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ABSTRACT This paper presents a systematic approach of formulating a Time-Varying Model Predictive
Control (TV-MPC) framework for uncertain and under-actuated mechanical systems. The proposed
methodology utilizes the nonlinear decomposed dynamics in conjunction with a special class of orthonormal
basis functions – the Laguerre functions in the model structure. A possible numerical ill-conditioning
problem, for large prediction horizons, has been coped with using the idea of exponential data weighting
in the cost function, which results in condition number improvement, for the main TV-MPC algorithm.
A rotary inverted pendulum is considered as a case study under-actuated system. The content of this research
revolves around the TV-MPC treatment for cubic polynomial type reference position tracking problem using
the decomposed nonlinear dynamics in the TV-MPCmodel structure and using Laguerre functions for future
control trajectory modeling and motion predictions of the rotary servo arm and the pendulum bar. Finally,
the applicability of TV-MPC algorithm is demonstrated with the help of simulation results for the subject
benchmark system.

INDEX TERMS Time-varyingMPC (TV-MPC), orthonormal basis functions, Laguerre functions, numerical
ill-conditioning, cubic polynomials, dynamic decomposition, under-actuated systems.

I. INTRODUCTION
Model Predictive Control (MPC), invented in the early
70’s, is a methodical control approach which got popularity
in the production industry by providing ease of handling
complicated multi-variable dynamics. Its popularity was
further strengthened by a built-in optimization routine which
provided ease of handling constraints on controlled and/or
manipulated variables [1]. The MPC has been deployed
successfully in various applications ranging from process
control [2], autonomous vehicles [3], robotics [4], economics
and even in medical/health sciences [5]. Over the course of

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

research, initiated by the novel industrial requirements and
technological advancements, many variants of MPC were
proposed i.e., hybrid MPC [6], tube MPC [7], stochastic
MPC [8], learning Based (or data driven) MPC [9].

The core of an MPC algorithm is a model structure for
prediction. Various approaches are popular for Predictive
Control Design (PCD), each one having a unique model
structure for the predictive control formulation.

The earlier formulations employed a Finite Impulse
Response (FIR) or Step-Response (SR) models as prediction
models. The Dynamic Matrix Control (DMC) formulation,
proposed in 1979, is an example of FIR/SR model based
MPC. These models gave better descriptions of process time
delay, response time and gain. However, the algorithms based
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on these models are not computationally efficient since the
underlying algorithm requires 30 to 60 impulse response
coefficients (or evenmore) depending on the process type and
the choice of sampling interval. Moreover, these formulations
are applicable to stable plants only and such plant models
might have large model orders depending on the process
type.

The idea of transfer function based prediction models,
in 1984, caused the emergence of Generalized MPC (GMPC)
paradigm [10]. However, the transfer function based GMPC
posed problems in multi-variable control applications and
proved to be less effective in handling multi-variable plants
(systems or processes). An advanced type of formulation,
widely used in most of the PCD, is based on state-space
models, initially presented in 1993 [11] and later on many
other variants were proposed in [1], [12], [13], and [14].
A state-space based GMPC got attention as being more
methodical and especially effective in multi-variable control
environment.

Another feature of MPC (the optimality of solutions),
classifies it into two categories from implementation per-
spective: Implicit and explicit. An optimal solution obtained
by an iterative procedure is referred to as implicit MPC
while evaluating the explicit representation of an MPC
feedback law, which is obtained off-line using parametric
programming is referred to as explicit MPC. Implicit MPC
handled large systems but at the expense of computational
efficiency. Explicit MPC, on the other hand, were compu-
tationally efficient, from implementation point of view, but
are not a good option to be used for higher order systems.
Whether an MPC is implicit or explicit, the researchers
have proposed many solutions to come up with an optimal
solution [15], [16], [17], [18], [19]. The modern day research
uses continuous time approximations for predictive control
model like Hammerstein models [20], [21], [22], Wiener
models [23], [24], [25] and impulse response approximation
(set of orthonormal functions [26], [27], [28], [29], [30],
[31], [32], [33], [34], usually ‘‘Laguerre Model’’, see [28]).
The orthonormal functions approach to control trajectory
modeling guaranteed bounded Integral Square Value (ISV)
that is L2 stable.

On the other hand, stabilization of rotary inverted pendu-
lum poses a variety of control challenges. The usual ones
include the under-actuated nature, open loop instability and
coupled nonlinear dynamics. Many real-world problems can
better be prototyped by using this simple test bench apparatus.
For example, the attitude control of a booster rocket at take off
and an upright position control of a humanoid robot. Position
control of Rotary Inverted Pendulum (RIP) systems (and its
other variants) for the pendulum balance control problem has
been widely considered and addressed in the literature (like
in [35], [36], [37]). However, the balance control problem
using polynomial type reference tracking has not be studied
(and addressed) yet. This paper addresses the polynomial
type reference position tracking problem in the context of
time-varying MPC (TV-MPC).

In this article a state-space GMPC, named Time-Varying
MPC (TV-MPC), formulation is presented. The algorithm
starts with a direct parametrization to bring the nonlinear
system to a Linear Time Varying (LTV) structure with
State Dependent Coefficients (SDC). This is achieved using
an efficient, novel and simple dynamics decomposition
approach. The orthonormal Laguerre functions are used to
approximate the feedback control trajectory which guar-
antees bounded Integral Square Value (ISV). A worth
mentioning aspect is that the reference trajectory (a cubic
polynomial type) reflects the influence of time varying
position and velocity in the TV-MPC formulation. Optimality
of the solutions is ensured via State-Dependent Riccati
Equation (SDRE) while an exponential data weighting
take care of a possible ill-conditioning of the underlying
numerical structure of the TV-MPC algorithm. In addition,
the modified weighting matrices, with sufficiently large
prediction horizon, ensures asymptotic stability. Finally, the
proposed TV-MPC algorithm is validated on a laboratory test
bench system.

Rest of the paper is organized as follows. Section II
provides physical and mathematical description of the sub-
ject under-actuated Quanser Inc. rotary inverted pendulum
system. A dynamics decomposition method is proposed in
Section III while the Time Varying Model Predictive Control
(TV-MPC) is formulated in Section IV, which outlines
the TV-MPC model structure, control trajectory modeling,
reference trajectory generation and the proposed exponential
data weighting mechanism. A comprehensive validation
study of the proposed algorithm is carried out in Section V.
The research has been summed up with concluding remarks
in Section VI.

TABLE 1. List of acronyms.

II. THE ROTARY INVERTED PENDULUM (RIP)
The Rotary Inverted Pendulum (RIP) system, equipped with
servo base unit and a pendulum rod is shown in Fig. 1
(see [38] for details).
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FIGURE 1. Rotary inverted pendulum conventions [38].

The nonlinear Lagrange Equations Of Motion (EOM),
acquired from [38], are listed in Eq. (1).

ξ1θ̈ − ξ2α̈ + ξ3θ̇ α̇ + ξ4α̇
2

= τ − Br θ̇

− ξ2θ̈ + ξ5α̈ − ξ6θ̇
2
− ξ7 = −Bpα̇ (1)

where, ξi, (i = 1 − 7) are used for notational simplicity.

ξ1 = mpL2r + Jr +
1
4
mpL2p

(
1 − Cos(α)2

)
ξ2 =

1
2
mpLpLrCos(α)

ξ3 =
1
2
mpL2pSin(α)Cos(α)

ξ4 =
1
2
mpLpLrSin(α)

ξ5 = Jp +
1
4
mpL2p

ξ6 =
1
4
mpL2pSin(α)Cos(α)

ξ7 =
1
2
mpLpgSin(α)

The variable τ , in Eq. (1), represent the torque generated by
SRV02 servo motor and satisfies,

τ =
ηgKgηmkt (Vm − Kgkmθ̇ )

Rm
(2)

where, Vm is the motor input voltage. This torque is directly
applied at the base of rotary arm (the load gear). A detailed
description of the parameters, coined above, can be found
in [38] while some of important ones are listed in Table 2.

A use of generalized coordinates, q = [θ α]T and q̇ =[ dθ
dt

dα
dt

]T
, can represented Eq. (1) in Lagrangian matrix

notation.

D(q)q̈+ C(q, q̇)q̇+ g(q̇) = τ (3)

where, D(q) is the inertia matrix, C(q, q̇) is the damping
matrix and g(q̇) is the generalized gravitational vector.

TABLE 2. Physical specifications of the quanser Inc. Inverted pendulum.

Rearranging Eq. (1), as Lagrangian matrix notation (Eq. (3)),
and substitution of Eq. (2) results in the following.[

ξ1 −ξ2
−ξ2 ξ5

] [
θ̈

α̈

]
+

[
ξ3α̇ + γ1 + Br ξ4α̇

−ξ6θ̇ Bp

] [
θ̇

α̇

]
. . .+

[
0

−ξ7

]
=

[
γ2
0

]
Vm (4)

where, γi, described below, have been used for notational
simplicity.

γ1 =
ηgK 2

g ηmktkm
Rm

γ2 =
ηgKgηmkt

Rm

Solving Eq. (4) for the acceleration terms (θ̈ , α̈) gives,

θ̈ =
1
JT

[(
ξ2ξ6θ̇ − ξ5(ξ3α̇ + γ1 + Br )

)
θ̇
]
· · ·

−
1
JT

[
(ξ4ξ5α̇ + ξ2Bp)α̇ + ξ2ξ7 + ξ5γ2Vm

]
α̈ =

1
JT

[ξ1ξ6 − ξ2(Br + γ1 + ξ3α̇)] θ̇ . . .

+
1
JT

[
ξ1ξ7 − (ξ2ξ4α̇ + ξ1Bp)α̇ + ξ2γ2Vm

]
(5)

where, JT = ξ1ξ5 − ξ22 . The state space representation
reads as, 

ẋ1
ẋ2
ẋ3
ẋ4

 =


θ̇

α̇

f1
f2

 +
1
JT


0
0
ξ5γ2
ξ2γ2

Vm (6)

where,

f1 =
1
JT

[(
ξ2ξ6θ̇ − ξ5(ξ3α̇ + γ1 + Br )

)
θ̇
]
· · ·

−
1
JT

[
(ξ4ξ5α̇ + ξ2Bp)α̇ + ξ2ξ7

]
f2 =

1
JT

[ξ1ξ6 − ξ2(Br + γ1 + ξ3α̇)] θ̇ . . .

+
1
JT

[
ξ1ξ7 − (ξ2ξ4α̇ + ξ1Bp)α̇

]
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Then, Eq. (6) is in generic and standard (normal) form.

ẋ(t) = f (x) + g(x)u (7)

Here, f (x) = A(x)x is the proposed dynamic decomposition.
Now the goal is to compute the decomposition A(x).

III. THE DYNAMICS DECOMPOSITION APPROACH
A simplest procedure to compute A(x) is presented here. The
idea is based on the following decomposition described for a
scalar function f (x) of three variables x = [x1 x2 x3]T .

f (x1, x2, x3) =

(
f (x1, x2, x3) − f (0, x2, x3)

x1

)
x1 · · ·

+

(
f (0, x2, x3) − f (0, 0, x3)

x2

)
x2 · · ·

+

(
f (0, 0, x3) − f (0, 0, 0)

x3

)
x3 (8)

The equation above is a way of expressing a function of
three variables, f (x1, x2, x3), as a sum of three terms, each
involving only one variable. This is called a Taylor expansion
of the function around the origin (0, 0, 0). It is useful for
approximating the value of the function near the origin, when
the variables are small. The equation can be derived by
applying the chain rule of differentiation to the function and
evaluating the partial derivatives at the origin. The equation
can be interpreted as follows: the value of the function at any
point (x1, x2, x3) is approximately equal to the value of the
function at the origin, plus the change in the function due to
moving along the x1 axis, plus the change in the function due
to moving along the x2 axis, plus the change in the function
due to moving along the x3 axis. The decomposition in Eq. (8)
is dependent on the order of the variables and must certainly
solve the division by zero.

A procedure for computation of the decomposition A(x) is
shown in Fig. 2 for an arbitrary state vector x and numerical
accuracy eps of the computer. This algorithm compute A(x)
for each value of x while taking care of the division by zero
problem. However, the computation of this decomposition
is not unique. The above coined approach is utilized to
decompose the nonlinear dynamics, f (xm) = Am(xm)xm in
Eq. (6), with an order of variables (choice of state vector)
xm = [θ α θ̇ α̇]T .

f (θ, α, θ̇ , α̇) =
f (θ, α, θ̇ , α̇) − f (0, α, θ̇ , α̇)

θ
θ

+ . . .
f (0, α, θ̇ , α̇) − f (0, 0, θ̇ , α̇)

α
α

+ . . .
f (0, 0, θ̇ , α̇) − f (0, 0, 0, α̇)

θ̇
θ̇

+ . . .
f (0, 0, 0, α̇) − f (0, 0, 0, 0)

α̇
α̇

= Am(xm)xm (9)

With,

Am(xm) =



f (θ, α, θ̇ , α̇) − f (0, α, θ̇ , α̇)
θ

f (0, α, θ̇ , α̇) − f (0, 0, θ̇ , α̇)
α

f (0, 0, θ̇ , α̇) − f (0, 0, 0, α̇)

θ̇
f (0, 0, 0, α̇) − f (0, 0, 0, 0)

α̇



T

,

Bm(xm) = g(xm) =
1
JT


0
0
ξ5γ2
ξ2γ2

 ,

Cm =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
Dm = 0 (10)

and,

f (θ, α, θ̇ , α̇) − f (0, α, θ̇ , α̇)
θ

=


0

0
0

0

 ,
f (0, α, θ̇ , α̇) − f (0, 0, θ̇ , α̇)

α

=
1
α


0
0

ξ8ξ9 + JT ξ10
ξ11

ξ8ξ12 + JT ξ13
ξ11

 ,

f (0, 0, θ̇ , α̇) − f (0, 0, 0, α̇)

θ̇

=



1
0

(γ1 + Br )(
mpL2r + Jr

)
−

(
1
2
mpLpLr

)
(γ1 + Br )(

mpL2r + Jr
) (

Jp +
1
4
mpL2p

)


,

f (0, 0, 0, α̇) − f (0, 0, 0, 0)
α̇
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FIGURE 2. Computation of decomposition.

=



0
1

−

(
1
2
mpLpLr

)
Bp(

mpL2r + Jr
) (

Jp +
1
4
mpL2p

)
−Bp(

Jp +
1
4
mpL2p

)


(11)

where,

ξ8 =

(
mpL2r + Jr

) (
Jp +

1
4
mpL2p

)
,

ξ9 =
(
ξ2ξ6θ̇ − ξ5(ξ3α̇ + γ1 + Br )

)
θ̇ · · ·

−
(
ξ4ξ5α̇ + ξ2Bp

)
α̇ + ξ2ξ7,

ξ10 =

(
Jp +

1
4
mpL2p

)
(γ1 + Br ) θ̇ + · · ·

+

(
1
2
mpLpLr

)
Bpα̇,

ξ11 = JT
(
mpL2r + Jr

) (
Jp +

1
4
mpL2p

)
,

ξ12 =
(
ξ1ξ6θ̇ − ξ2(ξ3α̇ + γ1 + Br )

)
θ̇ · · ·

−
(
ξ2ξ4α̇ + ξ1Bp

)
α̇ + ξ1ξ7,

ξ13 =

(
1
2
mpLpLr

)
(γ1 + Br ) · · ·

+

(
mpL2r + Jr

)
Bpα̇ (12)

This dynamic decomposition providing matrix pair
(Am(xm),Bm(xm)), is extremely useful, efficient and simple.
It enables assessment of controllability of the said rotary
inverted pendulum analogous to that of an LTI-system.

For the proposed TV-MPC design, following assumptions are
valid:
Assumption 3.1: The entire time varying behavior is

divided intoNs discrete time instants ti with an associated LTI
model (a total ofNsmodels). Each LTImodel reflects the time
varying behavior in piece-wise fashion. Thus, the entire time
variation is covered from initial time t0 to the final time tf .
Assumption 3.2: All the states are measurable.
Assumption 3.3: The pair (A(xm(ti)),B(xm(ti))) is com-

pletely controllable and the pair (A(xm(ti)),C) is completely
observable.

IV. TIME-VARYING MODEL PREDICTIVE CONTROL
FORMULATION
Inspired from the proposal in [30], a continuous-time MPC
paradigm is presented. The proposed MPC, termed as
Time-Varying MPC (TV-MPC), handles state dependent
time-varying model structures in the state space (obtained
via novel dynamic decomposition). Moreover, the proposed
TV-MPC is based on the receding horizon principle for future
control trajectory modeling.

A distinction, to use the continuous time formalism, is to
tackle the problem of irregular sampling. Since, the TV-MPC
formulation is based on the continuous-time dynamically
decomposed models (independent of the sampling interval
in the formulation). Thus, it permits irregular sampling
and provides more robustness, flexibility, computational
efficiency and better performance for fast sampling rates.
Though, the actual implementation is done in discrete-time
on actual computer (or embedded hardware).

A. TV-MPC MODEL STRUCTURE
The proposed TV-MPC model structure is equipped with
a built-in integrator (considering u̇(t) as the control input).
To start with, an augmented state space model of rotary
inverted pendulum system is presented in Eq. (13).

ẋ(ti) =

[
ż(ti)
ė(ti)

]
=

A(xm(ti))︷ ︸︸ ︷[
Am(xm(ti)) 0m

Cm 0q×q

] [
z(ti)
e(ti)

]
. . .

+

B(xm(ti))︷ ︸︸ ︷[
Bm(xm(ti))

0q×m

]
u̇(ti)

y(ti) =
[
0m Iq×q

]︸ ︷︷ ︸
C

[
z(ti)
e(ti)

]
(13)

where, q = 2, m = 1, i = 0, 1, . . .Ns, e(ti) =

y(ti) − r(ti), z(ti) = ẋm(ti) =
[
θ̇ (ti) α̇(ti) θ̈ (ti) α̈(ti)

]T ,
r(ti) =

[
θref (ti) θ̇ref (ti)

]T , y(ti) = Cmxm(ti). The augme-
nted time varying, state-dependent model triplets are
(A(xm(ti)),B(xm(ti)),C). Then, Eq. (13) can also be written
in the form,

ẋ(ti) = A(xm(ti))x(ti) + B(xm(ti))u̇(ti)

y(ti) = Cx(ti) (14)
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Moreover, the total number of samples Ns, from t0 to tf , with
a sampling interval h, is simply given by Ns =

tf −t0
h . As can

be seen from Eq. (13) that y(ti) = e(ti) which is the prediction
error thus taking into account the on-line error measurements
from the measured states.

B. CONTROL TRAJECTORY MODELING: RECEDING
HORIZON CONTROL
The control trajectory u̇(t) modeling, using the matrix pairs
(A(xm(ti)),B(xm(ti))) and (A(xm(ti)),C), in conjunction with
Laguerre functions, is described here. The future control
trajectory u̇(t) is modelled using Laguerre functions and is
presented in Eq. (15) by considering a moving time window
from ti to ti + Tp, with 0 ≤ ti ≤ Tp and Tp ≥ 0, as the
prediction horizon.

u̇(ti) ≈

Nl∑
i=1

cili(τ ) = LT (ti)η (15)

where, η is the coefficient vector and Nl is the number of
Laguerre terms (simply, the order of Laguerre filter). The
term, L(ti) =

[
l1(ti) l2(ti) · · · lNl (ti)

]T , is a set of pre-chosen
Laguerre functions satisfying the following equation with
p denoting the scaling factor for Laguerre functions and initial
conditions L(0) =

√
2p [1 1 . . . 1]T .

L̇(ti) =


−p 0 . . . 0
−2p −p . . . 0
...

...
...

...

−2p . . . −2p −p


︸ ︷︷ ︸

Ap

L(ti) (16)

Assuming that the state variable x(ti), at current time ti,
is available, then at any future time τ > 0 the predicted future
state, x(ti + τ |ti), is given by the following equation.

x(ti + τ |ti) = eA(xm(ti))τ x(ti)

+ · · ·

∫ τ

0
eA(xm(ti))(τ−ϑ)B(xm(ti))u̇(ϑ)dϑ

(17)

Here, ϑ is the variable of integration. Accordingly, the plant
output prediction is represented by,

y(ti + τ |ti) = Cx(ti + τ |ti) (18)

In Eq. (17) the solution of convolutional integral is found via
algebraic matrix equation (see [27], [28]).
The TV-MPC is always subjected to an optimization

routine. This is done with a cost function coined in Eq. (19)
with set point r(ti). In addition to optimum control input,
it allows specifying the performance metrics by selecting
weights Q ≥ 0 and R ≥ 0.

J

=

∫ Tp

0

(
u̇T (τ )Ru̇(τ )

)
dτ

+ · · ·

∫ Tp

0

(
[r(ti)−y(ti+τ |ti)]T Q [r(ti)−y(ti+τ |ti)]

)
dτ

(19)

Without constraints, the aim of proposed TV-MPC treatment
is to find a control law such that the predicted plant outputs
θ (ti + τ |ti) and θ̇ (ti + τ |ti) tracks the future trajectory of the
set-point r(ti) as close as possible in least square sense.
Since, C = [0 I2×2] and choosing Q = CTC in

conjunction with the augmented model, the cost function gets
the form,

J =

∫ Tp

0

(
u̇T (τ )Ru̇(τ )

)
dτ

+ · · ·

∫ Tp

0

(
xT (ti + τ |ti)Qx(ti + τ |ti)

)
dτ (20)

where, the initial state variable information x(ti) contains the
error y(ti)− r(ti) instead of y(ti). After substituting x(ti+τ |ti)
into Eq. (20) and using the orthonormal property of Laguerre
functions for the term

∫ Tp
0 u̇T (τ )Ru̇(τ )dτ , the cost function in

terms of η is,

J =

∫ Tp

0

(
ηTRLη

)
dτ

+ · · ·

∫ Tp

0

(
xT (ti + τ |ti)Qx(ti + τ |ti)

)
dτ

= ηT�η + 2ηTψx(ti) · · ·

+ xT (ti)
∫ Tp

0
eA(xm(ti))τdτx(ti) (21)

where,

� = RL +

∫ Tp

0
φ(τ )QφT (τ )dτ

ψ =

∫ Tp

0
φ(τ )QeA(xm(ti))τdτ (22)

The optimal η that minimizesJ (without hard constraints) is,

η = −�−1ψx(ti) (23)

and the minimum of the cost function is,

Jmin = xT (ti)
[∫ Tp

0

(
eA(xm(ti))τQeA(xm(ti))τ

)
dτ

]
x(ti)

− xT (ti)
[∫ Tp

0

(
ψT�−1ψ

)
dτ

]
x(ti) (24)

In Eq. (21), RL is a block diagonal matrix with the k-th block
(k = 0, 1, 2, . . . ,m) being Rk = rk IN k

s ×N k
s
. In the presented

study, m = 1 and IN k
s ×N k

s
is a unit matrix. The optimal

control, trajectory for the unconstrained problem with finite
prediction horizon at time ti is,

u̇(ti) =


LT1 (0) 02 · · · 0m
01 LT2 (0) · · · 0m
...

...
...

...

01 02 · · · LTm(0)



η1
η2
...

ηm

 (25)
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Since the rotary inverted pendulum system has only one input
(m = 1) which is applied directly to the rotary servo motor
arm and the only state directly actuated is θ (t). Thus, Eq. (25)
is reduced to the following form.

u̇(ti) = LT1 (0)η1 (26)

Substitution of η1 = η, from Eq. (23), in Eq. (26), the final
expression for the optimal TV-MPC controller is obtained as
follows.

u̇(ti) = −LT1 (0)�
−1ψ︸ ︷︷ ︸

Kmpc(xm(ti))

xm(ti) (27)

where, Kmpc(.) is the feedback TV-MPC gain matrix. When
hard constraints are enforced in the design, then the contin-
uous time TV-MPC problem becomes the minimization of
the cost function in Eq. (21) subject to the linear inequality
constraints of the form,

Mη ≤ ϒ (28)

The procedure to formulate these inequality constraints
in continuous time MPC designs is mentioned in details
in [32] and [33]. As with other MPC algorithms, the
Quadratic Programming (QP) methods can be deployed to
find the unique constrained solution, if following conditions
are satisfied in context,

• The invertability of Hessian matrix �.
• The linear independence of active constraints at time ti
• The dimensions of η to be greater than the number of
active constraints.

For details on constrained MPC formulation in continuous
time domain and application of QP methods for such
problems, reader is referred to [28], [39], [40], and [32].

The receding horizon control demands using the derivative
of future control action at τ = 0. However, in digital
implementation an Euler approximation is usually used
for u̇(ti).

u̇(ti) =
u(ti) − u(ti − h)

h
u(ti) = u(ti − h) + u̇(ti)h (29)

While the actual control, using Eq. (29), is written as,

uact (ti) = uss + u(ti) (30)

where, uact (ti) and uss are the actual and steady state controls
at ti respectively while h is the sampling interval. Further
mathematical manipulations give the following expression.

uact (ti − h) = uss + u(ti − h)

uact (ti) = uact (ti − h) + u̇(ti)h

uact (ti) = uact (ti − h) + LT1 (0)η1h (31)

where, uact (ti − h) is the control signal at previous sampling
instant and uact (ti) is the actual control to the rotary inverted
pendulum system.

The implementation of control in the form of Eq. (31) is
advantageous in applications specifically involving a position
tracking (as the present study implies), since the actual
control does not depend on the steady state value. Instead,
the actual control will repeatedly update itself from its past
values.

C. NUMERICAL CONDITIONING AND EXPONENTIAL DATA
WEIGHTING
The ill conditioning of Hessian matrix, caused by increasing
prediction horizon, is highlighted and an exponential data
weighting [27], [41], [42] approach is incorporated to handle
this issue.

The core reason behind ill conditioning is unstable model
in the design structure used for prediction. The unstable
prediction emerges from the unstable matrix A(xm(ti))
resulting after the addition of embedded integrator in the
model for integral action.

A remedy is to scale A(xm(ti)), using exponential data
weighting, such that resulting scaled matrix Aγ (xm(ti)) is
strictly Hurwitz (with eigenvalues strictly in the Left-Half-
Plane (LHP)). This scaling essentially transforms the original
state and derivative of the control variables into exponentially
weighted variables for optimization procedure. This is also
an important aspect of Laguerre functions as well, that
with stable prediction model, these functions can model
the future control trajectory very well and much precisely
with guaranteed convergence [27]. Therefore the L2 stability
condition of Laguerre functions is satisfied by using Hurwitz
matrix Aγ (xm(ti)) in the design.
The introduction of function e−2γ τ , with γ > 0, effectively

produces an exponentially decreasing weight and the Optimal
Control Problem (OCP) modifies to the following form,

min
u̇(τ )

J =

∫ Tp

0
xTγ (ti + τ |ti)Qxγ (ti + τ |ti)dτ

+

∫ Tp

0
u̇Tγ (τ )Ru̇γ (τ )dτ (32)

subjected to, ẋγ (ti + τ |ti) = [A(xm(ti)) − γ I ] xγ (ti + τ |ti)

+ B(xm(ti))u̇γ (ti) (33)

where, the transformed variables are defined by,

xγ (ti + τ |ti) = e−γ τ x(ti + τ |ti)

u̇γ (τ ) = e−γ τ u̇(τ ) (34)

The initial conditions are identical for τ = 0 and the
scaling matrix Aγ (xm(ti)) = A(xm(ti))− γ I is Hurwitz. Thus,
eradicating the hazard of numerical ill-conditioning.

The exponential decay of x(ti+τ |ti) is not guaranteed with
Q and R in the optimization window. To cope with, a slight
modification is made to the weight matrix Q (see [27], [28],
[42]) such that Qγ = Q + 2γP with γ > 0. The optimal
control u̇(τ ) is then followed from minimizing the OCP in
Eq. (32) and (33), with Qγ in the cost function. Moreover,
the time-varying matrix P, in Qγ , is the solution of a steady
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state SDRE.

AT (xm(ti))P+ PA(xm(ti))

· · · − PB(xm(ti))R−1BT (xm(ti))P+ Q = 0 (35)

The proposed setup eradicates the deviation of optimal
solution from the original one even if Tp is sufficiently large.

Furthermore, a prescribed degree of stability is introduced,
in the predictive control, such that all closed loop Eigen
values are on the left of line s = −β. This is achieved via
a further modification to the matrix Qγ .

Qγ = Q+ 2 (γ + β)P (36)

The time-varying matrix P is now the solution to a modified
steady state SDRE.

ATγ (xm(ti))P+ PAγ (xm(ti))

· · · − PB(xm(ti))R−1BT (xm(ti))P+ Qγ = 0 (37)

where, Aγ (xm(ti)) = A(xm(ti)) − γ I . It is worth mentioning
that the terms Tp, p, Nl , γ , β, Q and R are the tuning
parameters and are set as per design specifications and
requirements.

D. REFERENCE TRAJECTORY GENERATION
In the proposed TV-MPC treatment, of a rotary inverted
pendulum, a reference trajectory of cubic polynomial type
is chosen which is smooth and piece-wise continuous. The
reference trajectories for position and velocity are originated
right away from the ramp (reference acceleration) profiles
for the initial and final values of position and velocity
respectively. Therefore, cubic polynomial type reference
trajectories reflect the time varying position and velocity
dynamics much better into the time-varying, state dependent
model structure and henceforth in the entire problem as
well. Maintaining the continuity of derivatives ensures
smooth motions and can be used to generate trajectories
that do not require step inputs to the actuators. Polynomial
type trajectories also allow for the analytical solution via
elimination as constrained Quadratic Programming (QP).

Let θref (t0) and θ̇ref (t0) are position and velocity of the
rotary servo arm, respectively at initial time t0 and θref (tf )
and θ̇ref (tf ) be the position and velocity counterparts at final
time tf , then the initial and final values of rotary servo
arm’s acceleration are wθ (t0) and wθ (tf ), respectively and are
computed as,

wθ (t0)
wθ (tf )

 =


tf −

tf
2

tf
2

t2f
2

−
t2f
6

t2f
6


−1 

θ̇ref (tf ) − θ̇ref (t0)

θref (tf ) − θref (t0)..
−θ̇ref (t0)tf


(38)

A mathematical manipulation, with cubic polynomials, result
in the following respective expressions for reference position

and velocity profiles of the rotary servo motor.

θref (t) = θref (t0) + θ̇ref (t0)t +
wθ (t0)

2
t2 +

1w

6tf
t3

θ̇ref (t) = θ̇ref (t0) + wθ (t0)t +
1w

2tf
t2 (39)

where,1w = wθ (tf )−wθ (t0). The proposed continuous-time
TV-MPC design work-flow is illustrated graphically in Fig. 3.

V. RESULTS AND DISCUSSION
A demonstration of the efficiency, robustness, accuracy,
performance and issues like numerical stability and condi-
tioning, of the proposed TV-MPC, is contrasted with a case
study under-actuated Quanser’s rotary inverted pendulum
system. The study is carried out in two sub cases. In Case-A,
the TV-MPC results, without exponential data weighting, are
discussed while in Case-B, the merits after the deployment
of exponential data weighting are discussed. Moreover, The
nonlinear equations of motion and the associated parameters
are adapted from [38].

A. CASE-A: NO EXPONENTIAL DATA WEIGHTING-
The influence of unstable A(xm(t)) and the effect of large
prediction horizon Tp on the numerical conditioning of
the overall TV-MPC, without exponential data weighting,
is discussed. The parameters for the simulation are tabulated
in Table 3. The predicted and measured states for the
pendulum rod angle (αpred (t) and αm(t), respectively) and
position (θpred (t) and θm(t), respectively) are shown in Fig. 4
while the respective velocities (α̇pred (t), α̇m(t), θ̇pred (t) and
θ̇m(t)) are highlighted in Fig. 5. It may be observed that
the proposed TV-MPC provide a perfect prediction of the
system’s states. As a result it can be seen from Figs. 6
that the servo motor arm’s position efficiently track the
cubic polynomial references (θref (t) and θ̇ref (t)) between
±200 (±0.3481 [rad]) with slight (almost negligible) position
error. Moreover, it may be observed that the initial and
final boundary conditions are met with the prediction error
evolving with a negligible magnitude of 0.046 [rad] for
θ (t). Such tracking of the reference trajectory cause the
pendulum rod to perfectly balance such that αm(t) → ε

(with ε being a very small number and ε ̸= 0). The
predicted and measured velocity profiles for the rotary servo
arm tracks the defined parabolic velocity reference (resulting
from cubic interpolation) perfectly with negligible error
(see Fig. 5). Though we are more interested in the position
errors actually. The measured and predicted velocities results
for the pendulum rod shows somewhat the physical and actual
insight of the velocity profile variation as the servo arm
position varies in timely fashion, as shown in Fig. 5.
The measured and predicted control trajectories (V (t)),

along with their counterpart derivatives, are shown in Fig. 7.
It is worth mentioning that the derivative of the measured
control input (V̇m(t)) has been computed from the measured
states θm(t), θ̇m(t), αm(t) and α̇m(t), based on actual and
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FIGURE 3. Block diagram of the proposed continuous-time TV-MPC with dynamics decomposition.

TABLE 3. Case A simulation specifications.

non-decomposed plant’s dynamics. It may be noticed that
both V̇m(t) and V̇pred (t) perfectly overlap. As mentioned
earlier, V̇pred (t) is the modeled trajectory, serving as the
input to the augmented state space model resulting from the
dynamically decomposed model. Since, V̇m(t) and V̇pred (t)
perfectly overlap each other thus an integration of either gives
the actual control V (t) which is applied to the Quanser Inc.
rotary inverted pendulum system.

A confirmation of the efficacy (in terms of reflecting the
nonlinear (time varying) dynamical behavior of the system)
of the proposed dynamic decomposition is carried out via

FIGURE 4. Measured versus predicted trajectories for θ(t) and α(t)
without exponential data weighting.

fitness assessment of the dynamically decomposed model to
that of the actual (non-decomposed) nonlinear model of the
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FIGURE 5. Measured versus predicted trajectories for θ̇(t) and α̇(t) with
no exponential data weighting.

FIGURE 6. Reference versus predicted/measured trajectories for position
θpred (t) and θ̇pred (t) without exponential data weighting.

Quanser Inc. rotary inverted pendulum system. The result
is shown in Fig. 8. This fitness has been inspected for the
Euclidean normminimization of systemmatricesApred (xpred )
and Am(xm) such that ∥ Apred (xpred ) − Am(xm) ∥2< δ. Here δ
is some small number confirming the boundness. The fitness
plot in Fig. 8 shows that both the dynamically decomposed
model and the actual nonlinear model fits well and are almost
identical. The slight deterioration between 0 − 2 sec (effect
can be seen in previous plots in this section) are bounded and

FIGURE 7. Control trajectories V (t) and V̇ (t) without exponential data
weighting.

FIGURE 8. Fitness assessment for actual and prediction models without
exponential data weighting.

can safely be considered negligible. This is the main feature
and advantage of the proposed TV-MPC paradigm.

Despite adhering to the aim of perfect reference position
tracking for cubic polynomial type trajectories, the TV-MPC
algorithm in case-A does not provide a well-conditioned
numerical treatment, as the condition number κ(�) for
Hessianmatrix� is 2.82×1013. This of course is too high and
a slight modification in any parameter within the TV-MPC
would cause the entire algorithm numerically unstable and
thus Hessian matrix�may become non-invertible (singular).
The effect of ill-conditioning is also obvious from the result
of Fig. 7 where the spikes in V̇pred (t) and V̇m(t) show that
further increase in the prediction horizon or change in any
of the parameter within the algorithm will deteriorate the
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FIGURE 9. Pole-zero map for stability assessment without exponential
data weighting.

TABLE 4. Case B simulation specifications.

control and of course may lead the system to instability. This
is evident here as well that Nl = 50 and Tp = 2 [sec]
are sufficiently larger values set forth to make the prediction
as accurate as possible and to achieve the desired closed
loop response of the rotary pendulum system for the defined
polynomial type position reference. The choice of Nl = 50 is
quite practical so as to achieve the desired behavior for
rotary inverted pendulum system with a reasonable choice of
prediction horizon Tp. This can also be seen from the result
of Fig. 9 that the matrix A(xm) has some eigenvalues in the
right half plane as well, thus making the prediction model
an unstable one and further increasing the prediction horizon
with this matrix or further modifying the parameters within
the TV-MPC design will lead the system to instability. The
remedy to this problem is the exponential data weighting.

B. CASE-B: WITH EXPONENTIAL DATA WEIGHTING
The proposed TV-MPC has been modified by incorporating
an exponential data weighting such that the problem of
numerical ill-conditioning is coped. The efficacy, in terms of,
robust performance is assessed with the parameters coined
in Table 4. The parameters p, Nl , γ and β were chosen and
tuned as per the guidelines detailed in [27], [28], [32], [33],
and [42].

FIGURE 10. Measured versus predicted trajectories for θ(t) and α(t) with
exponential data weighting.

FIGURE 11. Measured versus predicted trajectories for θ̇(t) and α̇(t) with
exponential data weighting.

The predicted and measured states for the pendulum rod
angle (αpred (t) and αm(t), respectively) and position (θpred (t)
and θm(t), respectively) are shown in Fig. 10 while the
respective velocities (α̇pred (t), α̇m(t), θ̇pred (t) and θ̇m(t)) are
highlighted in Fig. 11. These results show that all enti-
ties/predictions (positions and velocities), generated using
the proposed decomposed dynamics, perfectly matches the
actual non-decomposed counterpart thus proving accuracy
of the algorithm. The results in Fig. 12 demonstrate the
tracking performance as the rotary servo arm’s position θ(t)
the polynomial type reference.
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FIGURE 12. Reference versus predicted trajectories for position θpred (t)
and θ̇pred (t) with exponential data weighting.

FIGURE 13. Fitness assessment for reference and predicted models with
exponential data weighting.

Remark 1: Here a distinction may be made that, based
on the results presented in Figs. 10 and 11, the predicted
(θpred , αpred ) and measured (θm, αm) jargons are used
synonymously.

The initial and final boundary conditions (−200 and+200)
for position θ (t) are perfectly attained while the tracking
errors for both θ (t) and θ̇ (t), in contrast to the reference
polynomial type trajectories, are within the acceptable
bounds (within the magnitude of 0.10 rad and 0.10 rad/sec).
The fitness assessment, performed the same way as was done
for case-A, is considering ∥ Apred (xpred ) − Aγ (xm) ∥2<

δ where δ is a small positive number defining the fitness
bounds. The addition of exponential data weighting improved
the condition number κ(�), of the Hessian matrix �,
to be 12.45. This of course is a distinction of the exponential

FIGURE 14. Control Trajectories V (t) and V̇ (t) with exponential data
weighting.

FIGURE 15. Pole-zero map for stability assessment with exponential data
weighting.

data weighting. Also, the resulting control trajectories (Vm(t),
Vpred (t) and their respective derivatives) are smooth (see
Fig. 14). Moreover, the pole-zero map in Fig. 15 shows
that all the eigenvalues for scaled matrix Aγ (xm) are strictly
in the left-half complex plane. Thus, making the prediction
model stable one and also numerically well-conditioned for
a sufficiently large prediction horizon of Tp = 2 [sec] and
Nl = 50. The pole-zero map shows that the time varying
scaled matrix Aγ (xm) is strictly Hurwitz for the time from
t0 = 0 [sec] to tf = 12 [sec].

VI. CONCLUSION
In this article, a novel, robust and most efficient method
toward the design and implementation of continuous-
time Time-Varying MPC (TV-MPC) based on dynamics
decomposition and Laguerre functions is proposed for the
control synthesis of under-actuated mechanical systems. The
study in this context is performed and is set confined
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to Quanser Inc. Rotary Inverted Pendulum system as an
under-actuated benchmark system. A novel and efficient
method for the evaluation of the right-hand sides of the
nonlinear dynamical Equations Of Motion (EOMs) for
Quanser Inc. Rotary Inverted Pendulum system for the
control synthesis is devised. Though, the approach is quite
extendable and applicable to the wider class of nonlinear
systems even if the formulas for their EOMs are very large
and complex. This method serves as a most efficient, robust
and novel way towards the computation of decomposition of
f (x) = A(x)x, which is always a key problem in the control
synthesis based on the solution of Riccatti equations. The
proposed TV-MPC algorithm is based on SDRE solutions.
The resulting dynamics decomposition is in state space form
with time-varying, state dependent coefficient matrices. The
decomposed model is further on incorporated in the TV-MPC
model structure and is handled, studied and discussed as two
separate sub cases in the context of numerical conditioning,
stability and fitness assessment, henceforth. The problem
of numerical conditioning is of serious concern when a
large prediction horizon is chosen. Moreover, an unstable
prediction model with embedded integrator may lead the
closed-loop system to the verge of instability in case a
large prediction horizon is chosen or any change in design
parameters is made within the algorithm at any stage.

The remedy to this issue is exponential data weighting,
which provides the guaranteed numerical and closed-loop
asymptotic stability with well- conditioned numerical imple-
mentation within the underlying TV-MPC algorithm. A con-
cise framework for future control trajectory modeling using
the receding horizon principle and Laguerre functions is
also discussed from TV-MPC implementation perspective.
The simulation results clearly showed that the dynamically
decomposed dynamics fits well in accuracy to the actual non-
linear (non-decomposed) model of the Quanser Inc. rotary
inverted pendulum model or for any nonlinear dynamical
system lying in similar class. The dynamically decomposed
model and the actual nonlinear system’s model yields
almost identical closed-loop responses for the associated
TV-MPC control synthesis. It can also be inferred from
the simulation results that exponential data weighting adds
remarkable improvement to the closed-loop response in
terms of accuracy, stability, robustness and performance
while tracking the unconventional cubic polynomial type
trajectories as a reference position profile for the rotary servo
arm’s position to balance the pendulum rod.
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