respect, demonstrating that efficient management of power
consumption and significant acceleration can be concurrently
achieved.

V. CONCLUSION

This paper has tackled the significant challenge of real-time
tracking of ballistic targets using sampling-based particle
filters. The high performance of these filters in tracking
non-Gaussian targets is established, yet their accuracy is
inherently tied to the number of particles utilized. This creates
a computational demand that, along with the spatial and
power constraints of an airborne platform, poses a complex
challenge. To address this, a hardware-software co-design
strategy was proposed and implemented, accelerating the
particle filter algorithm, and facilitating parallel processing
while optimizing energy utilization.

Experimental evaluations validated the effectiveness of the
proposed approach, which resulted in over four times acceler-
ation, demonstrating a significant advance towards real-time
and efficient ballistic target tracking. This success highlights
the potential of hardware-software co-design strategies in
overcoming computational and resource constraints while
maintaining, and even enhancing, algorithmic performance.
The results suggest that the proposed solution holds promise
for further research and development in the field of real-time
target tracking and similar high-demand applications.

VOLUME 11, 2023

[1] J. Kim, S. S. Vaddi, P. K. Menon, and E. J. Ohlmeyer, “Compari-
son between nonlinear filtering techniques for spiraling ballistic missile
state estimation,” [EEE Trans. Aerosp. Electron. Syst., vol. 48, no. 1,
pp. 313-328, Jan. 2012, doi: 10.1109/TAES.2012.6129638.

A. Farina, B. Ristic, and D. Benvenuti, “Tracking a ballistic target: Com-

parison of several nonlinear filters,” IEEE Trans. Aerosp. Electron. Syst.,

vol. 38, no. 3, pp. 854-867, Jul. 2002, doi: 10.1109/TAES.2002.1039404.

C. Moon, J. Tak, S.-H. Kim, and K. Song, “Ballistic coefficient estimation

with Gaussian process particle filter,” in Proc. 18th Int. Conf. Control,

Autom. Syst. (ICCAS), Oct. 2018, pp. 776-780.

[4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial

on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”

1IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174-188, Feb. 2002, doi:
10.1109/78.978374.

C. Kwok, D. Fox, and M. Meila, “Real-time particle filters,” Proc. IEEE,

vol. 92, no. 3, pp. 469-484, Mar. 2004, doi: 10.1109/JPROC.2003.823144.

G. Hendeby, R. Karlsson, and F. Gustafsson, “Particle filtering: The need

for speed,” EURASIP J. Adv. Signal Process., vol. 2010, no. 1, pp. 1-9,

Dec. 2010.

[7] D. Kim, Y. Han, H. Lee, Y. Kim, H.-H. Kwon, C. Kim, and

W. Choi, “Accelerated particle filter with GPU for real-time ballistic

target tracking,” IEEE Access, vol. 11, pp. 12139-12149, 2023, doi:

10.1109/ACCESS.2023.3238873.

R. Cabido, A. S. Montemayor, and J. J. Pantrigo, “High performance

memetic algorithm particle filter for multiple object tracking on modern

GPUs,” Soft Comput., vol. 16, no. 2, pp. 217-230, Feb. 2012.

[9]1 G. Szwoch, “Performance evaluation of the parallel object tracking
algorithm employing the particle filter,” in Proc. Signal Process., Algo-
rithms, Architectures, Arrangements, Appl., 2016, pp. 119-124.

[10] X.TangandZ. Fu, “CPU-GPU utilization aware energy-efticient schedul-
ing algorithm on heterogeneous computing systems,” IEEE Access, vol. 8,
pp. 58948-58958, 2020, doi: 10.1109/ACCESS.2020.2982956.

[11] A.Jarrah, M. M. Jamali, and S. S. S. Hosseini, “Optimized FPGA based
implementation of particle filter for tracking applications,” in Proc. IEEE
Nat. Aerosp. Electron. Conf., Jun. 2014, pp. 233-236, doi: 10.1109/NAE-
CON.2014.7045808.

2

—

3

—

[5

[6

—

(8

—

104837

http://dx.doi.org/10.1109/TAES.2012.6129638
http://dx.doi.org/10.1109/TAES.2002.1039404
http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1109/JPROC.2003.823144
http://dx.doi.org/10.1109/ACCESS.2023.3238873
http://dx.doi.org/10.1109/ACCESS.2020.2982956
http://dx.doi.org/10.1109/NAECON.2014.7045808
http://dx.doi.org/10.1109/NAECON.2014.7045808

IEEE Access

D. Kim et al.: Parallelized PF With Efficient Pipelining on FPGA

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

S. Agrawal, P. Engineer, R. Velmurugan, and S. Patkar, “FPGA imple-
mentation of particle filter based object tracking in video,” in Proc. Int.
Symp. Electron. Syst. Design (ISED), Kolkata, India, 2012, pp. 82-86, doi:
10.1109/I1SED.2012.41.

A. Tahara, Y. Hayashida, T. T. Thu, Y. Shibata, and K. Oguri, “FPGA-
based real-time object tracking using a particle filter with stream architec-
ture,” in Proc. 4th Int. Symp. Comput. Netw. (CANDAR), Hiroshima, Japan,
Nov. 2016, pp. 422-428, doi: 10.1109/CANDAR.2016.0079.

A. Jarrah, M. M. Jamali, S. S. S. Hosseini, J. Astola, and M. Gabbouj,
“Parralelization of non-linear & non-Gaussian Bayesian state estimators
(particle filters),” in Proc. 23rd Eur. Signal Process. Conf. (EUSIPCO),
Aug. 2015, pp. 25062510, doi: 10.1109/EUSIPCO.2015.7362836.

Y. M. Wijesinghe, J. G. Samarawickrama, and D. Dias, ‘““Hardware and
software co-design for object detection with modified ViBe algorithm
and particle filtering based object tracking,” in Proc. 14th Conf. Ind.
Inf. Syst. (ICIIS), Kandy, Sri Lank, Dec. 2019, pp.506-511, doi:
10.1109/1C11S47346.2019.9063249.

M. Sadasivam and S. Hong, “Application specific coarse-grained FPGA
for processing element in real time parallel particle filters,” in Proc. 3rd
IEEE Int. Workshop Syst.-Chip Real-Time Appl., Calgary, AB, Canada,
Jul. 2003, pp. 116-119, doi: 10.1109/IWSOC.2003.1213018.

S. Liu, G. Mingas, and C.-S. Bouganis, “Parallel resampling for
particle filters on FPGAs,” in Proc. Int. Conf. Field-Programmable
Technol. (FPT), Shanghai, China, Dec. 2014, pp.191-198, doi:
10.1109/FPT.2014.7082775.

Y. Song, D. Liu, and Y. Peng, “FPGA-based implementation of lithium-
ion battery SOH estimator using particle filter,” in Proc. IEEE Int. Instrum.
Meas. Technol. Conf. (IMTC), Dubrovnik, Croatia, May 2020, pp. 1-6, doi:
10.1109/12MTC43012.2020.9128439.

H. A. Abd El-Halym, I. I. Mahmoud, and S. E.-D. Habib, “Efficient
hardware architecture for particle filter based object tracking,” in Proc.
IEEE Int. Conf. Image Process., Hong Kong, Sep. 2010, pp. 4497-4500,
doi: 10.1109/ICIP.2010.5653817.

A. Rodriguez and F. Moreno, ‘“Evolutionary computing and par-
ticle filtering: A hardware-based motion estimation system,” IEEE
Trans. Comput., vol. 64, no. 11, pp.3140-3152, Nov. 2015, doi:
10.1109/TC.2015.2401015.

L. Miao, J. J. Zhang, C. Chakrabarti, and A. Papandreou-Suppappola,
“Efficient Bayesian tracking of multiple sources of neural activity: Algo-
rithms and real-time FPGA implementation,” IEEE Trans. Signal Process.,
vol. 61, no. 3, pp. 633-647, Feb. 1, 2013, doi: 10.1109/TSP.2012.2226172.
T. Chisholm, R. Lins, and S. Givigi, “FPGA-based design for real-time
crack detection based on particle filter,” IEEE Trans. Ind. Informat.,
vol. 16, no. 9, pp. 5703-5711, Sep. 2020, doi: 10.1109/TI1.2019.2950255.
Y. Li, P. Chow, J. Jiang, and M. Zhang, ““Software/hardware framework
for generating parallel long-period random numbers using the WELL
method,” in Proc. 21st Int. Conf. Field Program. Log. Appl., Chania,
Greece, Sep. 2011, pp. 110-115, doi: 10.1109/FPL.2011.29.

R. A. Singer, “Estimating optimal tracking filter performance for manned
maneuvering targets,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-6,
no. 4, pp. 473-483, Jul. 1970, doi: 10.1109/TAES.1970.310128.

X. Rong Li and V. P. Jilkov, “Survey of maneuvering targettracking. Part
I: Dynamic models,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4,
pp. 1333-1364, Oct. 2003, doi: 10.1109/TAES.2003.1261132.

J. Kim, M. Tandale, P. K. Menon, and E. Ohlmeyer, ‘“Particle filter for
ballistic target tracking with glint noise,” J. Guid., Control, Dyn., vol. 33,
no. 6, pp. 1918-1921, Nov. 2010, doi: 10.2514/1.51000.

D. C. Wright and T. Kadyshev, “An analysis of the north Korean nodong
missile,” Sci. Global Secur., vol. 4, no. 2, pp. 129-160, Feb. 1994, doi:
10.1080/08929889408426397.

B. Wang, J. Xie, S. Li, Y. Wan, Y. Gu, S. Fu, and K. Lu, “Computing in the
air: An open airborne computing platform,” IET Commun., vol. 14, no. 15,
pp. 2410-2419, Sep. 2020, doi: 10.1049/iet-com.2019.0515.

S. Thrun, “Particle filters in robotics,” in Proc. 18th Conf. Uncertainty
Artif. Intell. San Francisco, CA, USA: Morgan Kaufmann Publishers,
2002, pp. 511-518.

T. Li, M. Bolic, and P. M. Djuric, ‘“Resampling methods for par-
ticle filtering: Classification, implementation, and strategies,” [EEE
Signal Process. Mag., vol. 32, no. 3, pp.70-86, May 2015, doi:
10.1109/MSP.2014.2330626.

104838

DAEYEON KIM received the B.S. degree in
electronic engineering from the Kumoh National
Institute of Technology, Gumi, Gyeongsangbuk-
do, South Korea, in 2023, where he is currently
pursuing the M.S. degree with the Department of
IT Convergence Engineering. His current research
interests include deep learning, real-time embed-
ded systems, and algorithm acceleration with GPU
and FPGA

HEONCHOEL LEE (Member, IEEE) received
the B.S. degree in electronic engineering and
computer sciences from Kyungpook National Uni-
versity, Daegu, South Korea, in 2006, and the
M.S. and Ph.D. degrees in electrical engineering
and computer sciences from Seoul National Uni-
versity, Seoul, South Korea, in 2008 and 2013,
respectively. From 2013 to 2019, he was a Senior
Researcher with the Agency for Defense Develop-
ment, Daejeon, South Korea. Since 2019, he has
been an Assistant Professor with the School of Electronic Engineering,
Kumoh National Institute of Technology, Gumi, South Korea. He is currently
a Technical Adviser with the Robot Navigation Division, Cleaning Science
Research Institute, LG Electronics. His current research interests include
SLAM, robot navigation, machine learning, real-time embedded systems,
prognostics, and health management.

HYUCK-HOON KWON received the B.S., M.S.,
and Ph.D. degrees in aerospace engineering from
the Korea Advanced Institute of Science and Tech-
nology (KAIST), Deajeon, South Korea, in 2002,
2005, and 2020, respectively.

In 2009, he joined LIG Nexl, for the devel-
opment of precision-guided missiles. His current
research interests include convex optimization,
optimal control, guidance and autopilot design,
and nonlinear control.

YEJI HWANG received the B.S. degree in elec-
tronic engineering from Kyung Hee University,
Yongin, South Korea, in 2020, and the M.S. degree
in aerospace engineering from Inha University,
Incheon, South Korea, in 2023.

Since 2023, she has been a Researcher with
LIG Nexl, Seongnam, South Korea. Her current
research interests include convex optimization, the
guidance and control of unmanned aerial vehicles,
and missile systems.

WONSEOK CHOI received the M.S. degree in
defense convergence engineering from Yonsei
University, Seoul, South Korea, in 2017.

From 2015 to 2017, he was a Senior Researcher
with LIGNex1 for PGM R&D Group Devel-
opment, Gyeonggi-do, South Korea. His cur-
rent research interests include embedded systems,
embedded SW, real-time embedded systems, and
missile systems.

VOLUME 11, 2023

http://dx.doi.org/10.1109/ISED.2012.41
http://dx.doi.org/10.1109/CANDAR.2016.0079
http://dx.doi.org/10.1109/EUSIPCO.2015.7362836
http://dx.doi.org/10.1109/ICIIS47346.2019.9063249
http://dx.doi.org/10.1109/IWSOC.2003.1213018
http://dx.doi.org/10.1109/FPT.2014.7082775
http://dx.doi.org/10.1109/I2MTC43012.2020.9128439
http://dx.doi.org/10.1109/ICIP.2010.5653817
http://dx.doi.org/10.1109/TC.2015.2401015
http://dx.doi.org/10.1109/TSP.2012.2226172
http://dx.doi.org/10.1109/TII.2019.2950255
http://dx.doi.org/10.1109/FPL.2011.29
http://dx.doi.org/10.1109/TAES.1970.310128
http://dx.doi.org/10.1109/TAES.2003.1261132
http://dx.doi.org/10.2514/1.51000
http://dx.doi.org/10.1080/08929889408426397
http://dx.doi.org/10.1049/iet-com.2019.0515
http://dx.doi.org/10.1109/MSP.2014.2330626

