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ABSTRACT 5G networks offer high-speed, low-latency communication for various applications.
As 5G networks introduce new capabilities and support a wide range of services, they also become more
vulnerable to different kinds of cyberattacks, particularly Distributed Denial of Service (DDoS) attacks.
Effective DDoS attack classification in 5G networks is a critical aspect of ensuring the security, availability,
and performance of these advanced communication infrastructures. In recent days, machine learning (ML)
and deep learning (DL) models can be employed for an accurate DDoS attack detection process. In this
aspect, this study designs a Modified Equilibrium Optimization Algorithm with Deep Learning based DDoS
Attack Classification (MEOADL-ADC) method in 5G networks. The goal of the MEOADL-ADC technique
is the automated classification of DDoS attacks in the 5G network. The MEOADL-ADC technique follows
a three-stage process such as feature selection, classification, and hyperparameter tuning. Primarily, the
MEOADL-ADC technique employs MEOA based feature selection approach. Next, the MEOADL-ADC
technique utilizes the long short-termmemory (LSTM)model for the classification of DDoS attacks. Finally,
the tunicate swarm algorithm (TSA) is exploited to adjust the hyperparameter of the LSTM model. The
design of MEOA-based feature selection and TSA-based hyperparameter tuning shows the novelty of the
work. The experimental outcome of the MEOADL-ADC method is tested on a benchmark dataset, and the
outcomes indicate the betterment of the MEOADL-ADC algorithm over the current methods with maximum
accuracy of 97.60%.

INDEX TERMS 5G networks, DDoS attack mitigation, security, deep learning, feature selection, tunicate
swarm algorithm.

I. INTRODUCTION
Mobile devices, including IoT and traffic carried over wire-
less networks, are quickly increasing and are driven by several
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aspects [1]. The telecom sector is experiencing a transfor-
mation towards 5G networks for fulfilling the necessities of
emerging and existing use cases [2]. Hence, the idea of a
5G wireless network lies in rendering higher coverage and
high data rates using dense base station deployments with
extremely low latency, high capacity, and better Quality of
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Service (QoS) [3]. The provision of the essential services
that 5 G envisions needs new networking structures, service
deployment methods, and processing and storage technology
described [4]. Such technologies must provide novel diffi-
culties for the functionality of 5G cybersecurity systems [5].
The 5G data networks would connect critical structures that
need a higher level of security for ensuring not the safety of
the respective infrastructure but also society’s safety [6]. For
instance, a security breach in the online power supply system
can be terrible for each electrical and electronic system that
the community relies upon [7]. Hence, in 5G networks, it is
significant to highlight and examine the security challenges
and build an overview relevant to the latent solutions that
resulted in the model of secure 5G systems [8].

Denial-of-service (DoS) attack targets the accessibility of
network resources in a region and likely razes a network [9] in
case there are many attacks in a well-synchronized and dis-
persed manner termed distributed denial-of-service (DDoS)
attacks. As per Verizon’s report, DDoS attacks topped the list
of recurrent cybersecurity events in 2017 [10]. It is designed
as a smoke screen or beachhead for IT security experts, with
other objectives (for instance, data breach) can be established:
in cellular networks, the DDoS attack cannot deeply affect
the network and its authorized users but have side effects
in disturbing 5G that depends on the networks [11]. There
is a recent increase of interest and clamour, among research
scholars from both industry and academia [12], in usingDL or
AI for protecting 5G networks—particularly the ones used in
critical structures like financial networks, smart grids, etc.—
from cyber-attacks [13].
This study designs a Modified Equilibrium Optimization

Algorithm with Deep Learning based DDoS Attack Clas-
sification (MEOADL-ADC) method in 5G networks. The
presented MEOADL-ADC technique employs MEOA based
feature selection approach. Next, the MEOADL-ADC tech-
nique utilizes the long short-term memory (LSTM) model to
detect and classify DDoS attacks. Finally, the tunicate swarm
algorithm (TSA) is exploited to adjust the hyperparameter
of the LSTM model. The experimental validation of the
MEOADL-ADC algorithm is tested on a benchmark dataset.

II. RELATED WORKS
Aldhyani and Alkahtani [14] modelled potential and adapt-
able IDS through the structures of LSTM and CNN integrated
with LSTM (CNN–LSTM) to identify DDoS attacks. The
CIC-DDoS2019 datasets have been utilized to devise a pro-
posal to find various DDoS attacks. In [15], modelled a
DL-related IDS system for DDoS attacks depends on 3 meth-
ods they are RNN, CNN, and DNN. The performance of
the model is learned within two classifier kinds (multi-
class and binary) utilizing two real traffic datasets TON_IoT
dataset and CIC-DDoS2019 dataset. Alashhab et al. [16]
presented an LDDoS attack detection method related to the
DL technique that has an activation function of the LSTM for
identifying different kinds of LDDoS attacks in IoT networks
by examining the various kinds of natural traffic and LDDoS

attacks, enhancing the precision of LDDoS attack recogni-
tion, and minimize the malicious traffic flow.

In [17], the authors introduced the application of a flexible
and modular SDN-related structure for detecting applica-
tion and transport layer DDoS attacks utilizing multiple DL
and ML methods. Exploring different DL or ML techniques
enabled techniques execute better under different attack kinds
and conditions. Jullian et al. [18] apply a distributed structure
that depends on DL to avoid diverse sources of vulnerability
at once under the same protectionmechanism. BothDLmeth-
ods were assessed: LSTM and feed forward-NNs. In [19],
utilize the Bot-IoT data to frame new IDS related to DL and
ML methods, which addresses its class imbalance issue. For
assessing how it records timestamps and affects forecasting,
the author utilized 3 different feature sets for binary and
multi-class classification since this aids to prevent feature
dependency.

Ayala and Salcedo [20] introduced a security method for
5G Networks wireless access (5GDoSec) for identifying pos-
sible intruders and malicious users using the DNN and the
ML method; this depends on the access data gathered from
a delimited entrance point that groups, classify and identify
the authenticated users in the network to identify, based on
the active time and the access numbers, the ones that denote
a threat. In [21], modelled a novel cognitive closed loop
system for rendering distributed dual-layer self-protection
abilities to fight against DDoS attacks. Infrastructure Service
Providers (ISPs) and Digital Service Providers (DSPs) are
systems that feature concurrent autonomous closed loops for
various stakeholders’ business roles.

In [22], a deep intelligent DDoS attack detection scheme
(DI-ADS) was presented for fog-based IoT applications.
This structure mostly utilizes a DL method for detect-
ing DDoS attacks from the network. The DLM was fixed
on the computation element of the fog node, which fore-
casts the end IoT device performance. In [23], an LSTM-
based method (LSTM-CLOUD) that is planned to detect
and prevent DDoS attacks from the public cloud network
platform is presented. The proposal of the scheme was
dependent upon a signature-based attack detection method.
Sayed et al. [24] examine a multi-classifier approach utiliz-
ing stacking ensemble DNNs which recognize many kinds of
DDoS attacks for addressing the problems abovementioned.
Shieh et al. [25] present a novel DDoS detection structure
featuring Bi-LSTM, a Gaussian Mixture Model (GMM), and
incremental learning.

Though several ML and DL models for DDoS attack
classification are available in the literature, it is still needed
to enhance the classification performance. Owing to the
continual deepening of the model, the number of param-
eters of DL models also increases quickly which results
in model overfitting. At the same time, different hyper-
parameters have a significant impact on the efficiency of
the DL model. Particularly, hyperparameters such as epoch
count, batch size, and learning rate selection are essential to
attain effectual outcomes. Since the trial and error method
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for hyperparameter tuning is a tedious and erroneous process,
metaheuristic algorithms can be applied. Therefore, in this
work, we employ the TSA algorithm for the parameter selec-
tion of the LSTM model.

III. THE PROPOSED MODEL
This study introduced a new MEOADL-ADC method for
effective DDoS attack classification in the 5G networks.
Fig. 1 defines the working process of the MEOADL-ADC
method. It comprises feature selection and an optimal classi-
fication process. The MEOADL-ADC technique uses feature
selection and hyperparameter tuning processes to attain
enhanced detection results. In addition, the MEOADL-ADC
technique performs three significant processes, namely
MEOA-based feature subset selection, LSTM-based classi-
fication, and TSA-based hyperparameter tuning.

FIGURE 1. Working process of the MEOADL-ADC approach.

A. DESIGN OF MEOA-BASED FEATURE SELECTION
Primarily, the MEOA is applied for the optimal selection of
feature subsets. EOAwas introduced by using the equilibrium
of dynamic mass for controlling the volume via exploring
the balanced state of the model to resolve the optimization
problem [26]. EOA refers to an optimization technique due
to its many benefits, namely the better balancing of exploita-
tion and exploration searches, good population diversity, and
simplicity of implementation. Even with the offered bene-
fits, EO has the disadvantage of lacking consideration on
fitness assignments. It cannot satisfy the conflicting goals
brought by multi-objective functions owing to a higher ten-
dency to reach equilibrium in a single objective and fails in
the rest. To resolve the disadvantages of EOA, the MEOA
was introduced to handle optimum feature selection that can
be expressed as multi-objective optimization problems. The
presented method exploits a hyperlearning algorithm that
leverages the concept of personal worst and best states in
the solution upgrading procedure to solve the multi-objective
feature selection problems. Without losing generalization,
MEOA includes n sub-swarms of the location vector repre-
sented as X to find the optimal set of features concerning
the fitness value of the candidate solution. Every sub-swarm
of MEOA has a similar search mechanism to the single-
swarm EOA. The presented MEOA use the advantages of
an external shared pool to ease the sharing of equilibrium
state experience between the subswarmswhen comparedwith

single swarmEOA,which enables the particle to approach the
Pareto front further.

The search procedure of the presented method can be
defined in the following. In the early stage of the optimization
method, the initial location of all the i-th particles, viz., Xi for
i = 1, 2, . . . , np, is generated using Eq. (21):

Xinitial = rand(np, d)× (ub− lb)+ lb (1)

whereas np refers to the dimensional population, lb and
ub signify lower and upper boundaries of search space; d
represents the dimensional size of the problem. Afterwards
completing the initialized procedure, the 4 optimum equilib-
rium particles (for instance, Xeq,1,Xeq,2,Xeq,3,Xeq,4) and the
average position (that is, Xeq,av) of populations can be rec-
ognized for constructing an equilibrium pool Xeq,poo1 which
offers many promising search patterns as:

Xeq,pool =
(
Xeq,1,Xeq,2,Xeq,3,Xeq,4,Xeq,av

)
(2)

For every iteration, the original location Xold of every
particle from the sub-swarm is upgraded by connecting with
solution member Xeq was arbitrarily chosen in an equilib-
rium Xeq,pool . The solution upgrading processes of every
particle is obtained as:

Xnew = Xeq +
G
λ

(1− F)+
(
Xold − Xeq

)
× F (3)

F = a1sign (r − 0.5)
(
e−λ t
− 1

)
(4)

In which, Xold and Xnew define the present and novel
location vector of particles, correspondingly; r demonstrates
the random integer ranges from zero to one; a1 is con-
stant (i.e., a1 = 2); λ refers to the random vector with
values ranging from zero to one. An iteration counter t is
measured as:

t = (1−
T
Tmax

)
a2

(
T

Tmax

)
(5)

whereas a2 refers to the constant (for instance , a2 = 1);
Tmax and T imply the maximal and present iteration counts
correspondingly. The generation rate G is achieved as:

G =

{
0.5 r1 if r2 ≥ GP
0 if r2 < GP

(6)

In which r1 and r2 indicate the random number between
zero and one, GP represents a generation probability and is
fixed as 0.5.

The presented MEOA was improved in EOA by the
combination of external archive dominance conditions for
determining a suitable group of solutions for tackling the
multi-objective optimizer problems, which are commonly
defined as:

Min F(X ) = {f1(x), f2(x), . . . , fn(x)}

Subjected to:

{
gi(X ) ≤ 0 i = 1, 2, . . .− q
hi(X ) = 0 i = 1, 2, . . . l

(7)
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FIGURE 2. Structure of LSTM [27].

Here F(x) denotes the vector of multi-objective functions;
hi(X ) and gi(X ) represent q and l inequality and equal-
ity constraints, correspondingly. A novel solution set was
upgraded and detected in the external archive in all iterations.
This archive upgrading procedure enabled the interchange of
valuable data among particles at the time of the optimizer
model.

The solution quality of all equilibrium particles was iter-
atively assessed through the multi-objective functions for
defining an optimum set of features from every generated
feature. Here, two objective functions of reducing the number
of selected features S (X) and reducing the classification error
ER (X ) are proposed to resolve the feature selection problem:

Minimize: ER (X) , S (X)X ∈ Rn (8)

Without losing generalization, the fitness function (FF)
utilized for assessing the quality of all particles is shown as
follows below:

↓ Fit = αER+ β

(
|S|
|O|

)
(9)

In Eq. (9), |O| and |S| indicate the dimensional of the orig-
inal feature set and feature selection subset, correspondingly;
the two weight infectors α and β denote the influence of
classifier error and dimensional of feature selection on FF,
whereas αε[0, 1] and β = 1− α.

B. DDOS ATTACK DETECTION USING OPTIMAL DL MODEL
This work uses the LSTM model for the DDoS attack detec-
tion process. Owing to the existence of recurrent connections
in the LSTMnetwork is selected that facilitates memorization
of received data [27]. These characteristics allow LSTM to
learn the long-term dependency, thus overcoming the back-
flow and gradient disappearance drawback. RNN is provided
to estimate the vague consecutive pattern of the spatial and
temporal consecutive data. Moreover, the connection of the
peephole allows LSTM to recognize the timed pattern pre-
cisely and calculate the internal state from the weight and cost
matrices.

Fig. 2 demonstrates the multilayer structure of LSTM used
to enhance the accuracy of DNN, in which activation data in

the 1st layer is given to the 2nd layer for additional processing
to the time series problem. By linking the LSTM layer, all the
layers from the LSTM is a hierarchical structure that attains
input in the HL of the prior layer. The training of multi-layer
LSTM identifies the sequence pattern of time sequences.
Thus, the architecture of interconnected multi-memory cells
is presented for recognizing the long-term sequence and
dependency of time sequences. Layer 1 of multi-layer LSTM
proceeds input in the dataset Ct−1, while layer 2 is attained
in the prior time step of h(2)t−1. Also, the results of the current
time step of layer 1, viz., h(1)t . The mathematical formulations
describe the mechanism of LSTM cell, and it is defined
by Eq. (10):

αt = σ (Wα · [ht−1, xt ]+ bα) (10)

where [·] denotes the concatenate operation; σ denotes the
sigmoid function, Wα indicates the weight matrix of α − th
layer and βt and γt represent as input gate and tanh layers,
correspondingly:

βt = σ
(
Wβ · [ht−1, xt ]+ bβ

)
(11)

γt = tanh
(
Wγ · [ht−1, xt ]+ bγ

)
(12)

Meanwhile, the existing stateCt is upgraded from the prior
state Ct−1:

Ct = αt · Ct−1 + βt · γt (13)

The output gate of the sigmoid function is represented
by 0t , it is evaluated as follows:

ot = σ (Wo · [ht−1, xt ]+ bo) (14)

Referring to Ct and 0t , the existing hidden state of ht is
evaluated as follows:

ht = ot tanh (Ct) (15)

In Eq. (15), the related layer bias was denoted by bα , bβ ,
bγ , and bo; the related layer weight is characterised by Wα ,
Wβ , Wγ , and Wo. Lastly, the final state of LSTM is defined
by the softmax activation function as:

hfinal = softmax (ht) (16)
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Algorithm 1 Pseudocode of TSA
Input: Tunicate population Ti(i = 1, 2, 3, . . . pop)
Output: Optimum tunicate individual
Procedure: YSA
Initialize variables Xmin, Xmax, etc.
Evaluate the fitness values of all the tunicates
−−−→
Tsource identifies the better tunicate individual

While (iteration < Mak iterations) do
for i = 1 to pop, do Upgrade the location of every tunicate

by Eq. (23).
End for
Upgrade parameters (

−→
A ,
−→
G ,
−→
F , and

−→
M

Check individual tunicate
Upgrade Ti if there is the best solution than the
Preceding optimum solution
Iteration← iteration + 1
End while

Return Ti
End

FIGURE 3. Confusion matrices of MEOADL-ADC method
(a) Reconnaissance, (b) Man in the Middle, (c) DoS, and (d) Botnet
Malware.

To modify the hyperparameter values of the LSTM, the
TSA is used. The TSA is a new bio-inspired metaheuris-
tic algorithm [28]. Tunicates stimulated TSA. Tunicates are
marine creatures that can locate food sources in the sea.
Tunicate navigates and forages for food with the help of two
major strategies: swarm intelligence and jet propulsion. In the
mathematical expression, a tunicate move to the best position
and remains closer to the better individual while avoiding
conflicts between the individual members. In herd behaviour,
population member updates their position based on the better
individual population.

TABLE 1. Details of database.

FIGURE 4. The average outcome of the MEOADL-ADC approach under
varying attack types.

1) MATHEMATICAL MODEL OF JET PROPULSION
These behaviours are developed to ensure the social balance
of power amongst tunicates and prevent collisions between
them.

−→
A =

−→
G
−→
M

(17)

−→
G = r2 + r3 −

−→
F (18)

−→
F = 2.r1 (19)
−→
M = ⌊Xmin + r1 · Xmax − Xmin⌋ (20)

where Xmin and Xmax values are taken as 1 and 4, corre-
spondingly. Essential parameter analyses were introduced by
Kaur et al. In this study, a parameter analysis wasn’t imple-
mented for this value.

The movement of population members toward the better
neighbouring direction

−−−−→
Tdιstance =

∣∣∣−−−→Tsource − r ·
−−→
T (x)

∣∣∣ (21)

In Eq. (21),
−−−−→
Tdιstance represents the distance between

the food source and the population individual, x signifies
the existing iteration,

−−−→
Tsource indicates the location of the

food source (the location of better tunicate),
−−→
T (x) shows

the tunicate position and r shows the randomly generated
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FIGURE 5. Accuracy curve of MEOADL-ADC approach (a) Reconnaissance, (b) Man in the Middle, (c) DoS, and (d) Botnet Malware.

value [0, 1].

−−→
T (x ′) =

{−−−→
Tsource +

−→
A ·
−−−−→
Tdιstance, if r ≥ 0.5

−−−→
Tsource +

−→
A ·
−−−−→
Tdιstance, if r < 0.5

(22)

where
−−→
T (x ′) denotes the updated

−−→
T (x) (tunicate position)

concerning
−−−→
Tsource (the food source position), and r represents

the randomly generated value [0, 1].
Mathematical Model of Swarm Behavior.

The herding behaviour of tunicate is demonstrated
below:

T
(
−→x + 1

)
=

−−−→
T

(
x ′

)
+ T

(
−→x − 1

)
2+ r1

(23)

Fitness selection has become a main factor in the TSA
approach. Solution encoding is utilized to calculate the
goodness (aptitude) of the candidate solution. The accuracy
value is the crucial condition used to design the fitness
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FIGURE 6. Loss curve of MEOADL-ADC approach (a) Reconnaissance, (b) Man in the Middle, (c) DoS, and (d) Botnet Malware.

function.

Fitness = max (P) (24)

P =
TP

TP+ FP
(25)

where TP represent the true positive, and FP symbolizes the
false positive value.

IV. PERFORMANCE VALIDATION
The proposed model is simulated using the Python tool.
In this study, the DDoS attack detection performance of

the MEOADL-ADC technique is tested on the Kitsune
Network Attack Dataset [29], available at https://www.
kaggle.com/datasets/ymirsky/network-attack-dataset-kitsune.
The Kitsune dataset provides a total of 21,017,596 network
packets for 9 individual attacks among 4 types of real network
intrusion attacks. It includes network packets of similar IPs
(unlike other datasets that use different IPs) for each attack
on normal and malicious traffic. For experimental validation,
in this work, we have chosen 8000 samples with four types of
attacks, as defined in Table 1. Each attack has two subclasses,
namely benign and malicious.
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TABLE 2. Attack type classification outcome of the MEOADL-ADC
approach.

TABLE 3. Comparative outcome of the MEOADL-ADC model [30].

The confusion matrices of the MEOADL-ADC technique
are shown in Fig. 3. The outcomes identified that the
MEOADL-ADC technique recognizes benign and malicious
packets. For instance, the MEOADL-ADC technique recog-
nized 970 benign and 982 malicious packets on reconnais-
sance attacks. Next, the MEOADL-ADC system recognized
935 benign and 970 malicious packets on man-in-the-middle
attacks. Simultaneously, the MEOADL-ADC method recog-
nized 982 benign and 954 malicious packets on denial of
service attacks. Finally, theMEOADL-ADCmethod detected

FIGURE 7. Accuy and Fscore analysis of the MEOADL-ADC approach with
other techniques.

961 benign and 944 malicious packets in a botnet malware
attack.

Table 2 and Fig. 4 report the overall attack type classifi-
cation results of the MEOADL-ADC technique. The results
stated that the MEOADL-ADC technique identified benign
and malicious packets.

For instance, on reconnaissance attack, the MEOADL-
ADC technique gained an average accuy of 97.60%, precn
of 97.61%, recal of 97.60%, Fscore of 97.60%, and AUCscore
of 97.60%. Meanwhile, on man in the middle attack, the
MEOADL-ADC system gained an average accuy of 95.25%,
precn of 95.31%, recal of 95.25%, Fscore of 95.25%, and
AUCscore of 95.25%. Moreover, on denial of service attack,
the MEOADL-ADC method gained an average accuy of
96.80%, precn of 96.84%, recal of 96.80%, Fscore of 96.80%,
and AUCscore of 96.80%. At last, on botnet malware attack,
the MEOADL-ADC algorithm gained an average accuy of
95.25%, precn of 95.26%, recal of 95.25%, Fscore of 95.25%,
and AUCscore of 95.25%.

Fig. 5 examines the accuracy of the MEOADL-ADC
method during the training and validation process under vary-
ing attack types. The figure notifies that the MEOADL-ADC
technique reaches increasing accuracy values over increasing
epochs. Furthermore, the increasing validation accuracy over
training accuracy shows that the MEOADL-ADC technique
learns effectively under varying attack types.

The loss analysis of the MEOADL-ADC technique at the
time of training and validation is demonstrated under vary-
ing attack types in Fig. 6. The outcomes indicate that the
MEOADL-ADC technique reaches closer values of training
and validation loss. It is observed that the MEOADL-ADC
technique learns efficiently under varying attack types.

Table 3 and Fig. 7 show a comparative accuy and
Fscore examination of the MEOADL-ADC technique [30].
The results indicate the betterment of the MEOADL-ADC
technique in terms of accuy and Fscore. Based on accuy,
the MEOADL-ADC technique gains an increasing accuy
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of 97.60% while the K-means++, ANN, NB, KNN, SVM,
RF, and stacking models obtain decreasing accuy of 92.62%,
92.28%, 95.09%, 44.72%, 50%, 62.48%, and 62.65%
respectively.

Besides, based on the Fscore, the MEOADL-ADC method
gains increasing Fscore of 97.60% while the K-means++,
ANN, NB, KNN, SVM, RF, and stacking approaches attain
decreasing Fscore of 91.02%, 90.20%, 93.18%, 26.57%,
16.67%, 58.86%, and 29.83% correspondingly. Therefore,
the MEOADL-ADC technique demonstrated enhanced per-
formance over other models on the DDoS attack detection
process in the 5G environment.

V. CONCLUSION
In this study, a new MEOADL-ADC method was introduced
for effective DDoS attack classification in 5G networks.
The presented MEOADL-ADC technique makes use of fea-
ture selection and hyperparameter tuning processes to attain
enhanced detection results. In addition, the MEOADL-ADC
technique performs three major processes: MEOA-based
feature subset selection, LSTM-based classification, and
TSA-based hyperparameter tuning. The experimental out-
comes of the MEOADL-ADC algorithm are tested on a
benchmark dataset, and the outcomes indicate the betterment
of the MEOADL-ADC method over the recent algorithms.
The proposed model forms a key part of the overall network
security strategy to safeguard the potential of 5G net-
works in delivering high-speed, low-latency communication
while maintaining robust protection against malicious activ-
ities. Hence, the MEOADL-ADC approach can be applied
for an accurate DDoS attack detection technique. In the
upcoming years, the performance of the MEOADL-ADC
approach can be boosted by the design of outlier removal
methodologies.
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