IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 14 August 2023, accepted 2 September 2023, date of publication 22 September 2023, date of current version 3 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3317884

== RESEARCH ARTICLE

Extending Memory Capacity in Modern Consumer
Systems With Emerging Non-Volatile Memory:
Experimental Analysis and Characterization

Using the Intel Optane SSD

GERALDO F. OLIVEIRA"1, (Graduate Student Member, IEEE),
SAUGATA GHOSE "2, (Member, IEEE), JUAN GOMEZ-LUNA', AMIRALI BOROUMAND?3,

ALEXIS SAVERY3, SONNY RAO*%, SALMAN QAZI“3, GWENDAL GRIGNOU3, RAHUL THAKUR3,
ERIC SHIU4, AND ONUR MUTLU!

'ETH Ziirich, 8092 Ziirich, Switzerland

2Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
3Google, Mountain View, CA 94043, USA

4Rivos, Mountain View, CA 94043, USA

Corresponding author: Geraldo F. Oliveira (geraldod @safari.ethz.ch)

ABSTRACT DRAM scalability is becoming a limiting factor to the available memory capacity in consumer
devices. As a potential solution, manufacturers have introduced emerging non-volatile memories (NVMs)
into the market, which can be used to increase the memory capacity of consumer devices by augmenting or
replacing DRAM. In this work, we provide the first analysis of the impact of extending the main memory
space of consumer devices using off-the-shelf NVMs. We equip real web-based Chromebook computers with
the Intel Optane solid-state drive (SSD), which contains state-of-the-art low-latency NVM, and use the NVM
as swap space. We analyze the performance and energy consumption of the Optane-equipped Chromebooks,
and compare this with (i) a baseline system with double the amount of DRAM than the system with the
NVM-based swap space; and (ii) a system where the Intel Optane SSD is naively replaced with a state-of-the-
art NAND-flash-based SSD. Our experimental analysis reveals that while Optane-based swap space provides
a cost-effective way to alleviate the DRAM capacity bottleneck in consumer devices, naive integration of
the Optane SSD leads to several system-level overheads, mostly related to (1) the Linux block I/O layer,
which can negatively impact overall performance; and (2) the off-chip traffic to the swap space, which can
negatively impact energy consumption. To reduce the Linux block I/O layer overheads, we tailor several
system-level mechanisms (i.e., the I/O scheduler and the I/O request completion mechanism) to the currently-
running application’s access pattern. To reduce the off-chip traffic overhead, we leverage an operating system
feature (called Zswap) that allocates some DRAM space to be used as a compressed in-DRAM cache for
data swapped between DRAM and the Intel Optane SSD, significantly reducing energy consumption caused
by the off-chip traffic to the swap space. We conclude that emerging NVMs are a cost-effective solution to
alleviate the DRAM capacity bottleneck in consumer devices, which can be further enhanced by tailoring
system-level mechanisms to better leverage the characteristics of our workloads and the NVM.

INDEX TERMS Consumer devices, DRAM, emerging technologies, experimental characterization,
I/O systems, memory capacity, memory systems, non-volatile memory, quality of service, solid-state drives,
storage systems, system performance, tail latency, user experience, web browsers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 11, 2023 105843

https://orcid.org/0000-0003-1557-4819
https://orcid.org/0000-0002-9138-0613
https://orcid.org/0009-0009-4311-4394
https://orcid.org/0000-0001-8336-9150

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

I. INTRODUCTION

The number and diversity of consumer devices (e.g., smart-
phones, tablets, Chromebooks [1], and wearable devices)
are growing rapidly [2], [3], [4], [5], [6]. The number of
consumer devices has surpassed the number of desktop
computers [3]. For example, web-based computers, such as
Chromebooks, account for 58% of all computer shipments to
schools in the United States [7]. These devices have different
design constraints than traditional computers due to their
limited area, power dissipation restrictions, and target market.
Therefore, it is essential to guarantee low cost per device
while maintaining good performance and high-quality user
experience.

One critical component of consumer devices is the main
memory (typically consisting of DRAM [8], [9]), which is
used not only as the working memory space but also as
storage for least-recently-used (i.e., cold) memory blocks
(i.e., as swap space [10], [11], [12]). As consumer devices
grow in sophistication, many target applications handle
increasing amounts of data and require larger main memory
capacity to avoid significant performance issues [5], [13],
[14], [15], [16], [17], [18]. Unfortunately, it is becoming
increasingly challenging to increase DRAM capacity inside
consumer devices due to the worsening reliability, cost,
and performance issues as manufacturers scale DRAM
technology to higher storage capacity levels [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [301, [31], [32],
(331, [341, [35], [361, [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46], [47], [48], [49], [50].

As a potential solution to the DRAM scalability challenge,
manufacturers have introduced emerging non-volatile mem-
ories (NVMs) into the market, which can be used to expand
the memory capacity of consumer devices by augmenting
or replacing DRAM [51], [52], [53], [54], [55], [56], [57],
(58], [591, [60], [61], [62], [63], [64], [65], [66], [67], [68],
(691, [701, [711, [721, [73], [74], [75], [761, [77], [78], [79],
[801], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90].
However, these NVM-based devices are still slower than
DRAM [51], [53], [54], [91], [92], [93], [94], [95], [96].
For example, the state-of-the-art Intel Optane SSD (solid-
state drive) [97], which is a low-latency NVM-based SSD
device (i.e., an SSD device that uses NVM as its primary
persistent storage media), has an access latency that is two
orders of magnitude slower than that of DRAM [98], [99]
(but it is still one order of magnitude faster than traditional
NAND-flash-based SSDs [91], [92], [100], [101], [102],
[103], [104], [105], [106]), while providing a better cost-per-
byte ($1.50 per GB [107] vs. $5 per GB for DRAM [108]).
Previous works propose two different ways to integrate
an NVM device into state-of-the-art computers in order to
alleviate DRAM scalability issues. The first method uses
the device as byte-addressable main memory, which directly
replaces DRAM. In this method, the system can access the
NVM device directly using load and store instructions [51],
[52], [53], [55], [56], [80], [92], [95], [96], [109], [110],

105844

[111], [112], [113], [114], [115], [116], [117]. The second
method uses the NVM as a block storage device that replaces
a NAND-flash-based SSD [118], [119], [120], [121], [122],
[123], [124] or a magnetic hard drive, using the same
access protocol and interface [91], [100], [101], [102], [103],
[104], [105], [106], [116], [125], [126], [127], [128], [129],
[130]. Both methods alleviate DRAM scalability issues by
taking advantage of the higher density and lower cost-
per-byte that NVMs offer over DRAM. However, entirely
replacing DRAM with NVM in consumer devices imposes
large system integration and design challenges (e.g., due
to the high write access latency and limited endurance of
NVM [51], [53], [54]).

Integrating emerging NVM-based SSDs in consumer
devices can open up new opportunities for memory man-
agement. Traditional desktop and enterprise computers
employ a swap space [10], [11], [12], [18] to increase the
total main memory space available in the system beyond
the capacity of available DRAM. In such systems, the
system moves cold memory blocks present in DRAM to
a swap space, which usually exists in a high-latency and
high-capacity storage device (e.g., NAND-flash-based SSD,
magnetic hard drive). However, consumer devices usually
do not employ a swap space [131], [132], [133], [134],
[135], [136], [137], [138], [139], [140], [141], [142], [143],
since accessing a storage device directly impacts system
performance and user experience due to the device’s high
access latency. Since emerging NVM-based SSDs have an
order of magnitude lower access latency than the commonly-
used fast storage devices, i.e., NAND-flash-based SSDs, they
have the potential to enable the use of a swap space in
consumer devices. Recent works [131], [132], [133], [134],
[135], [136], [137], [138] propose extending the total main
memory space available to applications by using NVM as
swap space for DRAM in mobile systems. However, no prior
work analyzes the implications of enabling a real NVM-
based swap space in real consumer devices.

In this work, we provide the first analysis of the impact
of extending the main memory space of consumer devices
using off-the-shelf NVMs. We extensively examine system
performance and energy consumption when the NVM device
is used as swap space for DRAM main memory to effectively
extend the main memory capacity. Our empirical analyses
lead us to several observations and insights that can be useful
for the design of future systems and NVMs.

For our experimental evaluation, we equip real web-based
Chromebook computers [1] with the Intel Optane SSD [97].
Our target workloads are interactive applications, with a focus
on the Google Chrome [144] web browser. We choose such
workloads for two reasons. First, in interactive applications,
the system needs to respond to user inputs at a target
output latency to provide a satisfactory user experience.
Second, in Chromebooks, the Chrome browser serves as the
main interface to execute services for the user. We compare
the performance and energy consumption of interactive

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

workloads running on our Chromebook with NVM-based
swap space, where the Intel Optane SSD capacity is used
as swap space to extend main memory capacity, against two
state-of-the-art systems: (i) a baseline system with double
the amount of DRAM than the system with the NVM-based
swap space, which resembles current consumer devices but
has high manufacturing cost due to the large DRAM capacity
and relatively high cost-per-bit of DRAM; and (ii) a system
where the Intel Optane SSD is naively replaced with a
state-of-the-art (yet slower) off-the-shelf NAND-flash-based
SSD, which we use as a swap space of equivalent size as
the NVM-based swap space. The NAND-flash-based SSD
provides a cheap alternative to extend the main memory
space, but it can penalize system performance due to its high
access latency. We use a memory capacity pressure test [145]
to measure the impact of the new NVM swap space on user
tasks that consist of loading, scrolling, and switching between
Chrome browser tabs. We measure how the NVM device
increases the 99th-percentile latency (i.e., tail latency) of
each task and the total number of Chrome tabs that the user
can open without discarding old tabs. We divide our system
evaluation, analysis, and optimization into two major parts:
(1) Evaluating NVM for Consumer Devices, and (2) System
Optimization.

Evaluating NVM for Consumer Devices: In the first part
of our work, we compare the baseline system with the
system where we extend the main memory space with
the Intel Optane SSD and the system where we extend
the main memory space with the NAND-flash-based SSD.
We make four major observations. First, we observe that
extending the main memory space with the Intel Optane SSD
improves the average performance of interactive workloads
(measured as the latency of switching across Chrome browser
tabs) compared to the baseline system with twice the
amount of DRAM. The NVM-based swap space enables
the system to leverage a larger aggregate main memory
space than the baseline system while also reducing system
cost. However, extending the main memory space with the
Intel Optane SSD increases the number of violations of
the application’s target output latency by 2.6x (on average)
once the memory traffic between DRAM and the Intel
Optane SSD exceeds a threshold, which happens under
high system load (e.g., a large number of opened Chrome
browser tabs). Since the Intel Optane SSD is integrated to the
system via the high-latency off-chip bus, constantly moving
data between DRAM and the Intel Optane SSD directly
impacts browser performance. Second, we observe that
accessing the Intel Optane SSD through the power-hungry
off-chip bus significantly increases energy consumption.
We mitigate this issue by allocating some DRAM space
to be used as a compressed in-DRAM cache for data
swapped between DRAM and the Intel Optane SSD, which
reduces the number of accesses to the Intel Optane SSD by
up to 2.11x and, as a result, improves energy efficiency.
Third, extending the main memory space even with the

VOLUME 11, 2023

slow NAND-flash-based SSD provides performance benefits
compared to the baseline system. However, due to the high
access latency of the NAND-flash-based SSD, the number of
violations of the application’s target output latency increases
compared to the baseline system and the system with the Intel
Optane SSD’s NVM-based swap space. Fourth, we observe
that the Linux block I/O layer becomes a major source
of performance overhead when the main memory space is
extended using NVM, primarily due to (i) I/O scheduling
bottlenecks created by the mismatch between our workloads’
I/O access patterns and the default I/O scheduling policy;
and (ii) overheads related to the asynchronous operation of
the I/O request completion mechanism. We mitigate some of
these overheads by proposing two system optimizations that
can better leverage the characteristics of our workloads and
the NVM.

System Optimization: In the second part of our work,
we mitigate some of the system-level overheads we identify
in the first part of our work by proposing two system
optimizations that can better leverage the characteristics of
our workloads and the NVM. First, we employ different
I/O schedulers that better match our workloads’ 1/0O access
patterns, which improves performance. Second, we change
the default asynchronous I/O request completion model
to a hybrid I/O request completion model that adaptively
switches from synchronous to asynchronous operation. The
baseline asynchronous I/O request completion model entails
non-trivial overheads (e.g., latency overheads of interrupt and
context switch). The hybrid I/O request completion model
partially avoids these overheads by allowing the process to
synchronously wait for the completion of I/O requests for
a determined period of time. As a result, in the best case,
the process needs to wait for only the low access latency of
NVMV, instead of incurring the large latency overheads of the
asynchronous 1/0 request completion model.

We make the following key contributions in this work:

e We perform the first experimental analysis of the
impact of using off-the-shelf non-volatile memory
(NVM) for swap space in a real consumer device.
Our studies highlight how a state-of-the-art NVM-
based Intel Optane SSD can be used effectively to
extend the total main memory space available to
interactive applications such as the Google Chrome web
browser.

o We demonstrate that using a state-of-the-art off-the-
shelf NVM-based SSD as swap space can improve the
performance of interactive applications compared to
increasing DRAM capacity, but that naively integrating
the NVM-based SSD leads to system-level overheads.
These overheads primarily arise from the Linux block
I/O layer and the off-chip traffic to the SSD.

« We identify two system optimizations that can mitigate
some of the system-level overheads that occur when
using an NVM-based SSD as swap space. Both of
these optimizations adapt system-level mechanisms to

105845

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

application and runtime behavior, and improve the
overall performance of the system.

Il. BACKGROUND AND MOTIVATION

We provide the background and motivation required to
understand the main components of our experimental setup
and evaluated workloads. First, we discuss how the memory
system impacts the performance of the Google Chrome web
browser [144] (Section II-A). Second, we investigate how
users interact with consumer devices and how this interaction
contributes to memory capacity pressure (Section II-B).
Third, we explain the main characteristics of the Intel Optane
SSD device [146] (Section II-C).

A. GOOGLE CHROME WEB BROWSER IN CONSUMER
DEVICES

The web browser is one of the main applications of
consumer devices. Due to its significance, several web
browser applications are present in many mobile benchmark
suites [14], [147], [148], [149]. The Google Chrome web
browser [144], which has over a billion active users and the
largest share of the mobile browsing market [150], [151],
is one of the most relevant web browsers available. Therefore,
we investigate Google Chrome performance in this work.

Chrome performance can be defined based on three key
metrics: (i) the time it takes to load a web page; (ii) the
smoothness of scrolling a web page (i.e., whether or not
the user can perceive discontinuous movements or jumps
when moving up/down inside a web page, measured in
frames per second); and (iii) how quickly the browser
can switch between web pages in different browser tabs
(i.e., its tab switch latency). Loading a new web page
and scrolling through a web page are highly compute-
intensive operations [14], since the main operations that
Chrome performs during their execution are rendering [152]
and rasterization [153], respectively. In this work, we are
primarily interested in evaluating the impact of the swap
space on Chrome performance. Therefore, the most relevant
metric for our analysis is the tab switch latency, since
switching between a recently-opened web page and a
previously-opened web page (i.e., a web page that is open
in an inactive tab) will likely result in a page fault when the
system runs out of memory.

In Chrome, each tab represents a single process associated
with the web page displayed in the tab, which improves
reliability and security [154], [155]. When the user switches
between tabs, the browser executes two main tasks. First,
it executes a context-switch between the currently-opened tab
and the requested tab. Second, it executes a load operation of
the requested web page, which involves loading data frames
related to the requested web page from memory and rendering
the requested web page. The latency from the time a user
clicks a web page to the time the web page is rendered
on the screen is crucial since it impacts user satisfaction.
This time is mostly dominated by how fast the system can
load the data frames related to the requested web page from

105846

memory or disk. However, storing a large number of web
pages has become a challenge for consumer devices for two
main reasons. First, the total size of a single web page has
been growing in recent years due to the increased use of
images, JavaScript, and video in web pages [156]. Second,
users tend to keep many web pages open concurrently during
web browsing, leading to many open tabs. This results in a
demand for larger memory space required to keep the web
page in physical memory in modern systems.

To understand the impact of the number of open web
pages and memory consumption, we evaluate how many
web pages it is possible to open in a system with 8 GB
of DRAM before the system runs out of physical memory.
Figure 1 shows the memory profile of a test that continually
opens new Chrome web pages during one hour of execution.
We observe that the system runs out of physical memory
(i.e., free memory) by opening only 30 web pages (within the
course of almost 10 minutes). When this happens, the system
enters a memory capacity pressure state, leading to increased
swap activity (as shown by the increasing red line in Figure 1)
and, consequently, performance degradation (not shown in
Figure 1). We conclude that there is a clear need to provide
more memory capacity to support more concurrently-open
web pages and, hence, better user experience in consumer
(i.e., mobile) devices.

Memory Segment: [£] Free [=] Used] Swapped out to DRAM

/

30 web pages
/ -~

0 10 20 30 40 50 60
Timestamp (minutes)

O N B O O

Memory Usage (in GB)

FIGURE 1. System memory usage while loading 30 Chrome web pages.

A traditional way of expanding the memory space in
modern systems is to enable page swapping [10], [11], [12].
However, mobile devices usually disable page swapping
due to the large performance penalty and user experience
degradation imposed on the system by high-latency storage
devices [131], [132], [133], [134], [135], [136], [137], [138],
[139], [140], [141], [142], [143]. Instead, a kernel module
contiguously verifies the memory space and terminates
processes to make room for incoming memory requests. This
approach is called “low memory killer” [18], [157], [158].
Recently, Google enabled a swap alternative for its mobile
devices (i.e., Google Pixel smartphones [159] and Google
Chromebooks [1]). In these devices, the operating system
(OS) enables an in-DRAM compressed swap space, called
ZRAM [160]. When enabling ZRAM in the system, the OS
reserves a fraction of the DRAM space to be used as a swap
device. Pages are compressed before being moved from the
working region in main memory to ZRAM (i.e., swapped
out), and decompressed before being moved from ZRAM
to the working region in main memory (i.e., swapped in).

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

By using compression in ZRAM, the system can increase the
capacity of the swap space by the compression ratio (e.g., by
3:1[161], [162], [163]).

B. THE IMPACT OF MAIN MEMORY CAPACITY PRESSURE
ON CONSUMER DEVICES

We design an experiment to understand the impact of
main memory capacity pressure on consumer devices. Our
experiment aims to characterize: (1) how users utilize a
web browser; (2) how often users suffer from high response
latencies from interactive workloads; and (3) how often users
push the system into a state of memory capacity pressure.
For this purpose, we distributed Chromebook devices! to
114 different users at Google, whom we asked to perform
their daily activities using the Chromebook devices. We
picked the users randomly from a major division at the
company that employs thousands of people. We monitored
their activity by periodically collecting the following system
information over a period of three months:

e Number of Chrome tabs opened: We recorded the
number of open tabs across all Chrome windows.
Data samples were reported every 5 minutes. In total,
we collected 19,487 data samples.

Tab switch latency: We collected the tab switch latencies
for each tab switch the user performed during their
activity. Data samples were reported at each individual
tab switch. In total, we collected 62,243 data samples.

Memory capacity pressure level: We periodically (i.e.,
every five seconds) sampled the current state of the
memory to determine which of the following three mem-
ory capacity pressure levels the memory was currently
experiencing: no memory capacity pressure, moderate
memory capacity pressure, and critical memory capacity
pressure. The memory capacity pressure level is defined
as follows. First, Chrome calculates the amount of fill

swap_free
(me"'l—free_'—RAM vs_swap_ nuqht)

swap_total
(mem_ tOtal+RAM vs_swap_weight

mem_free is the amount of main memory space currently
free, mem_total is the total amount of main memory
space (free and occupied), swap_free is the total amount
of memory space in the swap device that is currently
free, swap_total is the total amount of swap space, and
RAM _vs_swap_weight accounts for the relative ease
(considering memory access latency) of allocating RAM
directly versus having to swap its contents out first.
This parameter has a default value of “4”’, which the
operating system empirically has defined. If fill ranges
between 60% and 95%, the system is under moderate
memory capacity pressure. If fill is greater than or
equal to 95%, it is under critical memory capacity
pressure [164]. In total, we collected 1,571,701 data
samples.

memory, as fill = 1 - ; where

I'The Chromebook devices we use for our experiment consist of off-the-
shelf Chromebook devices with 8 GB DRAM capacity, of which 4 GB are
reserved to enable an in-DRAM compressed swap space.

VOLUME 11, 2023

Figure 2a shows how many Chrome tabs users opened
during our experiments. We observe that users had up
to 20 Chrome tabs open in 68% of the samples; 21 to 40
Chrome tabs open in 18% of the samples; 41 to 80 Chrome
tabs open in 10% of the samples; and 81 to 160 Chrome tabs
open in 4% of the samples (no user had more than 160 tabs
open at any time). Even though 4% is a relatively low number
of occurrences, it represents 710 sample points where the
users kept a large number of Chrome tabs open.

[2]
8 801576
§ 601 1.0
3 401 098
o M
9 201 X 0.8
D\?, 0 |_| ,&| 189 o071 175 120 038 (07
[\¥ ‘20 A AQ A 60 B\ ’60 e AQ0 AN 420 A2\ AB0 A'\"\GQ
Number of Tabs

(a) Distribution of the number of open tabs.
2 60
Q
%, 50.86 10
£ 401 /
3 ° 089
8 201 : 20.59 0"
k) |_| 404 2 62 152 184
20 1.05 1,07 04

5 5 00 aq0h
0% w2 313165 B S 15 8100, 400

Tab Switch Latency (ms)
(b) Distribution of the number of tabs switch latencies.

FIGURE 2. Distribution of the number of open tabs and tab switch
latencies.

Figure 2b shows the distribution of the tab switch latency
the users experienced. We observe that users experienced a
tolerable latency (i.e., a tab switch latency less than 250 ms?)
in 67.3% of our samples. However, the users experienced
unacceptable latency from the system (i.e., a tab switch
latency greater than or equal to 250ms) in 32.7% of the
samples. The tab switch latency was larger than 1 second
for 20.59% of the samples. We periodically collected the
memory capacity pressure level of the system to verify that
the high tab switch latency was due to high memory capacity
pressure. Our experiment shows that 35.8% of our samples,
the system experiences moderate to critical memory capacity
pressure (563,143 data samples in moderate memory capac-
ity pressure and 42 data samples in critical memory capacity
pressure from a total 1,571,701 data samples).

With this experiment, we conclude that real users, for a
considerable fraction of their usage time of the Chrome web
browser, often push the system to points that induce moderate
to critical memory capacity pressure, leading to large and
often unacceptable response times for interactive workloads.

C. INTEL OPTANE SSD

In the past several decades, various works [51], [
[54], [55], [56], [57], [58], [59], [60],

52], 53],
[61], [62], [63],

2We use 250 ms for the tolerable tab switch latency, since a rule of thumb
in the web performance community is to provide visual feedback in under

250 ms to keep the user engaged [165], [166].

105847

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

[64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74],
(751, [76], [771, [78], [79], [801, [81], [82], [83], [84], [85],
[86], [87], [88], [89], [90] have investigated how to employ
novel data storage technologies (e.g., phase-change memory,
PCM [51], [52], [53], [54], [56], [57], [58], [60], [61], [62],
[63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73],
[74]1, [75], [76], [77], [78], [79], [80]; spin-transfer torque
magnetic RAM, STT-MRAM [55], [58], [81], [82], [83],
[84], [85]; metal-oxide resistive RAM, ReRAM [86], [87],
[88], [167], [168], [169], [170], [171]; conductive bridging
RAM, CBRAM [89], [172], [173], [174]; ferroelectric RAM,
FeRAM [90], [175], [176], [177]) to build fast non-volatile
memories. Intel and Micron recently announced the first
widely-available commercial NVM device based on the 3D
XPoint non-volatile memory technology [178], called Intel
Optane [146]. Intel provides two different memory devices
based on Optane: (1) the Intel Optane SSD [146], and (2) the
Intel Optane DC Persistent DIMM [179]. The key difference
between these two devices is their system interface. For the
Intel Optane SSD, the device has a system interface similar
to current NAND-based flash memory devices, where the
system communicates to the device via the PCle bus [180].
This configuration provides one order of magnitude lower
latency than traditional NAND-flash-based SSDs [91], [92],
[100], [101], [102], [103], [104], [105], [106]. For the
Intel Optane DC Persistent DIMM, the device is integrated
into the system with a DIMM-based interface, similar to
DRAM devices. The system directly accesses the device
using load/store requests at the byte granularity [98], [109],
[181], [182], [183], [184], [185], [186], [187], [188], [189].
This configuration provides a much lower access latency,
on the order of hundreds of nanoseconds (around 169 ns for
sequential reads [98], [187], [188], [189]), but comes at a
high cost, 5x the cost of the Intel Optane SSD in dollars-
per-bit [107], [190].

Even though the Intel Optane DC Persistent DIMM can
provide significant benefits for future systems due to its
performance characteristics, there are several challenges to
solve before leveraging such devices in future systems,
including: (1) the need for system mechanisms for proper
data placement between DRAM and the Optane DIMM
device [93], [94], [95], [96], [114], [191], (2) difficulties
in fabricating printed circuit boards (PCBs) for mobile
platforms that can accommodate the Optane DIMM, and
(3) accommodating the high cost-per-bit of the Intel Optane
DIMM in cost-sensitive mobile systems. Even though prior
works [131], [132], [133], [134], [136], [137] propose,
using simulation models, to integrate byte-addressable NVM
devices as swap space for mobile systems, we choose the
Intel Optane SSD for our studies for two main reasons.
First, due to the manufacturing difficulties, including high
manufacturing cost, and open system-level challenges that
need to be solved before integrating the Optane DIMM as
swap space in consumer devices. Second, since the goal of our
work is to evaluate the performance implications of emerging
NVM devices in real consumer devices.

105848

IIl. EXPERIMENTAL SETUP AND METHODOLOGY

In this work, we characterize the performance of interactive
workloads running on consumer devices. Our target device
is the Google Chromebook web-based computer. We use
the Asus Chromebox 3 [192] for our experiments, as it is
not physically possible to integrate the Intel Optane SSD
module in regular Chromebook due to its limited PCle
lanes. The Asus Chromebox runs the same operating system
as the Chromebook device (ChromeOS [193]), and has a
similar hardware configuration. The device is equipped with a
7th-generation Intel Core 13-7100U processor [194], 8 GB
DDR4 memory [195], and a 32GB NAND-flash-based
SSD [196]. ChromeOS uses up to 50% of the DRAM
capacity (i.e., 4 GB) to enable an in-DRAM compressed swap
space called ZRAM, capable of holding up to 12GB of
compressed data (assuming a 3:1 compression ratio [161],
[162], [163]).3 We modify the system by (1) removing the
in-DRAM compressed swap space and including an Intel
Optane SSD module, which the system uses as the swap
device for DRAM; and (2) reducing the DRAM size to 4 GB,
to hold the non-swap-space DRAM capacity constant. We use
the Intel Optane H10 [97] module for our experiments.
It contains a 16 GB Intel Optane SSD device and a 256 GB
Intel QLC 3D-NAND-flash-based SSD. We modify the Intel
Optane H10 firmware to avoid using the NAND-flash-based
SSD during our experiments.*

We compare the performance and energy consumption
of interactive workloads running on our Chromebook using
three system configurations, as Table 1 describes:

e Baseline: a baseline system with 8 GB of DRAM. 4 GB
are used as main memory, which is uncompressed, and
the other 4 GB are used as an in-DRAM compressed
swap space (ZRAM), which can house up to 12 GB of
actual data, assuming a 3:1 compression ratio [161],
[162], [163];

o Optane: asystem with 4 GB of main memory, and 16 GB
of Intel Optane SSD swap space;

e NANDFlash: a system with 4 GB of main memory, and
16 GB of NAND-flash-based SSD swap space.

One of the main obstacles we faced during our analysis was
creating the correct experimental setup. This is challenging
for three main reasons, mostly related to the lack of a standard
benchmark suite for consumer devices [13] and the lack
of automation tools for real-world experiments on mobile
devices like Chromebooks:

3We use a 3:1 ZRAM compression rate as an empirically-evaluated upper
bound observed by prior works [161], [162], [163]. In practice, ZRAM
compression rate varies with the pages getting swapped out. We observe an
average ZRAM compression rate of 1.14:1, with a maximum of 3:1, and a
minimum 0.001:1 from our analysis.

4We selected the Optane H10 module for our experiments because it was
the only Optane device in stock at the time we performed the studies. Based
on the technical specifications [97], [197], the H10 module combines the
Intel Optane M10 module [197] (i.e., an M.2 module containing only the
Intel Optane SSD) with a QLC 3D-NAND-flash-based SSD. In our initial
tests, we did not observe any performance impact on the raw performance of
the H10 module with our modified firmware. Our modified firmware only
disables the QLC 3D-NAND-flash-based SSD in the H10 module.

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

TABLE 1. Evaluated system configurations.

Swap Space Configurations

Configuration || DRAM Capacity Swap Space Device Swap Space Size | Effective Memory Capacity
Baseline 8GB In-DRAM Compressed Swap Space (ZRAM [160]) 12GB 16 GB
Optane 4GB Intel Optane SSD (H10 Module) [97] 16 GB 20GB
NANDFlash 4GB NVMe NAND-flash-based SSD 16 GB 20GB

Common System Parameters

Hardware Setup

Asus Chromebox [192]; 7th-generation Intel Core i3-7100U processor [194];
DDR4 main memory [195]; 32 GB NAND-flash-based SSD [195] for storage

Software Setup

Operating System: ChromeOS [193]; kernel version 4.14
Test Automation Tool: Chromium Project’s memory capacity pressure test [145]

Challenge 1: Executing real-world workloads. Popular
interactive workloads for mobile devices are proprietary (e.g.,
social networks such as Facebook [198] and Instagram [199],
messengers such as WhatsApp [200] and Telegram [201],
document readers such as Adobe Acrobat Reader [202],
games such as Minecraft [203]), and their source code is
not openly available. This limits the scope of our analysis,
since we can only analyze such applications as a black box,
often making it unclear which specific system resources an
application uses and why. Prior works [147], [148], [149],
[204], [205] put effort into creating benchmark suites for
mobile applications. However, they are outdated and often
include only a small number of kernels from a small set of
applications.

Challenge 2: Automating execution and enabling repro-
ducibility. There is a lack of tools for automating the
execution of mobile workloads [13]. This is critical when
evaluating an entire system, since experiments need to be
executed multiple times to reduce system-level noise (e.g.,
due to OS tasks, uncontrollable network response times).
Without automation, it is difficult to launch and execute
applications in an automatic and easily reproducible manner,
deal with network traffic, and mimic user interactions with
the system, for example.

Challenge 3: Stressing the main memory capacity. As
prior works show [18] and as we observe in our analysis,
running a single application is usually not enough to stress
the main memory capacity and create swap activity, which
we aim to study in this work. This happens because many
popular interactive applications have a memory footprint of
only a few hundreds of megabytes [18], which fit within
the main memory of the device. Even though we could mix
an increasingly large number of different applications until
we place the system under memory capacity pressure, this
procedure would be hard to automate, since each application
requires different user interactions, and generating random
combinations of workloads could dramatically change our
analysis.

To overcome these challenges, we rely on the infrastructure
that the open-source Chromium project [206] provides to
automate the execution of web-based processes. Specifically,

VOLUME 11, 2023

we use the Chromium project’s open-source memory
capacity pressure test [145] to evaluate the system. The
test has three phases. In the first phase (memory pressure),
the test opens multiple Chrome tabs in Chrome until the
first tab discard occurs (i.e., when Chrome terminates the
process associated with an open tab). In the second phase
(cold switch), the test opens the least-recently-used tabs
(called cold tabs) to induce page faults. In the third phase
(heavy load), the test executes tab switches to measure
system performance under heavy memory capacity pressure.
A tab discard happens when Chrome observes that the
system is running out of memory. To calculate the amount
of available memory, Chrome computes available_mem =
available_RAM + num_swap_pages/IRAM _vs_swap_weight,
where num_swap_pages defines the number of available
(free and non-defective) page slots in all active swap areas,
and RAM_vs_swap_weight accounts for the relative ease of
allocating RAM directly versus having to swap its contents
out first.

Using the memory capacity pressure test in our analysis
allows us to overcome all three main challenges we discuss
above. We mitigate the first challenge (i.e., executing real-
world workloads) by using the open-source and commonly-
used Chrome web browser as our primary workload driver.
Doing so brings two main advantages for our experimental
setup. First, we can fully understand Chrome’s internal
structure since it is an open-source tool, and can understand
the system resources it demands using different profiling
tools (e.g., perfprofiler [207]). Second, we create an environ-
ment where the system executes distinct tasks concurrently,
since the user utilizes Chrome as the primary interface
to execute different services, and Chrome creates a new
process for each new Chrome tab. We mimic a multiprocess
system that runs different workloads and stresses different
segments of the system, by opening different Chrome tabs
that execute different services. These services include Google
web services (e.g., YouTube [208], Google Maps [209],
Google Sheets [210], Google Docs [211]), Facebook [198],
and Twitter [212], each of which demands different com-
putational sources. For example, when loading YouTube as
one of our Chrome tabs, the newly-created process executes

105849

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

tasks related to web browsing (e.g., texture tiling, color
blitting) and YouTube-related tasks, such as video decoding,
locally [213]. We profile our system using the perf profiling
tool while executing our memory capacity pressure test,
to characterize the workloads and tasks executed by our setup
that are unrelated to web browsing tasks. A non-exhaustive
list of workloads executed in our evaluation setup is:

¢ Video decoding using the FFmpeg [214] and libvpx [215]
libraries, which are used to execute the VP8/VP9 [216]
video decoder;

e Web Media Player [213] to support HTMLS video
playback [217], including audio/video decoders supported
by the Mojo System API [218] and the Video Acceleration
API [219];

e Audio rendering utilizing Chromium’s audio rendering
API [213];

o GIF decoding/encoding using the SkGifCodec [220];
e V8 JavaScript engine [221].
We observe that our experimental setup includes two of
the workloads also evaluated by prior work on consumer
devices [14] (Chrome web browser, VP9 video decoding).
In addition, our setup includes several workloads not covered
by prior work [14] (e.g., Web Media Player, audio rendering,
GIF decoding/encoding, V8 JavaScript engine) that are
commonly employed in consumer devices. Our system
setup is sufficient for our study, since our goal is not to
provide optimizations for a particular workload, but rather to
understand the impact of new memory technology in a real
system while running real applications.

We mitigate the second challenge (i.e., the lack of tools for
automation and reproducibility) by leveraging the memory
capacity pressure test’s capability to load a new Chrome
tab, scroll through a tab, and perform tab switches across
open tabs without user’s intervention. This is possible
since the test utilizes ChromeOS’ Tast integration-testing
framework [222]. The framework provides APIs that allow
the test code to interact with elements of the user interface
through the chrome.automation library [223].

We mitigate the third challenge (i.e., stressing the memory
system to induce enough swap activity) by launching enough
Chrome tabs until the system experiences moderate to critical
memory capacity pressure (see Section II-B). We can easily
control the amount of memory capacity pressure in the
system since we can easily predict the memory footprint of
opening a new Chrome tab. As we discuss in Section II-B,
we quantitatively analyze a range of memory capacity
pressure conditions that are experienced during real user
activity in a user study across 114 users.

Metrics. We use two key metrics throughout our analysis
in this paper: (i) tab count, which is the number of Chrome
tabs our memory capacity pressure test can open before
a tab discard happens; and (ii) fab switch latency, which
is the latency of switching across different tabs that are
already open. The tab count metric provides an indication of
the memory capacity pressure the system can support. The
tab switch latency metric is relevant and important for two

105850

main reasons. First, it directly impacts the user experience
by affecting the response time to the user. Second, the tab
switch latency metric provides a clear indication of the
performance impact on our interactive workloads of moving
memory blocks back and forth between main memory and the
swap space. By switching to a previously-opened tab, whose
memory pages have been moved from main memory to the
swap space, we force the system to load data from the swap
space. Then, the latency associated with the data movement
from the swap space to main memory is accounted for in the
final tab switch latency.

IV. EVALUATING INTEL OPTANE SSD FOR CONSUMER
DEVICES

In this section, we evaluate the performance implications of
employing an Intel Optane SSD in consumer devices. First,
we evaluate the impact on Chrome web browser performance
of reducing DRAM size while using the Intel Optane SSD as
swap space for DRAM (Section IV-A). Second, we leverage a
compressed in-DRAM cache to reduce tail latency and energy
consumption in a system equipped with the Intel Optane SSD
(Section IV-B). Third, we evaluate the impact of replacing
the Intel Optane SSD with a cheaper state-of-the-art NAND-
flash-based SSD (Section IV-C).

Throughout the evaluations we conduct in this section,
we push the system to a critical memory capacity pressure
state by opening as many Chrome tabs as possible (i.e., until
the first tab discard happens). We evaluate such an extreme
state since our goal in this section is to fully understand the
benefits and drawbacks of employing the Intel Optane SSD
device in our system. In addition, we report and analyze the
impact of the Intel Optane SSD device as swap space at
moderate memory capacity pressure states, where the system
has fewer Chrome tabs open.

A. EFFECT OF NVM AS A SWAP SPACE

We evaluate (i) the number of Chrome tabs the memory
capacity pressure test can open before a tab discard happens,
and (ii) the tab switch latency for the baseline (i.e., the system
with 8§ GB of DRAM and ZRAM as the swap device) and
the Optane (i.e., the system with 4 GB of DRAM and the
Intel Optane SSD as the swap device) configurations. During
our analysis, we observe that the number of open tabs by
the Optane configuration is 24% larger than the number
of open tabs by the baseline configuration our memory
capacity pressure test (164 vs. 132 open tabs for the Optane
configuration and the baseline configuration, respectively).
We observe that this increase in the number of open tabs
in the Optane configuration is due to the increase in total
memory space provided by the Optane configuration. In the
Optane configuration, the total memory space available is
4 GB of DRAM plus 16 GB of swap (thus, 20 GB of effective
main memory space). In the baseline configuration, this value
is 25% lower, since even though the system has 8 GB of
DRAM, up to 50% of DRAM space is reserved for the in-
DRAM compressed swap space (i.e., ZRAM). With an up to

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

3:1 compression ratio [161], [162], [163], the total memory
space in the baseline configuration becomes 4 GB of DRAM
plus 12GB of swap space (thus, 16 GB of effective main
memory space).

Figure 3 shows the tab switch latency distribution for the
baseline and Optane configurations. The figure depicts the
tab switch ID, i.e., an identifier for a given sorted tab switch
latency (x-axis) and the sorted tab switch latency (y-axis,
in logarithmic scale). We draw two observations.

|:| Baseline |:| Optane

-
o
o
o

100 1

1
130 Tab Switches
1

0 250 500 750 1000 1250 1500
Tab Switches

-
o

Tabs Switch Latency
Distribution (ms)

FIGURE 3. Tab switch latency distribution: Baseline (ZRAM) vs. Optane.

First, we observe that the tab switch latency of the baseline
configuration is lower than that of the Optane configuration
when the number of tab switches is lower than 130. This
is because the Optane configuration has half of the DRAM
space as the baseline configuration. As a result, the Optane
configuration experiences more page faults than the baseline
configuration. In our experiments, the baseline configuration
experiences 451 page faults until 130 tab switches, which
are serviced by the ZRAM space. In contrast, the Optane
configuration experiences 10x the page faults of the baseline
until it hits 130 tab switches, which significantly reduces
Optane performance at low tab switch counts. It is important
to highlight that there are fewer page faults for the baseline
configuration than for the Optane configuration when the
number of tab switches is low, because the physical memory
space the OS reserves for ZRAM is not statically allocated.
Initially, during execution, the baseline configuration enjoys
a larger memory space than the Optane configuration since
the baseline configuration has 8 GB of physical memory
available as working memory. This leads to a lower number of
page faults experienced by the baseline configuration than by
the Optane configuration when the tab count (and therefore
the number of tab switches) is low. However, as swap activity
increases with larger number of open tabs, the OS allocates
physical memory for the compressed swap space utilized
by the baseline. The OS allocates physical memory for the
ZRAM swap space until the total swap space size reaches a
predefined threshold (4 GB of physical DRAM space in our
setup). After the maximum swap space threshold is reached,
the baseline configuration can leverage only the remaining
4 GB of physical memory as working memory, which leads
to a much larger number of page faults.

Second, after 130 tab switches, the Optane configuration
provides a lower tab switch latency than the baseline
configuration. That is due to how ZRAM operates once
the system runs out of memory: Chrome pages need to be

VOLUME 11, 2023

constantly swapped into/out of the ZRAM space. This incurs
high CPU overhead and data movement between DRAM
regions since the processor needs to frequently (1) find cold
pages to move from main memory to ZRAM (i.e., swap
pages into the ZRAM space), which requires the processor to
execute data compression operations; and (2) find and move
requested cold pages from ZRAM to main memory in case
of a page fault (i.e., swap pages out of the ZRAM space),
which requires the processor to execute data decompression
operations. In contrast, the Optane configuration greatly
alleviates CPU usage caused by compression/decompression
activities. When memory pages are swapped into/out of
the Optane-based swap space, the processor needs to only
issue asynchronous read/write requests to the Intel Optane
SSD device. We observe that by eliminating the CPU time
the system would spend on compression/decompression
activities, the page fault latency in the Optane configuration
is 35% lower than in the baseline ZRAM configuration,
which leads to lower tab switch latencies in the Optane
configuration. We conclude that the Optane configuration
provides better performance than the ZRAM configuration
for high-enough tab counts.

Even though using the Intel Optane SSD as a swap
space provides benefits for average tab switch latency
(especially at high tab counts), it can also harm tail latency
performance. Figure 4 shows the distribution of tab switches
with latency larger than 250ms for both the baseline and
Optane configurations. We make two observations. First, the
fraction of tab switches with a latency larger than 250 ms
for the baseline configuration is 7.1%, on average during the
execution of the memory capacity pressure test. In contrast,
in the Optane configuration, the fraction of high-latency
tab switches is 18.4%, on average. Thus, in the Optane
configuration, the fraction of high-latency tab switches is
2.6x those in the baseline configuration. Second, for low
tab counts (until 60 tabs), the percentage of high-latency tab
switches for the Optane configuration is (i) the same as in
the baseline configuration for 1-20 tab counts (0% vs. 0%
for the Optane and baseline configurations, respectively); and
(ii) slightly larger than the baseline configuration for 21-40
and 40-61 tab counts (high-latency tab switches make up
5.5% vs. 2% for 21-40 tab counts, and 6.5% vs. 3% for
41-60 tab counts, for the Optane and baseline configurations,
respectively). However, after 61 tabs, the number of tab
switches with high latency increases significantly for the
Optane configuration. To understand the reason of this
increase in tab switches with high latency in the Optane
configuration, we analyze the page fault latency distribution
during the execution of our memory capacity pressure next.

Figure 5 shows the page fault latency distribution for
all page faults in the baseline and Optane configurations
during the execution of our memory capacity pressure test.
We make two observations. First, when analyzing the page
fault latency, we observe that at least 98% of the page
faults have a response latency of less than 10 ps for both
configurations (Figure 5, left). Second, when examining the

105851

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

O Baseline

5

4

30%1

20% ’_H

1
ol om @

1-20 21-40 41-60 61-80 81-100 101-120121-140 GMEAN
Tab Count

O Optane

% of Tab Switches
with Latency > 250 ms

FIGURE 4. High-latency tab switch distribution: Baseline (ZRAM) vs.
Optane.

tail of the latency distribution (Figure 5, right), the Optane
configuration has 4.43x the number of page faults of the
baseline (i.e., the number of page faults with a latency larger
than 10 ps in the Optane configuration is 4.43x that of the
baseline configuration). We conclude that the increase in
high-latency tab switches for the Optane configuration (in
Figure 4) is due to less than 2% of the page faults, with these
page faults having a high response latency (more than 10 ps).

L O Baseline O Optane

=100% 1= 0.5% =

S

5 75% 0.4%

= 0.3%

® 50%

g8 " 0.2%

= 25% o

Fl 0.1%

g ol - ool o
s 10 20 30 40 50 60 70 80 90100 200 300 400 500 600 700 800 9001000
£ Page Fault Latency (us)

FIGURE 5. Page fault latency distribution.

Figure 6 compares the impact of the baseline and
Optane configurations on average memory subsystem energy
consumption and swap traffic (i.e., the total number of
bytes swapped into/out of the swap space). To model Intel
Optane energy consumption, we assume that the device uses
PCM-based memory cells, as previous work suggests [224].
Then, we gather the read/write energy consumption of
PCM-based memory devices and DRAM, as reported by
previous work [225], to model the energy consumption
of our system, i.e., 4.4pJ/2.47pJ read energy-per-bit and
5.5 pJ/14.03 pJ (set)—19.73 pJ (reset) write energy-per-bit for
DRAM/PCM.” In the figure, we normalize both metrics to
the baseline values (y = 1.0 in the plot). We observe that
the Optane configuration increases energy consumption and
swap traffic by 69.5x and 37.2x, respectively, compared to
the baseline configuration. This is due to two main reasons.
First, writing one bit to Optane consumes up to 3.6x the
energy of writing one bit to DRAM [225]. Even though
reading one bit from Optane consumes 56% less energy
than reading one bit from DRAM [225], in our analysis,
we find that the majority (i.e., 54%) of the accesses to the
Intel Optane SSD are write accesses. Second, the Optane
configuration generates much more swap activity than the
baseline, since the Optane configuration has half the DRAM
size of the baseline configuration. We conclude that using

SWe evaluate only the energy of the memory subsystem in our analyses.
This does not include the energy consumed by the processor.

105852

§ 80 I:IGEIigseline O Optane

< 60-

E 40 37.2

Té 20

20 i 1]
System Energy Swap Traffic

FIGURE 6. Energy and swap traffic. Y-axis values are normalized to the
baseline configuration.

the Intel Optane SSD as a swap space to DRAM severely
penalizes system energy consumption.

Summarizing our findings, the Optane configuration
provides benefits compared to the baseline system, since it
enables a large number of tab switches due to an increase
in the main memory space. However, it has significant
drawbacks in terms of tail latency, system energy and swap
traffic, compared to the baseline with double the amount
of DRAM. Most of these downsides come from the large
number of accesses, especially write accesses, to the Intel
Optane SSD. To solve these problems, we next examine
multiple techniques that can (i) reduce the swap traffic in
the Optane configuration (Section IV-B) and (ii) improve
overall system performance for the Optane configuration
(Section V).

B. REDUCING TAIL LATENCY BY ENABLING A
COMPRESSED RAM CACHE

The Intel Optane SSD can improve overall performance for
consumer devices since it enables an extended memory space.
However, as we show in Section IV-A, it can also negatively
impact tail latency and system energy consumption due to the
need to issue high-latency and power-hungry I/O requests to
access the device. In addition, NVM devices such as the Intel
Optane SSD suffer from limited endurance [51], [53], [54].
As a result, the large number of write operations caused by
page swapping can degrade system reliability.

To overcome these issues introduced by the Intel Optane
SSD, we aim to reduce the number of accesses to it. To this
end, we augment the Optane configuration with Zswap [226],
an in-DRAM swap cache used to store compressed cold-
pages. Zswap takes memory pages that are in the process of
being swapped out from main memory to the swap device
(i.e., the Intel Optane SSD) and attempts to compress them
into a dynamically-allocated DRAM-based memory pool.
When a page fault happens, the OS checks if the requested
memory page is stored in the Zswap cache (i.e., Zswap
load hit); if the page is not in the Zswap cache, the OS
loads the memory page from the swap space (i.e., Zswap
load miss). In case of a Zswap load hit, the OS (1) loads
and decompresses the memory page stored in the Zswap
cache, and (2) services the page fault request by writing the
decompressed memory page into DRAM. The motivation
behind Zswap is to trade CPU cycles for a potential reduction

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

in I/O requests. Zswap can improve performance if the read
requests are serviced faster from the in-DRAM compressed
swap cache than from the swap device.®

To fully leverage Zswap in the Optane configuration,
we first need to tailor two important parameters related to
Zswap execution. First, as explained in Section II, a tab
discard happens when Chrome observes that the system is
running out of memory, which is computed based on the
RAM_vs_swap_weight parameter (i.e., the relative ease
of allocating DRAM pages directly versus having to swap
its contents out first; see Section III). This parameter is
empirically defined for ZRAM as 4. Similarly, we empirically
evaluate which value RAM_vs_swap_weight enables the
memory capacity pressure test to open more tabs before
the first tab discard happens. We run tests varying the
RAM_vs_swap_weight value from 1 to 8, and we observe
that RAM_vs_swap_weight equals to 1 provides the
largest number of open tabs for the Zswap configuration.
Second, we need to understand the impact of the maximum
Zswap cache size (i.e., max_pool_size) on the tab switch
latency. To this end, we run the memory capacity pressure
test while varying the max_pool_size from 0% to 50%
of the total DRAM size. As expected, we observe that the
tab switch latency increases with the max_pool_size.
We find that setting max_pool_size to 20% of the total
DRAM capacity provides a good balance between reduction
in I/O traffic and tab switch latency.

Figure 7 compares the total number of open tabs before
a tab discard happens in the baseline and Optane configura-
tions, and when we enable Zswap in our Optane configuration
(labeled Optane+Zswap). We observe that by enabling
Zswap, the number of open tabs reduces by 12% compared
to the Optane configuration without Zswap enabled. By
enabling Zswap, we effectively reduce the total memory
space available, thus causing a discard to happen sooner.

-
A OONOD
o OO oo

Tabs Opened

Baseline Opt'ane Optane'+stap
FIGURE 7. Number of open tabs: Baseline vs. Optane vs. Optane with

Zswap enabled (Optane+Zswap).

Figure 8a shows the impact of enabling Zswap on the
tab switch latency. Enabling Zswap maintains a similar
overall tab switch latency as the Optane configuration without

SEven though both ZRAM and Zswap use an in-DRAM compressed
memory space to operate, they are fundamentally different mechanisms.
While ZRAM is an in-DRAM compressed swap space, Zswap is an in-
DRAM swap cache. The system sees ZRAM as a swap device and Zswap as
a cache for memory pages swapped into/out of the swap device. We enable
Zswap only in the Optane and NANDFlash configurations, since the goal
of enabling Zswap is to reduce I/O traffic to off-chip swap devices (i.e., the
Intel Optane SSD and the NAND-flash-based SSD in our experiments). We
indicate Zswap-enabled configurations explicitly throughout the paper (e.g.,
the Optane configuration with Zswap is labeled Optane+Zswap).

VOLUME 11, 2023

Zswap. Figure 8b shows the impact that Zswap has on
high-latency tab switches. We make three observations. First,
on average across all tab counts, enabling Zswap leads to
a modest increase of 4% on the number of tab switches
with latency larger than 250 ms (up to 29% for tab counts
of 101-120). Second, the large difference in the fraction
of tabs with high latency tab switches between Optane and
Optane+Zswap configurations happens when swap activity
increases, and the swap cache gets full. When the swap
cache gets full, the system needs to (1) free an entry in the
swap cache, (2) decompress the selected entry and evict it
back to the swap device, and (3) compress the new page
and insert it in the swap cache. These operations represent
the worst-case latency for a Zswap operation. Third, tab
counts of 21-40 and 41-60 have a similar fraction of tab
switches whose latencies are unacceptable in both the Optane
and Optane+Zswap configurations. Enabling Zswap reduces
the number of high-latency tab switches for tab counts of
21-40, resulting in a similar fraction of high-latency tabs as
the baseline. For 21-40 tabs, the number of high latency tab
switches is 2%, 5.5%, and 3%, for the baseline, Optane, and
Optane+Zswap configurations, respectively. We conclude
that when a page request hits in the Zswap cache, the system
can provide a lower tab switch latency.

|:| Baseline |:| Optane |:| Optane+Zswap

1000+

-
o

Tabs Switch Latency
Distribution (ms)
]
o

0 250 500 750 1000 1250 1500
Tab Switches
(a) Tab switch latency distribution.

g O Baseline O Optane O Optane+Zswap
12}
8o 50% _
5 & 40%
S A
& 7 30%1
E § 20%
L 1
= — s T . ' . . :
°© s 1-20 21-40 41-60 61-80 81-100 101-120121-140 GMEAN

Tab Count
(b) High-latency tab switch distribution.

FIGURE 8. Tab switch latency: Baseline vs. Optane vs. Optane+Zswap.

To fully understand the impact of enabling Zswap in the
Optane configuration, we monitor the CPU utilization of the
system for both Optane and Optane+Zswap configurations.
For this, we execute the memory capacity pressure test for
both configurations and monitor the CPU utilization with
the vmstat tool [227] for one hour. Figure 9 depicts
the CPU utilization for both configurations. We make two
observations. First, we observe that, when we disable Zswap
(Figure 9a), the CPU spends part of the execution time
waiting for I/O operations to complete. Towards the end of
the execution of the memory capacity pressure test, the I/O
waiting time increases dramatically, since the swap activity
also greatly increases. Second, we observe that by enabling

105853

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

Zswap, the system spends a smaller fraction of its time
waiting for I/O operations, as Figure 9b shows. On the other
hand, it also spends a larger fraction of its time on kernel
activity due to Zswap compression/decompression execution,
which reduces the fraction of time spent on user activity
and penalizes Chrome browser performance. We conclude
that the increase in kernel activity caused by Zswap cache
compression/decompression operations is the primary cause
of the increase in the fraction of high-latency tab switches in
the Optane+Zswap configuration.

Kernel Activity: [0 Idle [Kernel [User [Wait I/O

(a) vmstat profile when Zswap is disabled

751 D B H

501 — — — —

0 L -
(b) vmstat profile when Zswap is enabled

751 —] |

10 20 30 40 50 60
Timestamp (minutes)

Execution Time Breakdown (%)

FIGURE 9. System execution time breakdown during a memory capacity
pressure test.

To evaluate the effectiveness of the Zswap cache, we ana-
lyze the Zswap cache behavior during the execution of the
memory capacity pressure test. Figure 10a shows the number
of load hits, load misses, and total loads that the Zswap cache
services. Figure 10b shows the hit rate of the Zswap cache
over the same time. We make the two observations based on
Figure 10. First, the Zswap cache provides a high hit rate of
97%, on average during the execution of the memory capacity
pressure test. In fact, we see in Figure 10b that the hit rate
is close to 100% from 16 minutes to 30 minutes. Second,
we observe that the hit rate drops from 100% at 30 minutes
to 91% at 60 minutes. We observe that at 30 minutes, the
Zswap cache gets full, which requires the system to evict
old pages frequently. However, even during high memory
capacity pressure, the Zswap cache maintains a significantly
high hit rate. We conclude that Zswap cache is an effective
cache for the swap space.

Figure 11 shows the distribution of the compression and
decompression latencies in the Zswap cache during the
execution of the memory capacity pressure test. In the
figure, dashed lines represent the average compression/
decompression latency, and solid lines represent the max-
imum compression/decompression latency. We make two
observations. First, the decompression latency, which is
on the critical path of Chrome execution when a page
fault happens, is 3.9ps on average during the execution
of the memory capacity pressure test (minimum of 1.5 s,
and maximum of 42.6 pus). We observe that 98.7% of the
decompression requests have a latency of less than 10ps.
Second, the compression latency is larger, with an average

105854

|:| Hits |:| Misses

|:| Total Loads
10

8-
6-
4.

Load Hits and
Load Misses (in Millions)

0 20 40 60
Timestamp (minutes)
(a) Zswap cache load hits and load misses.

100% 1
80% 1
60%
40%
20%

0%

Hit Rate (%)

10 20 30 40 50 60
Timestamp (minutes)
(b) Zswap cache hit rate.

FIGURE 10. Zswap cache performance.

latency of 12.1 s (minimum of 1.5ps, and maximum of
138.2ps). As a comparison, the Intel Optane SSD read
latency is 22.4ps on average (minimum of 9.0ps, and
maximum of 5380 ps). We conclude that Zswap is an effective
caching mechanism for the swap space, since it provides
significantly lower access latency than directly accessing the
swap device.

> D Compression |I| Decompression

Fraction of

@
N 0 10 20 30 40 50 60 70 80 90 100110 120 130 140
Operation Latency (us)
FIGURE 11. Zswap cache compression/decompression latency

distribution. Dashed (solid) lines represents average (maximum)
compression/decompression latency.

We also study the system energy savings that the Zswap
cache provides. Figure 12a shows the energy savings when
Zswap is enabled for the Optane configuration. We make
three observations from the figure. First, we observe that
enabling Zswap reduces overall system energy consumption
by 2x. Second, we observe that the majority of the energy is
spent on write requests. To understand these energy results,
we analyze in Figure 12b the amount of memory swap-in
and swap-out activity during the execution of the test. As
shown in Figure 12b, with Zswap cache enabled, swap-in and
swap-out activity reduces by 2.06x and 2.11 x, respectively.
This large reduction in swap activity directly translates to a
reduction in energy consumption. Third, even with Zswap
enabled, the Optane+Zswap configuration consumes 34.75 x
the energy of the baseline configuration. This large increase in
energy consumption is due to (i) an increase in swap activity

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

since the Optane+Zswap configuration enables significantly
more tab switches than the baseline and (ii) the high energy
cost of write operations to the Optane device when swapping
out pages [225]. We conclude that the Zswap cache greatly
reduces energy consumption due to a large reduction of
swap traffic. However, the Optane+Zswap configuration still
significantly increases the energy consumption compared to
the baseline. We expect that such energy can be further
reduced by employing techniques to reduce the energy cost of
write operations on NVM devices [225], [228], [229], [230].

)

O Read O write

n (%

c 100%

~
a
X

50% 1
25%
0%

Normalized
Energy Breakdow

Opt'ane Optane'+stap

(a) Effect of Zswap cache on system energy.

O Optane O Optane+Zswap
100%

75%

50% 1
0%

Swap In Swap Out Swap Total

Normalized
Swap Traffic (%)

(b) Effect of Zswap cache on swap traffic.

FIGURE 12. Effect of Zswap cache on system energy and swap traffic.

Lifetime Analysis. One characteristic of NVM devices is
their limited write endurance, i.e., a memory cell in the
Optane device becomes unreliable beyond a certain number
of writes. Therefore, we evaluate how Optane’s limited write
endurance affects the lifetime of our system when employing
the Intel Optane SSD as a swap space. We compare the
Intel Optane SSD lifetime (in years) when executing Chrome
tab switching and scrolling activities in a system with and
without Zswap. To do so, we adopt the lifetime model in [51],
which estimates the lifetime of a memory module driven
by the access patterns observed in our Chrome workload.
We assume a conservative Optane cell endurance of 10°
writes [231] (i.e., the same cell endurance of PCM-based
memory cells [67], [232], [233]) and an optimistic wear-
leveling mechanism that evenly distributes write requests
across all cells of the Intel Optane media (which the Intel
Optane SSD is reported to implement [234]). Our model
shows that the lifetime of the Optane configuration without
(with) Zswap enabled when executing our Chrome workload
is 4.5 (8.3) years. Such an expected lifetime can be hard
to obtain in practice because it is unlikely that the wear-
leveling algorithm will be able to distribute all writes
across the Optane device equally. However, prior works
propose more realistic wear-leveling mechanisms that can
achieve up to 53% of the lifetime of an optimistic wear-
leveling mechanism [235]. Therefore, employing such a
wear-leveling mechanism can still guarantee a high lifetime

VOLUME 11, 2023

for our Optane-based system without (with) Zswap enabled
of 2.4 (4.4) years.

Summarizing our findings, the Zswap cache is an effective
caching mechanism that reduces the swap traffic and system
energy consumption when utilizing the Intel Optane SSD as
a swap space. These benefits come at the cost of a small
increase in the number of high-latency tab switches and a
small decrease in open tab count.

C. EFFECT OF USING DIFFERENT NVM DEVICES

In the previous sections, we show that enabling Intel Optane
SSD as swap space for consumer devices can provide
significant benefits due to the extended main memory space
it provides. However, it is essential to understand if we
can achieve similar results using cheaper state-of-the-art
NAND-flash-based SSDs in place of the Intel Optane SSD.
We aim to study whether state-of-the-art NAND-flash-based
SSDs that are already widely used (e.g., Micron [236]
and Transcend [196] NAND-flash-based SSDs) can provide
similar benefits for our workloads as we have observed using
the Intel Optane SSD in Sections IV-A and IV-B.

There are three major differences between the Intel Optane
SSD and a traditional NAND-flash-based SSD: (1) lower
access latency in the Intel Optane SSD, (2) higher endurance
in the Intel Optane SSD, and (3) higher cost of the
Intel Optane SSD device. First, as previous works [91],
[92], [100], [101], [102], [103], [104], [105], [106] show,
performing a 4kB random read using the Intel Optane
SSD is approximately 6x faster than using a traditional
NAND-flash-based SSD. Second, the Intel Optane SSD can
provide 10x the endurance of a traditional NAND-flash-
based SSD [237]. Third, a traditional NAND-flash-based
SSD is approximately 3x cheaper than the Intel Optane SSD
($0.50/GB [107] vs. $1.5/GB [238], respectively).

We compare the number of open Chrome tabs and the tab
switch latency when using the Intel Optane SSD (Optane
configuration) versus an NVMe NAND-flash-based SSD as
the swap device (NANDFlash configuration). We choose a
16 GB M.2 NVMe NAND-flash-based SSD for our experi-
ments. We also evaluate the effect of enabling Zswap when
using the NAND-flash-based SSD (NANDFlash+Zswap).

Figure 13 compares the number of open Chrome tabs
under five configurations (baseline, Optane, Optane+Zswap,
NANDFlash, NANDFlash+ZSwap). We make two obser-
vations. First, the NANDFlash configuration enables 14%
more open tabs than the Optane configuration. This is
due to the RAM_vs_swap_weight parameter. This kernel
parameter defines the effort (in terms of swap activity)
that the system will demand to allocate more memory.
For our Optane configuration, we empirically choose the
RAM_vs_swap_weight value that gives the best trade-off
regarding swap activity, number of tabs open, and tab
switch latency. However, since we use the NANDFlash
configuration only as a reference, we utilize the default
RAM_vs_swap_weight value that the kernel suggests.

105855

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

Thus, even though the kernel can allocate more memory in the
NANDFlash configuration than in the Optane configuration,
more Chrome tabs result in higher swap activity. Second,
when enabling a Zswap cache using 20% of the DRAM
capacity in the NANDFlash configuration (the same capacity
as in the Optane+Zswap configuration, we evaluate in
Section I'V-B), the number of open tabs reduces by 12%, due
to the decrease in the available DRAM space.

el
Q 4
C
%120-
2 80
K 40
0 T

Baseline Optane

Optane+Zswap NANDFlash NANDFlash+Zswap

FIGURE 13. Number of open tabs: Baseline vs. Optane vs. NANDFlash.

Figure 14 shows the tab switch latency distribution
(Figure 14a) and the distribution of high-latency tab switches
(Figure 14b) for all five configurations. We make two
observations from the figure. First, we observe (in Figure 14a)
that the high access latency of the NAND-flash-based SSD
leads to a significant increase in the tab switch latency
in the NANDFlash (NANDFlash+Zswap) configuration
compared to the Optane (Optane+Zswap) configuration.
The average tab switch latency of the NANDFlash
(NANDFlash+Zswap) configuration is 3.6x (10x) that
of the Optane (Optane+Zswap) configuration. Second, the
number of high-latency tab switches in the NANDFlash
configuration (Figure 14b) increases by 35% compared to
the baseline configuration, and by 39% compared to the
Optane configuration. For high tab counts, the fraction of
tabs with high latency is as much as 70% (for 100120 tabs)
in the NANDFlash+Zswap configuration. We conclude that
the NANDFlash configuration provides benefits compared to
the baseline configuration, but it is unable to approach the
performance of the Optane configuration.

- [=] Baseline [= optane [<] NANDFlash
27 1x10° .

SE

T2 1x10*

=8 3 - —

§E 1x10%] -

=2 2 |

%.‘Z 1x10

88 1x10"14
K 0 250 500 750 1000 1250 1500

Tab Switches

(a) Tab switch latency distribution. Dashed lines represent
Zswap enabled.

g [Baseline [0 Optane [Optane+Zswap [NANDFlash+Zswap
® S 80%
£ 0
£ 60% 1
2 >
%)]
P % 40%
© 5§ 20%
(o)
<E 0% - L = "IT. } } } |
E 1-20 21-40 41-60 61-80 81-100 101-120121-140 GMEAN

Tab Count
(b) High-latency tab switch distribution.

FIGURE 14. Tab switch latency: Baseline vs. Optane vs. NANDFlash.

105856

Summarizing our findings, using a state-of-the-art
NAND-flash-based SSD to extend the main memory capacity
of the system improves performance compared to the
baseline, considering the number of additional open tabs
the NANDFlash configuration provides. However, it cannot
achieve similar performance as using the Intel Optane SSD
to extend the main memory capacity due to the high access
latency of the NAND-flash-based SSD, which leads to a
significantly larger number of high-latency tab switches than
the Intel Optane SSD. Thus, the Intel Optane SSD can lead to
a better user experience than a state-of-the-art NAND-flash-
based SSD.

V. SYSTEM OPTIMIZATION

Using the Intel Optane SSD as swap space allows our system
to enjoy an extended memory space, which translates to an
average latency improvement for our workload at the cost of
larger tail latencies. However, longer tail latencies are usually
not acceptable. Thus, it is essential to reduce tail latency
(i.e., the 99th-percentile latency in our tab switch latency
distributions) for interactive workloads since it affects how
the user experiences the system.

The goal of this section is to analyze the primary sources
of latency overheads that impact the tail latency in the system
when we make use of the Intel Optane SSD as swap space.
We extensively profile the system when executing the Google
Chrome web browser to identify performance bottlenecks
caused by the added swap device. We observe that the
Linux block I/O layer increases both the average and the
99th-percentile latency for Chrome’s page faults signifi-
cantly, mostly due to I/O scheduling issues and queuing
delays, and overheads related to the I/O request completion
mechanism. To solve these issues, we tune the system
parameters related to the Linux block I/O layer, aiming to
improve the 99th-percentile latency for tab switches.

In this section, we limit the number of open tabs in our
experiments to 50, as 50 tabs are enough to generate moderate
memory capacity pressure in our system and thus examine tail
latencies.

A. PROFILING THE CHROME BROWSER

We extensively profile the Google Chrome browser’s activity
while running the memory capacity pressure test when the
Intel Optane SSD is employed as swap space. We use the
perf profiling tool [239] to collect the execution time
breakdown of each Chrome tab (including kernel activity).
Figure 15 shows a simplified execution breakdown of one
of the representative Chrome tabs that demonstrates long-
latency switching times. We observe from the figure that the
tab spends more than 96% of its execution time on kernel
modules that manage I/O requests (i.e., the do_page_fault
kernel function, which issues I/O requests in case of a page
fault operation; and the blk_mgq_complete_request kernel
function, which receives and completes the processing of I/O
requests issued to the swap device). We observe that (i) 50%
of the execution time is spent on issuing a block I/O request

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

due to page faults, and (i) 46% of the execution time is spent
on processing the requested page once the data is received
from the swap device. The remaining 4% of the execution
time is spent on Chrome’s internal processes and other kernel
calls. Therefore, we conclude that the block I/O layer is the
primary source of the tail latency overhead.

blk_mq_complete_request
Other

50 % 46 % 49 E do_page_fault

0 25 50 75 100
Execution Time Breakdown (%)

FIGURE 15. perf results for a Chrome tab.

B. LINUX BLOCK 1/0 LAYER

The block I/O layer is the Linux kernel layer responsible
for managing block I/O devices (e.g., magnetic hard drives,
SSDs) [10], [225]. It is a key system component since
accessing block I/0 devices involves issuing high-latency and
power-hungry operations to the block device. Therefore, the
block I/O layer is highly optimized to ensure low latency
and high throughput from block devices. Figure 16 illustrates
the primary operations the block I/O layer performs when an
application or the kernel issues an I/O request (e.g., read from
a file, page fault). The block I/O layer works in three main
steps.

1/0 Request Completion Mechanism

Queue Merge Schedule
1/0 Requests J|_1/0 Requests_J{_1/0 Requests

/0 Request |

CcPU 1 [T [
[cruz |[oreaest of [[[[
[T [

[cPUN |0 Request |

© Queus-to-Device (Q2D)

<+ Device-to-Completion (D2C) =+
Latencies e—————— ® Queue-to-Completion (Q2C)

MQ Block I/O Layer

FIGURE 16. Linux block 1/0 layer.

First, when the block I/0O layer receives a block I/O request,
it queues the request in a request queue (called software
queue), which is unique per CPU. Second, it attempts to
merge and sort requests based on the sector number to avoid
costly seek operations in the device. Third, it schedules
the requests using an I/O scheduler. The scheduled request
is stored in a dispatch queue (called hardware dispatch
queue). Requests stored in the hardware dispatch queue are
issued to the device driver and eventually reach the block
device. Once the device completes executing the request,
it sends the response back to the block I/O layer, which
finalizes the execution of the request by either (1) waking
up the requester, in case an interrupt-based (IRQ) I/O request
completion mechanism is employed [10]; or (2) forwarding
the response to the requester, in case a polling-based 1I/O
request completion mechanism is employed [10]. Recent
Linux kernels have adopted a multi-queue (MQ) block
I/O layer [240], since modern block devices (e.g., NVMe

VOLUME 11, 2023

devices [241]) can execute many requests concurrently [240],
[241], [242]. The MQ block I/O layer employs one request
queue per CPU core for each block device.

To monitor and analyze the performance implications of
the block I/O layer in the system, we make use of the
blktrace tool [243]. blktrace monitors the activity of
the block I/O layer, and provides detailed timing information
for each major operation. We analyze three important timings
that the tool reports: (i) queue-to-device (Q2D), the time from
when a block I/0 request enters the block I/0O layer to the time
the request is issued to the block device, including queuing,
merging, and scheduling (@ in Figure 16); (ii) device-to-
completion (D2C), the time it takes the block device to
complete the request (@ in Figure 16); and (iii) queue-to-
completion (Q2C), the total end-to-end time for a block I/O
request to complete, i.e., 02C = Q2D + D2C (® in Figure 16).

During the execution of the memory capacity pressure test,
we profile the block I/0 layer using b1kt race. We analyze
the latencies for I/O requests that Chrome processes and the
kernel memory management unit (kswapd) issue. Figure 17
shows the Q2C, 02D, and D2C latencies during the execution
of the test. The end-to-end block I/O latency (i.e., Q2C
latency) is 1.80 ms, on average across both Chrome processes
and kswapd read and write I/O requests (min. of 0.0085 ms,
max. of 414.11 ms). The Q2D latency is 0.03 ms, on average
(min. of 0.000 87 ms, max. of 413.80 ms). The D2C latency is
1.78 ms, on average (min. of 0.007 23 ms, max. of 46.10 ms).
We make three observations from the reported latencies. First,
Chrome processes (chrome, Chrome_IOThread, and
CompositorTileW)issue high-latency I/O requests (up to
414.11 ms). Most of these requests are read requests caused
by page faults. Second, kswapd is responsible for issuing
a majority of the write requests to the I/0 device.” Third,
for high-latency 1/O requests, most of the I/O latency comes
from the block I/O layer rather than from the swap device.
While the device latency (i.e., D2C) is at most 46.10 ms, the
latency of queuing and scheduling requests in the block I/O
layer (i.e., the Q2D latency) dominates the execution time of
high-latency I/O requests (as observed by the high maximum
Q2D latency of 413.80 ms).

Based on this analysis, we conclude that the block I/O layer
operations are the primary bottleneck in high-latency block
I/O requests. To alleviate this bottleneck, we investigate how
two system optimizations impact block I/O latencies and,
consequently, Chrome performance. We investigate the effect
of (1) different block I/0 schedulers (Section V-C) and (2) dif-
ferent I/O request completion mechanisms (Section V-D) on
system’s performance.

C. OPTIMIZATION 1: BLOCK I/0 SCHEDULERS
The block I/O layer of the Linux kernel provides four dif-
ferent multi-queue I/O schedulers. These schedulers vary in

TThe kswapd process issues only write 1/0 requests since its goal is to
free memory by reclaiming inactive memory pages. If an inactive memory
page is dirty, the kswapd process writes this dirty page to swap space.

105857

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

Operation: O Read [B] Write B Read+Write
Queue-to—completion (Q2C) Queue-to—-device (Q2D) Device-to-completion (D2C)

()
© 2 - 2
g 10 10 10'
8 4o o'
1 () 10°
— —%% 10
g1 107"
3. 107"
E 10 b 1072
3 102 107 107

Chrome Processes kswapd All Chrome Processes

kswapd All

Chrome Processes kswapd All

FIGURE 17. 02¢, 02D, and D2C latency distribution for (i) Chrome processes, (ii) kswapd, and (iiij) Chrome processes+kswapd (All) during the execution of
the memory capacity pressure test. Error bars depict the minimum and maximum data point values, and a bubble depicts average value of each category.

© nore Read/Write FIFO 9 MQ-Deadline gector-Sorted FIFO O sra Process, Read/Write FIFO
D—'I D—'[Dispatch] I I D—'[Dispatch] I I I I I D—'[Dispatch]
A A
| . 1
@ Kyber Read FIFO p— — : Process; Read/Write FIFO ... —
I T o G " _reache A Bulger?
Write FIFO ! Write FIFO) Process..; Read/Write FIFO ™ _ £

D New Request from Process;

E] Read Request E] Write Request

FIGURE 18. Four Linux block 1/0 layer schedulers.

complexity, and their aim and ability to consider and exploit
different properties of different block devices. Therefore, it is
essential to tailor the system to make use of the I/O scheduler
that matches the requirements and characteristics of the Intel
Optane SSD.

We first briefly explain each of the four I/O schedulers.
The four I/O schedulers are called None [240], Kyber [244],
MQ-Deadline [245], and budget-fair queuing (BFQ) [10].
Figure 18 illustrates the operation of the four I/O schedulers.
The None 1/O scheduler (@ in Figure 18) is the simplest I/O
scheduler. It employs a simple first-in first-out (FIFO) request
queue. Therefore, it does not reorder requests. The request
queue includes both read and write I/O requests. Due to its
simplicity, the None I/O scheduler incurs low overhead, but
does not guarantee any quality-of-service.

The Kyber I/O scheduler (® in Figure 18) maintains
two separate request queues, one for synchronous block I/O
read requests, and another for asynchronous block I/O write
requests. It prioritizes requests in the read queue over those in
the write queue, unless a write request has been outstanding
for too long, i.e., it times out by reaching the target write
access latency (the default target write access latency for the
Kyber I/O scheduler is 10 ms [244]). As such, it is also a
simple I/O scheduler that aims to provide better service to
read requests.

The MQ-Deadline I/O scheduler (® in Figure 18) employs
three different request queues: read FIFO, write FIFO, and
a sorted FIFO. The sorted FIFO maintains read and write
I/O requests that are sorted by the sector number they are
to access. The scheduler prioritizes I/O requests from the

105858

D Request Prioritized for Dispatch

sector-sorted FIFO unless any request in either the read or
write queue is about to violate its service deadline. The
default deadline is 500 ms for read I/O requests, and 5 s for
write I/O requests.

The BFQ I/O scheduler (@ in Figure 18) is the most
complex I/O scheduler among the four, which leads to high
scheduling overhead. The BFQ I/O scheduler guarantees
fairness across processes by distributing the throughput of
the block I/O device proportionally to each process via an
indirectly assigned weight value. The BFQ I/O scheduler
employs an I/O request queue per process and assigns an
I/O budget per 1/O request queue. It assigns I/O budgets,
measured in number of sectors, proportionally to a process’s
I/O activity. This way, I/O-bound processes with sequential
I/O requests are assigned a large I/O budget, while processes
with short and sporadic I/O requests are assigned a small
I/O budget. The BFQ I/O scheduler uses a variant of the
worst-case fair weighted fair queuing+ (WF2Q+) scheduling
algorithm [246] to select an I/O request queue to be serviced
(typically the I/O request queue with the lowest I/O budget).
The selected I/O request queue is prioritized, and its I/O
requests are exclusively serviced until its I/O budget finishes.
As a result, the BFQ I/O scheduler guarantees a fraction of
the device throughput to each process. The Linux kernel uses
the BFQ I/O scheduler by default, since it usually provides
high system responsiveness and fairness, even though its
scheduling decision overhead is higher than the other three
I/O schedulers.

Figure 19a shows the tab switch latency for the Optane
configuration under the four different I/O schedulers.

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

We observe that, on average, the four different I/O schedulers
provide similar tab switch latencies. The average tab switch
latency for the None, Kyber, MQ-Deadline, and BFQ
I/O schedulers is 116 ms, 119ms, 120ms, and 118 ms,
respectively. However, when we examine the fraction of high-
latency tab switches in Figure 19b, we observe that the
fraction of high-latency tab switches increases significantly
with open tab count for the default BFQ I/O scheduler. The
BFQ I/O scheduler leads to the largest number of high-latency
tab switches when the system has 41-50 tabs open, while
the Kyber I/O scheduler provides the lowest number of
high-latency tab switches for the same tab-count range,
reducing the fraction of high-latency tab switches by 44%
compared to the BFQ I/O scheduler. Therefore, to reduce
Chrome’s tail latency, the Kyber I/O scheduler can potentially
be a better I/O scheduler than the default BFQ I/O scheduler.

B None B Kyber B MQ-Deadiine B BFQ

Distribution (ms)

Tab Switch Latency

0 200 400 600 O 200 400 600 0 200 400 600 O 200 400 600
Tab Switches Tab Switches Tab Switches Tab Switches

(a) Tab switch latency distribution. Horizontal dashed lines
represent average values.
O Kyber O None

O sFQ O MQ-Deadline

-
o
S

8% 1

6%
4%
2%1 Pl rdh J
0% "'“"' y _ ! _ .
1-10 11-20 21-30 31-40 41-50 GMEAN

Tab Count
(b) High-latency tab switch distribution.

% of Tab Switches
with Latency > 250 ms

FIGURE 19. Tab switch latency: Optane with different 1/0 schedulers.

We further analyze the tab switch latency distribution in
Figure 20 for the four I/O schedulers. The figure shows the
tab switch latency percentiles (along the x-axis) and the corre-
sponding tab switch latency (y-axis), normalized to the values
when the system employs the default BFQ I/O scheduler. We
make three observations. First, at the tail (99th-percentile)
latency, the None, Kyber, and MQ-Deadline I/O schedulers
significantly reduce the tab switch latency compared to the
default BFQ I/O scheduler, by 29%, 35%, and 18%, respec-
tively. Second, the BFQ I/O scheduler provides the lowest tab
switch latency for latency percentiles outside the tail. The
None/Kyber/MQ-Deadline I/O schedulers slightly increase
BFQ’s tab switch latency by 3%/3/%/10%, 4%/4%/4%, and
5%/4%/5% at the 50th-, 60th-, and 70th-percentile latencies,
respectively. Third, when moving closer to the latency
percentiles at the tail (i.e., from the 80th-percentile latency to
the 95th-percentile latency), we observe that the None, Kyber,
and MQ-Deadline I/O schedulers all provide lower tab switch
latencies than the BFQ I/O scheduler. By employing the
Kyber/MQ-Deadline 1/0 schedulers, the tab switch latency
reduces by 3%/4% and 7%/6% compared to the BFQ I/O
scheduler for the 80th- and 90th-percentile latencies. At the

VOLUME 11, 2023

95th-percentile latency, the None I/O scheduler reduces the
tab switch latency by 12% compared to the BFQ I/O sched-
uler. Therefore, we conclude that even though the default
BFQ I/O scheduler provides good performance overall
(except at the tail), alternative I/O schedulers can greatly
improve tail latency performance, thereby improving user
experience.

O BFQ O Kyber O None O MQ-Deadline

BFQ-Normalized
Tab Switch Latency
OO OO ==
eNpebh

30 40 50 60 70 80 90 95 99
Latency Percentile (%)

110 20

FIGURE 20. Normalized tab switch latency of four schedulers, categorized
across different latency percentiles. Y-axis is normalized to the default
BFQ 1/0 scheduler.

To further understand the I/O schedulers’ impact on
Chrome browser performance, we analyze the Q2C latency
(i.e., the end-to-end I/O request latency) for each I/O
scheduler. Figure 21 depicts the end-to-end I/O request
(i.e., 02C) latency percentiles (along the x-axis) and the
corresponding Q2C latency (y-axis), normalized to the Q2C
latency values for the BFQ I/O scheduler. We make three
observations. First, the None I/O scheduler reduces Q2C
latency in a majority of the latency percentiles. However,
such a reduction does not directly translate to tab switch
latency improvements (as seen in Figure 20). This happens
because the None I/O scheduler does not enforce any ordering
among read and write I/O requests. Since (i) Chrome mostly
issues read I/O requests during the execution of our test (as
Figure 17 shows) and (ii) the Intel Optane SSD internally
handles read and write requests equally (as characterized
by prior work [130]), the None I/O scheduler delays the
execution of Chrome’s read I/O operations by executing write
I/O requests, which hurts Chrome’s performance. Second,
the Kyber I/O scheduler provides the best Q2C reduction
for the 99th-percentile latency, which directly translates
to better tab switch latency (Figure 20). The Kyber I/O
scheduler improves Chrome’s performance since it better
fits Chrome’s I/O request characteristics by: (i) reducing
the average I/O queuing, merging, and scheduling latencies
(i.e., 02D latencies) by up to 3.7x that of the BFQ I/O
scheduler (not shown); and (ii) prioritizing read I/O requests
over writes. Third, even though Kyber’s Q2C latency is
larger than BFQ’s Q2C latency (Figure 21) at the 90th-
percentile latency, Kyber’s Q2C latency for read requests is
slightly lower (by 15%) than BFQ’s Q2C latency for read
requests (not shown), which translates to a faster tab switch
latency for Kyber at the 90th-percentile latency. However,
at the 95th-percentile latency, Kyber’s Q2C latencies for
both read and write requests are larger than BFQ’s Q2C
latencies. At the 99th-percentile latency, the system’s high
memory capacity pressure highlights the high overhead of the

105859

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

BFQ I/O scheduler, leading to a significant increase in BFQ’s
Q2C latency for both read and write requests. BFQ’s Q2C
latency increases by 99% from the 95th-percentile latency to
the 99-percentile latency. In contrast, Kyber’s Q2C latency
increases by only 19% when moving from the 95th-percentile
latency to the 99-percentile latency. We conclude that the
Kyber I/0 scheduler can reduce tail latency for the Chrome
browser since it (i) provides low overhead I/O scheduling
decisions for already critical I/O requests while (ii) matching
the access pattern of our workload by prioritizing read
accesses over writes.

O None O MQ-Deadline

O sFQ O Kyber

7 10 20 30 40 50 60 70 80 9 95 99
Latency Percentile (%)

So==NMN
Pohvoohr

BFQ-Normalized
Q2C Latency

FIGURE 21. o2c latency of four 1/0 schedulers. Y-axis is normalized to
the default BFQ 1/0 scheduler.

Energy Analysis. Figure 22 compares the impact of the
different I/O schedulers (x-axis) on the average memory
subsystem energy consumption (which includes the energy
consumption of main memory and swap space) for the Optane
configuration (y-axis; normalized to the baseline BFQ I/0
scheduler). We use the same energy model described in
Section I'V-A for our analysis. We make two key observations
from the figure. First, we observe from the figure that all
four I/O scheduler mechanisms achieve a similar memory
subsystem energy consumption during the execution of our
test. Second, the Kyber I/O scheduler slightly increases
energy consumption by 6.9%, while the None I/O scheduler
slightly decreases energy consumption by 6.3% compared to
the baseline BFQ I/O scheduler. This is due to an increase
in the number of write I/O requests the Kyber I/O scheduler
produces compared to the None I/O scheduler. Recall that
the Kyber I/O scheduler uses dedicated queues for read and
write quest and dispatch write requests using a pre-defined
threshold, while the None I/O scheduler uses a single queue
for read and write requests and dispatch both read/write
requests using a first-in-first-out approach. This leads to the
Kyber I/O scheduler prioritizing more write requests from
background kernel processes than the None I/O scheduler
and the baseline BFQ mechanism. In contrast, the None I/O
scheduler serves the processes that generate an I/O request
first (in our case, Chrome processes issuing read I/O requests
due to moderate-to-high swap activity). We conclude that
since the available I/O schedulers mostly target improving
the throughput of block I/O devices, they achieve a similar
memory subsystem energy consumption.

We conclude that, we can reduce especially the block
I/O tail latency by employing different I/O schedulers
(e.g., Kyber) from the default Linux block I/O scheduler.
However, the high latency overhead related to managing I/0

105860

Energy Breakdown
00000~

i
i
-
=

BFQ-Normalized

BFQ Kyber None MQ-Deadline

FIGURE 22. Energy consumption: Optane with different 1/0 schedulers.
Y-axis is normalized to the default BFQ 1/0 scheduler..

requests is still large in comparison to the actual device
time (as Figure 17 shows). Therefore, we evaluate a second
optimization in Section V-D.

D. OPTIMIZATION 2: INTERRUPTS VS. POLLING BASED
I/0 REQUEST COMPLETION

Another key component of the Linux block I/O layer that
directly impacts I/O performance is the I/O request comple-
tion mechanism. There are two main I/O request completion
mechanisms in current Linux systems: (1) interrupt-based
(i.e., IRQ-based) I/O request completion [10] and (2) polling-
based I/O request completion [247]. Interrupt-based I/O
request completion employs an asynchronous operation
model. When a process issues a block I/0O request, the OS puts
the process to sleep and context switches to another process.
When the I/O response arrives, the device driver receives
an interrupt and wakes up the sender process. In contrast,
polling-based I/O request completion employs a synchronous
operation model. When a process issues a block I/O request,
the process continuously polls in the CPU waiting for the I/O
request to complete (i.e., instead of going to sleep, the process
continually executes CPU instructions to check the current
status of the I/O request).

While interrupt-based I/O request completion may incur
large system overheads due to context switching, polling-
based I/O request completion imposes a high CPU load
to the system. Previous work [248] proposes a hybrid I/O
request completion mechanism, which targets fast NVM
devices. In this hybrid I/O request completion mechanism,
when a process issues an I/O request, the OS puts the
process to sleep, similar to the IRQ mode. However, to
remove the context switch latency from the critical path of
I/O request completion, the OS wakes up the process after
some predefined sleep delay time t. Then, the process polls
the I/O request queue for completion of its request until
the response arrives from the block device. The hybrid I/O
request completion mechanism can improve performance
compared to polling since it reduces the number of CPU
cycles spent on polling.

The hybrid I/O request completion mechanism works
in two modes: (1) fixed latency, where the user sets the
sleep delay time t to a specific latency; and (2) adaptive
latency, where the OS dynamically sets the sleep delay
time t by attempting to estimate when the I/O request
will complete [249]. In the adaptive latency mode, the
OS monitors the completion time of the different types of

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

I/O requests, and then utilizes half of the average of the I/O
request completion time for a particular I/O request type as
the sleep delay time t for future I/O requests of that type.
Based on this estimation, the OS puts the process that issues
I/O requests to sleep before entering a polling loop. The
adaptive latency mode is enabled by setting t to 0.

We evaluate how different I/O request completion mech-
anisms impact the Chrome browser performance. The OS
employs the interrupt-based I/O request completion mech-
anism by default. However, Intel recommends enabling the
Hybrid technique when using the Intel Optane SSD for
enterprise computing [250]. Previous work [248] advocates
that fast NVM-based devices can benefit from the polling-
based 1/O request completion mechanism, since the context
switch latency incurred during interrupt-based I/O request
completion can be larger than the device access latency.
We evaluate all three I/O request completion mechanisms
to identify the best-performing one to use for Chrome with
an Intel Optane SSD used as swap space. In the Hybrid I/O
request competition mechanism, we evaluate the adaptive
latency mode (by setting t =0) and fixed latency mode, where
we evaluate two values of t (2 s and 4 1s).

Figure 23 shows the tab switch latency distribution
(Figure 23a) and the distribution of high-latency tab switches
for the three I/O completion mechanisms (Figure 23b) for
the Optane configuration with Zswap enabled, when we
employ three different I/O request completion mechanisms:
(1) interrupt-based (IRQ); (2) polling-based (Polling); and
(3) Hybrid with t = 0 (i.e., adaptive latency mode),
t =2ps, and t =4 ps. We make three observations. First, the
interrupt-based mechanism provides the lowest average tab
switch latency, with an average tab switch latency reduction
of 60% compared to the Polling mechanism, which provides
the highest average tab switch latency; and 11% compared to
the Hybrid (t = 2) mechanism, which provides the second-best
average tab switch latency (Figure 23a). Second, on average
across tab counts, the interrupt-based I/O request completion
mechanism leads to the lowest number of high-latency tab
switches, with only 2.3% of tab switches being high latency,
versus 3.9%/4.8%/7.8%/3.2% from the Polling, Hybrid (t=0),
Hybrid (t=2), and Hybrid (t=4) mechanisms, respectively
(Figure 23b). Third, we observe that the Polling mechanism
eliminates high-latency tab switches when 11-30 tabs are
opened. With only a small number of open Chrome tabs
(1-10 tabs), Chrome issues few I/O requests due to the
system’s low swap traffic (as Figure 1 shows). In such case,
the Polling mechanism increases the number of high-latency
tab switches compared to the interrupt-based I/O completion
mechanism since, in the event of an I/O request, the system
cannot context switch to Chrome tab, which will likely not
issue an I/O request, thus increasing tab switch latency.
On the other hand, when the number of open Chrome tabs
increases, and consequently the swap traffic (Figure 1),
the system can sometimes leverage idle CPU time to wait
for the completion of Chrome’s I/O requests, reducing I/0
request latency. We conclude that, on average, maintaining

VOLUME 11, 2023

the interrupt-based I/O request completion mechanism is still
the best approach for consumer devices. However, enabling
polling can sometimes be a good alternative.

= rRa [Poliing [Hybrid (t=0) [Hybrid (t=2)] Hybrid (t=4)

Avg: 341 ms. Avg: 313 ms
Avg: 133ms Avg: 150 ms. Avg: 151 ms
0.

G 10 200 30 0 10 20 a0 0 10 200 a0 6 10 200 360 0 100 200 300
Tab Switches Tab Switches Tab Switches Tab Switches Tab Switches

(a) Tab switch latency distribution. Horizontal dashed lines
represent average values.

O ra [Poliing 3 Hybrid (t=0) 3 Hybrid (t=2) [Hybrid (t=4)
15%
°
g
&S 10%
=N
b3
88
C® 5%
s !‘l_h rrl—l_l_l
3
0% O
1-10 11-20 21-30 31-40 41-50 GMEAN

Tab Count

(b) High-latency tab switch latency distribution.

FIGURE 23. Tab switch latency: Optane with different 1/0 completion
mechanisms.

Figure 24 shows the tab switch latency distribution for the
three different I/O completion mechanisms. We make two
observations. First, the interrupt-based (IRQ) I/O completion
mechanism provides the lowest tab switch latency of the
evaluated mechanisms up to the 95th-percentile latency.
On average, it reduces tab switch latency by 12%, 14%,
20%, and 17% compared to the Polling, Hybrid (t=0), Hybrid
(t=2), and Hybrid (t=4) mechanisms, respectively. Second,
when examining the 99th-percentile latency, the Hybrid (t=0)
mechanism reduces the tab switch latency by 7% compared
to the IRQ mechanism. This happens because at high memory
capacity pressure, most of the processes are waiting for I/O.
As a result, the OS has few opportunities (if any) to switch
in a process that can make forward progress, and there is
therefore little to no performance cost in keeping the waiting
processes awake to poll the CPU and eliminating the context
switch overhead that they would incur with IRQ. We conclude
that the Hybrid I/O request completion mechanism is a good
solution to reduce tail latency for Chrome when using an Intel
Optane SSD.

O ra O Poliing @ Hybrid (t=0) I Hybrid (t=2) O Hybrid (t=4)

250

200 600
3 150
5 400
= 100
1 10 20 30 40 50 60 70 80 90 95
(%)

Latency Percentile

atency (m:

Tab Swit
@
8

FIGURE 24. Tab switch latency distribution: different 1/0 completion
mechanisms.

Energy Analysis. Figure 25 compares the impact of the
different I/O completion mechanisms (x-axis) on the average
memory subsystem energy consumption for the Optane con-
figuration (y-axis; normalized to the baseline IRQ completion
mechanism). We use the same energy model described in
Section IV-A for our analysis. The figure shows that the

105861

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

different I/O completion mechanisms have little to no impact
on the average memory subsystem energy consumption. This
is because such mechanisms do not employ any optimization
targeting the reduction of I/O traffic or prioritization of I/O
requests.

c O Read O Write
8810t - -- -
g § 0.8
5m 0.61
z 3041
g 1] 0.21
=uw 0.0 T T T T

IRQ Polling Hybrid (t=0) Hybrid (t=2) Hybrid (t=4)

FIGURE 25. Energy consumption: Optane with different 1/0 completion
mechanisms. Y-axis is normalized to the default IRQ I/0 completion
mechanism.

We conclude that (1) the interrupt-based I/O request com-
pletion mechanism provides the best average performance
for the Chrome web browser, but (2) at the tail latency (i.e.,
99th-percentile latency), the hybrid I/O request completion
mechanism can further reduce I/O request latency. We,
therefore, believe that there needs to be further research into
new I/O request completion mechanisms that provide both the
best average and tail performance.

VI. KEY TAKEAWAYS
To summarize, our experimental analysis reveals that extend-
ing the main memory space by using the Intel Optane SSD as
NVM-based swap space for DRAM provides a cost-effective
way to alleviate DRAM scalability issues. However, naively
integrating the Intel Optane SSD into the system leads to
several system-level overheads that can negatively impact
overall performance and energy efficiency. We mitigate such
overheads by examining and evaluating system optimizations
driven by our analyses.

We provide the following six key takeaways from our
empirical analyses:

1) Effect of Intel Optane SSD as swap space (Section [V-A).
Reducing DRAM size and extending the main memory
space with the Intel Optane SSD as swap space provides
benefits for the Chrome browser, since it can (a) increase
the number of open tabs, and (b) reduce system cost.
Howeyver, it also leads to an increase in the number of
tab switches with high latency compared to the baseline.

2) Reducing tail latency by enabling Zswap (Section IV-B).
Zswap is a good mechanism to reduce I/O traffic
introduced by the Intel Optane SSD, at the cost of a small
increase in tab switch latency at large tab counts. The
Zswap cache reduces system energy by 2x (compared
to the Intel Optane SSD without Zswap enabled), at the
cost of increasing the high-latency tab switches by 4%
and reducing the number of open tabs by 12%.

3) Effect of using different NVM devices (Section IV-C).
A state-of-the-art NAND-flash-based SSD provides
benefits over both the baseline and the Intel Optane
SSD. Importantly, it enables more Chrome tabs to

105862

be open. These benefits come due to the larger
effective main memory capacity provided by the state-
of-the-art NAND-flash-based SSD over the baseline
configuration. Unfortunately, these benefits come at the
cost of higher tab switch latencies, compared to both
the baseline and Optane configurations, due to the much
longer device latencies of NAND flash memory. These
large tab switch latencies degrade user experience. Tak-
ing both performance and user experience into account,
emerging NVM-based SSDs such as the Intel Optane
SSD are quite promising to employ in consumer devices,
providing performance benefits without the undesirable
user experience trade-offs incurred by NAND-flash-
based SSDs.

4) System bottlenecks caused by NVMs (Section V-A). The
Linux block I/O layer is a key system bottleneck when
the Intel Optane SSD is used as swap space. We can
mitigate some of the overheads caused by the block
I/0O layer by (a) employing an I/O scheduler that meets
the requirements of the application’s access pattern and
(b) using different I/O request completion mechanisms.

5) Optimization 1: block I/O schedulers (Section V-C).
We can reduce tab switch latency by changing the
default BFQ I/O scheduler in the system that uses the
Intel Optane SSD as swap space. We reduce 95th- and
99th-percentile latencies by employing the None and
the Kyber I/O schedulers, respectively, as those I/O
schedulers reduce I/O scheduling overheads and fit the
I/0O access pattern of the Chrome web browser.

6) Optimization 2: interrupt- vs. polling-based /O request
completion (Section V-D). On average, the interrupt-
based I/O request completion mechanism provides
the best performance for the system with the Intel
Optane SSD device. However, the Hybrid I/O request
completion mechanism can help reduce 99th-percentile
latency for block I/O requests.

Based on our analysis, we conclude that there is a large
optimization space to be explore in order to efficiently
adopt emerging NVMs in consumer devices. For example,
we believe that one of the main issues the system suffers
from when executing interactive workloads is that scheduling
decisions made by the OS do not consider the response time
expected by the workload. Exposing such information to the
OS could reduce tail latency and allow the scheduler to take
action according to the needs of a particular workload (e.g.,
by prioritizing the workload with the shorter or more urgent
response deadlines). We leave the design, implementation,
and evaluation of such ideas for future work.

A. OVERALL LIMITATIONS OF THE TECHNOLOGY

Even though employing the Intel Optane SSD as a swap space
can lead to several benefits in terms of cost and performance,
it can also impact overall system energy consumption and
lifetime. We provide the following two key takeaways from
our empirical analyses that highlight the limitations of
NVM-based swap space in consumer devices:

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

1) Effect of Intel Optane SSD as swap space on energy
consumption. Integrating Intel Optane SSD as a swap
space increases average memory subsystem energy
consumption to 69.5 x that of the baseline ZRAM-based
system configuration (Section IV-A; Figure 6). This
happens due to the higher swap activity enabled by
the Optane-based swap space (Section IV-A). Such an
increase in energy consumption can be mitigated by
employing a Zswap cache, which reduces the increase
caused by the Optane-based swap space to 34.75 x that
of the baseline (Section IV-B; Figure 12). Unfortunately,
tuning the block I/O scheduler (Section V-C) and 1/0
completion mechanism (Section V-D) do not lead to
significant energy savings for the Optane configuration,
since such optimizations primarily target improving the
throughput and latency of I/O operations, rather than
reducing energy consumption.

2) Effect of Intel Optane SSD as swap space on system
lifetime. The Intel Optane SSD, as an NVM-based
device, suffers from limited write endurance, which
can impact the lifetime of the system. Based on our
analysis (Section IV-B), we observe that it would
take an Optane-based system (without Zswap) running
our Chrome web browser 4.5 years to experience a
write-endurance failure. Enabling Zswap increases the
lifetime of the Optane-based system to 8.3 years.

Many prior works [51], [56], [60], [79], [228], [229],
[232], [233], [235], [251], [252], [253], [254], [255], [256],
[257], [258], [259] aim to reduce the impact of emerging
NVMs on overall system energy consumption and lifetime.
The great majority of such works aim to (i) reduce the
number of write operations the system issue to the NVM
device using techniques such as caching [51], [79], write-
aware data mapping and data allocation algorithms [60], [79],
[229], and data compression [228]; and (ii) distribute write
operations across NVM cells using diverse wear-leveling
techniques [56], [232], [233], [235], [251], [253], [254],
[255], [256], [257], [259]. We believe such approaches can
be employed to mitigate the limitations of NVMs in consumer
devices. We leave such analyses for future work.

VII. RELATED WORK

To our knowledge, this is the first work that (i) comprehen-
sively analyzes the impact of extending the main memory
space of consumer devices using real off-the-shelf emerging
NVM-based SSDs, and (ii) proposes practical system-level
optimizations that can mitigate the tail latency of interactive
workloads when employing emerging NVM-based SSDs in
the system. We discuss the large body of related work on
NVM using four broad categories.

1) ENABLING NVM-BASED SWAP SPACE FOR MOBILE
DEVICES

Several past works [131], [132], [133], [134], [135], [136],
[137] investigate how to efficiently enable swap-based NVMs
for mobile devices. Unlike our work, these past works do not

VOLUME 11, 2023

utilize real NVM devices to evaluate their mechanisms or
their system-level implications on a real mobile system. Thus,
it is not fully clear if their results and insights can be easily
translated to a real system employing a real NVM device.
We briefly describe the key mechanisms proposed by each
of these works.

Two prior works [131], [133] propose to improve swap
performance and the lifetime of byte-addressable NVM
devices being used as swap space in smartphones. These
works emulate swapping behavior by creating a swap
area inside DRAM (similar to our ZRAM configuration).
CAUSE [132] is a hybrid memory architecture for mobile
devices that leverages application access patterns to allocate
memory either in DRAM or in NVM within a hybrid DRAM-
NVM memory architecture. Similarly, Kim et al. [135]
employ an NVM-based swap space for Android devices,
which leverages hot/cold data to manage swap activity
between DRAM and NVM. Zhong et al. [134] aim to
reduce write endurance issues related to NVM devices by
identifying and swapping cold pages from DRAM to NVM-
based swap space in smartphones. SmartSwap [136] predicts
the most-rarely-used applications to be dynamically swapped
to a flash-memory-based swap space ahead of time. Kim
et al. [137] compare two swap space organizations for
mobile devices: (1) a hierarchical swap architecture, where
NVM-based swap space is used as a cache for a larger
flash-memory-based swap space; and (2) a hybrid swap
architecture, where both NVM and flash devices are used
as a single-level swap space. As part of this work, the
authors propose SPP-CLOCK [137], a mechanism to identify
hot/cold data to manage swap activity.

We believe that many of the mechanisms proposed by these
prior works can be adapted to be employed in our system
to further improve performance and lifetime. We leave such
studies to future works.

2) IMPROVING BLOCK I/O LATENCY FOR FAST NVME
DEVICES

Previous works [100], [241], [260], [261], [262], [263],
[264], [265] propose several techniques to mitigate block
I/O latencies for fast NVMe devices. These techniques
include software [100], [261], [262], [263], [264], [265] and
hardware solutions [241], [260] to provide lower I/O access
latency [100], [263], [264], page fault handling [260], and I/O
scheduling [241], [261], [265]. Even though these techniques
are promising solutions to reduce the high block I/0 latencies,
they require substantial changes in the hardware and the
software stack, which are outside the scope of this work, but
can also be used in our proposed system.

Another body of work [59], [266], [267], [268], [269],
[270], [271], [272], [273] aims to completely remove the
block I/O layer from the system by providing programming
models that enable the user to directly access data from fast
NVMe devices. Even though this is a promising solution,
it involves several challenges such as code refactoring and
security, which can be a promising direction for future work.

105863

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

3) REAL NVM DEVICES IN REAL SYSTEMS

Since the release of the Intel Optane SSD, various works
[101], [102], [105], [125], [126], [127], [129], [274], [275]
have experimentally shown that the Intel Optane SSD can
improve performance, energy, and cost for different work-
loads (e.g., databases [101], [105], [275], high-performance
computing [274], key-value stores [127], [129], machine
learning [102], [125], query processing [126]). Our work
differs from these works since we (i) target a different family
of workloads (i.e., interactive consumer workloads, and in
particular the Google Chrome web browser) and (ii) employ
the Intel Optane SSD as an extension of main memory,
instead of as a separate storage device.

4) HYBRID DRAM-NVM MEMORY SYSTEMS

A large body of works [51], [52], [53], [54], [55], [56], [80],
[93], [94], [95], [96], [114], [276], [277], [278], [279] propose
to use NVMs as an alternative technology to DRAM, where
the NVM completely replaces DRAM as the main memory
device [51], [52], [53], [54], [55], [56], or is incorporated into
the memory hierarchy alongside DRAM to create a hybrid
DRAM-NVM memory system [80], [93], [94], [95], [96],
[114], [277], [279]. Unlike our work, these works either
(1) use NVMs as part of main memory, and not as swap space,
which increases the complexity of the memory architecture;
or (2) mainly leverage simulation infrastructures to evaluate
their proposals, and thus, do not examine real NVM devices
and their implications on real systems with real measurement
data.

VIil. CONCLUSION

In this paper, we comprehensively evaluate the performance
implications of leveraging real emerging NVMs as an
extension of main memory space in real consumer devices,
while targeting interactive workloads. We employ a state-of-
the-art NVM-based SSD device (i.e., the Intel Optane SSD)
as swap space for DRAM, which increases the effective main
memory capacity in our system. We observe that using the
Intel Optane SSD can improve the average and tail latency
performance of the Chrome web browser, compared to a
baseline system with double the amount of DRAM, and to
a system where a state-of-the-art NAND-flash-based SSD
is used for the swap space. We identify that the Linux
block I/O layer becomes a major source of performance
overhead when the main memory space is extended using
NVM, primarily due to (i) I/O scheduling bottlenecks; and
(ii) overheads related to the asynchronous operation of the
I/O request completion mechanism. We mitigate some of
these overheads by proposing two system optimizations that
can better leverage the characteristics of our workloads
and the NVM. We also evaluate the limitations of real
emerging NVMs in consumer devices and conclude that
real systems need to employ solutions to mitigate the issues
associated with energy increase and lifetime degradation
NVM devices introduce. We conclude that emerging NVMs

105864

are a cost-effective solution to alleviate the DRAM capacity
bottleneck in consumer devices. We hope that the results of
our study can inspire and drive novel hardware and software
optimizations in future NVM-based computing systems.

ACKNOWLEDGMENT

The authors would like to thank the SAFARI Research
Group members for valuable feedback and the stimulating
intellectual environment they provide, also would like to
thank the support from the SAFARI Research Group’s
industrial partners, especially ASML, Facebook, Google,
Huawei, Intel, Microsoft, and VMware, and also would
like to thank the support from the Semiconductor Research
Corporation and the ETH Future Computing Laboratory.
This research started at Google, during Geraldo F. Oliveira’s
internship, and continued as a successful collaboration
between Google and SAFARI since then.

REFERENCES
[1]1 Google LLC. Chromebook. [Online]. Available: https://www.
google.com/chromebook/
[2] Slowing Growth Ahead for Worldwide Internet Audience, eMarketer, New

York, NY, USA, 2016.

[3] V.J.Reddi, H. Yoon, and A. Knies, ‘“Two billion devices and counting,”
IEEE Micro, vol. 38, no. 1, pp. 6-21, Jan. 2018.

[4] Arm Holdings plc and Qualcomm Incorporated, “Enabling the next
mobile computing revolution with highly integrated ARMv8-A based
SoCs,” ARM Qualcomm, White Paper, 2014.

[S] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile CPU’s rise to power:

Quantifying the impact of generational mobile CPU design trends on

performance, energy, and user satisfaction,” in Proc. IEEE Int. Symp.

High Perform. Comput. Archit. (HPCA), Mar. 2016.

Canalys. (2021). Chromebooks Lead PC Revival in Q1 2021 With 275%

Growth. [Online]. Available: https://rb.gy/jm7xu

[71 B. Heater, “As chromebook sales soar in schools, apple and
Microsoft fight back,” TechCrunch, 2017. [Online]. Available:
https://techcrunch.com/2017/04/27/as-chromebook-sales-soar-in-
schools-apple-and-microsoft-fight-back/

[8] R. H. Dennard, “Field-effect transistor memory,” U.S. Patent 3 387 286,
Jun. 4, 1968.

[9] Y. Kim and O. Mutlu, “Memory systems,” in Computing Handbook:
Computer Science and Software Engineering, 3rd ed. Abingdon, U.K.:
Taylor & Francis, 2014.

[10] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: From I/O
Ports to Process Management, 3rd ed. Sebastopol, CA, USA: O’Reilly
Media, 2005.

[11] A. S. Tanenbaum and A. S. Woodhull, Operating Systems: Design and
Implementation. Englewood Cliffs, NJ, USA: Prentice-Hall, 1997.

[12] O. Mutlu. (2020). Lecture Notes for Digital Design and Com-
puter Architecture—Lecture 23b: Virtual Memory. [Online]. Available:
https://rb.gy/qzjTr

[13] M. Badr, C. Delconte, I. Edo, R. Jagtap, M. Andreozzi, and N. E. Jerger,
“Mocktails: Capturing the memory behaviour of proprietary mobile
architectures,” in Proc. ACM/IEEE 47th Annu. Int. Symp. Comput. Archit.
(ISCA), May 2020.

[14] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu,
“Google workloads for consumer devices: Mitigating data movement
bottlenecks,” in Proc. ASPLOS, 2018.

[15] J. Mohan, D. Purohith, M. Halpern, V. Chidambaram, and V. J. Reddi,
“Storage on your smartphone uses more energy than you think,” in Proc.
HotStorage, 2017.

[16] A. Boroumand, ‘“‘Practical mechanisms for reducing processor-memory
data movement in modern workloads,” Ph.D. dissertation, Dept. Elect.
Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA, 2020.

[17] R. Nelson. (2017). The Size of iPhone’s Top Apps Has Increased
by 1,000% in Four Years. [Online]. Available: https://sensortower.
com/blog/ios-app-size-growth

[6

—

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

N. Lebeck, A. Krishnamurthy, H. M. Levy, and I. Zhang, “End the
senseless killing: Improving memory management for mobile operating
systems,” in Proc. USENIX ATC, 2020.

O. Mutlu, “Memory scaling: A systems architecture perspective,” in
Proc. 5th IEEE Int. Memory Workshop, May 2013.

O. Mutlu and L. Subramanian, “Research problems and opportunities
in memory systems,” Supercomput. Frontiers Innov., vol. 1, no. 3,
pp. 19-55, 2015.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” in Proc.
ACM/IEEE 41st Int. Symp. Comput. Archit. (ISCA), Jun. 2014.

O. Mutlu and J. S. Kim, “RowHammer: A retrospective,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 8§,
pp. 1555-1571, Aug. 2020.

J. S. Kim, M. Patel, A. G. Yaglikci, H. Hassan, R. Azizi, L. Orosa, and
O. Mutlu, “Revisiting RowHammer: An experimental analysis of modern
DRAM devices and mitigation techniques,” in Proc. ACM/IEEE 47th
Annu. Int. Symp. Comput. Archit. (ISCA), May 2020.

O. Mutlu, “Main memory scaling: Challenges and solution directions,”
in More Than Moore Technologies for Next Generation Computer Design.
New York, NY, USA: Springer, 2015.

U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and
J. S. Choi, “Co-architecting controllers and DRAM to enhance DRAM
process scaling,” Memory Forum, 2014.

S. Hong, “Memory technology trend and future challenges,” in IEDM
Tech. Dig., Dec. 2010.

S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proc. 42nd Annu. Int. Symp. Comput. Archit., Jun. 2015.

O. Mutlu, “The RowHammer problem and other issues we may face as
memory becomes denser,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2017.

S. Ghose, A. G. Yaglik¢i, R. Gupta, D. Lee, K. Kudrolli, W. X. Liu,
H. Hassan, K. K. Chang, N. Chatterjee, A. Agrawal, and M. O’Connor,
“What your DRAM power models are not telling you: Lessons from a
detailed experimental study,” in Proc. SIGMETRICS, 2018.

J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experimental
study of data retention behavior in modern DRAM devices: Implications
for retention time profiling mechanisms,” in Proc. 40th Annu. Int. Symp.
Comput. Archit., Jun. 2013.

P. Frigo, E. Vannacc, H. Hassan, V. V. der Veen, O. Mutlu, C. Giuffrida,
H. Bos, and K. Razavi, “TRRespass: Exploiting the many sides of target
row refresh,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2020.

J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware
intelligent DRAM refresh,” in Proc. 39th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2012.

M. Patel, J. S. Kim, and O. Mutlu, “The reach profiler (REAPER):
Enabling the mitigation of DRAM retention failures via profiling at
aggressive conditions,” in Proc. 44th Annu. Int. Symp. Comput. Archit.,
Jun. 2017.

M. K. Qureshi, D.-H. Kim, S. Khan, P. J. Nair, and O. Mutlu, “AVATAR:
A variable-retention-time (VRT) aware refresh for DRAM systems,” in
Proc. 45th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., Jun. 2015.
J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse,
R. Divakaruni, Y. Li, and C. J. Radens, “Challenges and future directions
for the scaling of dynamic random-access memory (DRAM),” IBM J.
Res. Develop., vol. 46, no. 2.3, pp. 187-212, Mar. 2002.

S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and
O. Mutlu, “The efficacy of error mitigation techniques for DRAM reten-
tion failures: A comparative experimental study,” in Proc. SIGMETRICS,
Jun. 2014.

S. Khan, D. Lee, and O. Mutlu, “PARBOR: An efficient system-level
technique to detect data-dependent failures in DRAM,” in Proc. 46th
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2016.
S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu,
“Detecting and mitigating data-dependent DRAM failures by exploiting
current memory content,” in Proc. 50th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Oct. 2017.

D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and
O. Mutlu, “Adaptive-latency DRAM: Optimizing DRAM timing for the
common-case,” in Proc. IEEE 21st Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2015.

VOLUME 11, 2023

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun,
G. Pekhimenko, V. Seshadri, and O. Mutlu, “Design-induced latency
variation in modern DRAM chips: Characterization, analysis, and latency
reduction mechanisms,” in Proc. ACM SIGMETRICS/Int. Conf. Meas.
Model. Comput. Syst., Jun. 2017.

K. K. Chang, “Understanding and improving the latency of DRAM-
based memory systems,” Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Carnegie Mellon Univ., Pittsburgh, PA, USA, 2017.

K. K. Chang, A. G. Yaglikci, S. Ghose, A. Agrawal, N. Chatterjee,
A. Kashyap, D. Lee, M. O’Connor, H. Hassan, and O. Mutlu,
“Understanding reduced-voltage operation in modern DRAM devices:
Experimental characterization, analysis, and mechanisms,” in Proc.
SIGMETRICS, 2017.

K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li,
G. Pekhimenko, S. Khan, and O. Mutlu, ‘“‘Understanding latency variation
in modern DRAM chips: Experimental characterization, analysis, and
optimization,” in Proc. SIGMETRICS, 2016.

K. K.-W. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson,
Y. Kim, and O. Mutlu, “Improving DRAM performance by parallelizing
refreshes with accesses,” in Proc. IEEE 20th Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2014.

J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors in
large-scale production data centers: Analysis and modeling of new trends
from the field,” in Proc. 45th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw., Jun. 2015.

H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency scaling,”
in Proc. 8th ACM Int. Conf. Autonomic Comput., Jun. 2011.

Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,
“MemScale: Active low-power modes for main memory,” in Proc.
ASPLOS, 2011.

A. G. Yaglik¢i, H. Luo, G. F. De Oliviera, A. Olgun, M. Patel,
J. Park, H. Hassan, J. S. Kim, L. Orosa, and O. Mutlu, “Understanding
RowHammer under reduced wordline voltage: An experimental study
using real DRAM devices,” in Proc. DSN, 2022.

L. Orosa, A. G. Yaglikci, H. Luo, A. Olgun, J. Park, H. Hassan,
M. Patel, J. S. Kim, and O. Mutlu, “A deeper look into RowHammer’s
sensitivities: Experimental analysis of real DRAM chips and implications
on future attacks and defenses,” in Proc. 54th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Oct. 2021.

H. Hassan, Y. C. Tugrul, J. S. Kim, V. Van der Veen, K. Razavi, and
O. Mutlu, “Uncovering in-DRAM RowHammer protection mechanisms:
A new methodology, custom RowHammer patterns, and implications,” in
Proc. MICRO, 2021.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proc. 36th Annu. Int. Symp.
Comput. Archit., Jun. 2009.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in Proc. 36th Annu. Int. Symp. Comput. Archit., Jun. 2009.

B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory,”
IEEE Micro, vol. 30, no. 1, p. 143, Jan. 2010.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, ‘“Phase change memory
architecture and the quest for scalability,” Commun. ACM, vol. 53, no. 7,
pp- 99-106, Jul. 2010.

E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating STT-RAM as an energy-efficient main memory alternative,”
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2013.
P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proc. 36th
Annu. Int. Symp. Comput. Archit., Jun. 2009.

H.-S.P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, ‘“Phase change memory,” Proc. IEEE,
vol. 98, no. 12, pp. 2201-2227, Oct. 2010.

J.Meza, J. Li, and O. Mutlu, “A case for small row buffers in non-volatile
main memories,” in Proc. IEEE 30th Int. Conf. Comput. Design (ICCD),
Sep. 2012.

J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu, “A case
for efficient hardware/software cooperative management of storage and
memory,” in Proc. WEED, 2013.

S. Song, A. Das, O. Mutlu, and N. Kandasamy, “‘Improving phase change
memory performance with data content aware access,” in Proc. ACM
SIGPLAN Int. Symp. Memory Manage., Jun. 2020.

105865

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Aging-aware request
scheduling for non-volatile main memory,” in Proc. 26th Asia South
Pacific Design Autom. Conf., Jan. 2021.

S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Enabling and exploiting
partition-level parallelism (PALP) in phase change memories,” ACM
Trans. Embedded Comput. Syst., vol. 18, no. 5s, pp. 1-25, Oct. 2019.

G. Atwood, “PCM applications and an outlook to the future,” in Phase
Change Memory: Device Physics, Reliability and Applications. New
York, NY, USA: Springer, 2017.

S. Bock, B. Childers, R. Melhem, D. Mosse, and Y. Zhang, “Analyzing
the impact of useless write-backs on the endurance and energy
consumption of PCM main memory,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw. (IEEE ISPASS), Apr. 2011.

G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-
class memory,” IBM J. Res. Develop., vol. 52, no. 4.5, pp. 449-464,
Jul. 2008.

Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem, ‘““Bit mapping
for balanced PCM cell programming,” in Proc. 40th Annu. Int. Symp.
Comput. Archit., Jun. 2013.

A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mosse,
“Increasing PCM main memory lifetime,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2010.

L.Jiang, Y. Zhang, B. R. Childers, and J. Yang, “FPB: Fine-grained power
budgeting to improve write throughput of multi-level cell phase change
memory,” in Proc. 45th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2012.

L. Jiang, Y. Du, B. Zhao, Y. Zhang, B. R. Childers, and J. Yang,
“Hardware-assisted cooperative integration of wear-leveling and sal-
vaging for phase change memory,” ACM Trans. Archit. Code Optim.,
vol. 10, no. 2, pp. 1-25, May 2013.

S. Kannan, M. Qureshi, A. Gavrilovska, and K. Schwan, “Energy aware
persistence: Reducing energy overheads of memory-based persistence
in NVMs,” in Proc. Int. Conf. Parallel Architectures Compilation,
Sep. 2016.

M. K. Qureshi, “Pay-as-you-go: Low-overhead hard-error correction for
phase change memories,” in Proc. 44th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2011.

M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montano,
“Improving read performance of phase change memories via write
cancellation and write pausing,” in Proc. 16th Int. Symp. High-Perform.
Comput. Archit. (HPCA), Jan. 2010.

M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montafio, and
J. P. Karidis, “Morphable memory system: A robust architecture for
exploiting multi-level phase change memories,” in Proc. 37th Annu. Int.
Symp. Comput. Archit., Jun. 2010.

A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell,
and E. Eleftheriou, ‘“Temporal correlation detection using computational
phase-change memory,” Nature Commun., vol. 8, no. 1, Oct. 2017.

R. Wang, L. Jiang, Y. Zhang, L. Wang, and J. Yang, “‘Exploit imbalanced
cell writes to mitigate write disturbance in dense phase change memory,”
in Proc. 52nd Annu. Design Autom. Conf., Jun. 2015.

J. Yue and Y. Zhu, “Accelerating write by exploiting PCM asymmetries,”
in Proc. IEEE 19th Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2013.

M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé, ‘““Writeback-
aware partitioning and replacement for last-level caches in phase change
main memory systems,” ACM Trans. Archit. Code Optim., vol. 8, no. 4,
pp. 1-21, Jan. 2012.

M. Zhou, Y. Du, B. R. Childers, R. Melhem, and D. Mosse, ‘“Writeback-
aware bandwidth partitioning for multi-core systems with PCM,” in Proc.
22nd Int. Conf. Parallel Architectures Compilation Techn., Sep. 2013.
H. Yoon, N. Muralimanohar, J. Meza, O. Mutlu, and N. P. Jouppi,
“Techniques for data mapping and buffering to exploit asymmetry in
multi-level cell (phase change) memory,” SAFARI Res. Group, Carnegie
Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. TR-SAFARI-2013-002,
2013.

G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM and
DRAM main memory system,” in Proc. 46th Annu. Design Autom. Conf.,
Jul. 20009.

K. L. Wang, J. G. Alzate, and P. Khalili Amiri, ‘‘Low-power non-volatile
spintronic memory: STT-RAM and beyond,” J. Phys. D, Appl. Phys.,
vol. 46, no. 7, Feb. 2013, Art. no. 074003.

105866

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis,
V. Nikitin, X. Tang, S. Watts, S. Wang, and S. A. Wolf, “Advances and
future prospects of spin-transfer torque random access memory,” IEEE
Trans. Magn., vol. 46, no. 6, pp. 1873-1878, Jun. 2010.

Z.Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C. Wang, and
Y. Huai, “Spin-transfer torque switching in magnetic tunnel junctions and
spin-transfer torque random access memory,” J. Phys., Condens. Matter,
vol. 19, no. 16, Apr. 2007, Art. no. 165209.

M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane,
H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano,
“A novel nonvolatile memory with spin torque transfer magnetization
switching: Spin-ram,” in JEDM Tech. Dig., 2005.

A. Raychowdhury, D. Somasekhar, T. Karnik, and V. De, “Design
space and scalability exploration of 1T-1STT MTJ memory arrays in
the presence of variability and disturbances,” in IEDM Tech. Dig.,
Dec. 2009.

H. Akinaga and H. Shima, “‘Resistive random access memory (ReRAM)
based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 2237-2251,
Dec. 2010.

H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee,
F. T. Chen, and M.-J. Tsai, “Metal-oxide RRAM,” Proc. IEEE, vol. 100,
no. 6, pp. 1951-1970, Jun. 2012.

J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature Nanotechnol., vol. 8, pp. 13-24, Jan. 2013.

M. Kund, G. Beitel, C.-U. Pinnow, T. Rohr, J. Schumann,
R. Symanczyk, K. Ufert, and G. Miiller, ““‘Conductive bridging RAM
(CBRAM): An emerging non-volatile memory technology scalable to
sub 20 nm,” in IEDM Tech. Dig., 2005.

D. Bondurant, ‘“‘Ferroelectronic ram memory family for critical data
storage,” Ferroelectrics, vol. 112, no. 1, pp. 273-282, Dec. 1990.

B. Harris and N. Altiparmak, ‘““Ultra-low latency SSDs’ impact on overall
energy efficiency,” in Proc. HotStorage, 2020.

K. Wu, Z. Guo, G. Hu, K. Tu, R. Alagappan, R. Sen, K. Park,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “The storage hierar-
chy is not a hierarchy: Optimizing caching on modern storage devices
with orthus,” in Proc. FAST, 2021.

C. Wang, H. Cui, T. Cao, J. Zigman, H. Volos, O. Mutlu, F. Lv, X. Feng,
and G. H. Xu, “Panthera: Holistic memory management for big data
processing over hybrid memories,” in Proc. 40th ACM SIGPLAN Conf.
Program. Lang. Design Implement., Jun. 2019.

R. Salkhordeh, O. Mutlu, and H. Asadi, “An analytical model for
performance and lifetime estimation of hybrid DRAM-NVM main
memories,” IEEE Trans. Comput., vol. 68, no. 8, pp.1114-1130,
Mar. 2019.

H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu,
“Row buffer locality aware caching policies for hybrid memories,” in
Proc. IEEE 30th Int. Conf. Comput. Design (ICCD), Sep. 2012.

J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity DRAM
cache management,” [EEE Comput. Archit. Lett., vol. 11, no. 2,
pp. 61-64, Jul./Dec. 2012.

Intel Corporation. Intel Optane Memory H10 With Solid State Storage.
[Online]. Available: https://rb.gy/f682]

J.Izraelevitz,J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh,
Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, ‘“Basic
performance measurements of the Intel optane DC persistent memory
module,” 2019, arXiv:1903.05714.

G. Psaropoulos, I. Oukid, T. Legler, N. May, and A. Ailamaki, “Bridging
the latency gap between NVM and DRAM for latency-bound operations,”
in Proc. 15th Int. Workshop Data Manage. New Hardw., Jul. 2019.

G. Lee, S. Shin, W. Song, T. J. Ham, J. W. Lee, and J. Jeong,
“Asynchronous I/O stack: A low-latency kernel I/O stack for ultra-low
latency SSDs,” in Proc. USENIX ATC, 2019.

J. Zhang, P. Li, B. Liu, T. G. Marbach, X. Liu, and G. Wang,
“Performance analysis of 3D XPoint SSDs in virtualized and non-
virtualized environments,” in Proc. IEEE 24th Int. Conf. Parallel Distrib.
Syst. (ICPADS), Dec. 2018.

S. W. D. Chien, S. Markidis, C. P. Sishtla, L. Santos, P. Herman,
S. Narasimhamurthy, and E. Laure, “Characterizing deep-learning I/O
workloads in TensorFlow,” in Proc. IEEE/ACM 3rd Int. Workshop
Parallel Data Storage Data Intensive Scalable Comput. Syst. (PDSW-
DISCS), Nov. 2018.

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124

J. Yang, B. Li, and D. J. Lilja, “Exploring performance characteristics of
the optane 3D xpoint storage technology,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 5, no. 1, pp. 1-28, Mar. 2020.

F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform storage
performance with 3D XPoint technology,” Proc. IEEE, vol. 105, no. 9,
pp. 1822-1833, Sep. 2017.

K. Wu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, R. Sen, and K. Park,
“Exploiting Intel optane SSD for Microsoft SQL server,” in Proc. 15th
Int. Workshop Data Manage. New Hardw., Jul. 2019.

S. Imamura and E. Yoshida, “Reducing CPU power consumption for low-
latency SSDs,” in Proc. IEEE 7th Non-Volatile Memory Syst. Appl. Symp.
(NVMSA), Aug. 2018.

Amazon.com, Inc. Intel Optane Memory Module 16 GB M.2 80 mm
PCle 3.0 20 nm 3D XPoint MEMPEKIWO016GA. [Online]. Available:
https://amzn.to/33Z6bws

DRAMeXchange. World Leading DRAM and NAND Flash Market
Research Firm, With More Than a Decade of Most Authoritative
Database. [Online]. Available: https://www.dramexchange.com/

I. B. Peng, M. B. Gokhale, and E. W. Green, “‘System evaluation of the
Intel optane byte-addressable NVM,” in Proc. MemSys, 2019.

B. Metzler and A. Trivedi, “Prototyping byte-addressable NVM access,”
in Proc. OpenFabrics Developers Workshop, 2015.

A. Hassan, H. Vandierendonck, and D. S. Nikolopoulos, “Energy-
efficient hybrid DRAM/NVM main memory,” in Proc. Int. Conf. Parallel
Archit. Compilation (PACT), Oct. 2015.

H. Chauhan, I. Calciu, V. Chidambaram, E. Schkufza, O. Mutlu, and
P. Subrahmanyam, “NVMOVE: Helping programmers move to byte-
based persistence,” in Proc. INFLOW, 2016.

H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu,
“Efficient data mapping and buffering techniques for multilevel cell
phase-change memories,” ACM Trans. Archit. Code Optim.,vol. 11,no. 4,
pp. 1-25, Jan. 2015.

Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-based
hybrid memory management,” in Proc. IEEE Int. Conf. Cluster Comput.
(CLUSTER), Sep. 2017.

W. Zhang, X. Zhao, S. Jiang, and H. Jiang, “ChameleonDB: A key-value
store for optane persistent memory,” in Proc. 16th Eur. Conf. Comput.
Syst., Apr. 2021.

D.-H. Bae, I. Jo, Y. A. Choi, J.-Y. Hwang, S. Cho, D.-G. Lee, and
J. Jeong, “2B-SSD: The case for dual, byte- and block-addressable solid-
state drives,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2018.

S. Kim and J.-S. Yang, “Optimized I/O determinism for emerging
NVM-based NVMe SSD in an enterprise system,” in Proc. 55th
ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018.

Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error
characterization, mitigation, and recovery in flash-memory-based solid-
state drives,” Proc. IEEE, vol. 105, no. 9, pp. 1666—1704, Sep. 2017.

Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Improving
3D NAND flash memory lifetime by tolerating early retention loss and
process variation,” in Proc. Abstr. ACM Int. Conf. Meas. Model. Comput.
Syst., Jun. 2018.

Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, ‘“HeatWatch:
Improving 3D NAND flash memory device reliability by exploiting self-
recovery and temperature awareness,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2018.

Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vul-
nerabilities in MLC NAND flash memory programming: Experimental
analysis, exploits, and mitigation techniques,” in Proc. IEEE Int. Symp.
High Perform. Comput. Archit. (HPCA), Feb. 2017.

Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Enabling
accurate and practical online flash channel modeling for modern MLC
NAND flash memory,” IEEE J. Sel. Areas Commun., vol. 34, no. 9,
pp. 2294-2311, Sep. 2016.

Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read disturb errors in
MLC NAND flash memory: Characterization, mitigation, and recovery,”
in Proc. 45th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
Jun. 2015.

O. Mutlu. (2020). Lecture Notes for Computer Architecture—Lecture
26: Flash Memory and Solid-State Drives. [Online]. Available:
https://tb.gy/xqis8

VOLUME 11, 2023

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]
[145]

[146]
[147]

[148]

Z.-L. Ke, H.-Y. Cheng, and C.-L. Yang, “LIRS: Enabling efficient
machine learning on NVM-based storage via a lightweight implemen-
tation of random shuffling,” 2018, arXiv:1810.04509.

X. Liu, Y. Pan, Y. Li, G. Wang, and X. Liu, “An NVM SSD-optimized
query processing framework,” in Proc. 29th ACM Int. Conf. Inf. Knowl.
Manage., Oct. 2020.

S. Han, D. Jiang, and J. Xiong, “SplitKV: Splitting IO paths for
different sized key-value items with advanced storage devices,” in Proc.
HotStorage, 2020.

A. Papagiannis, G. Xanthakis, G. Saloustros, M. Marazakis, and A. Bilas,
“Optimizing memory-mapped I/O for fast storage devices,” in Proc.
USENIX ATC, 2020.

Y. Jia and F. Chen, “From flash to 3D XPoint: Performance bottlenecks
and potentials in RocksDB with storage evolution,” in Proc. IEEE Int.
Symp. Perform. Anal. Syst. Softw. (ISPASS), Aug. 2020.

K. Wu, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Towards an
unwritten contract of Intel optane SSD,” in Proc. HotStorage, 2019.

K. Zhong, T. Wang, X. Zhu, L. Long, D. Liu, W. Liu, Z. Shao, and
E. H.-M. Sha, “Building high-performance smartphones via non-volatile
memory: The swap approach,” in Proc. 14th Int. Conf. Embedded Softw.,
Oct. 2014.

Y. Kim, M. Imani, S. Patil, and T. S. Rosing, “CAUSE: Critical
application usage-aware memory system using non-volatile memory for
mobile devices,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2015.

D. Liu, K. Zhong, X. Zhu, Y. Li, L. Long, and Z. Shao, “Non-
volatile memory based page swapping for building high-performance
mobile devices,” IEEE Trans. Comput., vol. 66, no. 11, pp. 1918-1931,
Nov. 2017.

K. Zhong, D. Liu, L. Long, J. Ren, Y. Li, and E. H.-M. Sha, “Building
NVRAM-aware swapping through code migration in mobile devices,”
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 11, pp. 3089-3099,
Nov. 2017.

J. Kim and H. Bahn, “Analysis of smartphone I/O characteristics—
Toward efficient swap in a smartphone,” IEEE Access, vol. 7,
pp. 129930-129941, 2019.

X. Zhu, D. Liu, K. Zhong, J. Ren, and T. Li, “SmartSwap: High-
performance and user experience friendly swapping in mobile systems,”
in Proc. 54th Annu. Design Autom. Conf., Jun. 2017.

J. Kim and H. Bahn, “Comparison of hybrid and hierarchical swap
architectures in Android by using NVM,” J. Semicond. Technol. Sci.,
vol. 18, no. 6, pp. 651-657, Dec. 2018.

K. Zhong, X. Zhu, T. Wang, D. Zhang, X. Luo, D. Liu, W. Liu, and
E. H.-M. Sha, “DR. Swap: Energy-efficient paging for smartphones,” in
Proc. Int. Symp. Low Power Electron. Des., Aug. 2014.

S.-H. Kim, J. Jeong, and J.-S. Kim, “Application-aware swapping for
mobile systems,” ACM Trans. Embedded Comput. Syst., vol. 16, no. 5s,
pp. 1-19, Oct. 2017.

J. Kim, C. Kim, and E. Seo, “ezswap: Enhanced compressed swap scheme
for mobile devices,” IEEE Access, vol. 7, pp. 139678-139691, 2019.

J. Kim and H. Bahn, ““Maintaining application context of smartphones
by selectively supporting swap and kill,” IEEE Access, vol. 8,
pp. 85140-85153, 2020.

W. Guo, K. Chen, H. Feng, Y. Wu, R. Zhang, and W. Zheng, “MARS:
Mobile application relaunching speed-up through flash-aware page
swapping,” IEEE Trans. Comput., vol. 65, no. 3, pp. 916-928, Mar. 2016.
Y. Liang, J. Li, R. Ausavarungnirun, R. Pan, L. Shi, T.-W. Kuo,
and C.J. Xue, “Acclaim: Adaptive memory reclaim to improve user
experience in Android systems,” in Proc. USENIX ATC, 2020.

Google LLC. Chrome Browser. [Online]. Available: https://www.
google.com/chrome/

Chromium Project. MemoryPressure Tast Test. [Online]. Available:
https://rb.gy/j1t7

Intel Optane SSD 900P Series, Intel Corp., Santa Clara, CA, USA, 2018.
A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver, “Full-system analysis and characterization of
interactive smartphone applications,” in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), Nov. 2011.

Y. Huang, Z. Zha, M. Chen, and L. Zhang, ““Moby: A mobile benchmark
suite for architectural simulators,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw. (ISPASS), Mar. 2014.

105867

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

[149]

[150]
[151]
[152]

[153
[154

[155]

[156
[157

[158

[159

[160]

[161]

[162]

[163]

[164]

[165

[166

[167]

[168

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176

D. Pandiyan, S.-Y. Lee, and C.-J. Wu, “Performance, energy character-
izations and architectural implications of an emerging mobile platform
benchmark suite—MobileBench,” in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), Sep. 2013.

B. Popper. (2017). Google Announces Over 2 Billion Monthly Active
Devices on Android. [Online]. Available: https://rb.gy/yyk1b

Net Applications. Market Share Statistics for Internet Technologies.
[Online]. Available: https://www.netmarketshare.com/

Chromium Project. Blink Rendering Engine. [Online]. Available:
https://tb.gy/j32v9

Google LLC. Skia Graphics Library. [Online]. Available: https://skia.org/
C. Reis and S. D. Gribble, “Isolating web programs in modern browser
architectures,” in Proc. 4th ACM Eur. Conf. Comput. Syst., Apr. 2009.
A. Barth, C. Jackson, and C. Reis, “The security architecture of the
chromium browser,” Google Chrome Team, Stanford Univ., Stanford,
CA, USA, Tech. Rep., 2008.

HTTP Archive. [Online]. Available: http://httparchive.org/

D. Rientjes, ““OOM Kkiller rewrite; when the kernel runs out of memory,”
LinuxCon, Boston, MA, USA, Tech. Rep., 2010.

C. Collins, M. D. Galpin, and M. Kaeppler, Android in Practice. Shelter
Island, NY, USA: Manning Publications, 2011.
Google LLC. Pixel Smartphones.
https://www.google.com/pixel/

S. Jennings, ‘“Transparent memory compression in Linux,” LinuxCon,
2013.

E. Shiu and S. Prakash, “System challenges and hardware requirements
for future consumer devices: From wearable to ChromeBooks and devices
in-between,” in Proc. Symp. VLSI Technol. (VLSI Technol.), Jun. 2015.
E. Shiu and S. Lim, “Driving innovation in memory architecture of
consumer hardware with digital photography and machine intelligence
use cases,” in Proc. IEEE Int. Memory Workshop (IMW), May 2017.

G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Linearly compressed pages: A low-
complexity, low-latency main memory compression framework,” in Proc.
MICRO, 2013.

Chromium Project. (2016). Memory Coordinator. [Online]. Available:
https://bit.ly/31IOW7w7

I. Grigorik, “High performance networking in chrome,” Perform. Open
Source Appl., Speed, Precis., Bit Serendipity, 2013.

S. Lohr. (2012). For Impatient Web Users, an Eye Blink is Just Too Long
to Wait. [Online]. Available: https://rb.gy/50zon

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A novel processing-in-memory architecture for neural network
computation in ReRAM-based main memory,” in Proc. ACM/IEEE 43rd
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016.

L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerating
graph processing using ReRAM,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2018.

L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined ReRAM-
based accelerator for deep learning,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2017.

P. Yao, H. Wu, B. Gao, S. B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang,
N. Deng, L. Shi, H.-S.-P. Wong, and H. Qian, “Face classification using
electronic synapses,” Nature Commun., vol. 8, no. 1, May 2017.

M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S.Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine
for neuromorphic computing: Programming 1T1M crossbar to accelerate
matrix-vector multiplication,” in Proc. 53rd Annu. Design Autom. Conf.,
Jun. 2016.

C. Gopalan, Y. Ma, T. Gallo, J. Wang, E. Runnion, J. Saenz, F. Koushan,
P. Blanchard, and S. Hollmer, “Demonstration of conductive bridging
random access memory (CBRAM) in logic CMOS process,” Solid-State
Electron., vol. 58, no. 1, pp. 54-61, Apr. 2011.

D. Jana, S. Roy, R. Panja, M. Dutta, S. Z. Rahaman, R. Mahapatra, and
S. Maikap, ‘““Conductive-bridging random access memory: Challenges
and opportunity for 3D architecture,” Nanosc. Res. Lett. vol. 10, no. 188,
pp. 1-23, 2015.

J.-H. Cha, S. Y. Yang, J. Oh, S. Choi, S. Park, B. C. Jang, W. Ahn, and
S.-Y. Choi, “Conductive-bridging random-access memories for emerging
neuromorphic computing,” Nanoscale, vol. 12, no. 27, pp. 14339-14368,
2020.

J. F. Scott and C. A. P. De Araujo, ‘“Ferroelectric memories,” Science,
vol. 246, no. 4936, pp. 1400-1405, 1989.

J. F. Scott, “Applications of modern ferroelectrics,” Science, vol. 315,
no. 5814, pp. 954-959, Feb. 2007.

[Online]. Available:

105868

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]
[191]
[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]

[204]

T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M. J. Kastner,
N. Nagel, M. Moert, and C. Mazure, “FeRAM technology for high
density applications,” Microelectron. Rel., vol. 41, no. 7, pp. 947-950,
Jul. 2001.

M. Webb, “3D XPoint status and forecast,” in Proc. Flash Memory
Summit, 2016.

I. Cutress and B. Tallis, “Intel launches optane DIMMs up to
512 GB: Apache pass is here!” AnandTech, 2016. [Online]. Available:
https://www.anandtech.com/show/12828/intel-launches-optane-dimms-
up-to-512gb-apache-pass-is-here

PCI Express Base Specification Revision 5.0, Version 1.0, PCI-SIG,
Beaverton, OR, USA, 2019.

O. Patil, L. Ionkov, J. Lee, F. Mueller, and M. Lang, ‘“Performance
characterization of a DRAM-NVM hybrid memory architecture for HPC
applications using Intel optane DC persistent memory modules,” in Proc.
Int. Symp. Memory Syst., Sep. 2019.

G. Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali, ““Single machine
graph analytics on massive datasets using Intel optane DC persistent
memory,” 2019, arXiv:1904.07162.

Y. Wu, K. Park, R. Sen, B. Kroth, and J. Do, “Lessons learned from
the early performance evaluation of Intel optane DC persistent memory
in DBMS,” in Proc. 16th Int. Workshop Data Manage. New Hardw.,
Jun. 2020.

M. Weiland, H. Brunst, T. Quintino, N. Johnson, O. Iffrig, S. Smart,
C. Herold, A. Bonanni, A. Jackson, and M. Parsons, “‘An early evaluation
of Intel’s optane DC persistent memory module and its impact on high-
performance scientific applications,” in Proc. SC, 2019.

A. Shanbhag, N. Tatbul, D. Cohen, and S. Madden, ‘‘Large-scale in-
memory analytics on Intel optane DC persistent memory,” in Proc. 16th
Int. Workshop Data Manage. New Hardw., Jun. 2020.

V. Mironov, I. Chernykh, I. Kulikov, A. Moskovsky, E. Epifanovsky, and
A. Kudryavtsev, ‘“‘Performance evaluation of the Intel optane DC memory
with scientific benchmarks,” in Proc. IEEE/ACM Workshop Memory
Centric High Perform. Comput. (MCHPC), Nov. 2019.

J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson,
“An empirical guide to the behavior and use of scalable persistent
memory,” in Proc. FAST, 2020.

L. Benson, L. Papke, and T. Rabl, “PerMA-bench: Benchmarking
persistent memory access,” Proc. VLDB Endowment, vol. 15, no. 11,
pPp. 2463-2476, Jul. 2022.

L. Xiang, X. Zhao, J. Rao, S. Jiang, and H. Jiang, “Characterizing the
performance of Intel optane persistent memory: A close look at its on-
DIMM buffering,” in Proc. 17th Eur. Conf. Comput. Syst., Mar. 2022.
Tom’s Hardware. (2019). Intel Optane DIMM Pricing. [Online]. Avail-
able: https://rb.gy/873zd

D. Bittman, P. Alvaro, P. Mehra, D. D. E. Long, and E. L. Miller,
“Twizzler: A data-centric OS for non-volatile memory,” in Proc. USENIX
ATC, 2020.

Asus, Inc. ASUS Chromebox 3. [Online]. Available: https://rb.gy/e9cnq
A. Wright, “Ready for a web OS?” Commun. ACM, vol. 52, no. 12,
pp. 16-17, 2009.

Intel Corporation. (2016). Intel Core i3-7100U Processor. [Online].
Available: https://rb.gy/2ifwc

SK Hynix 4GB DDR4 HMAS851S6AFR6N-UH, SK Hynix Inc., San Jose,
CA, USA, Rev. 1.4, Sep. 2017.

SATA IIT1 M.2 Solid State Drive M.2 SSD 4008, Transcend Inf. Inc., Taipei,
Taiwan, 2020.

Intel Corporation. Intel Optane Memory M10 Series. [Online]. Available:

https://rb.gy/atuol
Facebook, 1Inc. Facebook. [Online]. Available: https://www.
facebook.com/
Facebook, 1Inc. [Instagram. [Online]. Available: https://about.

instagram.com/about-us/
Facebook, Inc. WhatsApp Messenger. [Online]. Available: https://www.
whatsapp.com/

Telegram FZ-LLC. Telegram Messenger. [Online]. Available:
https://telegram.org/

Adobe Inc. Adobe Acrobat Reader. [Online]. Available:
https://get.adobe.com/reader/

Mojang Studios. Minecraft. [Online]. Available:

https://www.minecraft.net/

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. 4th Annu. IEEE Int. Workshop Workload
Characterization (WWC), 2001.

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

[205]

[206]
[207]
[208

[209
[210

211

212
[213]

[214

[215]
[216]
[217]
[218]
219

[220
[221]

222
[223
[224

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]
[237]

[238]

C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool
for evaluating and synthesizing multimedia and communications sys-
tems,” in Proc. 30th Annu. Int. Symp. Microarchitecture, 1997.

Chromium Project. The Chromium Project. [Online]. Available:
https://tb.gy/osxys
Linux Kernel Organization, Inc. perf: Linux Profiling With

Performance Counters. [Online]. Available:
kernel.org/index.php/Main_Page
Google LLC. YouTube. [Online]. Available: https://www.youtube.com

Google LLC. Google Maps. [Online]. Available: http://maps.google.com/

https://perf.wiki.

Google LLC. Google Sheets. [Online]. Available: https://www.
google.com/sheets/about/
Google LLC. Google Docs. [Online]. Available: https:/www.

google.com/docs/about/
Twitter, Inc. Twitter. [Online]. Available: https://www.twitter.com/

Chromium Project. ~ Chromium Media. [Online]. Available:
https://tb.gy/n4bnw
FFmpeg Team. FFmpeg Documentation. [Online]. Available:
https://rb.gy/tr393
WebM Project. WebM. [Online]. Available: https://www.

webmproject.org/code/

A. Grange, P. de Rivaz, and J. Hunt. VP9 Bitstream & Decoding Process
Specification. [Online]. Available: https://rb.gy/1cfjh

Web Hypertext Application Technology Working Group. (2021).
HTML Living Standard. [Online]. Available: https://html.
spec.whatwg.org/multipage/

Chromium Project. Mojo. [Online]. Available: https://rb.gy/ynbj8
Chromium Project. VaAPI. [Online]. Available: https://rb.gy/5ri9%
Chromium Project. SkGifCodec. [Online]. Available: https://rb.gy/gzenm
Chromium Project. V8 JavaScript Engine. [Online]. Available:
https://v8.dev/

Chromium Project. Tast. [Online]. Available: https://tb.gy/073gv
Google LLC. chrome.automation. [Online]. Available: https://rb.gy/tokxp
J. Choe, “Intel 3D XPoint memory die removed from Intel optane PCM
(phase change memory),” Techlnsights, 2017. [Online]. Available:
https://www.techinsights.com/blog/intel-3d-xpoint-memory-die-
removed-intel-optanetm-pcm-phase-change-memory

J. Chen, R. C. Chiang, H. H. Huang, and G. Venkataramani, ‘‘Energy-
aware writes to non-volatile main memory,” ACM SIGOPS Operating
Syst. Rev., vol. 45, no. 3, pp. 48-52, Jan. 2012.

B. Zolnierkiewicz, “Efficient memory management on mobile devices,”
LinuxCon, 2013. [Online]. Available: http://events17.linuxfoundation.
org/sites/events/files/slides/Efficient_Memory_Management_on_
Mobile_Devices_0.pdf

B. K. Tanaka, ‘“Monitoring virtual memory with vmstat,” Linux J.,
Oct. 2005.

Y. Guo, Y. Hua, and P. Zuo, “A latency-optimized and energy-efficient
write scheme in NVM-based main memory,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 1, pp. 62-74, Jan. 2020.

J.-H. Choi and G.-H. Park, “NVM way allocation scheme to reduce
NVM writes for hybrid cache architecture in chip-multiprocessors,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 10, pp. 2896-2910, Oct. 2017.
S. Swami, J. Rakshit, and K. Mohanram, “SECRET: Smartly EnCRypted
energy efficient non-volatile memories,” in Proc. 53rd Annu. Design
Autom. Conf., Jun. 2016.
Intel Corporation. Intel
https://rb.gy/v31hy

Y.-M. Chang, P.-C. Hsiu, Y.-H. Chang, C.-H. Chen, T.-W. Kuo, and
C.-Y.-M. Wang, “Improving PCM endurance with a constant-cost wear
leveling design,” ACM Trans. Design Autom. Electron. Syst., vol. 22,
no. 1, pp. 1-27, Jan. 2017.

H. Aghaei Khouzani, Y. Xue, C. Yang, and A. Pandurangi, ‘Prolonging
PCM lifetime through energy-efficient, segment-aware, and wear-
resistant page allocation,” in Proc. Int. Symp. Low power Electron.
design, Aug. 2014.

F. T. Hady. Intel Optane Technology Delivers New Levels of Endurance.
Accessed: Jun. 21, 2023. [Online]. Available: https://rb.gy/c83ee

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, “Enhancing lifetime and security of PCM-based main memory
with start-gap wear leveling,” in Proc. 42nd Annu. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2009.
Micron Technology, Inc.
https://tb.gy/855sx

J. Handy. Examining 3D XPoint’s 1,000 Times Endurance Benefit—
The Memory Guy. [Online]. Available: https://rb.gy/mvd5Sa
diskprices.com. Disk Prices (U.S.). Accessed: Apr. 2, 2020. [Online].
Available: https:/bit.ly/2STO9We

Optane Memory. [Online]. Available:

SLC NAND. [Online]. Available:

VOLUME 11, 2023

[239]

[240]

[241]

[247]

[248]
[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

[262]

[263]

A. C. de Melo, “The new Linux ‘perf’ tools,” in Proc. Linux Kongress,
2010.

M. Bjgrling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block 10:
Introducing multi-queue SSD access on multi-core systems,” in Proc.
SYSTOR, 2013.

A. Tavakkol, M. Sadrosadati, S. Ghose, J. Kim, Y. Luo, Y. Wang,
N. M. Ghiasi, L. Orosa, J. Gomez-Luna, and O. Mutlu, “FLIN: Enabling
fairness and enhancing performance in modern NVMe solid state drives,”
in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2018.

A. Tavakkol, J. Gémez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu,
“MQSim: A framework for enabling realistic studies of modern multi-
queue SSD devices,” in Proc. FAST, 2018.

A. D. Brunelle, “Blktrace user guide,” 2007. [Online]. Available:
https://manualzz.com/doc/4196014/blktrace-user-guide

0. Sandoval. (2017). Kyber MQ I/O Scheduler. [Online]. Available:
https://rb.gy/6azue
J. Axboe. (2016). MQ Deadline /0O Scheduler. [Online]. Available:
https://rb.gy/xxdro

J. C. R. Bennett and H. Zhang, “Hierarchical packet fair queueing
algorithms,” IEEE/ACM Trans. Netw., vol. 5, no. 5, pp.675-689,
Oct. 1997.

J. Yang, D. B. Minturn, and F. Hady, ““When poll is better than interrupt,”
in Proc. FAST, 2012.

D. Le Moal, “I/O latency optimization with polling,” in Proc. Vault,2017.
Linux Kernel Organization, Inc. (2009). Linux Kernel Documentation:
Queue sysfs Files. [Online]. Available: https://tb.gy/9thuf

Intel Corporation. Tuning the Performance of Intel Optane SSDs on Linux
Operating Systems. [Online]. Available: https://rb.gy/uunhr

L. Yavits, L. Orosa, S. Mahar, J. D. Ferreira, M. Erez, R. Ginosar, and
O. Mutlu, “WoLFRaM: Enhancing wear-leveling and fault tolerance
in resistive memories using programmable address decoders,” in Proc.
ICCD, 2020.

C.-H. Chen, P-C. Hsiu, T.-W. Kuo, C.-L. Yang, and C.-Y.-M. Wang,
“Age-based PCM wear leveling with nearly zero search cost,” in Proc.
49th Annu. Design Autom. Conf., Jun. 2012.

S.-W. Cheng, Y.-H. Chang, T.-Y. Chen, Y.-F. Chang, H.-W. Wei, and
W.-K. Shih, “Efficient warranty-aware wear leveling for embedded
systems with PCM main memory,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 24, no. 7, pp. 2535-2547, Jul. 2016.

J. Fan, S. Jiang, J. Shu, L. Sun, and Q. Hu, “WL-reviver: A framework
for reviving any wear-leveling techniques in the face of failures on phase
change memory,” in Proc. 44th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw., Jun. 2014.

Y. Han, J. Dong, K. Weng, Y. Wang, and X. Li, “Enhanced wear-rate
leveling for PRAM lifetime improvement considering process variation,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 1,
pp. 92-102, Jan. 2016.

S. Im and D. Shin, “Differentiated space allocation for wear leveling
on phase-change memory-based storage device,” IEEE Trans. Consum.
Electron., vol. 60, no. 1, pp. 45-51, Feb. 2014.

Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie, “Energy-
and endurance-aware design of phase change memory caches,” in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2010.

D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. H.-M. Sha,
“Application-specific wear leveling for extending lifetime of phase
change memory in embedded systems,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 33, no. 10, pp. 1450-1462, Oct. 2014.
M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franceschini,
“Practical and secure PCM systems by online detection of malicious write
streams,” in Proc. IEEE 17th Int. Symp. High Perform. Comput. Archit.,
Feb. 2011.

G.Lee, W.Jin, W. Song, J. Gong, J. Bae, T.J. Ham, J. W. Lee, and J. Jeong,
“A case for hardware-based demand paging,” in Proc. ACM/IEEE 47th
Annu. Int. Symp. Comput. Archit. (ISCA), May 2020.

K. Oh, J. Park, and Y. I. Eom, “H-BFQ: Supporting multi-level
hierarchical cgroup in BFQ scheduler,” in Proc. IEEE Int. Conf. Big Data
Smart Comput. (BigComp), Feb. 2020.

W. Shin, Q. Chen, M. Oh, H. Eom, and H. Y. Yeom, “OS I/O
path optimizations for flash solid-state drives,” in Proc. USENIX ATC,
2014.

D. Vuéinié, Q. Wang, C. Guyot, R. Mateescu, F. Blagojevic, L. Franca-
Neto, D. Le Moal, T. Bunker, J. Xu, S. Swanson, and Z. Bandic, “DC
express: Shortest latency protocol for reading phase change memory over
PCI express,” in Proc. FAST, 2014.

105869

IEEE Access

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

[264] J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian, M. Chun,
M. T. Kandemir, N. S. Kim, J. Kim, and M. Jung, “FlashShare: Punching
through server storage stack from kernel to firmware for ultra-low latency
SSDs,” in Proc. OSDI, 2018.

[265] M. Liu, H. Liu, C. Ye, X. Liao, H. Jin, Y. Zhang, R. Zheng, and L. Hu,
“Towards low-latency I/0O services for mixed workloads using ultra-low
latency SSDs,” in Proc. 36th ACM Int. Conf. Supercomput., Jun. 2022.

[266] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and
S. Swanson, “Providing safe, user space access to fast, solid state disks,”
in Proc. 17th Int. Conf. Archit. Support Program. Lang. Operating Syst.,
Mar. 2012.

[267] H.-J. Kim, Y.-S. Lee, and J.-S. Kim, “NVMeDirect: A user-space I/O
framework for application-specific optimization on NVMe SSDs,” in
Proc. HotStorage, 2016.

[268] S. Scargall, “Introducing the persistent memory development kit,” in
Programming Persistent Memory. New York, NY, USA: Springer, 2020.

[269] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul, “SPDK: A development kit to build
high performance storage applications,” in Proc. IEEE Int. Conf. Cloud
Comput. Technol. Sci. (CloudCom), Dec. 2017.

[270] Samsung Electronics Co., Ltd. Open Memory Platform
Development Kit: User Level NVMe Driver. [Online]. Available:
https://github.com/OpenMPDK/uNVMe

[271] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the control
plane,” ACM Trans. Comput. Syst., vol. 33, no. 4, pp. 1-30, Jan. 2016.

[272] H.-J. Kimand J.-S. Kim, “A user-space storage I/O framework for NVMe
SSDs in mobile smart devices,” IEEE Trans. Consum. Electron., vol. 63,
no. 1, pp. 28-35, Feb. 2017.

[273] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
“Strata: A cross media file system,” in Proc. 26th Symp. Operating Syst.
Princ., Oct. 2017.

[274] K. Wu, E. Ober, S. Hamlin, and D. Li, “Early evaluation of
Intel optane non-volatile memory with HPC I/O workloads,” 2017,
arXiv:1708.02199.

[275] Z. Lu and Q. Cao, “A case study of migrating RocksDB on Intel optane
persistent memory,” in Proc. IEEE Int. Conf. Netw., Archit. Storage
(NAS), Oct. 2021.

[276] G. Singh, R. Nadig, J. Park, R. Bera, N. Hajinazar, D. Novo,
J. Gémez-Luna, S. Stuijk, H. Corporaal, and O. Mutlu, “Sibyl: Adaptive
and extensible data placement in hybrid storage systems using online
reinforcement learning,” in Proc. 49th Annu. Int. Symp. Comput. Archit.,
Jun. 2022.

[277] G. Oh, S. Kim, S.-W. Lee, and B. Moon, “SQLite optimization with
phase change memory for mobile applications,” Proc. VLDB Endowment,
vol. 8, no. 12, pp. 1454-1465, Aug. 2015.

[278] Y. Li, L. Zeng, G. Chen, C. Gu, F. Luo, W. Ding, Z. Shi, and J. Fuentes,
“A multi-hashing index for hybrid DRAM-NVM memory systems,”
J. Syst. Archit., vol. 128, Jul. 2022, Art. no. 102547.

[279] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter, “HeMem:
Scalable tiered memory management for big data applications and real
NVM,” in Proc. ACM SIGOPS 28th Symp. Operating Syst. Princ.,
Oct. 2021.

GERALDO F. OLIVEIRA (Graduate Student
Member, IEEE) received the B.S. degree in
computer science from the Federal University
of Viosa, Viosa, Brazil, in 2015, and the M.S.
degree in computer science from the Federal
University of Rio Grande do Sul, Porto Alegre,
Brazil, in 2017. He is currently pursuing the
Ph.D. degree with Onur Mutlu with ETH Ziirich,
Ziirich, Switzerland. His current research interests
include system support for processing-in-memory
and processing-using-memory architectures, data-centric accelerators for
emerging applications, approximate computing, and emerging memory
systems for consumer devices. He has several publications on these topics.

105870

SAUGATA GHOSE (Member, IEEE) received
the dual B.S. degree in computer science and
in computer engineering from Binghamton Uni-
versity and The State University of New York,
and the M.S. and Ph.D. degrees in electrical and
computer engineering from Cornell University.
He is currently an Assistant Professor with the
Department of Computer Science, University of
Illinois Urbana-Champaign. Prior to joining Illi-
nois, he was a Postdoctoral Researcher and later
a Systems Scientist with Carnegie Mellon University. He received the Best
Paper Award from DFRWS-EU, in 2017, for work on solid-state drive
forensics. He was a 2019 Wimmer Faculty Fellow at CMU. His current
research interests include data-oriented computer architectures and systems,
new interfaces between systems software and architectures, low-power
memory and storage systems, and architectures for emerging platforms and
domains. For more information visit the link (https://ghose.cs.illinois.edu/).

JUAN GOMEZ-LUNA received the B.S. and
M.S. degrees in telecommunication engineering
from the University of Seville, Spain, in 2001,
and the Ph.D. degree in computer science from
the University of Cordoba, Spain, in 2012.
Between 2005 and 2017, he was a Faculty
Member of the University of Cérdoba. He is
currently a Senior Researcher and a Lecturer with
the SAFARI Research Group, ETH Ziirich. His
research interests include processing-in-memory,
memory systems, heterogeneous computing, and the hardware and software
acceleration of medical imaging and bioinformatics. He is the lead
author of PrIM (https://github.com/CMU-SAFARI/prim-benchmarks), the
first publicly-available benchmark suite for a real-world processing-in-
memory architecture, and Chai (https://github.com/chai-benchmarks/chai),
a benchmark suite for heterogeneous systems with CPU/GPU/FPGA.

AMIRALI BOROUMAND received the B.S.
degree in computer hardware engineering from
the Sharif University of Technology, Tehran,
Iran, in 2014, and the Ph.D. degree in computer
architecture from Carnegie Mellon University,
Pittsburgh, PA, USA, in 2020. He is currently with
Google, Mountain View, CA, USA.

\

ALEXIS SAVERY is currently with Google, Mountain View, CA, USA.

SONNY RAO received the B.S. degree in
computer science from the Georgia Institute of
Technology, Atlanta, GA, USA, in 2003. He is
currently with Rivos Inc., Mountain View, CA,
USA.

VOLUME 11, 2023

G. F. Oliveira et al.: Extending Memory Capacity in Modern Consumer Systems With Emerging NVM

IEEE Access

SALMAN QAZI is currently with Google, Mountain View, CA, USA.

GWENDAL GRIGNOU is currently with Google, Mountain View, CA, USA.

RAHUL THAKUR received the B.S. degree in
engineering, technology, science, semiconductors,
embedded, VLSI from the University of Mumbai,
Mumbai, India, in 2011, and the M.S. degree
in computer engineering from The University of
Texas at Austin, Austin, TX, USA, in 2013. He is
currently with Google, Mountain View, CA, USA,
as a Senior Hardware Engineer—a SoC Architect.

ERIC SHIU received the B.S. degree in electrical
engineering from National Chiao Tung University,
Hsinchu, Taiwan, in 1994, and the M.S. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 1998. He is currently
with Rivos Inc., Mountain View, CA, USA, as a
Hardware Engineer.

VOLUME 11, 2023

ONUR MUTLU received the B.S. degree in
computer engineering and psychology from the
University of Michigan, Ann Arbor, and the M.S.
and Ph.D. degrees in ECE from The University
of Texas at Austin. He is currently a Professor
/ in computer science with ETH Ziirich. He is
also a Faculty Member with Carnegie Mellon
) University, where he previously held the Strecker
Ny Early Career Professorship. His current research
f interests include computer architecture, systems,
hardware security, and bioinformatics. A variety of techniques, along with
his group and collaborators, he has invented over the years have influenced
industry and he have been employed in commercial microprocessors
and memory/storage systems. He started the Computer Architecture
Group, Microsoft Research (2006-2009), and he held various product
and research positions with Intel Corporation, Advanced Micro Devices,
VMware, and Google. He received the Google Open Source Peer Bonus
Award, Huawei OlympusMons Award for Storage Systems Research,
Google Security and Privacy Research Award, Persistent Impact Prize
of the Non-Volatile Memory Systems Workshop, the Intel Outstanding
Researcher Award, the IEEE High Performance Computer Architecture
Test of Time Award, the IEEE Computer Society Edward J. McCluskey
Technical Achievement Award, ACM SIGARCH Maurice Wilkes Award,
the inaugural IEEE Computer Society Young Computer Architect Award,
the inaugural Intel Early Career Faculty Award, the U.S. National
Science Foundation CAREER Award, Carnegie Mellon University Ladd
Research Award, faculty partnership awards from various companies, and
a healthy number of best paper, “Top Pick” paper, and best artifact
recognitions at various computer systems, architecture, and security venues.
He is an ACM Fellow and an elected member of the Academy of
Europe (Academia Europaea). His computer architecture and digital logic
design course lectures and materials are freely available on YouTube
(https://www.youtube.com/OnurMutluLectures), and his research group
makes a wide variety of software and hardware artifacts freely available
online (https://safari.ethz.ch/ and https://github.com/CMU-SAFARI). For
more information visit the link (https://people.inf.ethz.ch/omutlu/).

105871

