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ABSTRACT Portfolio theory underpins portfolio management, a much-researched yet uncharted field. This
research suggests a collective framework combined with the essence of deep learning for stock selection
through prediction and optimal portfolio formation through the mean-variance (MV) model. The CNN-
LSTM model, proposed in Stage I blends the benefits of the convolutional neural network (CNN) and the
long-short-term memory network (LSTM). The model combines feature extraction and sequential learning
about temporal data fluctuations. The experiment considers thirteen input features, combining fundamental
market data and technical indicators to capture the nuances of the wildly fluctuating stock market data.
The input data sample of 21 stocks was collected from the National Stock Exchange (NSE) of India from
January 2005 to December 2021, spanning two significant market crashes. Thus, the sample makes it possible
to catch subtle market shifts for model execution. The shortlisted stocks with high potential returns are
advanced to Stage II for optimal stock allocation using the MV model. The proposed hybrid CNN-LSTM
outperformed the single models, i.e., CNN and LSTM, per the six-performance metrics and advocated by the
10-fold cross-validation technique. Furthermore, the statistical significance of the model is established using
non-parametric tests followed by post hoc analysis. In addition, this method is validated by comparing the
proposed model to four baseline strategies and relevant pieces of research, which it considerably outperforms
in terms of cumulative return per year, Sharpe ratio, and average return to risk with and without transaction
cost. These findings highlight the effectiveness of the hybrid CNN-LSTM approach in stock selection and
portfolio optimization.

INDEX TERMS Deep learning, CNN-LSTM, mean-variance, asset selection, portfolio optimization.

I. INTRODUCTION

Portfolio selection involves creating a profitable portfolio.
Due to return unpredictability, choosing assets is hard.
A portfolio selection issue seeks optimal stock proportions to
create a portfolio that meets investors’ preferences, assuming
they want to balance return and risk. The portfolios in the
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efficient set have the highest level of anticipated return for
each degree of risk. As a result, the investor’s risk aversion,
or attitude toward risk, will determine the best portfolio to
choose [1], [2], [3], [4].

The conventional mean-variance portfolio theory, which
dates back to Markowitz’s key study from 1952 [5], helped
the financial viewpoint recognize the value of diversity.
A prior selection of assets is vital for portfolio management
since the anticipated return on an investment is a key aspect of
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the portfolio optimization process [6]. Applying complicated
portfolio optimization algorithms is not beneficial without
high-quality asset input [1], [2], [7], [8]. However, few
studies focus on the asset selection process before creating
a portfolio. Stock forecasting is among the most challenging
time series issues due to the stock market’s multi-noise,
nonlinearity, high frequency, and chaos. However, because
of its significance, stock forecasting continues to get more
and more attention from academics and investors. In this
context, a significant amount of research has attempted to
employ Artificial Intelligence and Machine Learning for the
forecast of the returns and volatilities of the stock market
[71, [9], [10], [11], [12], [13]. This is due to the advanced
computer processing capacity and abundant data available.
Early statistical and machine learning techniques are not
the best for learning and preserving financial time-series
data over a prolonged period [1], [12], [14]. The field
arose as a result of deep learning’s capacity to acquire
intricate nonlinear mapping and self-adaptation mechanisms
that aid in the identification of both latent patterns and
underlying data dynamics [1]. Recent research has focused
on several machine learning & deep learning models [15],
including the multilayer perceptron (MLP) [8], convolutional
neural network (CNN) [16], recurrent neural network (RNN),
and long-short term memory (LSTM) neural network [2],
[17], [18]. Also, various aspects were studied pertaining to
advancements in portfolio optimization, viz., Reinforcement
learning for dynamically adjusting portfolio weights in
response to changing market conditions, which involves an
agent learning optimal actions through trial and error. These
methods aim to maximize portfolio returns while managing
risk [19], [20], graph theory [21], credibility theory account
for uncertainty and incomplete information when historical
data is limited or unreliable [22] etc.

Fischer and Krauss [7] utilized LSTM neural networks
to forecast the direction of the S&P 500’s component
stocks from 1992 to 2015. Portfolio models based on
memory-free classification (i.e., Random Forest (RF), Deep
Neural Network (DNN), and Logistic Regression (LR) were
shown to be inferior to those based on LSTM neural
networks. In Sezer and Ozbayoglu [23], a novel algorithmic
trading model called CNN-TA was introduced; it makes
use of a two-dimensional convolutional neural network with
image processing features. It uses 15 separate technical
indicators, each with its own set of parameters, to render
two-dimensional representations of financial time series.
The results show that the trained model outperforms other
conventional trading strategies regarding stock and ETF
performance. Chen and He [24] suggested a deep learning
strategy based on CNN for predicting the stock market price
movement in China. The input of the structure was the
internet-sourced open price, high price, low price, close price,
and volume of stock. As the results have demonstrated, a deep
learning system based on CNN can reasonably anticipate the
movement of Chinese stock prices. Paiva et al. [1] designed a
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revolutionary decision-making model for day trading on the
stock market by fusing the support vector machine (SVM)
and MV models for portfolio selection. Two additional
models, SVM+ Equally weighted (1/N) and Random+ MV,
were compared to the suggested model. The suggested model
outperformed the competition in an experimental evaluation
using data from the Ibovespa stock market. Komori [25]
developed a trading system by training a CNN on images
of 2D technical candlestick charts. In this article, the CNN
model structure is used from Inception v3. This research uses
CNN to examine the performance of the S&P 500 index
between January 1, 1985, and June 30, 2020. Yu et al. [26]
advanced six portfolio optimization techniques, i.e. mean-
variance, mean absolute deviation, downside risk, linearized
value-at-risk, conditional value-at-risk, and omega models,
using a combination of autoregressive integrated moving
average (ARIMA) estimates. Before developing these portfo-
lio optimization methods, they employed the ARIMA model
to forecast future stock returns. The extended MV and omega
models with ARIMA prediction were shown to be the most
effective in the experiments. Ta et al. [27] used LSTM
neural networks and the equal-weighted approach, Monte
Carlo simulation, and MV model to construct portfolios. The
prediction accuracy of LSTM was shown to be greater in the
experiments than that of linear regression and support vector
machines. Wang et al. [2] employed an LSTM neural network
for stock selection and an MV for portfolio optimization.
Here, the focus was constructing an MV portfolio model
using just k out of the full stock set. They employed MV for
portfolio optimization after comparing LSTM neural network
with SVM, RF, and ARIMA models in the stock selection.
Results from their experiments validated the superiority of
their suggested model to its competitors. Bhandari et al. [28]
predicted the next day’s closing price of the S&P 500 index
using an LSTM architecture. Root Mean Square Error, Mean
Absolute Percentage Error, and the Correlation Coefficient
are used to evaluate the performance of both single-layer and
multilayer LSTM models. The experimental findings reveal
that, compared to multilayer LSTM models, the single-layer
LSTM model gives a better fit and higher prediction accuracy.
Habbab et al. [29] showed the value of integrating Real
Estate Investment Trusts (REITs) in mixed-asset portfolios
and conducted comprehensive research spanning 456 portfo-
lios. To achieve superior performance over a global minimum
variance portfolio, they developed a genetic algorithm-based
strategy to optimize the Sharpe ratio of the portfolios.
Sisodia et al. [30] designed and devised an LSTM algorithm,
a Deep Learning (DL) model. From December 10, 2011,
to December 10, 2021, ten years of historical data for the
NIFTY 50 index from India’s National Stock Exchange
(NSE) were selected. The proposed model was quite reliable,
with an accuracy of 83.88 percent. Aksan et al. [31] showed
two of the most famous hybrid deep learning (HDL) models
based on a hybridization of CNN and LSTM that can predict
the power flow in the examined network cluster. A case study
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of the High-Voltage Subnet in North-East Germany was used
to train two separate models, CNN-LSTM and LSTM-CNN,
with vastly different datasets in terms of size and included
parameters. Xu et al. [32] designed the SK-GCN model,
which uses a graph convolutional neural network to sort
stocks into several groups. This model uses two convolutional
layers and activation functions to categorize stocks using
external nodes and short text categorization. They crawled
all stocks listed on the GEM of the Oriental Fortune website
to create the dataset and obtained an accuracy of 83.04%
and a macro-F1 value of 0.8303 under small sample training.
Cui et al. [33] suggested a multi-scale convolutional neural
feature extraction network (MS-CNN) for stock data, which
can better find features of stock trends and help make better
choices. The network architecture was motivated by the way
humans trade stocks, wherein they take into account all
available information, including the open, the close, and the
number of trades, before reaching a conclusion.

Similarly, predictions of the securities market have been
studied using a variety of deep learning benchmark algo-
rithms [8], [12], [34], [35]. The benefits of various models
are clear. For instance, CNN is strong at processing and
extracting data with spatial dimension, while RNN and
LSTM are successful for time series data, and ARIMA
is good at processing linear data. However, in practice,
predicting problems is usually complicated and has a variety
of features. Consequently, the development of hybrid models
was unavoidable. For example, Islam et al. [16] presented a
deep learning strategy for autonomously diagnosing COVID-
19 from X-ray pictures by combining a CNN with an LSTM.
Kim and Kim [36] suggested a technique to forecast stock
prices using information from stock time series and stock
chart pictures. This model is called the feature fusion LSTM-
CNN model. In Lu et al. [37], the authors suggested a
CNN-LSTM-based stock price forecasting system. Eight
features were examined for data input: open, high, low,
close, volume, turnover, ups and downs, and change.
Ahmed et al. [38] uses a fusion of poly-linear regression,
LSTM, and data augmentation to forecast time series. Thus,
Poly-linear Regression with Augmented Long Short-Term
Memory Neural Network (PLR-ALSTM-NN). The model
can effectively anticipate financial markets in the future.

In the prior field of research, numerous possibilities for
development require focused attention. Many studies in
this area solely rely on historical datasets, such as Open-
High-Low-Close (OHLC) data, which fail to capture the
dynamic nature of the market, influenced by various factors.
Evaluating the performance of prediction models is of
utmost importance to prove their reliability in capturing the
intrinsic nature of the market data along with the future
price movement assessment. Moreover, researchers often
overlook the importance of statistical significance as an
add-on to the reliability of the prediction models. In deep
learning model evaluation, k-fold cross-validation [39], [40]
is commonly used. Every portion of the data is used to
quantify performance and evaluate the prediction model in
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each fold of cross-validation [41]. Some research attempted
to exploit the data type to explore better performance
possibilities, which leads to information loss. To address
these gaps, this study proposes a hybrid deep learning
approach to anticipate stock prices using numerical data,
specifically fundamental and technical indicators of stock
closing prices. Numerical data provides a clearer link to stock
prices and reduces the risk of information loss associated with
changing data types. The study emphasizes the importance
of statistical significance and the inclusion of multiple
performance metrics in evaluating prediction models. This
indicates that the research will go beyond simple accuracy
measures and consider various statistical techniques and
metrics to assess the effectiveness of the proposed hybrid
deep learning approach. The contributions of this research
can be summarized as follows:

e To extract rich and crucial information from data,
a deep-learning hybrid model is suggested that com-
bines the feature extraction capabilities of CNN with
the sequential learning capability of LSTM while
capturing key long-term dependencies. Unlike conven-
tional prediction models, which typically only use one
deep learning module to collect data.

e To enhance the efficacy of the prediction-based models
by incorporating a combination of fundamental and
technical input features, depicting better insight into the
noisy stock price data. Top k stocks with high predicted
returns are shortlisted from the sample of 21 stocks to
form a portfolio.

e The performance of the proposed system is measured in
detail experimentally using six performance measures,
including Mean absolute error (MAE), Root mean
squared error (RMSE), Mean absolute percentage
error (MAPE), R2, Maximum error (Max Error), and
Meadian absolute error (MedAE), as well as the
addition of thirteen feature inputs.

e Statistical significance of the proposed hybrid model
over comparison models adds scientific rigor to
the research. Additionally, 10-fold cross-validation
advocates the generalizability and credibility of the
proposed model.

e To prevent unrealistic solutions, we impose floor and
ceiling constraints on the capital that may be invested
in a portfolio asset.

This paper is structured as follows for the remainder: In
Section II, we will go through several relevant models and
proposed methods. In Section III, we analyze the results of
our experiments and describe how we got there in greater
depth. In Section IV, we will conclude with some discussion.

Il. MODELS AND METHODS

A. CONVOLUTIONAL NEURAL NETWORK MODEL

CNN proposed by Lecun et.al [42], is a feed-forward
neural network. In addition to the input, hidden, and output
layers that comprise the standard neural network design,
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FIGURE 1. A typical LSTM memory cell.

a CNN consists primarily of the convolution layer and the
pooling layer. Multiple convolution kernels are stored in each
convolution layer, and their calculation formula is displayed
below in Eq. 11. The convolution layer extracts data features;
however, the feature dimensions are quite high, so a pooling
layer is added after the convolution layer to minimize the
feature dimension provided by Eq. 13. The fully connected
layer is implemented as a classifier to make a judgment using
the features learned in the convolutional and pooling layers.
CNNs excel at image classification, object recognition, and
analysis of medical images [43]. CNNs take local features
from high-layer inputs and transfer them to lower layers to
learn more complex characteristics. In the context of financial
timeseries data, CNNs have the ability to recognise intricate
and nonlinear patterns in data. This is especially crucial when
stock prices are affected by a wide range of variables and
display complex patterns of behaviour.

B. LONG SHORT TERM MEMORY MODEL
An improved RNN, or sequential network, called LSTM
[44] enables information to endure. Using memory cells,
LSTM can handle the vanishing gradient problem concerning
RNN. This structure comprises an input layer, a hidden layer,
a cell state, and an output layer. The essential element of
the LSTM design is the cell state, which passes through the
chain with only linear interaction, preserving the information
flow. The LSTM gate mechanism deletes or alters cell state
information. Sigmoid, hyperbolic tangent, and point-wise
multiplication layers transfer information selectively.

There are three gates that constitute the LSTM:

e Input gate: It adds data to the state of the cell.

e Forget Gate: It deletes data that is no longer needed by
the model.

e Output Gate: It decides what data is displayed.

The architecture of an LSTM network, which is intended
to mimic sequential input, is seen in Figure. 1. Gate activities
at time t are depicted in Equations 15 to 20.

C. PORTFOLIO MATHEMATICAL MODEL:
MEAN-VARIANCE MODEL

Modern portfolio theory (MPT) has its origins in the MV
model introduced by Markowitz [5] to address the challenge
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of optimum portfolio selection. Investment returns and risks
are quantified through the use of expected return and
variance in this method. Using a framework for multi-
objective optimization, the MV model may be described.
Markowitz’s proposed approach does not provide a cutoff
for when an investment should be made. The investor can
then be supplied with a collection of MV combinations that
satisfy the specified risk-return tradeoffs. This collection
of ideal options is referred to as the ‘“efficient frontier
of investments.” The model is officially described by the
following equations 1 & 2. Additionally, a lower and upper
limit on asset allocation is imposed in the classical MV
model [45].

N N
Minimize ZZsisjaij

i=1 j=1

N
Maximize Zsiﬂi

i=1

subject to,

Sl':l

™=

i=1
L <sVMi=1,2,3,...N,
s;i <uVNi=1,2,3,...N (1)

A mono-objective formulation (Eq. 2) can be used to reach
the same set of ideal assets [46]. Following Paiva et al. [1]
and Wang et al. [2], a variable that indicates the investor’s
risk aversion () is added to the model to characterize their
risky investing behavior:

N N N
Minimize >\|: Z Z sisjaij:| -1 - /\)|: Z s,-,uii|
i=1

i=1 j=1

subject to,
N
Zsi =1
i=1
L<si<uVNi=1,2,3,...N 2)

where )\ is the coefficient of risk aversion, s; and s; stand for
the portfolio’s initial investment of assets i and j, respectively,
with [; and u; as lower and upper bound for the initial
investment, and o;; indicates the covariance between the two,
while u; represents the expected return on the asset i. The
risk aversion coefficient falls anywhere between zero and
one. When A = 0, the investor is extremely risk averse and
focuses solely on maximizing return. When A = 1, on the
other hand, investors focus solely on reducing risk, regardless
of potential reward. The optimal value strikes a middle
ground between these extremes, maximizing projected return
while minimizing risk. Therefore, investors may construct a
suitable portfolio by selecting one of these options that best
suits their risk tolerance [47]. Since there are no risk-free
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FIGURE 2. Hybrid CNN-LSTM model.

assets in the aforementioned formulation, only risky assets
are used to build the portfolio.

D. PROPOSED MODEL: CNN-LSTM + MV

A stock forecasting hybrid model named CNN-LSTM is
constructed for prediction-based asset selection based on
the properties of CNN and LSTM, as seen in Figure 2.
Out of a sample of 21 stocks, top k stocks with high
predicted returns are shortlisted through CNN-LSTM model
to further formulate an optimal portfolio through MV model.
Since CNNs can handle numerous channels of input data,
the model may learn complicated connections between
different forms of data and price changes (such as OHLC
prices, technical indicators, market sentiment, etc.). It can
efficiently process all of these channels, gleaning useful
characteristics from each one to feed into the LSTM’s
learning process. Combining the sequential nature of LSTM
with the pattern-finding abilities of CNNs is a powerful
combination. LSTMs are able to process these characteristics
hierarchically to capture longer-term dependencies, focusing
on more important and meaningful information, whereas
CNNs are able to extract low-level features in the initial layers
(such as recognising local pricing trends). This can lead to
increased model robustness.

To examine the model performance and suitability over
the single models, a basic topology pertaining to the
parameters and no. of layers is incorporated. For better
investment choices, this research proposes a system called
CNN-LSTM+MYV that combines deep learning’s strengths
in time-series forecasting with the MV model’s proficiency
in portfolio optimization. Our model consists of a two-part
process. First, the future returns of the sample stocks are
forecast using the CNN-LSTM approach. The top stocks will
go on to the next phase once all the anticipated outcomes
are sorted in descending order. For each stock that has
been nominated, the capital allocation proportion will be
determined using Markowitz’s MV model in the second
step. The architecture of the proposed model is given in
Figure 3. The comprehensive description and computations
of the model are provided below.
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TABLE 1. The stock exchange codes.
S.No. | Stocks S.No. | Stocks S.No. | Stocks
S1 500875 | S8 500180 | S15 532488
S2 500770 | S9 500331 | S16 532155
S3 532540 | S10 500510 | S17 500043
S4 509480 | S11 532454 | S18 500800
S5 532174 | S12 531642 | S19 532522
S6 500112 | S13 532689 | S20 532281
S7 500247 | S14 532538 | S21 532514
1) DATA

This study utilizes daily stock data from NSE India of
21 stocks between January 2005 and December 2021,
spanning sixteen years. The exchange codes of the sample
stocks for the research work are presented in Table 1.
The bulk of relevant research has been completed within
the past 15 years, or fewer [1], [24], [48]. Our 16-year
sample period should be regarded long enough to yield
statistically meaningful results for the two major crashes
we examined, i.e., the financial crisis of 2007-2008 and the
Covid-19 crisis of 2020, which shed light on the volatility and
unpredictability of the financial market.

2) INPUT VARIABLE SELECTION

For problems involving timeseries prediction, the choice of
input variables is crucial. A forecast model that takes into
account only one attribute may not yield reliable predictions.
The effectiveness of forecasting algorithms may be greatly
improved by financial aspects, such as fundamental and
technical indicators that examine the pattern and value of
stocks [49]. According to prior research, technical indicators
are useful tools to characterize and represent the actual market
condition. For example, Chen and Hao [24] suggests that the
stock market may be understood in light of the relationships
between the exponential moving average (EMA), the relative
strength index (RSI), and the momentum index (MoM).
Wang et al. [2] proposed true range (TR), average true range
(ATR), MoM, and RSI as useful stock price forecasting
indicators. The efficacy of stock price forecasting is enhanced
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by the technical indicators, which indicate market behavior
through the rise, drop, and trend of stock prices.

Due to the time series nature of the dataset, it is crucial
to take into account the dynamic between the features and
the outcome variable over time. In this way, after considering
the perspectives of domain papers, we select features using a
common filtering technique, Pearson’s correlation coefficient
[28], [29]. More specifically, characteristics with a positive
correlation with the target variable and a correlation value
more significant than a threshold value are chosen using
Pearson’s correlation coefficient. The formula for the Pearson
correlation coefficient, r, is as follows:

L 2w =00
I G — B2 S 01— 92

where n is the sample size, x; and y; are the sample points
indexed by i, and x, y represent the sample mean.

In the presented research, five fundamental features
comprising of historical data viz., Open price(O), Close
price(C), High price(H), Low price (L), Adj. Close (AC) are
used along with eight technical indicators. The formulae of
the indicators used in the research presented are discussed
below briefly:

e Simple Moving Average (period or n=12): SMA is
employed to assist in smoothing out price data, hence
lowering the noise.

3

4

1
SMA = ;z’glc,- “

e Exponential Moving Average (n=14): EMA is a kind
of moving average exhibiting certain characteristics of the
SMA. It places greater emphasis on more recent data. Stock in
an uptrend has a rising moving average, whereas a downtrend
has a falling one.

EMA = (C; — EMA;_) x multiplier + EMA;_, 5)

where multiplier = %

e Relative Strenght Index (n=14): The RSI is shown as
an oscillator with a 0-100 scale. An asset is often regarded as
overbought when it is above 70 and oversold when it is below
30.

100

RSI =100 — 1+ AverageGain (©)

AverageLoss
e Rate of Change(n=12): Momentum, a pure momentum
oscillator, quantifies the percent price change from one period
to the next. Higher ROC values indicate overbuying and lower
ROC indicates overselling.

Ci—Cip

i—n

ROC = x 100 )

e True Range: TR is a stock’s maximum price range. It is
the largest of the following-

|H; — L]
|Ci—1 — H;|
|Ci—1 — L;]
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e Average True Range (n=14): ATR measures market
volatility by dissecting an asset price’s whole range during
a time, including gaps.

ATR; — [(ATRi—1 X (n — 1)) + TR;] ®)
n

e Momentum Index (n=10): It is a momentum indicator
that assesses a security’s price or volume acceleration.

MoM = (C; — Ci-1) ©))

e Commodity Channel Index (n=20): Trend indicator CCI
compares a security’s price movement to its average price
change. Prices over average suggest strength. Prices below
their average imply weakness.

[Tp — SMAzp)
0.015 x MeanDeviationg,

CCI =

(10)

Lambert adjusted the constant to 0.015 such that around
70 to 80% of CCI readings would fall within the range of
—100 to 4-100.

where, Tp (Typical price) = W; i corre-
sponds to the current price and i — 1 corresponds to the
previous price and so on.

3) ASSET SELECTION: CNN-LSTM

In a hybrid model with an LSTM backend, a CNN model
is utilized to interpret input subsequences that are then sent
as a sequence to an LSTM model for interpretation. The
name for this hybrid model is CNN-LSTM. At this stage, the
converted data is a two-dimensional array [samples, features].
CNN-LSTM model expects tensor input data shaped as
[samples, subsequences, timesteps, and features]. Therefore,
the actions required to make the input data compliant with the
model are evaluated. Before doing anything else, we made
sure to preserve the chronological sequence of the data by
dividing it into a 75%-25% split. Furthermore, we split the
training data into 80%-20%, with the former for training &
the latter 20% (representing 15% of the total data) utilized
for validation during hyperparameter tuning. Therefore, the
training, testing, and validation ratio is 60:25:15 After all
the training data has been accounted for, the final models
are fitted using the best possible hyperparameter values. The
test results are then summarised with the performance scores.
This deep learning model configuration consists of 06 distinct
layers: a one-dimensional (1D)-convolutional layer, a max
pooling layer, a dropout layer, a flattened layer, an LSTM
layer, and a dense layer, as shown in Figure 2. The traits
and variables employed in the suggested hybrid deep learning
model are presented in Table 3. A set of kernels [43] are
included in the convolutional layer to create a tensor of
feature mappings. The convolutional layer’s functioning is
described as follows:

fi=¢ (E]’-L]Conv(ﬁ, kij) + bi) (11)

where f; represents the j™ feature map; f; represents i" feature
map; k;; kernel; b; bias; and n is the no. of feature map.
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The rectified linear unit (ReLU) layer is utilized to
increase nonlinearity in feature maps [50]. ReLU determines
activation by keeping a threshold input of zero. The following
is how it is stated mathematically:

¢ = max(0, f) (12)

After the convolution layer, a max pooling layer is used
to reduce the filter maps to the most important features.
To minimize the number of parameters, the pooling layer
does a down-sampling of a certain input dimension. The most
popular technique, max pooling, yields the greatest value in
an input area. The procedure is performed by-

maxf; = max(maxfi; (it <t<t+pdxs) (13)

where, f! & f! represent 1™ neuron of i featre map before

and after maxpooling layer. p(d X s) represents pooling
window of dimension of size d and stride s. The presented
work pooling window is of size 1 x 1.

The flattening layer prior to the LSTM layer is included,
which functions as a bridge since it facilitates the transition
from the convolutional layers, which capture local features,
to the LSTM layers, which capture temporal dependencies.
For the model to learn and model the time-series temporal
linkages and dependencies, the flattened feature vector is fed
into the LSTM layers as an input. To avoid the suggested deep
model from excessively fitting the data, a dropout layer is
included in the architecture. The effect of dropout on the units
is defined by the equation below.

fi=¢ (En>1 L (Conv(fj, kij) + bi)&') (14)

where §; is a probabilistic bernoulli variable (0< §; < 1).
In this research work, §; is taken to be 0.2.

After that, an LSTM model is used to interpret the
input sequence as read by the CNN model and generate a
prediction. Time-series LSTM is an architecture, as shown
in Figure 1 built to model sequential input. We considered
a single-layer LSTM model since, compared to multilayer
LSTM models, they offer a better fit and more reliable
predictions [28]. Specifically, the functions of the four gates,
the output, change, input, and forget gates, are illustrated in
real-time.

Istmeen = {)/t, Y1, ¢t}

The respective procedures involved in the gates are given
below in equations 15 to 20:

Ve = o{wy(pi—1, 1) + by} (15)
Ve = olwy (o1, ) + by} (16)
xi = tanh{w, (p;—1.f{) + by} (17)
o = Y1+ Vi X (18)
¢ = o {wg(pr—1,f) + by) (19)
ot = Pitanh(ay) (20)
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where y; represents the input gate, y; is the forget gate, x; is
the current cell state, o; is candidate value, ¢; is output and,
o s hidden state of the LSTM cell for timestep t. The hybrid
CNN-LSTM model for multivariate stock price prediction
ties everything together.

4) PROCESS OF OPTIMAL PORTFOLIO FORMATION

The second step is to determine which portfolio has the
highest risk-adjusted return potential, or capital allocation
percentage, for each asset. Therefore, it makes sense for
investors to choose portfolios with either a lower risk level
and stable anticipated returns or a greater risk level and
higher expected return [5], [S1]. And to continue with this
stage, Markowitz’s MV model (II-C) will be applied. It must
be stressed that the proposed model does not take into
consideration investors’ risk preferences or risk-free assets;
hence the portfolios contain only high-risk investments.
In order to evaluate the efficacy of the recommended
risk-return portfolio models, we utilize the realized portfolio
return to compute the Sharpe ratio of the portfolios. This is
the formula for the Sharpe ratio (SR):
R, — Ry

Sd

where, R,=Return of the portfolio, Rr=Risk-free Rate and,
Sd=Standard deviation of Portfolio’s Excess return. The
portfolio with the lowest variance will ultimately receive
the resources that are available. As a result, when assets
and investment allocations are verified at the opening of
the next trading day, allocations can be made. During the
course of the investment day, we will examine the top ten
assets. Figure 3 displays the step-by-step process of the
recommended method.

SR =

2n

5) BASELINE STRATEGIES FOR PORTFOLIO FORMATION
These were constructed using the research model suggested
in the preceding section and used to assess the effectiveness
of this approach and its modifications.

1) CNN + MV: The architecture of this type of model
is identical to the suggested structure of the CNN-
LSTM+MV model. The primary aim is to determine
if the optimal portfolio may be formed differently
depending on the forecast outcomes of asset return.
In particular, in the first step, the return on assets in
t 4+ 1 will be forecasted using the CNN approach, and
in the second stage, assets with greater future returns
will be selected. It is important to note that the number
of assets chosen must exactly match the one indicated
in the proposed model. Markowitz’s MV approach for
optimizing portfolios continues in its second stage.

2) LSTM + MV: The LSTM + MV model differs from
the aforementioned baseline CNN + MV model and
the proposed model in terms of the asset preselection
phase. When it comes to asset preselection, the LSTM
model specifies the same amount of assets as the CNN-
LSTM + MV model. The Markowitz optimization of
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the investment portfolio remains an integral part of the
process.

Random + MV: In contrast to the CNN-LSTM + MV
model, the Random + MV model tends to achieve
the predicted return during the asset selection phase.
The process of asset preselection is being approached
naively. However, the random selection of assets
must equal the number specified by the CNN-LSTM
+ MV model. The Markowitz optimization of the
investment portfolio remains an integral part of the
process. This type of baseline strategy’s goal is to
assess if deep learning-based asset preselection is
necessary.

CNN-LSTM + 1/N: The architecture of this type
of model is identical to the proposed model CNN-
LSTM+MV. The primary aim is to examine the
effectiveness of the MV model for optimal asset
allocation. In particular, in the first step, the return
on assets will be forecasted using the CNN-LSTM
approach to shortlist the sample for stage II, in which
the optimal portfolio selection is performed with a
naive 1/N or equally weighted technique.

3)

4)

Ill. EXPERIMENTS AND RESULTS

A. DATA: INPUT AND PREPROCESSING

This paper randomly picks 21 stocks from NSE India, fetched
from yahoo finance. For analysis, data from January 2005 to
December 2021 are gathered and listed in Table 1 as potential
assets. With such a big data set, individual traders may pick
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equities for their portfolio construction. Table 2 lists the input
features for the presented research work. The close price
is the target feature predicted (t+1 period) by examining
the characteristics with the highest correlation coefficients.
We employ features after a threshold of 0.3. The outcomes of
feature selection using Pearson’s correlation coefficient are
displayed in Figure 4. We finally chose thirteen important
indicators as input factors. These included eight technical
indicators and five fundamental indicators.

Most DL algorithms may struggle if the variation of
one characteristic is significantly larger than the variation
of the others. To deal with this issue, we have used
a min-max normalization method for the feature scaling.
The equation for the min-max normalization method is as
follows:

X — Xmin

z= (22)

Xmax — Xmin
where x and z are the original and the scaled input,
respectively; similarly, x;; and X, corresponds to the
minimum and the maximum values of the input, respectively.
According to the methods outlined, normalized data of
the specified characteristics (listed in Table 2) has been
generated. In addition, the data is reshaped and partitioned
into training, testing, and validation data sets (Section II-D3).
The objective is to accurately forecast the closing price
of a selection of equities traded on NSE India, a market
known for its complicated, chaotic, and volatile behavior.
The whole process of choosing a model can be catego-
rized into two groups: preselection and optimal portfolio
construction.
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TABLE 2. List of suggested feature input for the model.

[ Data Input | Frequency | Abbreviation | Source [ Type of Indicator |
Fundamental Indicator
Open Daily (6] Yahoo | Historical
Close Daily C Yahoo | Historical
High Daily H Yahoo | Historical
Low Daily L Yahoo | Historical
Adj. Close Daily AC Yahoo | Historical
Technical Indicator
Simple Moving Average Daily SMA _ Trend
Exponential Moving Average | Daily EMA _ Trend
Relative Strength Index Daily RSI _ Momentum
Rate of Change Daily RoC _ Momentum
True Range Daily TR _ Volatility
Average True Range Daily ATR _ Volatility
Momentum Index Daily MoM _ Momentum
Commodity Channel Index Daily CCI _ Trend

1.0

o.8

0.6

0.4

0.2

0.0
T o ¥ R <R
ST S & S <

Features

FIGURE 4. Feature selection results.

B. STAGE I- PRESELECTION: PREDICTION-BASED
APPROACH

To demonstrate CNN-LSTM’s effectiveness, we compared
it to both the CNN and LSTM single models, running each
against the same training, validation, and test datasets in the
same environment. All tests are performed on a Windows
11 machine equipped with an Intel i5-4700H processor
operating at 2.6 GHz, 12 GB of RAM, a 500 GB hard drive,
and the latest service pack. Forecasts for the next day’s close
price are made using the variables listed in Table 2.

The following hyperparameters: (1) the number of epochs:
10 to 50, (2) activation function: tanh, Relu; (3) the
number of neurons ranges from 2 to 200 per hidden layer;
(4) learning rate: 0.1, 0.01, 0.001, 0.0001; (5) batch size,
ranging from 50 to 128; (6) optimizer: RMSProp, SGD,
Adam (7) loss function: Mean Absolute Error (MAE), Mean
Squared Error (MSE) are examined. Following the model
execution included in the Equations 11 to 20, the CNN-LSTM
network’s specified topology is validated. The properties
and parameters employed by the proposed hybrid deep
learning model and the single models, CNN and LSTM are
provided in Table 3. The selection of the hyperparameters is
based on empiricism [8]. The selected hyperparameter values
were based on the insights gained from our trial and error
experiments, where we sought to strike a balance between
model complexity and its best performance on the validation
data. The effectiveness of the chosen hyperparameters and
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TABLE 3. Best parameters of models.

Parameters Value

CNN LSTM | CNN-LSTM
Filters 32 - 32
Kernel size 01 - 01
Padding Same | - Same
Pool size 01 - 01
Dropout 0.1 0.2 0.2
Neurons in LSTM layer | - 100 100
Timesteps 05 05 05
Activation function Relu Relu Relu
Batch size 128 128 128
Learning rate 0.001 0.001 0.001
Optimizer Adam | Adam Adam
Loss function MSE MSE MSE
Epochs 30 30 30

suggested model is demonstrated for the ’532488’ stock.
Figure 5 displays the loss function for training and validation
data with each plot from the above-mentioned deep models.
Furthermore, Figure 6 presents a comparison between the
actual (test data) and predicted stock prices. The parameters
and the layers common to the proposed CNN-LSTM model
and CNN and LSTM models are kept the same for unbiased
comparison. Mean squared error is used as the loss function
because it best characterizes the discrepancy between the
output value generated by the output layer and the actual
value of the data.

These models’ capacity to make accurate predictions is
measured using six distinct performance metrics: MAE,
RMSE, MAPE, R2, Max Error, and MedAE. Different
metrics capture different error attributes. By using mul-
tiple metrics, a more holistic evaluation of the model’s
performance can be obtained. Multiple metrics test the
model’s robustness across different assessment criteria.
Following is a description of the analytical version of these
metrics:

Model Evaluation: Performance Metrics

e Mean Absolute Error

1 _y .
MAE = 5L, |Y; = i (23)
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eRoot Mean Squared Error

low P2
RMSE = \[ S EL,(Y; = ¥) (24)
eMean Absolute Percentage Error
I _y |Yi— ﬁ'
MAPE = N Zi=1| Ty (25
i
e R2 Score
=N (v - Y)?
R=1_— Zim i = ¥ (26)

(Y = Y2
e Maximum Error
The maximum residual error is calculated by the
max_error() function. Calculates the maximum gap between
the forecast and the actual result.
e Median Absolute Error

MedAE = Median(EX | |Y; — Y;|) (27)

where Y; = Actual value, ¥; = Mean value and 1?,- = Predicted
value

The optimal model would have the lowest MAE, RMSE,
MAPE, Max Error, and MedAE and the highest R2 score
attainable. To account for the stochastic tendency, we run
each model several times separately. The average score from
these independent tests is used as one of the considerations
for establishing the supremacy of the proposed model over

VOLUME 11, 2023

(b) CNN-LSTM

T T T T T T
800 1000 o 200 800 1000

(c) LSTM

oD o oD o0ooon

[ T PR P AT R P

L -

MedAE

ey [y 7

MAE RMSE MAPE R2 Max Error

mCNN - mCNN-LSTM LST™

FIGURE 7. Average performance metrics.

other benchamarks. Tables 4, 5, and 6 provide comprehensive
details of the results obtained using CNN, the suggested
CNN-LSTM model, and the LSTM model, respectively.
Moreover, Figure 7 displays the visual comparison among the
aforementioned models.

In terms of prediction accuracy near real values, the
CNN-LSTM model surpasses the individual models, CNN
and LSTM. Compared to the single models, the suggested
hybrid model has the lowest error rate and the greatest R2
score based on the performance criteria as shown in Tables 4,
5, and 6.

The suggested model’s credibility and generalizability
are established by the application of k-fold cross-validation
(CV) [39], [40], which is a straightforward and productive
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TABLE 4. Prediction performance of CNN model.

Stocks MAE RMSE MAPE R2 Max Error MedAE
500875 0.0219 0.0265 0.0338 0.9549 0.1015 0.0196
500770 0.0267 0.0392 0.0604 0.9501 0.4416 0.0220
532540 0.0225 0.0309 0.0361 0.9687 0.1163 0.0160
509480 0.0767 0.1080 0.1079 0.7831 0.2911 0.0560
532174 0.0267 0.0372 0.0470 0.957 0.1281 0.0168
500112 0.0186 0.0263 0.0382 0.9752 0.1528 0.0137
500247 0.0448 0.0513 0.0655 0.8590 0.1891 0.0410
500331 0.0523 0.0659 0.0846 0.8596 0.2220 0.0418
500510 0.0264 0.0315 0.0406 0.9392 0.1251 0.0236
532454 0.0222 0.0291 0.0379 0.9737 0.1005 0.0173
500180 0.0361 0.0441 0.0519 0.8877 0.2115 0.0305
531642 0.0636 0.0715 0.0998 0.6670 0.1852 0.0546
532689 0.0656 0.0786 0.1014 0.6010 0.3581 0.0587
532538 0.0304 0.0391 0.0540 0.9424 0.1692 0.0240
532488 0.0519 0.0809 0.0841 0.8895 0.2415 0.0159
532155 0.0211 0.0267 0.0404 0.9735 0.1300 0.0181
500043 0.0329 0.0435 0.0529 0.9322 0.2198 0.0285
500800 0.0896 0.1257 0.1693 0.7310 0.3488 0.0438
532522 0.0158 0.0219 0.0201 0.8958 0.1412 0.0122
532281 0.0479 0.0732 0.0801 0.8379 0.2712 0.0188
532514 0.0857 0.0978 0.1280 0.6765 0.2671 0.0720
MEAN  0.04187619  0.054709524  0.068285714  0.869285714  0.210080952  0.030709524
TABLE 5. Prediction performance of CNN-LSTM model.

Stocks MAE RMSE MAPE R2 Max Error MedAE
500875 0.0097 0.0138 0.0151 0.9877 0.0682 0.0071
500770 0.0168 0.0300 0.0394 0.970 0.4182 0.0101
532540 0.0178 0.0252 0.0332 0.979 0.1358 0.0127
509480 0.0795 0.0943 0.1381 0.8346 0.2247 0.0642
532174 0.0160 0.0256 0.0293 0.980 0.1743 0.0092
500112 0.0164 0.0235 0.0288 0.9802 0.1383 0.0110
500247 0.0243 0.0356 0.0363 0.9319 0.1808 0.0160
500180 0.0260 0.0334 0.0393 0.935 0.1364 0.0222
500331 0.0266 0.0373 0.0490 0.9549 0.2562 0.0213
500510 0.0113 0.0145 0.0181 0.9870 0.0726 0.0096
532454 0.0144 0.0210 0.0239 0.9862 0.0932 0.0091
531642 0.0258 0.0373 0.0376 0.9091 0.1381 0.0164
532689 0.0275 0.0429 0.0452 0.8811 0.2583 0.0189
532538 0.0266 0.0379 0.0405 0.9456 0.1467 0.0165
532488 0.0264 0.0406 0.0530 0.9720 0.1765 0.0142
532155 0.0138 0.0183 0.0270 0.9875 0.1060 0.0109
500043 0.0273 0.0373 0.0446 0.9500 0.1696 0.0200
500800 0.0297 0.0449 0.0594 0.9656 0.2016 0.0168
532522 0.0140 0.0187 0.0174 0.9243 0.1295 0.0105
532281 0.0245 0.0333 0.0510 0.9664 0.1340 0.0181
532514 0.0424 0.0580 0.0668 0.8863 0.2975 0.0330
MEAN  0.024609524  0.034447619  0.04252381  0.948304762  0.174119048  0.017514286

approach for performance evaluation and model comparison
[41]. Since 75% of the dataset is utilized by all the models
for training and validation, CV is applied to that portion; the
remaining 25% is preserved as unseen data for testing the
models. The data are arbitrarily partitioned into k distinct
subsets of approximately equal size. In the iy fold of
cross-validation, the iy subset is utilized to estimate the
performance of a model trained on the remaining k —
1 subsets. The performance of the sample-trained models may
be estimated as the mean of the performance seen overall &
folds. The average predictive performance of the three models
is determined using six performance indicators across k =
10 splits of the data. We compare a set of three models, CNN-
LSTM, CNN, and LSTM, using cross-validated prediction
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performance. Figure 8 shows ten-fold cross-validation results
for the aforementioned three models, which demonstrates the
reliability and efficacy of the proposed CNN-LSTM model.

Additionally, the models of relevant researches of Fischer
and Krauss [7] and Ta et al. [27] are reconstructed to establish
the statistical significance and comparison with proposed
research work. The average inference or the test time for the
proposed model, along with comparison models, is listed in
Table 7.

After predicting each asset individually, for the period
t + 1, we will arrange the stocks in descending order of
their predicted return. To go on to the next round, only the
top k stocks in terms of return are considered. In accordance
with Wang et al. [2], who discovered that a portfolio with
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TABLE 6. Prediction performance of LSTM model.

Stocks MAE RMSE MAPE R2 Max Error MedAE
500875 0.0144 0.0183 0.0240 0.978 0.1067 0.0125
500770 0.0369 0.0476 0.0712 0.926 0.3680 0.0344
532540 0.0363 0.0462 0.0556 0.930 0.1362 0.0258
509480 0.0734 0.1027 0.1050 0.8037 0.2708 0.0440
532174 0.0217 0.0326 0.0364 0.9677 0.1540 0.0126
500112 0.0161 0.0247 0.0286 0.9782 0.1147 0.0091
500247 0.0341 0.0424 0.0475 0.9036 0.1390 0.0283
500180 0.0355 0.0421 0.0485 0.897 0.1410 0.0289
500331 0.0291 0.0414 0.0438 0.944 0.1423 0.0191
500510 0.0109 0.0156 0.0169 0.9849 0.0842 0.0076
532454 0.0215 0.0294 0.0358 0.9730 0.1175 0.0147
531642 0.0310 0.0392 0.0462 0.899 0.1514 0.0250
532689 0.0353 0.0424 0.0510 0.8837 0.1778 0.0316
532538 0.0324 0.0505 0.0469 0.9040 0.2100 0.0155
532488 0.0355 0.0551 0.0592 0.9487 0.1962 0.0130
532155 0.0144 0.0193 0.0287 0.9861 0.1234 0.0113
500043 0.0344 0.0421 0.0536 0.9364 0.1524 0.0312
500800 0.0464 0.0683 0.0833 0.9203 0.2109 0.0221
532522 0.0419 0.0464 0.0511 0.534 0.1649 0.0406
532281 0.0267 0.0408 0.0455 0.9495 0.2086 0.0142
532514 0.0566 0.0674 0.0814 0.8462 0.1852 0.0464
MEAN  0.032505  0.043547619  0.050485714  0.909238095  0.169295238  0.023233333
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FIGURE 8. Average cross validation scores.

TABLE 7. Average inference time.

Models Time (In Sec.)
CNN 0.57
CNN-LSTM 0.61
LSTM 1.60
Fischer and Krauss (2018) [7] | 0.97
Ta (2020) [27] 0.76

ten assets outperforms those with other numbers, we selected
k = 10 stocks. Individual investors find it challenging to
handle an excessive number of stocks. Consequently, several
studies analyzed a portfolio containing equal or fewer than ten
stocks [1], [52], [53]. The top ten shortlisted stocks are chosen
for the second round of the portfolio optimization process.
The second phase’s objective is to acquire capital allocation
for the chosen stocks.

C. STATISTICAL SIGNIFICANCE

For a more comprehensive evaluation of the models’
performance and to add scientific rigor to our research,
we employed statistical analysis of the performance of the
proposed model. The RMSE was used as a performance
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metric which did not follow a normal distribution as indicated
by the Shapiro test [54]. To evaluate the null hypothesis that
the forecasts of method i have no significant difference as
compared to the forecasts of method j, with i,j € {LSTM,
CNN, CNN-LSTM, Fischer and Krauss [7], Ta et al. [27]}
a non-parametric Kruskal-Wallis test [55] (also known as
non-parametric ANOVA test) with a significance level of
0.05 is performed. The test yielded a p-value of 0.039 < 0.05
(alpha), rejecting the null hypothesis, indicating a significant
difference between the performance of the models. Further,
post hoc analysis was conducted using the Conover test
[56] for pairwise comparisons between the five models. The
heatmap for the p-values is indicated below in Figure 9:
From the heatmap representation (see Figure 9), we can
see that the p-value for the comparison between CNN-
LSTM (model 1) and CNN (model 2) is 0.0086, and the
p-value for the comparison between CNN-LSTM (model
1) and LSTM (model 3) is 0.0412, both are less than
0.05, indicating a significant difference between these two
pair of models respectively. However, the p-value for the
comparison between CNN (model 2) and LSTM (model
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TABLE 8. Results of portfolio optimization (Before TC).

Objectives Return Risk Sharpe Ratio
CNN +MV 22.10% | 22.10% 0.91
CNN-LSTM +MV 24.00% | 22.60% 0.97
LSTM +MV 22.30% | 21.60% 0.94
Random+MV 17.90% | 19.90% 0.80
CNN-LSTM + I/N 241% | 23.62% 0.936
Fischer and Krauss [7] 23.0% 21.9% 0.96

Ta et al. [27] 21.8% 21.6% 0.92

TABLE 9. Results of portfolio optimization (After TC).

Objectives Return Risk Sharpe Ratio
CNN +MV 22.10% | 22.50% 0.89
CNN-LSTM +MV 23.90% | 23.00% 0.95
LSTM+MV 22.70% | 21.90% 0.95
Random+MV 16.90% | 20.30% 0.73
CNN-LSTM + I/N 23.1% | 23.62% 0.932
Fischer and Krauss [7] 23.0% 22.2% 0.95
Taetal. [27] 21.6% 21.9% 0.89

3) is 0.5306, which is greater than 0.05, suggesting that
there is no significant difference between these two models
in terms of their performance on the dataset. Additionally,
p-values for the comparison between the suggested model
(model 1) and the relevant researches of Fischer and Krauss
[7] (model 4) and Ta et al. [27] (model 5) are 0.011 and
0.0017 respectively. Thus, the CNN-LSTM model proves
its statistical significance over single models, i.e., CNN and
LSTM, and recent relevant researches of Fischer and Krauss
[7], and Ta et al. [27] respectively.

D. STAGE II: OPTIMAL PORTFOLIO CONSTRUCTION
Stage II, “Optimal Portfolio Construction,” seeks to get
the capital allocation of the chosen portfolio that satisfies
the risk-return tradeoff. It is implemented using the MV
model described by Equation 1. The floor constraint is set to
li = 0.05, or 05%, and the ceiling constraint to ui = 0.2,
or 20% of the capital amount, to prevent the imbalanced
allocation. Considering that a high turnover would lead to
a higher transaction fee in actual stock trading investments,
it is important to investigate these models’ true performance
after taking into account the impact of transaction costs (TC)
[57]. This part aims to analyze the profitability of various
models in the stock market by discussing their performance
after the transaction fee generated by turnover has been
deducted. For the sake of brevity, this study utilizes the
transaction charge due to turnover of 0.01 % per unit to
represent the total transaction fee of a real trading investment.
The average annual financial results of portfolio optimization
with and without transaction costs for the CNN-LSTM+MV
are laid down in Table 8 and Table 9, respectively, against
the baselines and relevant published research of Fischer and
Krauss [7] and Ta et al. [27].

The CNN-LSTM+MYV yields the greatest Sharpe ratio
(Eq. 21) both before and after accounting for transaction
costs, assuming a risk-free rate of 0.02. When the cost of
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the transaction is included in the LSTM+MV algorithm,
a tie remains. Figure 10 and Figure 11 show the pre
and post-transaction cost asset allocation for the selected
companies as calculated by the proposed hybrid deep learning
model and the baselines, respectively. The MV model is used
to determine the optimal allocation. The daily cumulative
return for each model, excluding transaction costs, is shown
in Figure 12(a). The average annualized cumulative returns
for the CNN-LSTM+MYV, LSTM+MYV, and CNN-LSTM+
1/N models are 25.62%, 24.26%, and 24.91% respectively,
while those for the CNN4+MV and Random+MV models
are 24.06% and 19.9%, respectively. In contrast, Figure 12(b)
shows daily cumulative return after accounting for transaction
costs.
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An average annualized cumulative return of 25.39%
is achieved by the suggested hybrid CNN-LSTM+MV
model, followed by the CNN-LSTM+ 1/N at 24.01%, the
LSTM+MV model at 24.45%, the CNN+MV model at
23.91%, and the Random+MYV model at 19.5%. We also
compared the proposed model with two relevant pieces
of research [7], [27]. The average annualized cumulative
return for [7] and [27] before transaction cost are 24.88 %
and 23.8 %, in addition to 24.78 % and 23.6 % after
the inclusion of transaction costs, respectively. Multiple
indicators corroborate the superior performance of the
proposed hybrid deep learning model.

IV. CONCLUSION

A. DISCUSSION

This research proposes a methodology for making finan-
cial investment decisions entitled CNN-LSTM+MV. Our
technique fills a gap in the literature by combining feature
extraction with sequential learning to preserve better the
continuity and memory of financial time series data. We show
that CNN-LSTM networks outperform both CNN and LSTM
models when it comes to forecasting financial time series.
Top ten stocks with high anticipated returns are shortlisted
from a sample of 21 stocks to form an optimal portfolio
through MV model. Six performance indicators are used to
demonstrate the superiority of our proposed model compared
to existing prediction models. Statistical significance is
determined with the non-parametric Kruskal-Wallis test,
followed by pairwise comparisons with the Conover test,
verifying the CNN-LSTM model’s superiority over single
models, CNN and LSTM along with reconstructed recent
piece of researches, Fischer and Krauss [7] and Ta et al. [27].
A 10-fold cross-validation is established to compare the
models and advocate the generalizability and credibility
of the proposed model. In addition, we demonstrate the
practical application of our model to portfolio construction.
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‘We achieve favorable returns, risks, and risk-return measures
by leveraging the predicted values and employing the MV
diversification method. Comparative analysis with relevant
research and baseline models demonstrates the outperfor-
mance of our proposed model in terms of annualized return,
Sharpe ratio, risk, and cumulative returns prior to and
following the incorporation of transaction costs.

B. LIMITATIONS AND FUTURE WORK

To convey a full picture of the consequences, and potential
future applications of this work, its limitations must be
acknowledged. The CNN-LSTM+MYV model’s efficacy and
precision depend on the integrity of the information it is fed.
Furthermore, the model’s results are based on experiments
on 21 datasets of the Indian stock market. Thus, the
generalizability of the model over markets with different
geographical, political, and economic conditions must be
addressed with careful study and experimentation. Adding
more variables to the model or using other data sources
to improve its prediction power are areas that may be
explored in further study. A wide range of portfolio selection
criteria may be investigated for various investing scenarios.
By acknowledging and addressing these limitations, we can
foster a more robust and informed approach to financial
investment decision-making.

In conclusion, the results of this study show that the
CNN-LSTM+MYV approach is better and more effective for
use in the context of financial investment decision-making.
By combining advanced deep learning techniques with
comprehensive performance evaluation, our model provides
valuable insights for investors seeking improved prediction
accuracy and portfolio performance.

ACKNOWLEDGMENT

This work was supported by King Saud University, Riyadh,
Saudi Arabia, through the Researchers Supporting Project
under Grant RSPD2023R704.

104013



IEEE Access

P. Singh et al.: Harnessing a Hybrid CNN-LSTM Model for Portfolio Performance

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

F.D. Paiva, R. T. N. Cardoso, G. P. Hanaoka, and W. M. Duarte, ‘Decision-
making for financial trading: A fusion approach of machine learning and
portfolio selection,” Expert Syst. Appl., vol. 115, pp. 635-655, Jan. 2019.
W. Wang, W. Li, N. Zhang, and K. Liu, “Portfolio formation with
preselection using deep learning from long-term financial data,” Expert
Syst. Appl., vol. 143, Apr. 2020, Art. no. 113042.

P. Gupta, M. K. Mehlawat, and A. Z. Khan, “Multi-period portfolio
optimization using coherent fuzzy numbers in a credibilistic environment,”
Expert Syst. Appl., vol. 167, Apr. 2021, Art. no. 114135.

S. Ashfaq, U. Ayub, G. Mujtaba, N. Raza, and S. Gulzar, “Gainers and
losers with higher order portfolio risk optimization,” Phys. A, Stat. Mech.
Appl., vol. 563, Feb. 2021, Art. no. 125416.

H. Markowitz, “Portfolio selection,” J. Finance, vol. 7, no. 1, pp. 77-91,
1952.

J. B. Guerard, H. Markowitz, and G. Xu, “Earnings forecasting in a
global stock selection model and efficient portfolio construction and
management,” Int. J. Forecasting, vol. 31, no. 2, pp. 550-560, Apr. 2015.
T. Fischer and C. Krauss, “Deep learning with long short-term memory
networks for financial market predictions,” Eur. J. Oper. Res., vol. 270,
no. 2, pp. 654-669, Oct. 2018.

Y. Ma, R. Han, and W. Wang, ‘“Prediction-based portfolio opti-
mization models using deep neural networks,” IEEE Access, vol. 8,
pp. 115393-115405, 2020.

F. D. Freitas, A. F. De Souza, and A. R. De Almeida, ‘“Prediction-based
portfolio optimization model using neural networks,” Neurocomputing,
vol. 72, no. 10, pp. 2155-2170, Jun. 2009.

T.-J. Chang, S.-C. Yang, and K.-J. Chang, ‘“Portfolio optimization
problems in different risk measures using genetic algorithm,” Expert Syst.
Appl., vol. 36, no. 7, pp. 10529-10537, Sep. 2009.

S. T. Tayali, “A novel backtesting methodology for clustering in mean—
variance portfolio optimization,” Knowl.-Based Syst., vol. 209, Dec. 2020,
Art. no. 106454.

Y. Ma, R. Han, and W. Wang, ‘“Portfolio optimization with return
prediction using deep learning and machine learning,” Expert Syst. Appl.,
vol. 165, Mar. 2021, Art. no. 113973.

L. Min, J. Dong, J. Liu, and X. Gong, “Robust mean-risk portfolio
optimization using machine learning-based trade-off parameter,” Appl.
Soft Comput., vol. 113, Dec. 2021, Art. no. 107948.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, May 2015.

Y. S. Asawa, “Modern machine learning solutions for portfolio selection,”
IEEE Eng. Manag. Rev., vol. 50, no. 1, pp. 94-112, 1st Quart., 2022.

M. Z. Islam, M. M. Islam, and A. Asraf, “A combined deep CNN-LSTM
network for the detection of novel coronavirus (COVID-19) using X-ray
images,” Informat. Med. Unlocked, vol. 20, 2020, Art. no. 100412.

Y. Baek and H. Y. Kim, “ModAugNet: A new forecasting framework for
stock market index value with an overfitting prevention LSTM module and
a prediction LSTM module,” Expert Syst. Appl., vol. 113, pp. 457-480,
Dec. 2018.

K. Vijayaprabakaran K. Sathiyamurthy, “Towards activation function
search for long short-term model network: A differential evolution
based approach,” J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 6,
pp. 2637-2650, Jun. 2022.

Z. Jiang, D. Xu, and J. Liang, “A deep reinforcement learning
framework for the financial portfolio management problem,” Jul. 2017,
arXiv:1706.10059.

W. Zhang, T. Yin, Y. Zhao, B. Han, and H. Liu, “Reinforcement learning
for stock prediction and high-frequency trading with T+1 rules,” IEEE
Access, vol. 11, pp. 14115-14127, 2023.

X. Yan, H. Yang, Z. Yu, S. Zhang, and X. Zheng, “‘Portfolio optimization:
A return-on-equity network analysis,” IEEE Trans. Computat. Social Syst.,
early access, Apr. 7, 2023, doi: 10.1109/TCSS.2023.3261881.

J. K. Pahade and M. Jha, “A hybrid fuzzy-SCOOT algorithm to optimize
possibilistic mean semi-absolute deviation model for optimal portfolio
selection,” Int. J. Fuzzy Syst., vol. 24, no. 4, pp. 1958-1973, Feb. 2022.
O. B. Sezer and A. M. Ozbayoglu, “Algorithmic financial trading with
deep convolutional neural networks: Time series to image conversion
approach,” Appl. Soft Comput., vol. 70, pp. 525-538, Sep. 2018.

S. Chen and H. He, ““Stock prediction using convolutional neural network,”
10OP Conf. Ser, Mater. Sci. Eng., vol. 435, Nov. 2018, Art. no. 012026.

104014

(25]

(26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

[44]

(45]

[46]

[47]

(48]

[49]

Y. Komori, “Convolutional neural network for stock price prediction using
transfer learning,” Social Sci. Res. Netw., Rochester, NY, USA, Tech. Rep.
ssrn.3756702, Dec. 2020.

J.-R. Yu, W.-J. Paul Chiou, W.-Y. Lee, and S.-J. Lin, “Portfolio models with
return forecasting and transaction costs,” Int. Rev. Econ. Finance, vol. 66,
pp. 118-130, Mar. 2020.

V.-D. Ta, C.-M. Liu, and D. A. Tadesse, ‘““Portfolio optimization-based
stock prediction using long-short term memory network in quantitative
trading,” Appl. Sci., vol. 10, no. 2, p. 437, Jan. 2020.

H. N. Bhandari, B. Rimal, N. R. Pokhrel, R. Rimal, K. R. Dahal, and
R. K. C. Khatri, “Predicting stock market index using LSTM,” Mach.
Learn. With Appl., vol. 9, Sep. 2022, Art. no. 100320.

F. Z. Habbab, M. Kampouridis, and A. A. Voudouris, ‘“‘Optimizing mixed-
asset portfolios involving REITSs,” in Proc. IEEE Symp. Comput. Intell.
Financial Eng. Econ. (CIFEr), May 2022, pp. 1-8.

P. S. Sisodia, A. Gupta, Y. Kumar, and G. K. Ameta, “Stock market
analysis and prediction for Nifty50 using LSTM deep learning approach,”
in Proc. 2nd Int. Conf. Innov. Practices Technol. Manage. (ICIPTM), vol. 2,
Feb. 2022, pp. 156-161.

F. Aksan, Y. Li, V. Suresh, and P. Janik, “CNN-LSTM vs. LSTM-CNN to
predict power flow direction: A case study of the high-voltage Subnet of
Northeast Germany,” Sensors, vol. 23, no. 2, p. 901, Jan. 2023.

H. Xu, Y. Zhang, and Y. Xu, “Promoting financial market development—
financial stock classification using graph convolutional neural networks,”
IEEE Access, vol. 11, pp. 49289-49299, 2023.

K. Cui, R. Hao, Y. Huang, J. Li, and Y. Song, ‘A novel convolutional neural
networks for stock trading based on DDQN algorithm,” IEEE Access,
vol. 11, pp. 32308-32318, 2023.

A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures,” Neural Netw.,
vol. 18, nos. 5-6, pp. 602-610, Jul. 2005.

P. Yu and X. Yan, ““Stock price prediction based on deep neural networks,”
Neural Comput. Appl., vol. 32, no. 6, pp. 1609-1628, Mar. 2020.

T. Kim and H. Y. Kim, “Forecasting stock prices with a feature fusion
LSTM-CNN model using different representations of the same data,” PLoS
ONE, vol. 14, no. 2, Feb. 2019, Art. no. €0212320.

W. Lu, J. Li, Y. Li, A. Sun, and J. Wang, “A CNN-LSTM-based model to
forecast stock prices,” Complexity, vol. 2020, pp. 1-10, Nov. 2020.

S. Ahmed, R. K. Chakrabortty, D. L. Essam, and W. Ding, ‘Poly-linear
regression with augmented long short term memory neural network:
Predicting time series data,” Inf. Sci., vol. 606, pp. 573—-600, Aug. 2022.
C. Bergmeir and J. M. Benitez, “On the use of cross-validation for time
series predictor evaluation,” Inf. Sci., vol. 191, pp. 192-213, May 2012.
L. A. Yates, Z. Aandahl, S. A. Richards, and B. W. Brook, “Cross
validation for model selection: A review with examples from ecology,”
Ecolog. Monographs, vol. 93, no. 1, Feb. 2023, Art. no. e1557.

S. Arlot and A. Celisse, ““A survey of cross-validation procedures for model
selection,” Statist. Surv., vol. 4, pp. 40-79, Jan. 2010.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

A. M. Hasan, H. A. Jalab, F. Meziane, H. Kahtan, and A. S. Al-Ahmad,
“Combining deep and handcrafted image features for MRI brain scan
classification,” IEEE Access, vol. 7, pp. 79959-79967, 2019.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

P. Gupta, M. K. Mehlawat, and A. Saxena, “Asset portfolio optimization
using fuzzy mathematical programming,” Inf. Sci., vol. 178, no. 6,
pp. 1734-1755, Mar. 2008.

N. J. Jobst, M. D. Horniman, C. A. Lucas, and G. Mitra, “Computational
aspects of alternative portfolio selection models in the presence of discrete
asset choice constraints,” Quant. Finance, vol. 1, no. 5, pp. 489-501,
May 2001.

R. O. Michaud and R. Michaud, “Estimation error and portfolio
optimization: A resampling solution,” New Frontier Advisors, LLC,
Boston, MA, USA, Tech. Rep. 1138, 2007.

J. Patel, S. Shah, P. Thakkar, and K. Kotecha, “Predicting stock and
stock price index movement using trend deterministic data preparation
and machine learning techniques,” Expert Syst. Appl., vol. 42, no. 1,
pp. 259-268, Jan. 2015.

E. Beyaz, F. Tekiner, X.-j. Zeng, and J. Keane, “Comparing technical and
fundamental indicators in stock price forecasting,” in Proc. IEEE 20th Int.
Conf. High Perform. Comput. Commun.; IEEE 16th Int. Conf. Smart City;
IEEE 4th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Jun. 2018,
pp. 1607-1613.

VOLUME 11, 2023


http://dx.doi.org/10.1109/TCSS.2023.3261881

P. Singh et al.: Harnessing a Hybrid CNN-LSTM Model for Portfolio Performance

IEEE Access

[50] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
functions: Comparison of trends in practice and research for deep
learning,” Nov. 2018, arXiv:1811.03378.

[51] M. R. Lyle and T. L. Yohn, “Fundamental analysis and mean-variance
optimal portfolios,” Accounting Rev., vol. 96, no. 6, pp.303-327,
Nov. 2021.

[52] M. Ehrgott, K. Klamroth, and C. Schwehm, “An MCDM approach to
portfolio optimization,” Eur. J. Oper. Res., vol. 155, no. 3, pp. 752-770,
Jun. 2004.

[53] P. Gupta, M. K. Mehlawat, and A. Saxena, ‘‘Hybrid optimization models of
portfolio selection involving financial and ethical considerations,” Knowl.-
Based Syst., vol. 37, pp. 318-337, Jan. 2013.

[54] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for nor-
mality (complete samples),” Biometrika, vol. 52, nos. 3—4, pp. 591-611,
Dec. 1965.

[55] R. A. K. Sherwani, H. Shakeel, W. B. Awan, M. Faheem, and M. Aslam,
“Analysis of COVID-19 data using neutrosophic Kruskal wallis h test,”
BMC Med. Res. Methodol., vol. 21, no. 1, p. 215, Oct. 2021.

[56] W.J. Conover and R. L. Iman, “Rank transformations as a bridge between
parametric and nonparametric statistics,” Amer. Statistician, vol. 35, no. 3,
pp. 124-129, Aug. 1981.

[57] Y. Fang, K. K. Lai, and S.-Y. Wang, “Portfolio rebalancing model with
transaction costs based on fuzzy decision theory,” Eur. J. Oper. Res.,
vol. 175, no. 2, pp. 879-893, Dec. 2006.

PRIYA SINGH received the B.Sc. degree (Hons.)
in mathematics from the University of Delhi,
India, and the M.Sc. degree in mathematics from
the Government Holkar Science College, Indore,
Madhya Pradesh, India. She is currently a Doctoral
Researcher with the Department of Mathemat-
ics, Bioinformatics and Computer Applications,
Maulana Azad National Institute of Technology,
Bhopal, Madhya Pradesh, exploring a hybrid
approach for asset selection and portfolio opti-
mization through intelligent techniques.

MANOJ JHA received the B.Sc. and M.Sc.
degrees in mathematics from Barkatullah Univer-
sity, Bhopal, Madhya Pradesh, India, the M.Phil.
degree from DAVYV, Indore, Madhya Pradesh,
and the Ph.D. degree in financial mathematics
from the Maulana Azad National Institute of
Technology, Bhopal. He authored three books with
various research publications. His research inter-
ests include financial mathematics and portfolio
optimization.

VOLUME 11, 2023

MOHAMED SHARAF received the Ph.D. degree
in industrial engineering from Chiba University,
Japan. He is currently the Head of the Develop-
ment and Quality Unit, College of Engineering,
King Saud University. He has published more
than 30 articles in the areas of spare parts
control, quality management, maintenance, Six-
sigma methodology, and academic accreditation.

MOHAMMED A. EL-MELIGY received the B.Sc.
degree in information technology from Menoufia
University, Egypt, in 2005. He has been a Software
Engineer with King Saud University, Riyadh,
Saudi Arabia, since 2009. His research interests
include Petri nets, supervisory control of discrete
event systems, database software, and network
administration.

THIPPA REDDY GADEKALLU received the
bachelor’s degree in computer science and engi-
neering from Nagarjuna University, India, in 2003,
the master’s degree in computer science and
engineering from Anna University, Chennai, Tamil
Nadu, India, in 2011, and the Ph.D. degree from
the Vellore Institute of Technology, Vellore, Tamil
Nadu, in 2017. He was an Associate Professor
with the School of Information Technology and
Engineering, Vellore Institute of Technology. He is
currently a Chief Engineer with Zhongda Group, Haiyan, Jiaxing, China.
He has more than 14 years of experience in teaching. He has more than
200 international/national publications in reputed journals and conferences.
His current research interests include machine learning, the Internet of
Things, deep neural networks, blockchain, and computer vision. He is an
Editor of several publishers, such a Springer, Hindawi, Plosone, Scientific
Reports (Nature), and Wiley. He also acted as the guest editor of several
reputed publishers, such as IEEE, Springer, Hindawi, and MDPI. He is
recently recognized as one among the top 2% scientists in the world as per
the survey conducted by Elsevier, in 2021.

104015



