IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 10 August 2023, accepted 14 September 2023, date of publication 22 September 2023,
date of current version 27 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3318172

==l RESEARCH ARTICLE

SPYIPv6: Locating Covert Data in One or
a Combination of IPvé Header Field(s)

PUNAM BEDI', (Senior Member, IEEE), VINITA JINDAL “2, AND ARTI DUA 13

lDepartment of Computer Science, University of Delhi, Delhi 110007, India
2Keshav Mahavidyalaya, University of Delhi, Delhi 110035, India
3Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India

Corresponding author: Arti Dua (arti.batra@bcas.du.ac.in)

ABSTRACT Advancement in the utilization of IPv6 protocol has led to an increase in research related
to its security. In recent times, researchers proposed the possibility of the existence of covert channels
over networks termed Network Covert Channels (NCCs) which may exploit IPv6. NCC is a serious threat
that provides a hidden avenue for the transfer of information from one end to another. Hence, to detect
and locate such threats that use IPv6 packets as cover, SPYIPv6 is proposed that detects the existence
of hidden information in IPv6 packets and further identifies its location in one or a combination of IPv6
header field(s). The proposed SPYIPv6 comprises two layers. The first layer detects the covert IPv6 packets
in the network traffic using a binary K-Nearest-Neighbour (b-KNN) classifier. These packets are further
passed to the second layer that locates the header field(s) carrying covert data using a multiclass K-Nearest-
Neighbour (m-KNN) classifier. The experimentation dataset was generated from normal and covert IPv6
packet samples. Normal packets were obtained from the Center for Applied Internet Data Analysis (CAIDA),
whereas covert packets were obtained using an NCC generation tool (pcapStego) and Python scripts.
Experimentation results show that SPYIPv6 attains an accuracy of 99.85% in detecting and identifying the
location of hidden information in the IPv6 header. Further, when compared with other counterparts, SPYIPv6
provides higher accuracy in lesser testing time justifying its suitability for the detection and location of covert
information present in one or a combination of the header field(s) of an IPv6 packet.

INDEX TERMS Cybersecurity, detection of covert channels, IPv6, K-nearest-neighbour (KNN), label
powerset, network security.

I. INTRODUCTION

With rapid innovations and the growth of technology, the
dependence on the Internet has been rising. The use of new
technologies like IoT, Cloud Computing, etc. for developing
smart technologies for a better future has increased the load
on the Internet. Consequently, there is an increase in the need
for Internet addresses needed for communication of smart
devices over the Internet. The IPv4 addresses are limited and
are close to exhaustion. The next-generation IPv6 protocol is
catering to this problem by offering a much larger address
space of 2128 IP addresses. With IPv6 logical addressing,
smart devices can have unique IP addresses without any need
for performing traditional procedures like Network Address

The associate editor coordinating the review of this manuscript and

approving it for publication was Peter Langendoerfer

Translation and handling firewall issues. With the growing
load and dependence on IPv6, ensuring the security of this
protocol is a major area of concern for researchers. A lot
of work is being done on the security aspect of IPv6 [1],
[2]. In real-world management problems, minority events
like cyber-attacks carry much more importance and useful
knowledge than common events, despite their rareness due
to their impact [3]. As this is only after studying these,
one can be prepared to handle such unwanted events. The
possibility of threats like data exfiltration, DDoS attacks, and
stegomalware have also been explored by various researchers.
Stegomalware is a special category of malware that use infor-
mation hiding techniques to hinder its detection [4]. The
medium for Information hiding that is used to conceal secret
data is termed a cover. This cover may comprise an image,
audio, video, text, or a network traffic flow. Network Covert

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

103486

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023


https://orcid.org/0000-0002-0481-4840
https://orcid.org/0000-0002-7663-5999
https://orcid.org/0000-0002-6209-9048

P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

IEEE Access

Channels (NCCs) use the network traffic flow(s) as cover to
carry secret data [5]. NCCs may be categorized into two types
based on the method of injecting secret information into the

network traffic flow(s) [6].
1. Storage-based NCCs: These are those types of NCCs

that use the storage area of a network protocol packet
such as unused or reserved places in a protocol header
to hide secret data [7]. This type of NCCs may carry
secret data in single or multiple locations in a protocol
header. In this paper, we worked on the detection and loca-
tion of covert data present within the field(s) of an IPv6
header.

2. Timing-based NCCs: These are also the sub-category of
NCC:s that use inter-packet delays or the timing informa-
tion related to a network protocol packet to hide the secret
data [8].

Three major characteristics govern the effectiveness of an

NCC. These comprise the robustness to external attacks, the

undetectability of hidden information, and the hiding capac-

ity. The robustness of an NCC is defined as the resilience of

a covert channel to external changes due to noise or other

factors over the networks. Undetectability refers to the inabil-

ity to find the presence of a secret message inside a cover.

Regarding the hiding capacity of an NCC, it is defined as

the number of secret data bits that it can carry in a cover

protocol packet. Further, the more the usage of a network
protocol over the networks, the more its number of packets
over the networks which results in higher covert capacity
per unit of time. For example, the usage of TCP and UDP
is more than SCTP over the Internet, hence TCP and UDP
can provide more cover packets to carry secret data compared

to the SCTP protocol. The usage of IPv6 has been on a

continuous rise over the Internet. As of 6" May 2023, the

adoption percentage as per Google statistics was 43.29%

[9]. With its increased usage, the use of this protocol as a

cover for information hiding has been investigated by various

researchers [10], [11], [12].

A. MOTIVATION AND CONTRIBUTIONS

With the ongoing research exploring the possible covert
channels over IPv6, there is an equal need for research and
development of detection techniques for handling such covert
channels. References [13], [14], and [15] try to find a pattern
for scrutinizing IPv6 packets and gathering statistical indica-
tors. The unusual variations in the statistical values related to
the considered header fields can generate an alert regarding
the presence of some hidden communication. Zhao and Wang
[16] presented an approach that aimed at detecting covert
channels in HL and SA fields of IPv6 using CNN. Dua et al.
[17] presented the use of a Deep Neural Network classifier
for the detection of IPv6-based covert channels. Most of the
papers in the literature discuss only the storage-based covert
communication detection in IPv6. Further, Dua et al. [18]
presented a system that detects and finds the location of
the hidden data in covert communications that utilize either
field of an IPv6 header amongst Hop Limit, Flow Label,

VOLUME 11, 2023

and Traffic Class. However, we could not find any work that
detects and identifies the location of the hidden data present
in a combination of header fields of an IPv6 packet. The exis-
tence of hidden data in multiple header fields is a possibility
in real-world scenarios of covert communications that can
provide high covert capacity. An attacker who wants to send
more covert information in a single packet may use multiple
header fields at the same time to carry covert data. Hence,
identifying the location of covert information in multiple
fields of a covert packet’s header is a vital research area as it
will help in performing next-level processing like interpreting
the hidden information. Thus, with this motivation in this
paper, SPYIPv6, a novel system that detects and identifies
the location of hidden data present in one or a combination
of the header field(s) of an IPv6 packet is proposed. The
proposed SPYIPv6 is a system that comprises two layers.

These layers are connected in a sequential manner where the

output of the first layer is fed as input to the second layer. The

first layer separates IPv6 packets into covert/normal packets.

Further, for covert packets, the second layer finds the location

of covert information present in one or a combination of the

header field(s) of each covert IPv6 packet.
To summarize, the key contributions made by this paper
are:

1. The paper proposes SPYIPv6, a system comprising two
layers for detecting as well as finding the location of covert
data present in one or a combination of the header field(s)
in an IPv6 packet. The layers in this system are connected
sequentially. The first layer of the proposed SPYIPv6 uses
a binary KNN classifier that separates covert and normal
IPv6 packets. The packets identified as covert are further
passed to the second layer to find the location of hidden
information in one or a combination of the header field(s)
using a multiclass KNN classifier.

2. To find the best classifiers at both the layers of the
proposed SPYIPv6 (that provide high accuracy and take
less time) for the detection and location of storage-based
NCCs, extensive experimentation was done with several
ML and DL classifiers. The various metrics like preci-
sion, recall, accuracy, F1-score, average testing time per
sample, and training time are used for the performance
evaluation of SPYIPv6.

3. A dataset containing 420000 IPv6 packets (Covert + Nor-
mal) was created because of the non-availability of a
standard dataset. The normal packets were gathered from
UCSD Anonymized Internet Traces Dataset [January
2019] received from CAIDA. The covert packets com-
prised single-field covert packets (obtained with the help
of a tool named pcapStego), two-field covert packets
(obtained using Python Scripts), and three-field covert
packets (obtained using Python Scripts).

4. The proposed two-layered system provides a consoli-
dated solution for two types of applications: one, which
is only interested in detecting if a given IPv6 packet
belongs to a normal/covert category, and second, which
further provides the location of hidden data present in

103487



IEEE Access

P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

one or a combination of header fields of an IPv6 packet
for the packets identified as belonging to the covert
category.

B. STRUCTURAL ORGANIZATION

The rest of the paper is structured as follows. Section II
tabulates the header structure of IPv6, followed by a brief
description of the K-Nearest-Neighbour algorithm, used in
the development of the proposed SPYIPv6. Next, it elaborates
on the threat model referred to in this paper. The literature
review which is presented in Section III discusses various
works proposed for the creation or detection of storage-based
NCCs over various protocols followed by the working of
SPYIPv6 in Section IV. Section V presents various experi-
ments performed for the development, training, and testing
of the proposed SPYIPv6 followed by the obtained results.
Finally, Section VI presents the conclusion.

Il. BACKGROUND STUDY

This section briefly describes IPv6 and the K-Nearest-
Neighbour algorithm. Next, the paper discusses the threat
model and reference scenario considered in this paper.

A. INTERNET PROTOCOL VERSION 6

Internet Protocol version 6 is a recent network layer protocol
that provides logical addresses to the devices communi-
cating over the Internet. The IPv4 protocol, which is the
previous version of this protocol provided 32 bits long log-
ical addresses thereby providing approximately 4.3 billion
addresses. With the growing number of devices over the Inter-
net worldwide, the IETF (Internet Engineering Task Force)
proposed and developed IPv6 which supported 128 bits long
IP addresses offering a much larger address space. The shift-
ing of technologies from IPv4 to IPv6 over the Internet is
still in progress. According to IPv6 statistics provided by
Google, the usage of IPv6 is increasing worldwide every
year [9]. RFC 8200 gives the specification document of the
IPv6 [19].

The IPv6 header contains eight fields in its base header and
extension headers (if any). All the header fields serve a special
purpose. Table 1 discusses the size and purpose of each of
these header fields briefly. The next subsection describes the
K-Nearest-Neighbour algorithm.

B. K-NEAREST-NEIGHBOUR

K-Nearest-Neighbour (KNN) [20], [21] is a non-parametric
ML algorithm that is based on supervised learning. It works
on the idea that similar items exist in close proximity. It is a
lazy algorithm that makes no assumptions from the training
data. Instead of creating a model, it stores the entire dataset.
KNN makes classification on a test sample by finding its K
most similar samples in the training dataset. To find similar
samples, the distances between the test sample and all training
samples are calculated and based on these distances, the
samples are sorted. The first K samples in the order are then

103488

TABLE 1. Description of header fields of IPv6 protocol.

Header Field Size Purpose

Denotes the Internet Protocol’s
version being used.
Used to assign priority of a packet.

Used to point the packets that need

Version 4 bits

Traffic Class (TC) 8 bits

Flow Label (FL) 20 bits special management by midway
routers.

Payload Length 16 bits Contains the total payload length

(PL) carried by packet.

Stores a number corresponding to the
next protocol header attached to the
IPv6 base header.

Denotes the number of hops a packet
Hop Limit (HL) 8 bits can pass through before being
discarded.

128 bits long address of the source

Next Header (NH) 8 bits

Source  Address

(SA) 128 bits node
Destination 128 bits 128 bits long address of the
Address (DA) destination node

fetched with their labels as the most similar samples. At last,
the mode of the fetched labels is calculated and returned as
the final classification.

The two significant hyperparameters used in the KNN
algorithm are the K value which denotes the number of near-
est neighbours (samples) to be considered, and the distance
calculation algorithm used. The hyperparameter K selects the
number of similar neighbours to be found each time a test
sample is presented for prediction. For example, to make a
classification using 3 nearest neighbours the value of K is
selected as 3 and the samples in the innermost circle are
chosen for classification as shown in Fig. 1.

A Class A
% ClassB

@ TestSample

FIGURE 1. K-nearest-neighbour classification.

The second parameter is the distance algorithm that
is used to calculate the similarity index of instances.
The distance algorithms used with KNN are Minkowski
Distance, Euclidean Distance, and Manhattan Distance
which are calculated with the help of equations (1), (2),

VOLUME 11, 2023



P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

IEEE Access

Normal + Covert IPv6 Traffic

o) o] o]

Covert Sender Fv6

(Alice)
Version | Traffic Class | Flow label
Payload Length | Next Header | Hop Limit
Source Address
Destination Address
Extension Headers + Payload
Covert IPv6 Packet

FIGURE 2. Reference model for covert communications over IPv6.

and (3) respectively.

IS xi i M
k

D xi—yi? &)

> iy ®

When the value of q = 1, in the Minkowski distance,
it is equivalent to the Manhattan distance, and when the
value of q = 2, it is equivalent to the Euclidean distance.
The next subsection describes the threat model used as
a reference model to understand the framework of covert
communications.

C. THE THREAT MODEL

The covert communication framework is best explained using
Prisoner’s Problem [22] as a de-facto model for hidden com-
munication. In the Prisoner’s Problem, Alice and Bob are
the two prisoners who want to escape prison. For that, they
require to communicate clandestinely. However, warden [23]
Wendy is watching over all the communications taking place
between Alice and Bob. Hence, Alice and Bob must interact
stealthily. The threat model for the same is given in Fig. 2.
Here Alice and Bob exchange messages clandestinely by
hiding secret information in one or a combination of header
field(s) (TC, FL, and HL) of an IPv6 packet. Thus to expose
such communications over IPv6, a system for the warden
Wendy is proposed in this paper that not only helps Wendy
to detect the presence of covert communication but also finds
the location of hidden data for further processing. The next
section presents a brief discussion on NCC development and
detection techniques proposed in the recent literature.

lll. LITERATURE REVIEW

Studying and analyzing covert channels has always been a
favorite area of researchers. Many researchers have recently

VOLUME 11, 2023

|va6| | | |IPV6| | |
Covert Receiver

(Bob)

Version | Traffic Class I Flow label

Payload Length Next Header | Hop Limit

Source Address

Destination Address

Extension Headers + Payload

Normal IPv6 Packet

proposed the possibility of covert channels in new or
upcoming technologies or protocols. These latest technolo-
gies include blockchain [24], [25], [26], [27] etc. The lat-
est protocols include protocols like IPv6 [28] etc. Network
Steganography (NS) and Network Covert Channels are the
two techniques that implement Information Hiding in net-
work traffic flows [29]. NS is a young subclass of steganog-
raphy techniques that utilize network packets as cover to
carry out hidden communications [30]. It covers the covert
communication process by injecting secret messages into the
legitimate overt network traffic without altering the carrier
significantly [31], [32]. The idea of a covert channel was
first proposed by Lampson [33] in the year 1973 concerning
monolithic systems in which ‘“‘a process at a higher level of
security may leak information to a process at a lower level
of security which would have been inaccessible otherwise™.
In the field of computer networks, the idea of network covert
channels was first introduced in 1978 by Padlipsky et al. [34].

Further, in 1996, Handel et al. [35] proposed the possible
misuse of various network protocols in the Open System
Interconnections (OSI) reference model for the development
of covert channels. Since then various techniques for the
development of NCCs have been proposed, a few of which are
summarized in [36], [37], [38], [39], [40], [41], [42], and [43]
over different protocols like IPv4, ARP, TCP, UDP, MQTT
etc. used over the Internet.

IPv6 is a younger protocol. Lucena et al. [10] proposed
22 theoretical covert channels over IPv6 using various header
fields and extension headers. The limitation of their work
was that all these NCCs were proposed theoretically without
validating them experimentally. Next, to check the practical
feasibility of these covert channels over the Internet, Mazur-
czyk et al. [11] performed various experiments by embedding
data in various header fields of an IPv6 packet. They also
showed that these covert channels can easily bypass popular
IDS like Suricata and bro-Zeek. These experiments reduced
the possible number of header fields that may be utilized as

103489



IEEE Access

P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

covert channels in an IPv6 header to fewer fields like Traffic
Class (TC), Hop Limit (HL), and Flow Label (FL).

Further, Bedi and Dua [12] proposed a technique in which
the occurrence or absenteeism of [Pv6 extension headers in a
specific order encodes a covert message. This technique has
limited usage due to the limited use of extension headers in
the IPv6 packets observed over the Internet.

With the development of many NCC creation techniques,
the research community has also proposed various methods
for the detection of NCCs. Xuan et al. [44] experimented
with different Deep Learning techniques that use backpropa-
gation for training [45] such as LSTM, Multilayer Perceptron,
and CNN to evaluate the most effective technique to detect
Network Steganography in selective header fields of IPv4,
IPv6, TCP, UDP, ICMP, MQTT, Ethernet, and Frame. They
obtained the best accuracy with LSTM but that recorded
a higher testing time. The limitation of their study is that
the header fields used for covert data storage in the IPv6
header viz. source address, destination address, and next
header can be detected easily and don’t require advanced
detection mechanisms. The source address field if used for
covert communication can easily be detected with widespread
protection against spoofing. The destination address field
cannot be used to carry covert data because in this case
there will be no place to store the destination address of an
IPv6 packet which is required to make a packet reach its
intended destination. Lastly, the values of the next header
field used over the internet are limited due to the restricted
use of extension headers for security reasons, thus if these
eight bits corresponding to the next header are used for covert
communication then they can easily be detected.

Chourib et al. [46] presented the use of KNN to detect
storage-based NCCs in selective header fields of various
protocols viz. IPv4, ICMP, IGMP, TCP, and UDP. They cre-
ated the dataset by taking normal packets from a benchmark
dataset and created covert packets with the help of various
covert channel generation tools for protocols under consider-
ation. They also compared the results by training and testing
various classifiers like DNN and SVM. This work did not
consider IPv6-based covert channels and further aimed at
only detecting the existence of specific covert channels. In
our paper, we propose the detection as well as identification
of the location of secret information in one or a combination
of the header field(s) of covert IPv6 packets.

Cho et al. [47] proposed the use of the Random Forest
algorithm to detect the presence of secret data in various
protocols viz. IPv4, TCP, and ICMP. They also compared
their results with the performance of SVM and Naive Bayes
classifiers on the same datasets.

Luca et al. [13] suggested using code augmentation tech-
nique in the Linux kernel to record the statistics with the help
of extended Berkeley Packet Filter (eBPF) corresponding to
some IPv6 header fields. Utilization of BCC (BPF Com-
piler Collection) framework for executing eBPF programs
that gather statistical information about header fields like
TC, FL, and HL in the IPv6 header for detecting hidden

103490

communications was suggested by Repetto et al. [14]. In
the extension work, Zuppelli et al. [15] suggested the use
of code-layering schemes over eBPF to detect storage-based
NCCs in IPv6 and other timing-based channels. The funda-
mental concept in [13], [14], and [15] is to find a pattern for
scrutinizing IPv6 packets and gathering statistical indicators.
The unusual variations in the statistical values related to the
considered header fields can generate an alert notifying the
network administrator regarding the presence of some hid-
den communication. As stated by the authors, the detection
techniques that leverage eBPF have limitations. Firstly, the
indicator viz. number of bins needs to have more granulated
values for providing good accuracy which would use a large
amount of memory for the node executing eBPF. Second,
these techniques are not suitable for identifying short-length
covert communications.

Further, Salih et al. [48] proposed a framework using a
modified C4.5 technique with IHA to generate primary train-
ing data for detecting covert channels over IPv6. Although
their method reported an accuracy value of 94.47%, the cre-
ation of their dataset is unclear as the authors did not specify
the criteria applied for marking the values in the Hop Limit
field as high, low, or moderate. Similarly, they did not specify
the criteria for choosing the values as increased, decreased,
and low for different Payload Length field values.

Zhao et al. [16] presented an approach that aimed at
detecting covert channels in HL and SA fields of IPv6 using
CNN. Here header fields’ values of captured IPv6 packets are
transformed into a matrix. This matrix contains the number
of IPv6 header fields as the number of rows and the size
(in bits) of the longest header field as the column number.
They recorded 100% accuracy. The limitation of this work is
that the authors aimed at only detecting storage-based covert
communications. Additionally, the detection technique was
developed for covert channels utilizing two individual header
fields named HL and SA only. Further, the possibility of
covert channels in the SA Field is rare as this choice was
already eliminated in [11] because of the extensive use of
spoofing detection techniques.

Duacet al. [17] presented the use of a Deep Neural Network
classifier for the detection of IPv6-based covert channels.
They achieved an accuracy of 99.59% in detecting IPv6-
based NCCs targeting only the TC and FL fields individually.

As per the best of our knowledge, state-of-the-art work
presented to date mostly discusses only NCCs detection in
IPv6 header fields. Recently, Dua et al. [18] proposed a
system that detects and locates the storage area of [Pv6-based
NCCs in any one of the header fields namely TC, HL, and
FL. However, we could not find any work that detects and
identifies the location of the hidden data present in multiple
header fields of an IPv6 header simultaneously. The existence
of covert data in multiple header fields is a possibility in
real-world scenarios for covert communications providing
high covert capacity. An attacker who wants to send more
covert information in a single packet may use multiple header
fields at the same time to carry covert data. Thus, identifying

VOLUME 11, 2023



P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

IEEE Access

the placement of covert data in multiple fields of an IPv6
header is a vital research area as it will help in performing
next-level processing like interpreting the hidden data. Hence
in this work, SPYIPv6 a system for identifying the location
of covert data in multiple header fields of an IPv6 header is
proposed. Further, due to the practical feasibility of header
fields like TC, FL, and HL as covert data carriers over the
real-time networks [11], most of the recent literature work
aims at covert communication detection that utilizes these
three header fields [13], [14], [15], [17]. For the same reason,
these header fields are particularly investigated (individually
and together in all combinations) for detection and finding the
location of hidden data in this work. The next section explains
the complete working of the proposed SPYIPv6.

IV. PROPOSED SPYIPv6

The proposed SPYIPv6 detects and finds the location of
covert data present in one or a combination of header fields
of an IPv6 packet using two layers that are connected sequen-
tially. The first layer performs binary classification for segre-
gating covert and normal IPv6 packets using a binary KNN
(b-KNN) classifier. Those packets that are identified as covert
are then passed to the second layer. The second layer uses a
multiclass KNN (m-KNN) classifier to find the location of
hidden data present in one or a combination of the header
field(s) of the covert IPv6 packet filtered by the first layer of
SPYIPv6. Finding the location of hidden data in a storage-
based NCCs over IPv6 is a significant task, as it is only
after identifying the location of secret data, the next-level
processing like interpreting a covert message or traffic nor-
malization in the respective location(s) of the header area can
be performed.

A. ASSUMPTIONS

For the development of the proposed SPYIPv6, an assump-

tion was made:

1. Because of the non-availability of any standard dataset
comprising covert and normal IPv6 packets, a dataset
was generated. The normal packets were gathered from
the UCSD Anonymized Internet Traces Dataset [January
2019] [49] requested and obtained from the Centre for
Applied Internet Data Analytics (CAIDA). The covert
IPv6 packets were obtained for three categories viz. single
field-based covert packets, two fields-based covert pack-
ets, and three fields-based covert packets.

The development of the proposed SPYIPv6 was done in

four phases out of which the first three phases contribute

towards the dataset creation and the last phase performs
training, validation, and testing of the proposed SPYIPv6.

Phase 1 consisted of gathering packet capture (.pcap) files

containing covert/normal IPv6 packets. Phase 2 performed

the extraction of various header fields from the packet cap-
ture files containing normal IPv6 packets and packet cap-

ture files carrying covert IPv6 packets (created in Phase 1).

This resulted in a dataset containing normal packets, single-

field covert packets, two-field covert packets, and three-field

VOLUME 11, 2023

covert packets. Phase 3 transformed the multilabel dataset
created in Phase 2 into a multiclass dataset. Phase 4 consisted
of training, validation, and testing of SPYIPv6. The complete
development framework of SPYIPv6 is shown in Fig. 3.
Each of the phases is explained in detail in the consequent
subsections.

Dataset Creation Phases

1
| | Phase1 | | Phase2 | [Phases | ! [ Phases |
i Dataset !
1 | Obtaining .pcap IPv6 Header Transformation: |
: o
! | files containing Fields From Multilabel | | M\‘;dlili;fmm;g’
1| Normaland [—> extraction and to Multiclass  (— a.ll. !.Km
1| CovertIPvé creation of Dataset & 1 esting
! Packets Dataset Dataset ;
i Splitin i
| i

FIGURE 3. Dataset creation and development of SPYIPv6.

1) PHASE 1: OBTAINING .pcap FILES CONTAINING NORMAL
AND COVERT IPv6 PACKETS

In view of the fact of the nonavailability of any standard
dataset comprising normal and covert storage-based IPv6
packets, a dataset is generated for the training and testing of
SPYIPv6. CAIDA’s Dataset [49] was used to obtain normal
IPv6 packets. Regarding the covert packets, the single-field
covert packets are obtained by utilizing the pcapStego tool
[50]. For two-field and three-field covert channels in IPv6
packets, Python scripts using Scapy [51] are written to inject
data into normal IPv6 packets. For two-field covert chan-
nels data is injected in three combinations: {TC — FL},
{TC — HL}, and, {FL — HL} fields. For three-field covert
channels, data is injected in { TC — FL — HL} fields altogether.
Fig. 4 depicts the creation of packet capture (.pcap) files
carrying normal and secret data in IPv6 headers. The details
of number of packets obtained for each class are given in
Section V.

| CAIDA’s UCSD Anonymized Internet Traces Dataset I

N B D
Normal Normal Normal
IPv6 - )

IPV6 = 1Pv6
Packets : Packets | Packet

.h .h B .h

peapStego tool (Creation of Python Scripts (Two-field Python Script (Three-ficld |

Single-field Covert IPv6 Covert IPv6 Covert IPv6
Packets) Packets Creation Scripts) Packets Creation Script)

Covert Covert Covert

IPv6 2 1Pv6 2 IPv6

Packets Packets Packets B

E

.peap file with .peap file with Single- -peap file with Two- peap file with Three-
Normal IPv6 field Covert IPv6 field Covert IPv6 field Covert IPv6
Packets Packets Packets Packets

FIGURE 4. Obtaining packet capture files carrying normal and covert IPv6
packets.

2) PHASE 2: IPv6 HEADER FIELDS EXTRACTION AND
CREATION OF DATASET

In Phase 2, the header fields of all the IPv6 packets captured in
the .pcap files obtained in Phase 1, are extracted. IPv6 Header

103491



IEEE Access

P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

fields viz. SA, DA, PL, TC, NH, HL, FL, and Transport layer
protocol’s header fields viz. Transport Layer Protocol, Source
Port, and Destination Port are extracted as features from
each packet in the .pcap files. Next, the corresponding label
attributes are added to create a dataset. The following four
labels are added for each extracted sample: Normal, Covert
Traffic Class, Covert Flow Label, and Covert Hop Limit.
For further reference, Covert Traffic Class is referred to as
Covert_TC, Covert Flow Label is referred to as Covert_FL
and Covert Hop Limit is referred to as Covert_HL. For illus-
trating the addition of label values, consider the following
two scenarios. First, if a packet is a normal IPv6 packet,
the value for the Normal label is set to 1, and the rest three
labels are set to O in the corresponding row of the dataset.
Similarly, if a packet carried secret data in both Flow Label
and Traffic Class fields, then the labels viz. Covert_FL and
Covert_TC are set to 1 and the rest two labels (Normal and
Covert_HL) are set to O for that sample in the dataset. This
is how the dataset carrying normal and covert IPv6 packets is
created. Fig. 5 depicts the extraction of header fields from
IPv6 packets and the creation of a dataset containing the

a single multiclass classifier is used to address the problem.
The advantage of using the LP method over BR is that a
single multiclass model is learned instead of multiple binary-
class models. Also, the LP method preserves the dependency
amongst the labels whereas BR ignores it. For more details
on Problem Transformation methods, [52] can be referred
to. Due to the advantages of the LP method, the same is
used for Problem Transformation in this paper. Thus, in the
third phase, the original multilabel dataset is transformed into
a multiclass dataset using the Label Powerset method. The
transformation applied to the dataset is shown in Fig. 6, where
X stands for input features viz. Transport layer protocol,
Source’s port number, Destination’s port number, TC, SA,
DA, FL, PL, HL, and NH. Further, this transformed dataset
is split into: the Train_and_validate dataset(eighty percent of
the total) and the Test dataset (twenty percent of the total). The
Train_and_validate dataset is utilized to perform training
and validation of the proposed SPYIPv6. The Test dataset is
utilized to assess its generalization ability.

Input Output Input Output
extracted header fields. Features With Multiple labels Features  Classes
Covert- | Covert- | Covert
= X | Normal Traffic Flow - Hop X Transformed
.peap files with .peap files with Single- -peap files with Two- .peap files with Class Label Limit Class
Normal IPv6 field Covert IPv6 field Covert IPv6 Three-field Covert Dataset
Packets Packets Packets IPv6 Packets X 1 0 0 0 Transformation i1 0
X 0 1 0 0 using Label X2 1
Powerset
X3 0 0 1 0 Method X3 2
Xg 0 0 0 1 —_—> X 3
Header fields X5 0 1 1 0 X5 4
Extracti

Xtraction XG 0 1 0 1 XG 5
X7 0 0 1 1 X7 6
Xg 0 il 1 1 Xg 7
X 0 1 1 0 Xo 4

IPv6 Packets Dataset (containing Normal and Covert IPv6 Packets)

FIGURE 5. Header fields extraction and dataset creation.

3) PHASE 3: DATASET TRANSFORMATION FROM
MULTILABEL TO MULTICLASS DATASET AND DATASET
SPLITTING

The dataset obtained in Phase 2 consisted of 4 labels corre-
sponding to each sample: Normal, Covert_TC, Covert_FL,
and Covert_HL. The commonly used technique for handling
a multilabel problem is the use of any Problem Transforma-
tion methods. The Problem transformation methods address
the multilabel classification task by transforming the mul-
tilabel dataset into one or more binary/multiclass datasets.
Further, the transformed dataset(s) are used to train exist-
ing binary/multiclass classification methods to build one or
more single-class models. The commonly used approaches
for Problem transformation are Binary Relevance (BR) and
Label Powerset (LP). Both techniques use simple classifiers
for problem-solving. In Binary Relevance, n; binary classi-
fiers are used, where n, is the number of labels in the original
multilabel problem whereas in the Label Powerset method,

103492

FIGURE 6. Dataset transformation from multilabel dataset to multiclass
dataset using label powerset method.

4) PHASE 4: TRAINING, VALIDATION, AND TESTING OF
SPYIPv6

After transforming the multilabel dataset into a multiclass
dataset and splitting it, the next phase comprises the training,
validation, and testing of SPYIPv6.

Before training the SPYIPv6, pre-processing of the train-
ing dataset is done which comprises quantization and stan-
dardization of the data. To transform all category-based
values into numeral-based values, quantization is applied,
whereas standardization scales the data to fit the standard
normal distribution. After applying this pre-processing, the
training dataset is used for training. At the first layer, the
binary KNN (b-KNN) is trained on the pre-processed training
dataset after transforming the multiclass values into binary
class values. This is done by assigning a class value of 0 to
a normal IPv6 packet and a class value of 1 to any type
of covert IPv6 packet. For the second layer, the multiclass
KNN (m-KNN) classifier is trained to perform multiclass
classification to find the header field(s) carrying covert data in

VOLUME 11, 2023



P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

IEEE Access

the packets classified as covert by the first layer. For training
the classifier at this layer, only covert samples are fetched
to create a covert sample dataset. The training phase of the
b-KNN classifier for layer 1 and the m-KNN classifier for
layer 2 is shown in Fig. 7.

TABLE 2. Hyperparameters for b-KNN and m-KNN classifiers.

Hyperparameters b-KNN m-KNN
K 7 3
Distance Algorithm Euclidean Euclidean

Table 2 describes the hyperparameters used for b-KNN
and m-KNN classifiers, which are chosen after rigorous
experimentation.

Transformed
Multiclass
Training
Dataset Preprocessed Train b-KNN Trained
Training Dataset Classifier for b-KNN
Samples with Layer 1 Classifier
Binary Labels

Preprocessing

Assign
Binary Labels

Select

Preprocessed Trained

Pr?rp“.’cf:ssm Samples Training Dataset Train m-KNN m-KNN
raining with only Samples with Claﬁ:nﬁcrzror Classifier
Dataset Covert Covert Labels =

Labels only

FIGURE 7. Training phase of the classifiers for the first and second layer
of SPYIPv6.

Preprocessed 1 1.,
Test p Trained Predicted
Sample b-KNN Label
o Classifier Normal? e Normal

1

1

1

1

1

IPv6 1
Packet ||
No 1
1

I

1

P N U YU O S S I I ——

: ILayer 2: Locating IPv6 Header field(s) with Covert Data I'
! Trained 1
: m-KNN Predicted location of Covert Dataout | |
. Classifier Output of the following classes: 1
1 {(TC), (FL), (HL),(TC,FL), (TC,HL), :
1 (FL,HL), (TC,FL,HL)} i
; 1
! 1

FIGURE 8. Testing phase of SPYIPv6.

The testing phase of the proposed SPYIPv6 is shown in
Fig. 8. Each test sample ‘t’ is given as input to the first layer
of the proposed system. If the b-KNN classifier used in layer 1
classifies sample ‘t’ as a normal packet then it is marked as
a normal packet. Whereas, if b-KNN classifies the sample ‘t’
as a covert packet, then sample ‘t’ is forwarded to the second
layer which consists of an m-KNN classifier that finds the
location of covert data in the covert packet. Fig. 9 presents
the algorithm used for testing SPYIPv6.

VOLUME 11, 2023

Input: Test Sample ‘t’
Output: Lx (Class Predicted for test sample ‘t’)
#Binary Classification at Level 1:
1. Pass the sample ‘t’ to b-KNN for binary classification.
2. Denote the class predicted by b-KNN as Px
3. If Py indicates Normal class then:
a. ‘t’isrecorded as a Normal packet with the class Lx
as Normal.
else if P indicates a Covert class then:
# Multiclass Classification at Level 2.
a. Sample ‘t’ is passed to m-KNN classifier to locate hidden
data in the IPv6 packet’s header.
b. The class predicted by the m-KNN classifier is marked as
the final label Ly for test sample “t”.
4. Ly is the final predicted class for the test sample ‘t’.
5.End.

FIGURE 9. Algorithm used for testing SPYIPv6.

V. EXPERIMENTS AND RESULTS

This system was developed using a 2.1 GHz Intel Core
i7-12700 processor with 16 GB RAM on Windows 11 pro
operating system. For implementation, Python version
3.9.12 was used. Version 1.0.1 of the sklearn library was used
to implement and experiment with various classifiers like
SVM, KNN, RF, Naive Bayes (NB), etc. For the development
of the proposed SPYIPv6, the following steps were carried
out: Dataset creation, Dataset preprocessing, Training, and
Validation of classifiers for both layers, and Testing of the
hybrid classifier system with the Test dataset. Experiments
were conducted with different Deep Learning and Machine
Learning-based classifiers like DNN, CNN, LSTM, KNN,
SVM, NB, Logistic Regression (LR), and RF algorithms to
find the classifiers that give high accuracy in minimum testing
time. The next subsection describes the first step which is the
process of dataset creation.

A. DATASET

The proposed SPYIPv6 was trained and tested on a generated
dataset comprising normal as well as covert IPv6 pack-
ets. Firstly, the UCSD Anonymized Internet Traces Dataset
[January 2019] [49] which was supplied by the Centre for
Applied Internet Data Analysis was used to gather nor-
mal packets. This dataset consists of packet capture files.
From these packet capture files, several flows were selected
randomly which contained a total of 327192 real-time nor-
mal IPv6 packets. In the second step, 210000 packets were
selected randomly as normal IPv6 packets out of these
327192 packets. Thirdly, for the covert packets, the fol-
lowing categories were needed: single-field covert packets
(packets containing covert data in TC, FL, and HL fields
individually), two-field covert packets (packets containing
covert data in two-field combinations viz. {TC — FL},
{TC - HL} and {FL — HL}) and three-field covert packets
(packets containing covert data in three-field combination
viz. {TC— FL- HL}). The single-field covert IPv6 packets
were obtained by utilizing a tool named pcapStego [50]. It
takes two files as input, first, a text file containing the secret
message and header location where the secret message is to be

103493



IEEE Access

P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

injected, and second a packet capture file that comprises [Pv6
packets, into which the secret data is to be injected. These
packet capture file containing IPv6 packets were obtained
from the same UCSD Anonymized Internet Traces Dataset
which consisted of 37 large flows. pcapStego injects secret
data in individual fields namely TC, FL, and HL fields of
an IPv6 packet keeping all other fields and values as they
were originally during the real-time capture. The output of
pcapStego is a new packet capture file that contains IPv6
packets with manipulated headers. In the fourth step, a total
of 51485 covert IPv6 packets were obtained individually for
TC, FL and HL fields. 30000 covert packets were randomly
selected from each category and added to the final dataset.
In the fifth step, the two-field and three-field covert packets
were generated with Python scripts using the same technique
as used in pcapStego tool. The Python scripts made use
of the Scapy library [51] to inject data into the above-said
combinations of header fields in IPv6 packets. The Python
scripts took as input a .pcap file containing IPv6 packets (in
which secret data is to be injected) which were obtained from
the same UCSD Anonymized Internet Traces Dataset and
output a new packet capture file containing IPv6 packets with
covert data in the respective header field(s). These Python
scripts were also verified on a simulation over a LAN to test
the successful transfer of covert packets by injecting covert
messages in the above-said IPv6 header fields. A total of
51485 covert IPv6 packets belonging to each of the four
categories ({TC—FL}, {TC-HL}, {FL—-HL} and {TC-FL—
HL}) were obtained using these scripts. 30000 covert packets
were again randomly selected from each category and were
added to the final dataset. Finally, the dataset consisted of
420000 IPv6 packets out of which 210000 were normal pack-
ets and 210000 were covert IPv6 packets. In the sixth step, the
header fields viz. SA, DA, TC, PL, HL, NH, FL, Transport
Layer Protocol, Source Port number, and Destination Port
number were fetched as features from all the packet capture
files obtained/created in the previous step. The fields other
than the IPv6 header like Transport Layer Protocol, Source
Port number, and Destination Port number were selected as
features, as they are important in identifying the flow to which
an IPv6 packet belongs. They were needed for making the
model learn vital associations such as the FL value remains
the same throughout for all the packets that belong to a flow
and any deviation to this should be taken as an anomaly.
Further, the following four labels were added to each sample:
Normal, Covert_TC, Covert_FL, and Covert_HL. Altogether,
the normal packets and all types of covert packets resulted in
a complete dataset.

In the seventh step, this complete multilabel dataset was
converted to a single multiclass dataset using the Label Pow-
erset method as discussed in Section IV. Lastly, this complete
dataset was further split into: the Train_and_validate dataset
(eighty percent of the entire dataset) and the Test dataset
(twenty percent of the entire dataset). The dataset used for
the experimentation has been described in Table 3.

103494

TABLE 3. Description of the dataset.

Train_and validate Test
Ll Dataset Dataset izt
Normal 168023 41977 210000
Covert-Traffic
Class 23974 6026 30000
Covert-Flow
Label 23985 6015 30000
Covert-Hop Limit 23912 6088 30000
Covert-Traffic
Class-Flow Label 24055 5945 30000
Covert-Traffic
Class- Hop Limit 23932 6068 30000
Covert-Flow
Label- Hop Limit 23974 6026 30000
Covert-Traffic
Class-Flow 24145 5855 30000
Label-Hop Limit
Total 336000 84000 420000

B. PREPROCESSING

Preprocessing is an important task to be done before apply-
ing any ML/DL algorithm to a dataset. It helps in feature
scaling and thereby provides better results. In this paper, the
Train_and_validate dataset and the Test dataset were pre-
processed independently. The following preprocessing steps
were applied to the created datasets. To begin with, the single
attribute fields corresponding to the SA and DA, each having
8 octets separated by colons were broken into 8 different
attributes corresponding to each field. The two categorical
attributes viz. Transport Layer Protocol and NH were con-
verted to numerical values using quantization. Whenever the
dataset has a different range of values, then to give equal
importance to all the attributes, scaling or standardization is
done. In this paper, standardscalar() function from sklearn’s
[53] version 1.0.1 was used for scaling of data. Prior to
training, the pre-processed Train_and_validate dataset was
split into: the Train dataset which was used for training the
classifier used in both layers and the Validate dataset which
was used to validate the performance of the classifier.

The classifiers for both layers of the proposed SPYIPv6
were chosen after extensive experimentation. The following
experiments were done to develop an efficient system that
provides high accuracy in less testing time.

1) EXPERIMENT 1: SELECTING CLASSIFIER FOR THE FIRST
LAYER OF SPYIPv6

In the proposed system, the first layer performs binary
classification to segregate normal and covert IPv6 packets.
For performing binary classification, a dataset with binary
classes was required. Hence the Train_and_validate multi-
class dataset was transformed into a binary class dataset by
keeping the class of normal samples as 0 and transforming
all covert classes to 1. After this dataset transformation,

VOLUME 11, 2023



P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

IEEE Access

various ML and DL classifiers were experimented with and
evaluated to select the classifier that gives high accuracy in
efficient training and testing time. The following algorithms
were experimented with: DNN, CNN, LSTM, KNN, RF,
SVM, LR, and NB for binary classification. After a thorough
comparison which is shown in the Results subsection, KNN
was chosen for the binary classification task performed in
layer 1.

2) EXPERIMENT 2: SELECTING CLASSIFIER FOR THE
SECOND LAYER OF SPYIPv6

The second layer of the proposed SPYIPv6 finds the header
fields carrying covert data in covert IPv6 packets. For locating
covert data, a dataset with only covert-class samples was
required. Hence the multiclass Train_and_validate dataset
(comprising both normal and covert packets) was converted
to the only covert class dataset by removing all the normal
samples and keeping only the covert samples. After this
dataset transformation, various ML and DL algorithms were
experimented and evaluated, to select a classifier that gives
high accuracy in less training and testing time. As KNN
was finalized as the classifier for layer 1, thus for select-
ing the classifier at the second layer, these combinations of
classifiers viz. KNN-DNN, KNN-CNN, KNN-LSTM, KNN-
KNN, KNN-SVM, KNN-LR, KNN-RF, and KNN-NB were
examined.

The accuracy percentage, time taken for training, and
average testing time per sample for all the above-said com-
binations were evaluated and are discussed in the Results
subsection. After comparing the classifiers on these parame-
ters, the KNN-KNN combination was selected as this outper-
formed its counterparts with high accuracy and comparable
testing time.

C. EVALUATION METRICS

The proposed SPYIPv6 was evaluated with the help of vari-
ous performance metrics viz. accuracy, recall, precision, and
F1-score using the Test dataset.

Accuracy is defined as the number of test samples that
are classified correctly, out of all the test samples that were
passed through a classifier. Equation (4) presents the formula
used to compute the accuracy of a system.

\ TN + TP @
ccuracy =
YT INTFEN + TPt FP

where TN denotes True Negatives, TP denotes True Positives,
FN denotes False Negatives and, FP denotes False Positives.

Recall is computed as the ratio of the number of true
positives to the sum of true positives and false negatives.
Equation (5) is used to compute the recall value.

TP
Recall = —— ®)]
TP + FN

Precision is described as the ratio of the number of true
positives to the sum of false positives and true positives.

VOLUME 11, 2023

Equation (6) is used to compute the precision value.

. P
Precision = —— (6)
FP+ TP
The harmonic mean of the Precision and Recall values is
computed to give the Fl-score. Fl-score is calculated using
equation (7).
(2XPrecisionXRecall)

F1 — Score = — @)
Precision + Recall

False Positive Rate (FPR) is the fraction of negative sam-
ples predicted as positive samples. It is calculated using
equation (8).

FP
" FP+1N
False Negative Rate (FNR) is the fraction of positive sam-

ples predicted as negative samples. It is calculated using
equation (9).

FPR (8)

_FN
" FN + TP

The evaluation of the experiments was done based on the
above-stated parameters and the results are discussed in the
following subsection.

FNR 9

D. RESULTS
This subsection discusses the results obtained after conduct-
ing various experiments described above. The first exper-
iment was conducted to select a suitable classifier for the
first layer that provided high accuracy with less testing time
for detecting covert IPv6 packet. For this purpose, various
ML and DL algorithms were experimented with to find the
best classifier. The results of their performance with respect
to accuracy percentage, time taken for training, and average
testing time per sample are shown below in Fig. 10, Fig. 11,
and Fig. 12. To calculate testing time, ten samples of each
covert and normal class from the z7est dataset were selected
randomly. Each of these samples was passed through the
proposed system individually. An average of the testing times
taken by selected test samples was noted as the average
testing time per sample. After comparing all the classifiers
on the above-said parameters, it was observed that for the
first layer, the KNN classifier gave the best accuracy with the
least training time and the third least testing time as shown in
Fig. 10, Fig. 11 and Fig. 12. Thus, KNN was finalized as the
binary classifier to be used at the first layer of SPYIPv6.
The results of the second experiment which was conducted
to select a suitable classifier for the second layer with respect
to accuracy percentage, time taken for training, and average
testing time per sample are shown below in Fig. 13, Fig. 14,
and Fig. 15. The average testing time per sample was eval-
uated for both normal and covert samples separately in the
same way as done for classifiers experimented for the first
layer. After comparing all the classifiers on these parameters,
it was observed that the combination of KNN at layer 1 and
KNN at layer 2 delivered the best accuracy percentage in

103495



IEEE Access

P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

Accuracy Percentage

99.96
0o 96 99.03 9.12 —_—
95
90.87 90.97

%

o 84.38

80

75

70

65

60

55

50

DNN CNN LST™M KNN SVM RF LR NB

mAccuracy% 9.6 99.03 99.12 99.96 98.73 90.87 90.97 8438

FIGURE 10. Accuracy percentage of different classifiers experimented for
first layer.

Training Time (seconds)

715
700
600
540
500
400
354
300
00 m
100
0.017 033 1.248 0.0782
9 DNN CNN LST™ KNN SVM RF LR NB
= Training Time (seconds) 172 354 715 0.017 540 033 1.248 0.0782

FIGURE 11. Training time of different classifiers experimented for first
layer.

Average Testing Time per Sample (seconds)
0.18

0.16 0.1555
0.14
0.12
0.1
0.08
0.06

0.04  0.0329 0.0379

00229
002 001615
I 0.0011 0.00399 0,00199
0 p— = —

DNN CNN LSTM KNN SVM RF LR NB
= Average Testing Time per Sample

0.0329 0.0379 0.1555 0.01615 0.0011 0.0229 0.00399 0.00199
(seconds)

FIGURE 12. Average testing time per test sample of different classifiers
experimented for first layer.

comparison to other combinations in consideration. Further,
it took the least training time and least testing time among
the classifiers for which the accuracy percentage was greater

103496

than 97. Thus, the combination of KNN at the first layer
and KNN at the second layer was selected for the proposed
SPYIPv6.

Further, FPR is an important metric while evaluating a
classifier identifying and locating covert packets. As in real-
world scenarios, covert packets are expected to be very rare.
At the same time, many covert packets are usually needed to
send a message, so it might suffice to detect just some of them
to detect the covert communication in a flow. Therefore, the
classifier needs to have an extremely low FPR while FNR can
be higher.

Accuracy Percentage

100 99.7 99.85
97.69
" 616 9732
95 9380 9425
0 $6.49
85
80
75
70
65
0
55
X KNN+
KNN+ KNN+ KNN+ KNN+  KNN
KNN+RF KNN+NB KNN+LR gy DNN CNN LSTM  (Proposed
SPYIPV6)
mAccuracy 9389 9425 8649 9616 99.7 9732 9769 99385

FIGURE 13. Accuracy percentage of different classifiers combinations
experimented for the Proposed SPYIPv6.

Training Time (Seconds)

900 869.345

500 468.197

200 173.927
9154

0442 0.0604 3917 . 0.027
0

KNN + KNN
KNN+RF  KNN+NB KNN+LR KNN+SVM KNN+DNN KNN+CNN KNN+LSTM (Proposed
SPYIPv6)
uTraining Time ~ 0.442 0.0604 3917 869.345 91.154 173.927 468.197 0.027

FIGURE 14. Training time of different classifier combinations
experimented for the proposed SPYIPv6.

The FPR and FNR for all the classifiers considered at
level 1 were evaluated and a comparison of the same is given
in Fig. 16. It was found that KNN recorded an extremely least
FPR of 0.000309 and FNR of 0.000310 further strengthening
the decision to choose KNN as the level 1 classifier.

Additionally, the FPR and FNR for all the classifiers con-
sidered for level 2 were also evaluated. A comparison of
the same is given in Fig. 17 and Fig. 18. It was found that
KNN and DNN recorded extremely least FPR for identifying
various covert classes. Between KNN and DNN, the KNN
further recorded the lowest FPR for six out of eight classes,
hence justifying the selection of KNN as a level 2 classifier.

VOLUME 11, 2023



P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

IEEE Access

Avg. Testing Time per Normal/Covert Test Sample (Seconds)

" 0.176

0.051
0.054

016
015
022

0.015
0.
0.016
0.019
0.015
0.

i n

0.
- 0016
= 0016
- 0.015

= 0015
- 0.016
- 0.015

KNN +
KNN+ KNN+ KNN+ KNN+ KNN+ KNN+ KNN+ KNN
RF NB LR SVM DNN CNN  LSTM (Proposed
SPYIPv6)
B Avg: Testing/Time per Normal Test 0015 0016 0016 0015 0015 0016 0015 0015

Sample
® Avg. Testing Time per Covert Test Sample  0.016 ~ 0.015 0016 0019 0051 0054  0.176 0022

FIGURE 15. Average testing time per normal and covert test sample for
different combinations of classifiers.

FPR AND FNR
g
S
a
s
=
g
g2
g s %
sz 3
S
B S
s ‘
2
o S
2 g 5
8 £
g8 Sz %% & = Sg
gz °3 gz g8 z
s§ ¥ 33 8% |
[ - s L 4} |
DNN CNN LS™ KNN SVM RF LR NB

= False Positive Rate ~ 0.006829  0.01756 ~ 0.00454  0.000309  0.02343 ~ 0.08764  0.13339 021197
= False Negative Rate 0.0011196  0.00181 0.001548  0.00031 0.001882  0.094868  0.04751 0.0734

FIGURE 16. FPR and FNR of different classifiers experimented for the first
layer.

KNN works as a suitable classifier at both the layers as it
operates by finding the distances between a test sample and
all the training samples in the data, selecting the K closest
training samples to the test sample, then votes for the most
frequent class.

COMPARISON WITH STATE-OF-THE-ART TECHNIQUES
This subsection discusses the comparison of the proposed
system with other related works. Some related works utilized
DL or ML classifiers to detect covert communications over
IPv6. Table 4 shows a concise comparison of these works
with the proposed SPYIPv6. It is evident from Table 4 that
the proposed SPYIPv6 obtains comparable accuracy in the
least testing time among all the previous works considered for
comparison in this paper. Moreover, the works done in [16]
and [17] only detect covert IPv6 packets, and work done in
[18] detects and locates covert data in individual fields only.
Thus, the proposed SPYIPv6 outperforms all the considered
previous works in terms of average testing time per covert
sample as well as functionality with comparable or higher
accuracy.

Other techniques in related works utilized packet filters
available inside the kernel to gather statistical information

VOLUME 11, 2023

that helps in detecting covert channels. Reference [13] sug-
gested using code augmentation within the Linux kernel with
the help of extended Berkley Packet Filter to obtain the
statistical information about the values used in the FL field.
Repetto et al. [14] presented bcestego that utilized the BPF
Compiler Collection tool for gathering statistical information
about TC, FL, and HL fields to detect unusual activity. The
baseline concept in both [13] and [14] is to find a pattern
for scrutinizing header fields of IPv6 packets and gathering
statistical indicators that can predict the presence of hidden
data. The advantages that our proposed technique offers over
both [13] and [14] are as follows.

TABLE 4. Comparison of previous related works with proposed SPYIPv6.

Testing Functionality
. (Detection/ Types of
Accuracy time per Location storage-based
covert X .
Percentage - Identification ~ covert channels
— of Covert detected/located
Data)
Source Address
BNS _CNN Detection based,
[16] 100% 0.171 Only Hop Limit
based.
Flow Label
DICCh-D o Detection based,
[17] 99.39% 0.0498 Only Traffic Class
based.
Detectlo_n Traffic Class
and Location
X . based,
Dua et al Identification Hop Limit
’ 99.70% 0.0523 of hidden
[18] . based,
data in single
Flow Label
fields of based
IPv6 header )
Traffic Class
based,
Hop Limit
based,
Flow Label
Detection based,
and Location {Flow Label +
Identification Traffic Class}
Proposed of hi.dden bas;d, )
SPYIPv6 99.85% 0.0222 data in one {Hop Limit +
ora Traffic Class}
combination based,
of header { Flow Label +
fields Hop Limit}
based,
{Traffic Class +
Hop Limit +
Flow Label}
based

Firstly, our technique proposes the detection and identi-
fication of the location of the covert data present in one or
a combination of header fields viz. TC, FL, and HL fields
of IPv6 packets whereas both [13] and [14] only detect the
presence of a covert channel in a single field. Secondly, the
eBPF-based detection mechanism used in both [13] and [14],
has a limitation that the indicator viz. number of bins needs
to have more granulated values for providing good accuracy
which would use a large amount of memory for the node
executing eBPF. Whereas no such limitation is there in the
proposed SPYIPv6.

103497



IEEE Access

P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

FPR OF VARIOUS COVERT CLASSES FOR DIFFERENT

LEVEL 2 CLASSIFIERS 3 -
g N
S 2
© S
=]
o
b
g
g 3l -
wi o
2 g 1182
= % bt
2 3 oF
3 = Lo
< TS
< o
= I
o8 1 |-
v o Yo o =Y
Y B o © T w=
. 3 — g 2,89 3 S22
= Q9 o052 =338
~° =3 “no
S °© 3 & 2 SRCdS g & ] [2N
$.1 2 g 34328 ze°zs|s gla w32
sull 2«9 « aQigs - =M B =3
Caezg S2.32% B Zan¥s 2382388 [F |Ex <ES = g glss
w R8Ees SleS28 = SRRHe K88SS 8 s zlag 2 g 23
o SA8%E IIZPS8 § BesSaE §ESZPS g Bl23 = 3 83
8 ]
g gss38 8|83 g ss88s S8 R B i g
3o slSlsy Sesssss sg| 3333 =N |
-°2 M | gl Bt S I |
KNN CNN DNN LSTM RF GNB LR SVM
= Covert_TC 0000325 00149797 0.000278156 000072619 0084264 001678205 002009467 0.000028262
= Covert_FL 0 0001471895 0 0.00016694 0000027771 001011656 0.04825556 0
= Covert_HL 0.000055713 0024595 0000083612 000735294 0 00229088 0.008079 0.0078845
Covert_TC_FL 0.0005265 00004157 00015502 0008172587 0.000061 00148235 0.062568 0.026497572
# Covert_TC_HL 0.0006673 00135447 0.00105767 0.01409625 0046749 0.02164816 007997714 0.01443149
# Covert_FL_HL 0.00058313 0.00288913 0.001387424 0.00798064 0000305488 00274291 0041633328 0.015930284
wCovert_ TC_FL_HL  0.00066349 0003926122 0.00074567 0.01460554 0.00029057 0019212969 0.04658691 00230719
FIGURE 17. FPR of different covert classes for different second-level classifiers.
FNR OF VARIOUS COVERT CLASSES FOR DIFFERENT =
LEVEL 2 CLASSIFIERS 2
2
z
§
a S °
8 g8
2 3
5 ©
a o a
< = 3
S
N
2 & s
2 o °
2 s g
2 g 3
] g - 8
S S I3
~ VienS
o geg g s z
@ aae 2| =8 §
- §°,9 3 83:3 afs2 — 2
g 22 8. - 2538 = P g5 .8
2 23 =4 o 3z ZzZe2 S 2 S 98
ha =x o = w oo Sn &
g8 38 = T B S21 8%,
Segs 218 8o 2 = g 288
hd 212 Bag S S8l 233
s ¢ 2 o Y + = S 5 °.=
«© — — b o N w b~ piy —
o388 5 23 g 32382 3 S B8k & = g
S3g2233 ¥ &S g %373 S S SZE|8 =
g38ssss £ ¢ 5 _3838s g3z 8
coesSSsS Sooc .e"_Q.Oo SoS So ° =
KN CNN DNN LSTM RF GNB LR SVM
= Covert_TC 0.00149427 0.00248921 0.00922266 0.03601286 0.00147167 0.083375613 0.421750377 0.092620481
= Covert_FL 0.00199104 0 0 0.1216505 0.000166251 0 0.152875175 0.057062235
= Covert_HL 0.00425393 0.00098554 0.00944164 0.08840557 0.001803574 0.136602165 0.299071618 0.141040804
Covert_TC_FL 0.00218892 0.09957947 0.0016952 0.00598381 0.35799935 0.136225873 0.17555147 0
= Covert_TC_HL 0.0026402 0.03401474 0.00984413 0.08173712 0.001855717 0.14327343 0.149202733 0.08432343
® Covert_FL_HL 0.00099817 0.118984401 0.00150376 0.05312655 ) 0.10419566 0.218241606 0.089968286
mCovert TC_FL_ HL  0.00341822 0.100939368 0.00447196 0.03761302 0231729758 0232108317 0353647276 0.041913876

FIGURE 18. FNR of different covert classes for different second-level classifiers.

Thirdly, the proposed technique can be used for detecting
and identifying the location of any length of covert mes-
sages whereas using the methodology proposed in both [13]
and [14] cannot detect small-length covert communications.
Lastly, the authors pointed out a limitation in [ 14] that it is less
effective for detecting covert channels developed using the
HL field of the IPv6 header, whereas the proposed SPYIPv6
detected the existence of hidden data in the same field with
high accuracy.

In addition, the proposed SPYIPv6 was also compared
with the IPv6-based NCCs detection and location system
developed using only a single multiclass KNN classifier.

103498

The comparison was done on the basis of precision, F1-score,
and recall values. It was observed that the proposed SPYIPv6
outperformed the single multiclass KNN classifier with
respect to precision, Fl-score, and recall values for mostly
all the classes. The results of the same are shown in Fig. 19,
Fig. 20, and Fig. 21.

From all the results discussed above, it is clear that the
proposed SPYIPv6 performs the detection of covert data
along with the locating of covert data present in one or a
combination of header fields of storage-based NCCs over
IPv6 with high accuracy in an efficient time. Moreover, the
applications which only need to identify whether an IPv6

VOLUME 11, 2023



P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

IEEE Access

99943
0.99969

0.
0.99851

Comparison of Precision Values for KNN and the Proposed SPYIPv6(KNN +
KNN)

Covert_TC_ Covert_TC_ Covert_FL_ Covert_TC_
Normal ~Covert TC Covert FL Covert HL 2 =3 i FL AL

= KNN 0.99943 0.99668 0.99437 0.99461 0.99662 0.99342 0.99684 0.99725
B KNN+KNN  0.99969 0.99851 0.99668 0.99575 0.99731 0.99736 0.999 0.99658

0.99668
0.99668
099575
0.99662
0.99731
099736
0.99684
0.99725
0.99658

99461

099437

I 0.99342

FIGURE 19. Precision values-based comparison for KNN and the
proposed SPYIPv6 corresponding to each class.

Comparison of Recall Values for KNN and the Proposed SPYIPv6 (KNN + KNN)
s
@

S -1 ]
| | §E 8
g
1 ‘

Nomal  Covert TC  Covert FL  Covert HL Covert TC_FL “™*-TCH covert p1,_pr CoVert fCFL

=KNN 0.99969 0.99668 0.99751 0.99951 0.9926 0.99539 0.99602 0.98992
#KNN+KNN  0.99969 0.99801 0.99834 0.99967 0.99664 0.99604 0.99652 0.9959

T
28
g2
& 38
3 s

0.9996°

10.999:

0.99668
0.99751

09959

I 0.99664
P 0.99652

I 0.9926
I 0.98992

§ I 0.99539

FIGURE 20. Recall values-based comparison for KNN and the proposed
SPYIPv6 corresponding to each class.

0.99956
0.99969

0.99751
0.9977

g g
g g
| i

Comparison of F1 Score Values for KNN and the Proposed SPYIPv6 (KNN +
Covert_ TC_H Covert,
L

I 0.99776
099357
0.99624

99668
R 0.99826
099593
0.99705
0.99461
099697
I 0.9944.

KNN)
3

Nommal ~ Covert TC ~ Covert FL.  Covert HL Covert TC_FL. 5

=KNN 0.99956 0.99668 0.99593 0.99705 0.99461 0.9944 0.99643 099357
®KNN+KNN 099969 0.99826 0.99751 0.9977 0.99697 0.9967 0.99776 0.99624

=]

L_H Covert_TC_FL
HL

FIGURE 21. F1-Score values-based comparison for KNN and the proposed
SPYIPv6 corresponding to each class.

packet is normal/covert can only use the predictions made by
layer 1, and the applications which need to know the location
of hidden data can further use the predictions made by layer 2
to identify the header fields carrying secret data. Thus, the
proposed SPYIPv6 provides a complete solution, making it
suitable to be used in real-world networks for detecting and
further locating covert data present in one or a combination
of header fields of an IPv6 packet.

VI. CONCLUSION

Modern-day attackers mostly try to target younger protocols
that are upcoming and whose security aspects are still being
researched. With the development of modern threats like

VOLUME 11, 2023

stegomalware, there is an urgent need to develop counter-
measures to overcome such threats on prominent upcoming
protocols like IPv6. For this, a two-layered-based sequential
system that detects and identifies the location of hidden data
present in one or a combination of the header field(s) of
storage-based NCCs over IPv6 protocol has been proposed
in this paper.

The dataset needed to train, validate, and test the proposed
SPYIPv6 was generated. The normal packets were gathered
randomly from a zCAIDA’s Dataset whereas the covert pack-
ets were obtained using Python scripts and the pcapStego
tool. Rigorous experimentation was done to find efficient
classifiers with respect to parameters viz. accuracy, testing
time, and training time. Various ML and DL classifiers were
evaluated and compared, for selecting appropriate classifiers
for the two layers of the proposed SPYIPv6. The proposed
system predicted accurate results for detecting any length of
covert messages which was one of the limitations of eBPF-
based detection techniques discussed in the literature.

The strength of this paper is that this work further added
a significant contribution towards detecting as well as iden-
tifying the location of covert data in either one or any
combination of IPv6 header fields viz. FL., TC, and HL.

Further, the generalization ability of the proposed SPYIPv6
was assessed using Test dataset that was generated and used
only to evaluate the system. With this test dataset, SPYIPv6
reported 99.85% accuracy in detecting and finding the loca-
tion of hidden data present in one or a combination of the
header field(s) of a covert IPv6 packet. In terms of training
time and average testing time per test sample, the proposed
SPYIPv6 took approximately 0.027 seconds to train and
0.0222 seconds to provide the location of hidden data. Due
to the limitation of hardware, the experiments could not be
run on parallel processors like GPU which can further reduce
the training and testing times. The same can be taken up as a
future work.

On the whole, the proposed SPYIPv6 can be considered
an efficient and consolidated solution for detecting as well
as locating covert data present in one or a combination of
header fields in covert communications developed using the
IPv6 protocol.

REFERENCES

[1] G. Lencse and Y. Kadobayashi, “Comprehensive survey of IPv6 transition
technologies: A subjective classification for security analysis,” IEICE
Trans. Commun., vol. E102.B, no. 10, pp. 2021-2035, 2019.

[2] A.J.Jara, L. Ladid, and A. F. Gomet-Skarmata, “The Internet of Every-
thing through IPv6: An analysis of challenges, solutions and opportuni-
ties,” J. Wireless Mobile Netw. Ubiquitous Comput. Dependable Appl.,
vol. 4, no. 3, pp. 97-118, 2013.

[3] K. Fujiwara, M. Shigeno, and U. Sumita, “A new approach for developing
segmentation algorithms for strongly imbalanced data,” IEEE Access,
vol. 7, pp. 82970-82977, 2019.

[4] W. Mazurczyk and L. Caviglione, “Information hiding as a challenge
for malware detection,” IEEE Secur. Privacy, vol. 13, no. 2, pp. 89-93,
Mar. 2015.

[5] J. Saenger, W. Mazurczyk, J. Keller, and L. Caviglione, ““VoIP network
covert channels to enhance privacy and information sharing,” Future
Gener. Comput. Syst., vol. 111, pp. 96-106, Oct. 2020.

103499



IEEE Access

P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

[6]
[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

L. Caviglione, “Trends and challenges in network covert channels coun-
termeasures,” Appl. Sci., vol. 11, no. 4, p. 1641, Feb. 2021.

W. Mazurczyk, P. Szary, S. Wendzel, and L. Caviglione, “Towards
reversible storage network covert channels,” in Proc. 14th Int. Conf. Avail-
ability, Rel. Secur. (ARES), New York, NY, USA, Aug. 2019.

X. Zhang, C. Liang, Q. Zhang, Y. Li, J. Zheng, and Y.-A. Tan, “Building
covert timing channels by packet rearrangement over mobile networks,”
Inf. Sci., vols. 445-446, pp. 66-78, Jun. 2018.

Google. (2023). Google IPv6. Accessed: May 6, 2023. [Online]. Available:
https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption
N. B. Lucena, G. Lewandowski, and S. J. Chapin, “Covert channels
in IPv6,” in Proc. Int. Workshop Privacy Enhancing Technol., Berlin,
Germany, 2005, pp. 147-166.

W. Mazurczyk, K. Powdjski, and L. Caviglione, “IPv6 covert channels
in the wild,” in Proc. 3rd Central Eur. Cybersecurity Conf., Munich,
Germany, Nov. 2019, pp. 1-6.

P. Bedi and A. Dua, “Network steganography using extension headers in
IPv6,” in Proc. 5th Int. Conf. Inf., Commun. Comput. Technol. (ICICCT),
Delhi, India, 2020, pp. 98-110.

L. Caviglione, W. Mazurczyk, M. Repetto, A. Schaffhauser, and
M. Zuppelli, “Kernel-level tracing for detecting stegomalware and covert
channels in Linux environments,” Comput. Netw., vol. 191, May 2021,
Art. no. 108010.

M. Repetto, L. Caviglione, and M. Zuppelli, “beestego: A framework for
investigating network covert channels,” in Proc. 16th Int. Conf. Availabil-
ity, Rel. Secur., New York, NY, USA, Aug. 2021, pp. 1-7.

M. Zuppelli, M. Repetto, A. Schafthauser, W. Mazurczyk, and
L. Caviglione, “Code layering for the detection of network covert
channels in agentless systems,” IEEE Trans. Netw. Service Manage.,
vol. 19, no. 3, pp. 2282-2294, Sep. 2022.

D. Zhao and K. Wang, “BNS-CNN: A blind network steganalysis model
based on convolutional neural network in IPv6 network,” in Proc. Int.
Workshop Digit. Watermarking, 2019, pp. 365-373.

A. Dua, V. Jindal, and P. Bedi, “DICCh-D: Detecting IPv6-based covert
channels using DNN,” in Proc. 7th Int. Conf. Inf., Commun. Comput.
Technol. (ICICCT), Delhi, India, 2022, pp. 42-53.

A. Dua, V. Jindal, and P. Bedi, “Detecting and locating storage-based
covert channels in IPv6,” IEEE Access, vol. 10, pp. 110661-110675, 2022.
S. Deering and R. Hinden. (2017). Internet Protocol Version 6
(IPv6) Specification. Accessed: Jan. 16, 2023. [Online]. Available:
https://tools.ietf.org/html/rfc8200

S. Zhang, “Cost-sensitive KNN classification,” Neurocomputing, vol. 391,
pp. 234-242, May 2020.

S. Kotsiantis, L. Zaharakis, and P. Pintelas, ““Supervised machine learning:
A review of classification techniques,” in Emerging Artificial Intelligence
applications in Computer Engineering. Amsterdam, The Netherlands: IOS
Press, 2007, pp. 3-24.

S. J. Gustavus, “The prisoners’ problem and the subliminal channel,” in
Advances in Cryptology. Boston, MA, USA: Springer, 1984, pp. 51-67.
W. Mazurczyk, S. Wendzel, M. Chourib, and J. Keller, “Countering adap-
tive network covert communication with dynamic wardens,” Future Gener.
Comput. Syst., vol. 94, pp. 712-725, May 2019.

T.Zhang, B.Li, Y. Zhu, T. Han, and Q. Wu, “Covert channels in blockchain
and blockchain based covert communication: Overview, state-of-the-
art, and future directions,” Comput. Commun., vol. 205, pp. 136146,
May 2023.

Z. Wang, L. Zhang, R. Guo, G. Wang, J. Qiu, S. Su, Y. Liu, G. Xu, and
Z. Tian, “A covert channel over blockchain based on label tree without
long waiting times,” Comput. Netw., vol. 232, Aug. 2023, Art. no. 109843.
Z. Guo, L. Shi, M. Xu, and H. Yin, “MRCC: A practical covert
channel over Monero with provable security,” IEEE Access, vol. 9,
pp. 31816-31825, 2021.

Z. Chen, L. Zhu, P. Jiang, C. Zhang, F. Gao, J. He, D. Xu, and Y. Zhang,
“Blockchain meets covert communication: A survey,” IEEE Commun.
Surveys Tuts., vol. 24, no. 4, pp. 2163-2192, 4th Quart., 2022.

P. Zorawski, L. Caviglione, and W. Mazurczyk, “A long-term perspective
of the Internet susceptibility to covert channels,” IEEE Commun. Mag.,
early access, Mar. 7, 2023, doi: 10.1109/MCOM.011.2200744.

W. Mazurczyk, S. Wendzel, S. Zander, A. Houmansader, and K. Szczyp-
iorski, Information Hiding in Communication Networks: Fundamentals,
Mechanisms, Applications, and Countermeasures. Hoboken, NJ, USA:
Wiley, 2016.

103500

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

(40]

[41]

[42]

[43]

(44]

(45]

(46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

J. Lubacz, W. Mazurczyk, and K. Szczypiorski, ““Principles and overview
of network steganography,” [EEE Commun. Mag., vol. 52, no. 5,
pp. 225-229, May 2014.

R. Flowers, ‘““Performance impact of header-based network steganographic
countermeasures,” IEEE Access, vol. 10, pp. 92446-92453, 2022.

X.-G. Zhang, G.-H. Yang, and X.-X. Ren, “Network steganography
based security framework for cyber-physical systems,” Inf. Sci., vol. 609,
pp. 963-983, Sep. 2022.

B. W. Lampson, “A note on the confinement problem,” Commun. ACM,
vol. 16, no. 10, pp. 613-615, Oct. 1973.

M. A. Padlipsky, D. W. Snow, and P. A. Karger, “Limitations of end-to-
end encryptions in secure computer networks,”” Mitre Corp., Bedford, MA,
USA, Tech. Rep. ESD-TR-78-158, 1978.

T. G. Handel and M. T. Sandford, ‘“Hiding data in the OSI network model,”
in Proc. Int. Workshop Inf. Hiding, Berlin, Germany, 1996, pp. 23-38.

S. Wendzel, S. Zander, B. Fechner, and C. Herdin, ‘‘Pattern-based survey
and categorization of network covert channel techniques,” ACM Comput.
Surv., vol. 47, no. 3, pp. 1-26, Apr. 2015.

S. Zander, G. Armitage, and P. Branch, “A survey of covert channels and
countermeasures in computer network protocols,” IEEE Commun. Surveys
Tuts., vol. 9, no. 3, pp. 44-57, 3rd Quart., 2007.

P. Bedi and A. Dua, “Network steganography using the overflow field
of timestamp option in an IPv4 packet,” Proc. Comput. Sci., vol. 171,
pp. 1810-1818, Jan. 2020.

P. Bedi and A. Dua, “ARPNetSteg: Network steganography using address
resolution protocol,” Int. J. Electron. Telecommun., vol. 66, no. 4,
pp. 671-677, 2020.

A. Dua, V. Jindal, and P. Bedi, “Covert communication using address
resolution protocol broadcast request messages,” in Proc. 9th Int. Conf.
Rel., Infocom Technol. Optim. Trends Future Directions (ICRITO), Delhi,
India, Sep. 2021, pp. 1-6.

J. Giffin, R. Greenstadt, P. Litwack, and R. Tibetts, “Covert messaging
through TCP timestamps,” in Proc. Int. Workshop Privacy Enhancing
Technol., Berlin, Germany, 2002, pp. 194-208.

V. Sabeti and M. Shoaei, “New high secure network steganography method
based on packet length,” ISC Int. J. Inf. Secur., vol. 12, no. 1, pp. 24-44,
2020.

A. Velinov, A. Mileva, S. Wendzel, and W. Mazurczyk, “Covert chan-
nels in the MQTT-based Internet of Things,” IEEE Access, vol. 7,
pp. 161899-161915, 2019.

C.D. Xuan and L. V. Duong, “A new approach for network steganography
detection based on deep learning techniques,” Int. J. Adv. Comput. Sci.
Appl., vol. 12, no. 7, pp. 37-42, 2021.

R. Anand, K. G. Mehrotra, C. K. Mohan, and S. Ranka, “An improved
algorithm for neural network classification of imbalanced training sets,”
IEEE Trans. Neural Netw., vol. 4, no. 6, pp. 962-969, 1993.

M. Chourib, “Detecting selected network covert channels using machine
learning,” in Proc. Int. Conf. High Perform. Comput. Simulation (HPCS),
Jul. 2019, pp. 582-588.

D. X. Cho, D. T. H. Thuong, and N. K. Dung, “A method of detecting stor-
age based network steganography using machine learning,” Proc. Comput.
Sci., vol. 154, pp. 543-548, Jan. 2019.

S. Abdulrahman, M. Xiaoqi, and E. Peytchev, “Detection and classification
of covert channels in IPv6 using enhanced machine learning,” in Proc. Int.
Conf. Comput. Technol. Inf. Syst., 2015, pp. 1-7.

(2023). The CAIDA UCSD Anonymized Internet Traces Dataset—/[20,
Jan. 2019, 21, Jan. 2019, 22, Jan. 2019, 23, Jan. 2019 ] Center for Applied
Internet Data Analysis. Accessed: Feb. 11, 2023. [Online]. Available:
https://www.caida.org/data/passive/passive_dataset

M. Zuppelli and L. Caviglione, “PcapStego: A tool for generating traffic
traces for experimenting with network covert channels,” in Proc. 16th Int.
Conf. Availability, Rel. Secur., New York, NY, USA, Aug. 2021, pp. 1-8.
(2023).  Scapy. Accessed: Feb. 14, 2023. [Online]. Available:
https://scapy.net

J. Bogatinovski, L. Todorovski, S. DZeroski, and D. Kocev, “Comprehen-
sive comparative study of multi-label classification methods,” Expert Syst.
Appl., vol. 203, Oct. 2022, Art. no. 117215.

F. Pedregosa, G. Veraquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A.Passos, D. Cornapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
no. 85, pp. 2825-2830, 2011.

VOLUME 11, 2023


http://dx.doi.org/10.1109/MCOM.011.2200744

P. Bedi et al.: SPYIPv6: Locating Covert Data in One or a Combination of IPv6 Header Field(s)

IEEE Access

PUNAM BEDI (Senior Member, IEEE) received
the M.Sc. degree in mathematics and the M.Tech.
degree in computer science from IIT Delhi, in
1984 and 1986, respectively, and the Ph.D. degree
in computer science from the University of Delhi,
in 1999.

From January 1987 to January 2002, she was
a Lecturer/Reader with the Deshbandhu Col-
lege, University of Delhi. From October 2005 to
October 2008, she was the Head of the Department
of Computer Science, University of Delhi. From June 2009 to October
2009, she was the acting Director of the Delhi University Computer Centre.
From October 2017 to April 2018, she was the Officiating Director of the
Delhi University Computer Centre. Since July 2018, she has been a Senior
Professor with the Department of Computer Science, University of Delhi.
Her research interests include steganography, steganalysis, cybersecurity,
intrusion detection systems, recommender systems, deep learning, artificial
intelligence for healthcare, and artificial intelligence for agriculture.

VINITA JINDAL received the bachelor’s degree in
mathematics from the University of Delhi, in 1997,
the M.C.A. degree from IGNOU, in 2000, the
M.Phil. degree in computer science from Madurai
Kamaraj University, in 2007, and the Ph.D. degree
in computer science from the University of Delhi,
in 2018.
From July 1999 to July 2001, she was the
Manager/Senior Faculty Member with PCTI Ltd.
é From June 2017 to May 2019, she was the Head of
the Department of Computer Science, Keshav Mahavidyalaya, University of
Delhi, where she has been a Professor, since November 2021. She is mainly
involved in the area of artificial intelligence and networks. Her research
interests include covert channels and their detection, cybersecurity, intrusion
detection systems, dark web, deep learning, recommender systems, vehicular
adhoc networks, and cloud security to name a few.

VOLUME 11, 2023

ARTI DUA received the B.Sc. degree (Hons.) in
computer science from Keshav Mahavidyalaya,
University of Delhi, in 2003, and the M.C.A.
degree from Guru Gobind Singh Indraprastha Uni-
versity, in 2009. She is currently pursuing the
Ph.D. degree in computer science with the Univer-
sity of Delhi.

From June 2009 to July 2010, she was a Soft-
ware Engineer with Altran [formerly known as
Aricent Technologies (Holdings)]. From August
2010 to January 2011, she was an Assistant Professor with Keshav Mahavid-
hyalaya, University of Delhi. Since February 2011, she has been an Assistant
Professor with the Department of Computer Science, Bhaskaracharya Col-
lege of Applied Sciences, University of Delhi, where she is currently the
Head. Her research interests include network steganography and its detec-
tion, cybersecurity, information hiding, network covert channels, and their
detection.

103501



