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ABSTRACT Over the last decade several machine learning (ML) based data-driven approaches have
been used for Electromyography (EMG) based control of prosthetic hands. However, the performance of
EMG-based frameworks can be affected by: i) the onset of fatigue due to long data collection sessions,
ii) musculoskeletal differences between individuals, and iii) sensor position drifting between different
sessions with the same user. To evaluate these aspects, in this work, we compare the performance of
EMG-based hand gesture decoding models developed using three approaches. This comparison allows for
future works in EMG-based Human-Machine Interfaces development to make more informedML decisions.
First, we trained from scratch a Transformer-based architecture, called Temporal Multi-Channel Vision
Transformer (TMC-ViT). For our second approach, we utilized a pre-trained and fine-tuned TMC-ViTmodel
(a transfer learning approach). Finally, for our third approach, we developed a Prototypical Network (a few-
shot learning approach). The models are trained in a subject-specific and subject-generic manner for eight
subjects and validated employing the 10-fold cross-validation procedure. This study shows that training a
deep learning decoding model from scratch in a subject-specific manner leads to higher decoding accuracies
when a larger dataset is available. For smaller datasets, subject-generic models, or inter-session models, the
few-shot learning approach produces more robust results with better performance, and is more suited to
applications where long data collection scenarios are not possible, or where multiple users are intended for
the interface. Our findings show that the few-shot learning approach can outperform training a model from
scratch in different scenarios.

INDEX TERMS Electromyography, gesture decoding, deep learning, few-shot learning, transfer learning.

I. INTRODUCTION
The human hand is a powerful and dexterous end-effector,
allowing humans to learn and explore their environment
through complex interactions. It enables us to perform these
interactions executing a wide range of tasks, from grasping
and moving objects used in everyday life to executing
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various gestures in social settings [1]. Therefore, in case
of a limb loss, people experience a tremendous loss of
dexterity, which is detrimental to their quality of life [2].
According to [3], approximately 540,000 amputees suffer
from upper limb loss in the US, while the numbers are
expected to be doubled by 2050. Europe has approximately
4.66 million limb amputees, with up to 431,000 amputations
performed each year [4]. Recent technological advancements
have resulted in the development of prosthetic hands that are
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FIGURE 1. Myoelectric activations of different gestures. During the
execution of the pinch, tripod, power, and extension gestures, the muscles
produce differing muscle activations. Machine learning-based models can
be developed to decode these signals for the control of a robot hand.

becoming increasingly dexterous for amputees. However, for
a natural control of the prosthetic hand, the user’s intention
needs to be efficiently and accurately decoded. Therefore,
there is a need for intuitive interfaces that facilitate accurate
control of prosthetic devices.

For intuitively controlling such devices, researchers have
proposed using biosignal-based human-machine interfaces
(HMIs). Different sensing modalities can be used to
develop HMIs. Some frequently used modalities include:
electromyography (EMG) [5], [6], [7], ultrasonography [8],
and mechanomyography [9]. However, the most common
biosignals-based HMIs are EMG-based, as they are easy
to use due to their non-invasive nature and high temporal
resolution [10], [11]. Such EMG-based human-machine
interfaces (HMI) can be developed using analytic or
machine learning methods. The analytic methods simu-
late the activation of the muscles using models of the
physical characteristics of the muscles [12]. These models
are complex to develop as they depend on parameters
such as the muscle fibre length and muscle contrac-
tion velocity that vary for different muscle types and
individuals.

To overcome the issues with the analytic models, machine
learning-based data-driven approaches have been employed.
Machine learning methods are a powerful tool for analyzing
and decoding EMG signals, as well as for applications in
various fields, such as computer vision, natural language
processing, and robotics [13], [14], [15], [16], [17], [18].
Machine learning methods facilitate the classification of
hand gestures and movement, as well as the continu-
ous decoding of dexterous and complex motions [19],
[20]. Previous works have used EMG-based interfaces for
teleoperating robotic arm-hand systems [5], [21], reha-
bilitation using robotic exoskeletons [22], entertainment
(myo-games) [23], and for developing muscle-computer
interfaces [24].
However, EMG-based HMIs have limitations: myo-

electric signals are affected by fatigue and depend on

sensor placement, and they vary among individuals due
to musculoskeletal differences. Consequently, studies often
create subject-specific machine learning models through
supervised learning with datasets containing multiple gesture
repetitions. Even though creating subject-specific models
can reach accuracies higher than 90% even when decoding
several gestures [25], [26], long data collection sessions
may be required each time a new decoding model needs
to be developed (e.g., for a new user or for the same
user when wearing the interface again after a break). Data
management and a lack of data prove to be an existing
challenge in human-computer interfacing [27]. As such,
transfer learning approaches are a viable alternative for
addressing this issue by using learned features from a
pre-trained model trained on a larger dataset of other
subjects to improve the performance of a model for a new
user where the data for this new user/subject is scarce.
Studies have shown that transfer learning approaches can
improve EMG-based gesture decoding [28], [29], [30] using
popular publicly available datasets such as the Ninapro
dataset [31]. However, transfer learning approaches are prone
to overfitting (especially when the target dataset is small),
they rely on the quality and representativeness of the source
dataset, and they can lead to extra computational complexity
(since these models are usually deeper) or even be more time-
consuming (due to the inherent pre-training process on a large
dataset).

Another machine learning approach to avoid long data
collection sessions is to use few-shot learning techniques.
These methods can use only a few samples to generalize the
predictions to new unseen data. Studies have used few-shot
learning techniques to produce inter and intra-session models
to decode hand gestures using EMG signals as input,
using techniques such as siamese networks or meta-learning
approaches [32], [33]. Siamese networks may require more
training time and extra model complexity due to the duplicate
nature of such architectures, shared weights, and simulta-
neous training compounded by the need to learn quadratic
pairs. Conversely, trainingmost gradient-basedmeta-learning
approaches can also be challenging due to the presence of
two levels of training, leading to increased complexity and
resource requirements in hyper-parameter search, in which
the several hyper-parameters need to be carefully tuned
for optimal performance. Prototypical networks can offer a
more efficient alternative to meta-learning algorithms. This
approach is significantly simpler and more efficient than
some of the meta-learning approaches, yet it can achieve
state-of-the-art results [34].

In this paper, we compare the performance of three
different training approaches for developing EMG-based
gesture decoding models, allowing for future works in
EMG-based HMI development to make more informed
decisions in implementing machine learning frameworks
to decode the EMG signals. In our first approach,
we develop a Transformer-based architecture called
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FIGURE 2. Electrodes’ placement on the forearm of the participants. Eight
bipolar channels are used to collect the EMG signals of the user in order
to train the machine learning models employed to perform the
EMG-based gesture decoding.

Temporal Multi-Channel Vision Transformer (TMC-ViT)
and train it from scratch. The second approach uses a
pre-trained and fine-tuned TMC-ViT model, and lastly,
a Prototypical Network is developed. The performance of
these models is evaluated in different scenarios for decoding
four hand gestures, shown in Fig. 1, plus the rest gesture
(making a total of 5 classes) using myoelectric activations
from the human forearm. The machine learning models are
trained in a subject-specific and subject-generic manner, and
also in an inter and intra-session manner. We also assess the
performance of the three approaches for decoding samples
of fatigued EMG signals through datasets with an increased
number of gesture repetitions. In the case of smaller datasets,
subject-generic models, or inter-session models, the few-shot
learning method yields more robust outcomes with enhanced
performance. This approach is particularly well-suited for
situations where extended data collection is impractical or
when multiple users are anticipated to use the HMI. This
paper demonstrates that, in different scenarios, few-shot
learning can surpass the effectiveness of training a model
from scratch.

The rest of the paper is organized as follows. Section II
presents the dataset collected for this study, how the signals
are processed, and the classification models developed in
this paper, as well as how these models were trained and
evaluated. Section III presents the results obtained in this
paper, which are discussed in detail in Section IV. Finally,
Section V concludes the paper and presents potential future
directions.

II. METHODS
A. DATASET
The dataset used in this study was collected from eight non-
disabled subjects. More information regarding the subjects
can be found in Table 1. The study was approved by
the University of Auckland Human Participants Ethics
Committee (UAHPEC), reference number #019043. All
experiments were performed in accordance with relevant
guidelines and regulations. Prior to the study, participants
provided written and informed consent to the experimental
procedures.

TABLE 1. Information of the participants. M stands for male, F for female,
R for right, and L for left.

In this study, eight bipolar EMG electrodes were employed
to measure the myoelectric activations and perform EMG
data acquisition (see Fig. 2). An informed decision was
made for the selection of the muscle sites for decoding hand
gestures and motions based on our previous research [6],
[19], [35], [36], [37]. Since the majority information in the
EMG signals is contained within the frequency band of 0 Hz
to 500 Hz [38], [39], the EMG signals were acquired with
a sampling rate of 1,200 Hz using a g.tec’s g.USBamp
bioamplifier. The acquired data was bandpass filtered using
a Butterworth filter (5 Hz - 500 Hz). The electric line
noise was filtered out using a notch filter of 50 Hz. Each
subject performed five gestures: pinch, tripod, power, finger
extension, and rest. These gestures were selected based on
themost common grasps identified by Bullock et al. [40]. For
each gesture, the participant started with 10 seconds of rest,
during which the hand was completely relaxed, followed by
10 seconds of gesture execution. Visual cues were provided
to the participants as a three-second counter on a computer
screen to switch between the gesture state and the rest state.
This included a software trigger to label the two states
for creating the ground truth data for supervised learning
algorithms. This procedure was repeated nine more times for
each gesture, resulting in ten repetitions in total.

A second session of EMG data collection was performed
for the first five subjects based on availability, with the
objective of analyzing the effects on the gesture decoding
accuracies for a subject as a result of variations arising in the
data from the same subject participating in the experiments
on different days. To do this, the decoding models are
trained on data from one session and tested on the data
from another session. This session followed the same data
collection procedure as the first one.

B. PREPROCESSING
In this subsection, we present the data preprocessing methods
employed for the EMG-based gesture classification.

1) WINDOWS SIZE
To provide input to the supervised machine learning models
during training, a sliding window with a duration of 200 ms
and a step size of 20 ms was used. The choice of a larger
window size (more than 125 ms) was aimed to prevent
significant biases and variances [41]. However, considering
the real-time constraints required for the efficient control of
prostheses and robotic devices, the window size was kept
smaller than 300 ms [42].
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FIGURE 3. TMC-ViT model developed for both training from scratch and transfer learning. The EMG signals are 8 × 240 matrices, in which the lines are the
eight electrode channels, and the columns are 240 time-steps. The two max-pooling layers reduce the input dimension while maintaining relevant input
formation. The filters are shown in orange. A dropout of 0.2 is employed after each batch normalization layer. After the convolutional block, 2 × 2 patches
are extracted from the convolutional blocks’ output and provided to the transformer block.

2) DATA BALANCE
To address the prevalence of the rest class at the end of
the data collection, a balancing approach was implemented.
Since the rest class becomes predominant after five gestures,
it was important to ensure equal representation of each
gesture sample in order to avoid any class bias. To achieve
this, the random undersampling technique was employed.

3) DATA TYPE
Minimal data preprocessing was employed for the EMG data
to develop the deep learning models, eliminating the need for
manual feature engineering. The utilized approach exploits
the inherent capability of deep learning methods to automat-
ically extract meaningful features from raw data. To enhance
the learning capabilities of the models during the training
process and to remove the requirement for normalization in
the data preprocessing stage, batch normalization layers [43]
were incorporated into the architectures. This integration not
only accelerated the training speed, but also handled the
normalization process within the models themselves.

C. TRAIN AND TEST SETS
In this study, we trained our models in both a subject-specific
and subject-genericmanner. For the subject-specific case, one
model is trained for each subject. We trained each model two
times, using data from the same session (intra-session) and
from different sessions (inter-session).

1) SUBJECT-SPECIFIC SETS, INTRA-SESSION
When data from the same session is used, one out of ten
gesture repetitions is used to test the model, while the
others are used for training, leading to a 10-fold cross-
validation. The subject-specific models for the same session
were further evaluated in terms of the number of gesture
repetitions used for training. The test set is comprised of the
last two gesture repetitions in order to evaluate how themodel
would perform when being evaluated on the data where
likely fatigue was present, representing the most challenging
ones to be decoded. The root mean square (RMS) value

and the median frequency (MDF) value of the first and last
repetition were calculated in order to compare the fatigue
between these gesture repetitions. The RMS value of the last
repetition shows a percent increase of ∼ 29.8% across all the
muscles compared to the first repetition, while MDF shows
a percent decrease of ∼ 12.3%. An increase in the RMS
value and a decrease in the MDF value indicates the onset of
fatigue [44], showing that fatigue is more evident in the last
gesture repetitions. Each model was trained for only the first
repetition, then using only the first two gesture repetitions,
and so on until eight gesture repetitions used for training
were reached, while all being tested in the last two gesture
repetitions.

2) SUBJECT-SPECIFIC SETS, INTER-SESSION
When data from a different session is used, the model is
trained on all the gesture repetitions from the first session and
validated in one repetition at a time from the second session,
comprising the 10-fold cross-validation.

3) SUBJECT-GENERIC SETS
For the subject-generic case, a model is trained on the data
from all other subjects except the testing subject, from which
one repetition will be used per fold for testing.

D. CLASSIFICATION MODELS
1) TEMPORAL MULTI-CHANNEL VISION TRANSFORMERS
The Transformers networks [13] marked a significant
advancement in natural language processing (NLP). Trans-
formers are designed to process sequential data without
suffering from vanishing gradients like the recurrent neural
networks and the impossibility of parallelization inherent to
these recurrent techniques. These architectures are based only
on attention mechanisms, which creates an attention-based
representation for each element in the input sequence. The
attention mechanism used by Vaswani et al. [13] was the
Scaled Dot-Product Attention, given by

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V , (1)
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FIGURE 4. Prototypical network for EMG-based gesture decoding. The support and query sets are provided to an encoder that embeds the input EMG
data. Based on the distance between the embedded vector of queries and class prototypes, the model predicts the hand gesture type.

where
√
dk is the so-called scale factor, and Q, K , and V

are vectors called query, key, and value, respectively, that are
going to be used inside attention layers in order to compute
the attention value for each element.

Vaswani et al. employed attention in different positions
of different representations of input subspaces through
a mechanism called Multi-Head Attention, which allows
parallel computation and calculates a richer representation of
the input sequence. In the Multi-Head Attention, the same Q,
K , and V vectors are multiplied by learned weight matrices.
Hence, the attention is calculated for each head h, and the
concatenation of these three values is multiplied by a matrix
WO to generate the output of the Multi-Head Attention,
as follows

MultiHead(Q,K ,V ) = concat(head1, . . . , headh)WO

headi = Attention(Q WQ
i ,K WK

i ,V WV
i ),

(2)

where WQ
i , W

K
i e WV

i are the learned weight matrices, one
for each head.

Vision Transformer (ViT) [14] is a Transformer model
adapted to use images as input. Thus, instead of processing
1D sequential data, ViT uses 2D images as input. In a first
step, the ViT subdivides the input image x ∈ RH×W×C

into a sequence of flattened 2D patches xp ∈ RN×(P2·C),
where (H ,W ) is the resolution of the original image, C
is the number of channels, (P,P) is the resolution of each
image patch, and N = HW/P2 is the resulting number
of patches. A linear embedding sequence of these patches
and position embeddings are then provided as input to a
Transformer encoder. While the position embedding adds
input topology information, the ViT processes the image
with a linear projection of the flattened patches, whose

components indicate low-dimensional correlations in the
patches, and theMulti-HeadAttentionmechanism aggregates
image information across all layers.

In this study, we employed a ViT adaptation called Tem-
poral Multi-Channel Vision Transformer (TMC-ViT) [26],
shown in Fig. 3. The TMC-ViT is a Transformer-based
model that adapts the ViT to process temporal data
with multiple channels, such as EMG signals. From our
previous works, we found that TMC-ViT outperforms
well-established deep learning techniques, such as CNNs,
or classic machine learning techniques, such as Random
Forest, in both classification and regression tasks [19], [20].
The decoding accuracy of the TMC-ViT is even higher when
raw EMG data is used as input [26]. This model employs
convolutional, batch normalization [43], dropout [45], and
max-pooling layers to extract embeddings while reducing
the input dimension and maintaining important information.
Three convolutional blocks are used before the data is
supplied to a ViT that extracts 2 × 2 patches and provides
the output to a Transformer encoder composed of eight
Multi-head Attention layers [13] with four heads each.
After the Transformer blocks, two fully-connected layers
with 2048 and 1024 neurons, respectively, followed by
a softmax layer with five neurons, perform the gesture
class prediction.

2) PROTOTYPICAL NETWORK
Prototypical Network [46] is a few-shot classification
approach based on the concept that exists an embedding space
where data points cluster around a central prototype repre-
sentation for each class. A prototype is an M-dimensional
representation ck ∈ RM of each class k . To achieve this,
a neural network-based encoder is employed to learn a
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FIGURE 5. Three learning approaches employed in this study. a) Training from scratch approach. For subject-specific models,
one repetition is used for testing, while the others are used during the training phase. The model is trained on the training set
and then evaluated on the test set for decoding accuracy. b) Transfer learning training approach. The model is first pre-trained
on a larger and previously collected dataset. For the subject-specific model, the pre-train set comprises data from other
subjects. After the pre-train step, the model is fine-tuned on nine gesture repetitions from a subject, and the performance of
this fine-tuned model is evaluated on the test repetition. c) 5-way 5-shot learning training approach. Five samples for each
class are randomly picked from the training set to comprise the support and query set. These sets are provided to an encoder
that embeds the input data. The embedded vector of the support data is averaged to form the class prototype. The distance
between queries and prototypes is calculated, and the loss is computed and backpropagated. The model is then evaluated on
the testing set, also comprised of five samples per class for the support and query set.

non-linear mapping from the input data to the embedding
space through an embedding function fφ : RD

→ RM

with learnable parameters φ, where D is the dimension of

the feature vector of a labeled example in the few-shot
problem. The prototype for a particular class is determined
by calculating the mean of its support set within the
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embedding space:

ck =
1

|Sk |

∑
(xi,yi)∈Sk

fφ(xi), (3)

where Sk denotes the set of examples with class k and xi ∈

RD is the D-dimensional feature vector of an example, and
yi ∈ {1, . . . ,K } is the corresponding label.

Classification of an embedded query point is accomplished
via a softmax over distances to class prototypes, i.e.,
by identifying the nearest class prototype in the embedding
space by computing the distance between each unlabelled
image and the prototype. So, given a distance function d :

RM
× RM

→ [0, +∞), the Prototypical Network produces
a distribution over classes for a query point x based on a
softmax over distances to the prototypes in the embedding
space:

pφ(y = k | x) =
exp(−d(fφ(x), ck ))∑
k ′ exp(−d(fφ(x), ck ′ ))

(4)

Learning is done by minimizing the negative log-
probability J (φ) = −log pφ(y = k | x) of the true class k via
SGD. The distance is computed using the Euclidean distance
metric. This model can be used to generalize to classes not
seen in the training set, given only a small number of samples
of each new class. In our case, all the classes are known since
the training phase, and only the generalization capabilities of
the prototypical networkwill be exploited based on only a few
samples of each class. The Prototypical Network employed in
this paper for EMG-based hand gesture decoding is shown in
Fig. 4.

E. TRAINING AND EVALUATION
Our models were developed in Python. Each model was
trained and evaluated on the New Zealand eScience Infras-
tructure (NeSI) using NVIDIA HGX A100 80Â GB memory
GPUs. Three different training approaches were employed
in this study: 1) training a model from scratch, 2) using a
larger dataset to pre-train and then fine-tune the model in a
target dataset, and 3) using few-shot learning. These training
approaches are shown in Fig. 5. For 1) and 3), we trained
the models in both subject-specific and subject-generic ways.
2) was only trained for subject-specific, since in the case of
subject-generic, 1) and 2) would result in the same model.
The efficiency of all models was assessed using accuracy. The
description of the three training approaches employed in this
study is presented next.

1) TRAINING FROM SCRATCH
To train a full-scale TMC-ViT model from scratch,
we employed early stopping on validation loss to determine
the optimal number of epochs for training, using Adam
as the optimizer [47]. During training, the loss function
was sparse categorical cross-entropy. The procedure for
TMC-ViT training from scratch is illustrated in Fig. 5 - 1).

2) TRANSFER LEARNING
Transfer learning involves utilizing knowledge acquired from
solving one problem and applying it to a different but similar
problem. In our specific scenario, we aim to use the features
learned by a model that can interpret gestures performed
by various users and employ those features to interpret
EMG signals from a different individual. Typically, transfer
learning is employedwhen the available dataset is insufficient
to train a complete model from scratch for a given task or
user. The typical approach to transfer learning in the context
of deep learning involves the following steps. 1) loading a
pre-trained model that has been trained on a larger dataset
for a similar task. 2) preserving the valuable information
contained within, either freezing the entire model or certain
parts of it for subsequent training iterations. 3) adding new
trainable layers on top of the frozen layers or retraining the
last ones. These newly trained layers will learn to utilize the
existing features to generate predictions on a new dataset.
4) training the new layers using a new specific dataset,
allowing them to adapt and optimize their predictions based
on the learned features. 5) a final and optional step known
as fine-tuning can be employed. This involves unfreezing the
entire model obtained thus far and re-training it using the new
data, employing a very low learning rate (to avoid overfitting
and/or losing all the learned information from the previous
training). Fine-tuning has the potential to achieve significant
enhancements by incrementally adjusting the pre-trained
features to better align with the characteristics of the new
data, i.e., the data from the new subject.

In our study, a TMC-ViTmodel is pre-trained on the data of
the subjects, except the testing subject, using early stopping
on validation loss and Adam as the optimizer. Again, the
sparse categorical cross-entropy was employed. After the
model is pre-trained and the base model is frozen, the last
fully-connected layers are unfrozen and trained for 20 epochs
on the training set for the testing subject. Then, the whole
model is unfrozen for fine-tuning, trained for ten epochs, and
learning rate of 10−5. This procedure is shown in Fig. 5 - 2).

3) FEW-SHOT LEARNING
In the case of the few-shot classification, we have only a
small labeled set of examples (support set) to predict classes
for the unlabeled samples (query set), defining an N-way K-
shot problem, where N stands for the number of classes, and
K for the number of samples from each class. In this study,
we performed a 5-way 5-shot by randomly selecting five
samples for each of the five classes from the dataset to form
the support set for the model. Subsequently, five samples are
chosen from the same set of five classes to constitute the
query set.

The prototypical models were trained via SGDwith Adam,
and followed the procedure in the original paper [46].
An initial learning rate of 10−1 was used and divided
in half every 2000 episodes. The models were trained
using Euclidean distance in a 5-shot scenario, with training
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TABLE 2. Subject-specific models’ performance trained on the same
session, using three different learning approaches.

episodes containing five classes and query points per class.
The loss was the negative log-probability. The 5-way 5-shot
procedure we followed is shown in Fig. 5 - 3).

III. RESULTS
In this section, we present the results obtained by the
models training on the subject-specific and subject-generic
sets using the three different training approaches. The
tables presented in this section show the decoding accuracy
achieved by the models in percentages. Subj. stands for
tested subject, AVG for average, and SD for standard
deviation.

TABLE 3. Subject-specific models’ performance trained on the same
session, with an increasing number of gesture repetitions used for
training. rep stands for gesture repetition.

A. SUBJECT-SPECIFIC MODELS, INTRA-SESSION
Table 2 presents the performance of the subject-specific
models trained on only one subject at a time for the data
collected in the same session.

The analysis of Table 2 shows that high accuracies can
be achieved for classifying five gestures using raw EMG
data as input when training models in a subject-specific
manner. Training a TMC-ViT from scratch resulted in the
highest accuracies, outperforming the other two training
approaches for 6 out of 8 tested subjects, achieving accuracies
as high as 98.41%. It can be noticed that some gesture
repetitions can even achieve 100% decoding accuracy, e.g.,
repetition number 9 for subject 2. The pre-trained TMC-ViT
and Prototypical networks performed better for one subject
each compared to the other approaches. The Prototypical
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TABLE 4. Subject-specific models’ performance trained on different
sessions.

Network achieved the lowest standard deviation for most of
the subjects (subjects 1, 2, 3, 5, 7, and 8), demonstrating a
good generalization among gesture repetitions for the same
subject. It is also interesting to notice that, in general, the
models present a higher decoding accuracy when tested in
the intermediary gesture repetitions. This is explained by
the fact that in the last gesture repetitions, the EMG signal
changes from the initial gesture repetitions due to fatigue
and, in the first gesture repetitions, usually the participant
is still adapting to the data collection procedure, resulting
in a not so accurate gesture performance and hence not so
precise repetition, leading to a more noisy EMG signal or
even wrongly labeled data. Therefore, training a TMC-ViT
from scratch for subject-specific and intra-session models
shows the best performance for most of the tested subjects,
meaning these models are best suited when developing
EMG-based interfaces to achieve optimal gesture decoding
in such scenarios.

In order to explore the performance of the training
techniques based on the dataset size, we trained the same
models with an increasing number of gesture repetitions
used for training, leaving the last two gesture repetitions
for training. The performance achieved by these models is
shown in Table 3. All the tested learning approaches show

FIGURE 6. Gesture decoding accuracy. As the number of gesture
repetitions used for training increases, the TMC-ViT models tend to
outperform the Prototypical network model.

TABLE 5. Subject-generic models’ performance.

a decoding accuracy improvement the bigger the number of
gesture repetitions used for training, as shown in Fig. 6. The
approach that presents the best performance for a smaller
number of gesture repetitions is the Prototypical Network,
as expected for a few-shot learning approach. At the mark
of five training gesture repetitions, the TMC-ViT trained
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FIGURE 7. Average accuracy between folds for each subject from the different sets, i.e., subject-specific intra-session, subject-specific inter-session, and
subject-generic sets. The subject-specific models trained for intra-session data achieve higher accuracy than those trained and evaluated for the other
training sets. The subject-specific inter-session models achieve the worst average accuracies, showing how EMG data changes from session to session,
even when collected from the same subjects. Even though the subject-generic models perform worse than the subject-specific intra-session models, they
still present consistent decoding accuracies among the tested subjects. In general terms, training a TMC-ViT from scratch achieves higher performance for
the subject-specific intra-session set, while the Prototypical Network achieves better performance for the subject-specific inter-session and
subject-generic sets.

from scratch outperforms the Prototypical Network, while the
pre-trained model begins to outperform the few-shot learning
approach when seven gesture repetitions are used for training.
These results highlight that in selecting the training model
and learning technique for a given task, taking into account
dataset size is paramount to choosing the most appropriate
framework in order to achieve best performance (i.e, good
gesture decoding).

B. SUBJECT-SPECIFIC MODELS, INTER-SESSION
Table 4 shows the results achieved by the TMC-ViT trained
from scratch and the Prototypical Network in decoding
EMG signals while the model was trained on a different
data collection session. As seen in Table 4, the Prototypical
Network outperformed the TMC-ViT for all tested subjects.
The few-shot learning approach achieves from 70.79% to
84.27%, while the TMC-ViT achieves decoding accuracies
as high as 65.19%, demonstrating that when the EMG-based
interface is deployed using data collected from another
session for the same subject, the Prototypical Network may
present higher gesture decoding capabilities.

C. SUBJECT-GENERIC MODELS
The final set of experiments was composed of training the
TMC-ViT and the Prototypical Network from scratch. The
results achieved for these two approaches are shown in
Table 5. For this training set, the Prototypical Network out-
performed the TMC-ViT from 7 out of 8 tested subjects, with
accuracies ranging from 83.03% to 91.22%. The TMC-ViT
achieved accuracies as high as 82.04%, showing the potential
of this few-shot learning approach in decoding hand gestures

from EMG data of an unseen user, demonstrated by its higher
accuracies for 7 out of 8 tested subjects.

IV. DISCUSSION
In this section, we discuss the results in Section III. These
results are summarized in Fig. 7.

A. SUBJECT-SPECIFIC MODELS, INTRA-SESSION
Table 2 shows the results obtained with the three training
approaches when trained on the subject-specific set of data
collected in the same session. This training set can represent
the ideal scenario when deploying an HMI, i.e., when a
considerably large dataset for the subject that is going to
use the interface has been collected and is available and
when the interface is used (or tested) in the same session
as the data is collected (or when the machine learning
decoding model is trained). Typically, in this scenario a deep
learning model trained from scratch is expected to achieve
the best decoding accuracies, and as observed in Table 2, the
TMC-ViT model trained from scratch outperformed the other
training approaches for the majority of tested subjects. The
decreased performance achieved by the same architecture
when pre-trained on other subjects is explained by the fact
the EMG signals differ considerably from subject to subject,
even when the electrodes are placed on the same muscles
while the user performs the same gestures. Precise electrode
placement is often required for surface EMG and even a
slight deviation in electrode placement will alter the signals,
although not dramatically. Again, since the subject-specific
models use several gesture repetitions for training (9 out of
10), the training set comprises of a dataset, large enough,
to train the deep learning models’ weights, achieving high
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performance. The high performance of the TMC-ViT model
when trained from scratch with larger datasets is evident
when we analyze Table 3 and Fig. 6. It can be seen that
a dataset with 5 repetitions of a gesture is enough to
produce a model that outperforms the Prototypical Network.
Still, the performance of the few-shot learning approach is
notable, achieving 87.38% decoding accuracy using only one
repetition for training. This result is even more impressive
considering the fact that the model is trained on the first
collected repetition (minimal fatigue) and evaluated in the
last two gesture repetitions when fatigue is most prevalent.
However, training a model from scratch remains the best
approach when collecting more data from the same subject
is feasible.

B. SUBJECT-SPECIFIC MODELS, INTER-SESSION
When the data is collected in a different session, the
Prototypical Network outperforms the TMC-ViT, as shown
in Table 4. In that case, the TMC-ViT achieves an accuracy
as high as 65.19%, seeing a dramatic drop from the one
observed for the TMC-ViT subject-specific model trained on
data from the same session, that led to a decoding accuracy
as high as 98.41% (see Table 2). The fact that EMG signals
change drastically when collected in different sessions is
one factor that hinders the applicability of HMI in general.
However, if the HMI needs to operate for data collected in
different sessions, for example, when removing a prosthetic
and putting it on again, the Prototypical Network can be a
viable option to be employed for EMG decoding, achieving
satisfactory accuracies as high as 84.27%.

C. SUBJECT-SPECIFIC MODELS
The results achieved by the subject-generic models, shown
in Table 4, show that the Prototypical Network outperforms
the TMC-ViT for most of the tested subjects. The analysis
of this table also makes it clear that data from the same
subject but collected in different sessions can be treated
as data from different subjects, given the similar results
achieved by the subject-specific models trained on data
from different sessions and the subject-generic models (see
Table 4 and 5). Therefore, based on the results from Table 5,
a few-shot learning approach capable of predicting classes
based on only a small set of labeled examples seems to
generalize better for unseen data from new subjects (or
different sessions), representing the best approach for this
scenario. One example where this may be suitable is in
making EMG-based controllers for computers, gaming, and
robotic control and telemanipulation purposes.

V. CONCLUSION
In this work, we compare three learning techniques in
the context of developing EMG-based HMI applications to
decode five hand gestures. We trained a TMC-ViT, a novel
deep learning architecture, from scratch; we pre-trained this
same architecture in a larger dataset; and we trained a
few-shot learning technique called Prototypical Network.

These models were trained in a subject-specific and subject-
generic way. We further explored the influence of the number
of gesture repetitions used during training in decoding
accuracy and how themodels performwhen evaluated on data
from the same user but collected during a different session.

Training amodel from scratch resulted in the best decoding
performance among the subject-specific models for six of
eight tested subjects, achieving an accuracy as high as 98.41%
when data from the same session and nine gesture repetitions
are used for training (one is left for testing). However,
if less than five gesture repetitions are used for training
or when data from different sessions are used for testing,
the Prototypical Network outperforms the TMC-ViT models.
Regarding subject-generic models, the Prototypical Network
achieves the highest accuracy compared to the other training
techniques, with accuracies as high as 84.27%. Therefore,
in cases where a large training set from the same session
is available, training a deep learning model from scratch
is advised and will result in the best decoding accuracy.
However, a few-shot learning approach can deliver the best
performance for scenarios where data is scarce, collected in
different sessions, or collected for several users.

Future work will explore the same scenarios but for
different biological signals, such as lightmyography [48]
or forcemyography, in order to systematically evaluate
different human-machine interfaces. Moreover, we may
explore unsupervised approaches to learning meaningful
correspondences between different users’ EMG data, as even
though few-shot learning proved to be a good approach to
address how to learn EMG features betweenmultiple subjects
and/or unseen subjects, the performance of such models is
still considerable lower than subject-specific models trained
from scratch.

REFERENCES
[1] A. Dwivedi, ‘‘Analysis, development, and evaluation of muscle machine

interfaces for the intuitive control of robotic devices,’’ Ph.D. dissertation,
Dept. Mech. Eng., Univ. Auckland, 2021.
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