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ABSTRACT Recognition of human locomotor activities is crucial for monitoring the motion patterns.
Current studies for human locomotor activities recognition focused on detecting basic motion patterns. In this
study, we proposed a four-modules-based human locomotor recognition model via deep learning, which
will support in identifying two signal patterns including static and kinematic motions and classifying the
daily activities across different subjects. These motion patterns have been monitored through visual devices
along with physical and ambient sensors to extract the complex and basic motion from distinct data forms.
The four modules include processing, extraction, optimization, and recognition. Each module focuses on
certain processing elements for human locomotion recognition. The processing module represents the pre-
processing and segmentation stages for motion and ambient-based data along with extraction of human
skeleton points from the visual data. Next, the extraction phase focuses on motion patterns identification and
features extraction from the multisensors-based data. Then, the optimization module helps in prominent
features selection via genetic algorithm. Furthermore, the recognition module utilized a deep learning
technique called hidden Markov model to detect human locomotor activities. The average accuracy rates
of 73.05% and 71.14% have been achieved for high-level and atomic-level activities over both datasets.
The experimental results have shown that the proposed model outperforms the conventional multisensory
systems based on deep classifiers via confidence levels for each skeleton point extracted.

INDEX TERMS Activity recognition, classification, deep learning, locomotion prediction, multisensory
devices, patient monitoring, pattern recognition.

I. INTRODUCTION

Human locomotor activities [1] are important for several
applications, such as patient monitoring [2], indoor-outdoor
activity management [3], robotic learning [4], and muscle
fatigue [5]. Therefore, locomotion recognition has been a
research hotspot for decades. Wearable multisensor- [6] and
vision-based [7] devices have accelerated remote monitoring
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via human locomotion recognition (HLR). HLR systems can
be built upon data from wearable sensors [8], vision sen-
sors [9], and the fusion of multisensory devices [10]. These
systems can assess human physical and physiological status
using good learning modules from machine learning (ML)
and deep learning (DL) techniques.

Several HLR methods with multiple sensing technolo-
gies and learning modules have been proposed in the last
five years [11], [12], [13], [14], [15]. A few systems are
based on wearable sensors including accelerometer, gyro-
scope, and magnetometer [16], while others focused on
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utilizing the physiological sensors, such as, electromyogra-
phy (EMG), electrocardiography (ECG), and mechanomyo-
graphy (MMG) [17]. Some methods preferred to apply the
vision-based sensors, while others used the ambient sensors
attached to different indoor devices.

In this study, we propose a multi-sensory four-modules-
based HLR model to recognize multiple activity types.
Enhanced locomotor activities recognition has been attained
by providing missing data from a sensor in the form of
data from other sensors taking advantage of multi-sensory
devices. First, the proposed system recognized human loco-
motor activities using state-of-the-art filtration technique and
motion patterns identification method in processing module.
Next, the features mined in this paper have demonstrated
good potential for the identification of indoor human move-
ments. The proposed combination of features extraction in
extraction module for visual data gives higher accuracy for
HLR, where five skeleton body-points have been identified
to further extract body-points-based features along with full-
body-based features for vision-based data.

Then, a genetic algorithm has been utilized in opti-
mization module to select relevant features. Furthermore,
a hidden Markov model-based classifier has been used
to evaluate the proposed model in the last module called
recognition module. The analysis of results via precision,
recall, Fl-score, and specificity has also indicated that the
proposed technique has more compliance toward complex-
ities present in human activity motion patterns. Overall,
the proposed multisensors-based HLR system outperformed
the conventional single-sensor-based systems via confidence
levels achieved for each skeleton body-point. This paper
also presents the domain-specific ontology of the system
to be deployed in a real-time environment. This study
adds to the research community through the following key
contributions:

o The novel signal filtration technique for wearable
sensors-based data has been proposed in processing
module that helps to avoid errors from the setting and
orientation modifications. Hence, this study provides a
novel and improved filtration of inertial measurement
unit (IMU) signals.

o A state-of-the-art motion patterns identification via
extraction module has been proposed for physical data
resulting in enhanced recognition for complex and basic
motion patterned activities.

« Aninnovative fitness function has been proposed in this
paper to achieve improved results in terms of features
optimization via genetic algorithm.

The remainder of this article is organized as fol-
lows. Section II describes the current literature related to
single-sensor-based and multi-sensors-based HLR systems.
Section IIT describes the methodology used for HLR and
explains the four modules utilized in the proposed model.
Section IV presents experiments performed using the pro-
posed model along with their analysis. Section V gives details
of domain-specific ontology for the proposed system and
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section VI discusses the future research directions and con-
cludes the study.

Il. RELATED WORK

Recently, researchers have explored different sensing tech-
nologies and classifying methods to achieve improved HLR
ability [18], [19], [20], [21], [22], [23].

A. HLR VIA VISUAL SENSORS-BASED SYSTEM

First, visual sensor-based systems are considered.
Batchuluun et al. [18] proposed a novel method to extract the
joints and skeleton information for activity recognition using
a generative adversarial network (GAN) to enhance joint
and skeleton extraction. This method comprised four steps,
preprocessing, joint-GAN, postprocessing, and convolutional
neural network (CNN)-long short-term memory (LSTM)
learning. This method focuses on converting 1-channel ther-
mal images to 3-channel thermal images. Nevertheless, the
3-channel thermal images could not thoroughly differentiate
between humans and other objects. Hence, humans were not
detected correctly in images with low spatial texture infor-
mation causing low performance for the propose method.
Yin et al. [19] proposed a real-time model for human action
detection in the healthcare field. Multichannel LSTM was
used as a functional and versatile three-dimensional skeleton-
based action detection system. A special loss function was
used to improve accuracy. Experiments were performed
on the NTU RGB+D and TST Fall detection v2 datasets.
However, the frame-level error detection technique did not
accomplish error-free skeleton data and was unable to assess
the cause of the dimensionality issues causing the system
to achieve lower accuracy rates. Similarly, another study
presented in [20] focused on residual convolutional neu-
ral network (CNN) and spatial attention module for action
recognition from video frames by extracting spatiotempo-
ral features. The model helped in focusing or suppressing
certain portions of the frame in order to get more specific
information through features extraction from both spatial and
temporal domains. Though, the proposed technique did not
use optical flow maps and consequently the performance was
compromised.

B. HLR VIA WEARABLE SENSORS-BASED SYSTEMS

Second, we consider wearable sensors-based systems.
Mutegeki et al. [21] proposed a simple method for HLR.
They employed both CNN and LSTM, instead of features
engineering module, to improve the performance for a small
number of activities. Different combinations of CNN and
LSTM have been proposed. Nonetheless, the results obtained
in [21] demonstrate that the performance decreased for the
complex actions like atomic-level activities. Besides, the
softmax loss increased as the model got more complex; there-
fore, using both CNN and LSTM layers did not improve
the results. Hajjej et al. [22] used single-sensor-based data
and a Quaternion based filtration technique. Then, multiple
segmentation techniques have been applied to make windows
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FIGURE 1. Flow architecture of the proposed MS-DLD system.

of the filtered data. Next, the patterns type has been identified
and features are extracted and selected. Further, to classify
the activities, LSTM has been utilized. Though, this study
has few limitations including response time delay and more
computational costs. In [23], authors represent a wearable
human activity recognition methodology that used IMU sen-
sors to collect data from the actions performed. Next, the data
is pre-processed through multiple steps, including drop-out
data, global normalization, moving average, sliding overlap
windows, and data segmentation methods. Five different deep
learning models, such as CNN, recurrent neural network,
LSTM, BiLSTM, and gate recurrent unit, have been utilized
to recognize different human activities performed. However,
the system’s performance in terms of time is compromised
due to a total of 892,839 learning epochs.

C. HLR VIA AMBIENT SENSORS-BASED SYSTEMS

Third, HLR methods based on ambient sensors are also
present in the literature [24], [25], [26]. Natani et al. [24]
designed a framework based on multiple neural net-
works. They used multilayer perceptron, CNN, RNN, and
CNN-RNN ensemble models. Moreover, performance is not
reliable when it comes to deep learning methods and they
also take large amount of time and computations. An activity
recognition framework based on the detection of behavior
transformation and sensor data segmentation was introduced
by Chen et al. [25]. They proposed a hybrid fuzzy c-means
for classifying the sensor events and change point detection-
based segmentation system to give segmented sensor events.
Both machine learning and deep learning were used to
perform the classification. However, the events were misclas-
sified due to using less efficient machine learning techniques.
Their method was also evaluated on the CASAS dataset,
which did not support complex motion patterns. Hence, this
approach is not applicable to complex human locomotion
events. The authors proposed a binary ambient sensors-based
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system in [26]. A deep CNN has been used in the model for
passive infrared and door-based sensors data. Activities of
daily living have been selected using adaptive boosting and
Fuzzy c-means classifiers. Although the system performed
well but could not recognize the complex activities like relax-
ing room, dining room, bedroom, and leaving home with
acceptable accuracies.

D. HLR VIA MULTI-SENSORS-BASED SYSTEMS

Finally, the multi-sensors-based systems have been explored
to see the literature in detail. In [27], the authors have
proposed a multimodal locomotion classification system by
considering Opportunity++ and HWU-USP datasets as the
input. The model suggested to pre-process the multimodal
data from these datasets through multiple techniques for
each signal type. For visual data, human skeleton has been
extracted and for inertial data, filtration along with win-
dowing has been applied. Further, the features have been
extracted via SLIF, linear prediction cepstral coefficients,
and Pearson correlation. Finally, the features are fused and
optimized followed by locomotion prediction by using recur-
sive neural network. Although the system performed better
than other single-sensors-based systems, however, the confi-
dence levels achieved for each extracted skeleton body-point
are not up to the mark especially for both ankle points.
Another sensors-based human activity recognition system
has been proposed in [28]. The system used multiple built-
in sensors available in smart devices and recognized basic
and complex activities performed. The raw data has been
pre-processed using normalization, windowing, and filtering
methods. Further, the system proposed to extract rotational,
statistical, time-based, and frequency-based features along
with fusion. Multiple learning algorithms have been utilized
to classify both basic and complex activities including Naive
Bayes and K nearest neighbor (KNN), and neural network.
Yet, these learning methodologies are prone to errors and
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provide less accuracy when it comes to HLR, therefore the
performance lacked acceptable results. In [29], Nafea et al.
showed a human activity recognition system to monitor peo-
ple remotely. Multi-sensors have been utilized to record data
and deep learning models have been proposed to recognize
the activities, such as CNN and gated recurrent unit. However,
the proposed method could not perform well due to huge loss
of training and validation sets.

Ill. PROPOSED HLR SYSTEM

There are a few drawbacks faced with different methods
present in the literature. Misclassifications can occur due to
the subjects’ variations, activity conditions, sensor usage, and
processing techniques used, thereby decreasing the accuracy
[30], [31], [32]. Therefore, an enhanced HLR model is pro-
posed to address such issues. Fig. 1 describes the proposed
multisensor-based HLR model with processing, extraction,
optimization, and recognition modules. In module I named
as processing, raw signals from multisensory devices such
as inertial measurement units (IMUs), ambient sensors, and
videos are processed through filtration and segmentation or
skeleton modeling steps. Next, the extraction module has
been used to extract the motion patterns for physical motion-
based data and features followed by their fusion for all
three sensor types. Then, the optimization module focuses
on selecting relevant features. Finally, the deep learner,
RNN [33], is used to train and test human locomotor activities
by dividing the extracted data into training and test sets in
recognition module. Following subsections give the details
of each proposed module as mentioned in Fig. 1:

A. MODULE I: PROCESSING

Raw signals consist of physically attached sensor-based sig-
nals p;, ambient sensor-based signals p,, and video frame
sequences p,. p; and p, were pre-processed using a novel
filter called the gravity quaternion change normalization filter
proposed by this study. Initially, the p; (raw IMU signals) and
pa(light, switches, RF [34] etc.) represented together as p;, pg,
have been filtered through low-pass Butterworth filter LPF
and high-pass Butterworth filter HPF ¢ [35]. Then, the LPF
and HPF ; are normalized using the Euclidean distance:

Norm = \/JLPF| + LPF> + LPF3
+,HPF| + HPF, + HPF3, ¢))

where LPF |, LPF>, and LPF3 denote the low-pass Butter-
worth filtered values for the x-, y-, and z-axes, respectively,
and HPF |, HPF », and HPF 3 represent the high-pass Butter-
worth filtered values of the x-, y-, and z-axes, respectively.
The videos of multiple subjects have been converted into
frame sequences p, for pre-processing. Then, we select a
delta of 50 sequences to consider for preprocessing to avoid
repeated processing that can cause time delays and additional
computational costs [36]. Moreover, a background sequence
is extracted because the cameras were not moving, so it
was easy to select it from any number of sequences. For all

VOLUME 11, 2023

the selected sequences, the background sequence is removed
from the frame by taking the difference between the orig-
inal frame and the background frame [27]. Fig. 2 presents
a frame sequence of vision-based data with the background
subtracted. To reduce the noise present in the frames, the
discrete wavelet transform is applied over all background-
subtracted frames [37].

(@ (b)

FIGURE 2. (a) Before background subtraction and (b) after background
subtracted from a frame sequence of Opportunity++ dataset.

Furthermore, the physical and ambient preprocessed data
are further segmented using overlapping time-based win-
dows [38], whereas the visual data are windowed through
event-based windows. The segmentation process for all three
signal types {p;*, p,*, py*} was achieved as:

{pi*. ph.pv*} = pi*.At + p*.0e + p,* 8, 2)

where p;* and r give the motion-sensor filtered data and
time, p,* and e provide the ambient-sensor filtered data and
event, and p,* and s denote the vision-based data and frame
sequences.

B. MODULE II: EXTRACTION
The extraction module includes motion pattern identification
and feature extraction, along with feature-to-feature fusion.
Motion pattern identification is implemented on the physical
motion-based data p; only, and all three physical, ambi-
ent, and visual data have been processed through features
extraction and fusion phases. The three types of signal-based
features have been extracted separately and listed in Table 1.
For physical data p;, this study extracted two patterns
separately including kinematic and static patterned signals.
For kinematic pattern-based physical signals K;, we have
extracted features via dynamic time warping, whereas for
static pattern-based physical signals S;, we have mined fea-
tures by using hidden Markov random fields technique.
Mel-frequency cepstral coefficients have been extracted for
ambient data p,. For visual data, we proposed to extract fea-
tures through two techniques including skeleton body-points
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TABLE 1. Signal types and features extracted.

Signal Type Features Extracted
Physical Kinematic Dynamic' Time
Data Pattefns . Warping
Static Hidden Markov
p; Patterns Random Field
Ambient
Data ) Mel-frequency
Cepstral Coefficients
Pa
Skeleton
Visual Body- Gray Level Co-
Data points occurrence Matrix
Py Full-body Geodesic Distance

and full-body p,*. Gray-level co-occurrence matrix has been
utilized for skeleton body-points-based features extraction
and geodesic distance has been recommended for full-body-
based features mining.

Motion can be of two types—kinematic and static
nature [39]. In this study, we used the polynomial probability
distribution [40] method to segment motion patterns from
physical data into two pattern distributions as:

P(M,a)=w0+w1a+wza2+...+wMaM, 3)

where wy represents the unknown weight for each m €
[0,...,M], and the M th order polynomial P on the interval
[x, y] are calculated. Each colored line in the Fig. 3 displays
the polynomial distribution calculated via Eq. 3 for every
window of kinematic physical motion data. The separation of
kinematic patterned activities from static patterned activities
is based on the first value of polynomial distribution between
0 and 21. Whereas, all the other values represent static motion
activities. The kinematic patterns comprised of walking, jog-
ging, kneel etc. activities, however the static patterns include
lying, and sitting, etc. activities.

35 Kinematic Polynomial Probability Distribution estimation

Polynomial Probability Density Distribution

0.2
Windowed Signal

FIGURE 3. Polynomial distribution for kinematic physical activities.

After the pattern identification, different feature extraction
techniques are applied to the three signal types to obtain
stochastic feature matrices {Vi*, Ki*, Si*, Ai*} using the
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Algorithm 1 Pks-AV Feature Extraction Algorithm

Input: the kinematic—static physical IMU signals {Ki, Si}, ambient
IMU signals {Pa*}, full-body and body-points based visual frame
sequences {Pv*}, current window W;
Output Stochastic features matrix {Vi*,
extract DTW for W in Ki to get K1
extract HMRF for W in Si to get Si*;
extract MFCC for W in Pa* to get Ai*;

extract GLCM for Full-body Pv* to get Vi*;

extract G-dist for Body-points Pv* to get Vi*;

fuse the Ki*, Si*, Ai*, and Vi* to get { Vi*, Ki*, Si*, Ai*};

*, Si*, Ai*};
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FIGURE 4. DTW calculated for different windows over Opportunity++.

physical kinematic—static ambient visual (Pks-AV) feature
extraction algorithm as given in Algorithm 1.

where, {Vi, Ki %, Si %, Ai %} p resents the Vi x visual-
data features extracted from gray level co-occurrence matrix
(GLCM) and geodesic distance (G-dist) both, the Ki * kine-
matic motion-data features extracted from dynamic time
warping (DTW), the Si * static motion-data features extracted
from hidden Markov random fields (HMRF), and Ai *
ambient-data features extracted from Mel frequency cepstral
coefficients (MFCC).

For kinematic physical signals, a feature extraction method
used is DTW. First, DTW calculates the time-based compar-
ison [41] via Eq. 4 and 5 between P and R windows of data
using Euclidean distance formula as given in Eq. 6. Then,
it searches for warping path using Eq. 7.

= [p17p27"'ﬂpiv"'spm] (4)
R=["1a"27~~-,rj,~-~7rn] (5)
2
d(p.r)=+{p—r) (6)
PT = [ptl,ptz,...,ptk] with
max (m,n) <k <m—+n—1 @)

where each pr; represents the grid extracted via p,, and ry,.
DTW cost function has been calculated using Eq. (8). Fig. 4
shows the DTW results calculated for different windows on
Opportunity++.

DTW (P, R) = min,| Zle Pty )
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FIGURE 5. MFCC extracted for (a) open drawer and (b) open door
sensors.

HMREF is proposed to work with joint likelihood probabil-
ity as given in Eq. 9 as:

P(ylx, ©) = [ [ PGili. 6x), ©)

where © gives the parameters-based set and P(y;|x;, 0y,)
denotes the Gaussian distribution. Next, to estimate the
labels, the MAP estimation has been used by extracting prior
energy function as:

U= . Feo, (10)

where F.(x) gives the potential clique and CI denotes the
set of possible cliques. After extracting prior energy from
cliques, the features similar to clique have been extracted.

For ambient data, MFCC are used to extract relevant fea-
tures [43]. Formula given in Eq. 11 is used to calculate
cepstral coefficients, where d; is the coefficient from ¢ frames;
a typical value used for N is 2. Fig. 5 shows the MFCC
features extracted over two different ambient sensor signal
windows.

N
Zn:l (Cran — Cr—n)

d[ =
N
2 anl n’

Y
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(a) (b) (c)

FIGURE 6. GLCM extracted for (a) drinking from cup, (b) open door, and
(c) open dishwasher activities on Opportunity++.

(b) (c)

FIGURE 7. Skeleton body points for the geodesic distance calculation of
(a) drinking from cup, (b) open door, and (c) open dishwasher on
Opportunity++.

(@)

For visual data, the features are extracted from two
categories. One aims to extract related features from the
techniques focusing on detected skeleton-body points. The
other emphasizes full-body feature extraction techniques. For
full-body feature extraction, a technique called GLCM has
been employed.

GLCM supports extracting the texture characteriza-
tion [44]. If I is the matrix comprising extracted GLCM
values, element I(i,j) gives the number of times a pixel of
a given gray level i is found adjacent to a pixel of gray
level j. GLCM features are calculated by determining the
distribution of co-occurring values at a given offset. Fig. 6
shows the GLCM features extracted over a frame sequence
of Opportunity++ [45].

For the skeleton-body points, geodesic distance has
been calculated using Eq. 12 between the skeleton-body
points [46]. It supports finding the angle between two body
points and multiplying by the earth’s circumference. Fig. 7
presents the skeleton-body points for calculating the geodesic
distance [47], including the head, elbow, wrist, knee, and
ankle.

distance = angle * pi * radius. (12)
C. MODULE III: OPTIMIZATION
All extracted features {Vi %, Ki *, Si *, Ai %} have been fur-

ther fused based on windows W for physical, ambient,
and visual data forms. This has increased the vector size
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tremendously and requires a feature optimization technique.
Hence, the proposed HLR model suggests applying a genetic
algorithm (GA), which is an effective strategy for high-
dimensional search spaces by taking a small chunk of data
to find the global minima with random biological operations,
such as crossover, selection, and mutation [48]. Chromo-
somes are used as the basic units to perform such biological
operations. A feature vector is transformed into the equiva-
lent chromosomes by mapping features to respective genes
{Fi *, Fj x} [49]. Then, an optimal search path is derived by
considering features as the population of the chromosomes
that later on gets filled with the fittest set of featured chromo-
somes described in Fig. 8. A fitness function proposed in Eq.
13 reflects the key factors for HLR, and the performance is
important to keep the response time as less as possible.
o

fa
where 5 denotes the average score over all subjects for
physical data pd, ambient data ad, and visual data vd. The
performance was determined using the data-specific Pear-
son’s correlation and w is the scaling factor that determines
the importance of each signal type. It is set to 0.5, 1.0,
and 0.25 in the proposed HLR model for pd, ad, and vd,
respectively. To counter the imbalance between signal types,
such as the vd having more data points than the other
two signal types, thus, we gave the smallest weight to it
in order to balance the results. Similarly, ad has less data
points than pd, hence assigned more weight. f;, represents
the n number of features used as chromosomes and o is
a scale factor set to 0.15 to keep it less prominent in the
fitness criteria. ]%n determines the fitness from the number

fitness = wpaSpd + @adSad + WvaSva + (13)

of features used, as it will give higher fitness with lesser
features with f;, > 1. This fitness function will support
the proposed HLR model to attain less number of features
selected {Vi * +Ki * + Si * + Ai %}’ along with less com-
putational time. The maximal possible fitness with these scale
factors is 1.0.

D. MODULE IV: RECOGNITION

A multidimensional vector is produced from the optimization
module for all three signal types on the Opportunity++
[45] and Carnegie Mellon University Multi-Modal Activity
Database (CMU-MMAC) [50] datasets. Recognition results
comprise two levels of locomotor activities—high- and
atomic-level locomotion—for the forecast of human locomo-
tion. The high-level locomotor activities comprise of general
actions performed that can be included in more than one
atomic-level actions. The atomic-level locomotor activities
are granular actions that are specific to a type of action and
are not being repeated in multiple activities. The sequences
of data from both datasets are given as an input to the hidden
Markov model (HMM)-based classifier.

IV. EXPERIMENTAL SETTINGS AND RESULTS
Multiple experiments were performed to evaluate the per-
formance of the proposed HLR model. The first experiment
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FIGURE 8. Genetic algorithm architecture for HLR system.

for the HLR model’s validation is to determine the details
of the selected datasets. The second experiment analyzes the
proposed model’s accuracy for both high- and atomic-level
locomotor activities using HMM. It also compares the per-
formance of HMM using different metrics such as precision,
recall, and F1-scores over both datasets. The last experiment
compares the confidence levels of five skeleton-body points
extracted from video sequences with other state-of-the-art
model confidence. The experiments were performed using
the proposed HLR algorithm implemented on MATLAB with
the hardware platform of Intel®) i7 Core, 1.80GHz CPU, and
24.0-GB RAM.

Two benchmarked datasets were used to validate the
claims about the HLR model’s performance, namely,
Opportunity++ [45] and CMU-MMAC [50]. Notably, one
dataset was collected in a real environment and the other
was collected in a synthetic live-in laboratory environment,
indicating diversity.

A. OPPORTUNITY++ DATASET

Opportunity++ [45] is a publicly available real-life
environment-based dataset containing 25 h of video data
along with physical and ambient data in the form of IMU sig-
nals, where ambient data refers to 13 reed switches and 8 3D
acceleration sensors attached to drawers, kitchen appliances,
and doors. Data were collected from 12 subjects who per-
formed multiple high- and atomic-level locomotor activities
inside a room. The HLR model focuses on the four high-level
locomotor activities—standing, walking, sitting, and lying—
along with atomic-level locomotor activities—open door,
close door; open fridge, close fridge, open dishwasher, close
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TABLE 2. Confusion matrix of high-level locomotion over Opportunity++.

Locomotor | g g | Walk | Sit | Lie
Activities
Stand 5 4 1 0
Walk 2 6 1 1
Sit 1 0 9 0
Lie 0 0 0 10
Mean Accuracy = 75.0%

dishwasher, open drawer, close drawer, clean table, drink
from cup, and toggle switch. Six types of experiments called
runs were performed for every subject, including five daily-
life routine activities runs followed by a drill run: grooming,
relaxing, preparing food, eating food, cleaning up, and taking
break. Multiple daily-life routine activities were performed
in each run. The pixel resolution for video recording was
640 x 480, and 10 frames per second speed was used. The
videos were also anonymized to hide the subjects’ identities.
Fig. 9 gives a glance of sample frame sequences from the
dataset.

FIGURE 9. Few sample frame sequences from the Opportunity++ dataset
showing activities, such as, (a) open drawer, (b) lying, (c) open
dishwasher, and (d) clean table.

B. CMU-MMAC DATASET

The second dataset, CMU-MMAC [50], contains multiple
sensor modalities, including an accelerometer, gyroscope,
color video cameras, and 12 infrared MX-40 cameras. These
sensors are located all over the human body, including fore-
arms, upper arms, left calf, right calf, left thigh, right thigh,
abdomen, and both wrists. A total of 43 subjects performed
daily life activities related to cooking different recipes, such
as a brownie, eggs, pizzas, salads, and sandwiches. The high-
level locomotor activities include stand still, walk, sit, turn,
bend, kneel, stand up, sit up, and sit down. The atomic-level
locomotor activities include close, open, clean, fill, out, stir,
and shake. Fig. 10 shows different frame sequences from
CMU-MMAC dataset.
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FIGURE 10. Sample frame sequences from the CMU-MMAC dataset
showing activities, such as, (a) put, (b) walk, (c) stir, and (d) fill.

0.6
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Neck Shoulder

L1 1 e 0

Elbow Knee Ankle

FIGURE 11. Confidence levels for models, the model of [45] and the
proposed HLR model, on Opportunity++.

C. EXPERIMENT I: VIA OPPORTUNITY++ AND
CMU-MMAC DATASETS

The proposed HLR model is validated through confusion
matrices reported in Tables 2-5. We fixed the data for training
and testing to 80% and 20% split, respectively. The high-
level locomotor activities are presented in Tables 2 and 4 for
Opportunity4++ and CMU-MMAC, respectively. The low-
level locomotion has been given in Tables 3 and 5 over
Opportunity++ and CMU-MMAC, respectively. We have
calculated the accuracy rates through confusion matrices as
given in Eq. 14.

TP + TN
TP+ TN 4+ FP+FN’

where, TP gives true positives, TN shows true negatives, FP
provides false positives, and FN represents the false negatives
from confusion matrices [51]. The proposed multimodal sys-
tem has achieved the accuracy rates of 75.0% and 71.11%
over high-level locomotion recognition for Opportunity+-+
and CMU-MMAC datasets, respectively. Similarly, accuracy
rates of 73.53% and 68.75% have been achieved for atomic-
level locomotion over Opportunity++ and CMU-MMAC
datasets, respectively.

Accuracy = (14)

D. EXPERIMENT II: VIA EVALUATION METRICS

A summary of the proposed HLR model evaluation metrics
is presented in Tables 6 and 7 for Opportunity++ and CMU-
MMAUC, respectively. The evaluation has been performed
in terms of precision [52], recall [53], Fl-score [54], and
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TABLE 3. Confusion matrix of atomic-level locomotion in Opportunity++ dataset.
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FIGURE 12. Confidence levels for models, the model of [50] and the

proposed HLR model, on CMU-MMAC.

TABLE 4. Confusion matrix of high-level locomotion over CMU-MMAC
dataset.

Locomotor|Stand| .\ | 3¢ Ipy enl Bend [Kneel|St21d| Sit | Sit
Activities | still up | up |down
Stand
o st 2l1lolo o] 1 ]1]o0
Walk | 0 | 6 |0| 1] 0] 2] 0 1] 0
Sit 0] 1 [8/0] 000 o] 1
Turn | 0 | 0 0| 7] 0| 0] 3 o] o0
Bend | 0 | 1 JO| O] 6] 0 1 0] 2
Kneel | 1 | 0 [0/ 0] 0 [ 9] 0 0] o0
Stand |5 1 5 1ol o] 0| o |7 |0 1
up
Situp | 2 | 0 Jolo| 110 ] o0 [6]1
Sit ol o|ololo| o] olfo] 10
down
Mean Accuracy = 71.11%

specificity [55], which showed that the proposed HLR model
gave satisfactory results. Eq. 15-18 show the formulas for
precision, recall, Fl1-score, and specificity, respectively.

TP

—_— 15
TP + FP (15)

precision =

105474

TABLE 5. Confusion matrix of atomic-level locomotion over CMU-MMAC
dataset.

L:“’.“f".“" Close | Clean |Open | Fill | Put [Stir/Shake|Other
ctivities
Close 6 0 2 0 1 0 0 1
Clean 1 5 0 4 0|0 0 0
Open 0 0 8 0101 1 0
Fill 0 0 0 10 | 0 | O 0 0
Put 0 0 2 0 6 |0 0 2
Stir 0 1 0 2 0|7 0 0
Shake 0 0 1 0 1 0 8 0
Other 0 1 0 2 0|2 0 5
Mean Accuracy = 68.75%
TP
recall = ——, (16)
TP+ FN
2 x (recall * precision)
F1 — score = — a7
recall + precision
ifici ol (18)
specificity = ————,
peciclty = TN T Fp

where, TP gives true positives, TN shows true negatives,
FP provides false positives, and FN represents the false
negatives from confusion matrices. From the specificity of
the system, we can conclude that the proposed four-modules-
based locomotion recognition model is able to detect with
93.54% and 94.0% specificities over Opportunity++ and
CMU-MMAC datasets, respectively. Similarly, the system
can correctly identify the locomotor activities for 73.5% and
69.0% over Opportunity++ and CMU-MMAC datasets.

E. EXPERIMENT IlI: EVALUATION USING
STATE-OF-THE-ART SYSTEMS

For the proposed HLR model, we chose two datasets, which
have been used by different researchers for HLR. To prove
the proposed model’s superiority for human locomotion-
related applications, we compared it with state-of-the-art
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FIGURE 13. Overview of the LocomotionPrediction ontology consisting of 7 ontology modules linked together. SSN, Semantic Sensor

Network; UL, Ultra-Light.

TABLE 6. Performance metrics of HMM classifier for high- and
atomic-level locomotion in Opportunity++ datasets.

Locomotion HMM
HIGH-LEVEL LOCOMOTION
Activities Precision  Recall Fl-score Specificity
Stand 0.50 0.62 0.55 0.83
Walk 0.60 0.60 0.60 0.85
Sit 0.90 0.82 0.86 0.95
Lie 1.00 0.91 0.95 1.00
Mean 0.75 0.74 0.74 0.90
ATOMIC-LEVEL LOCOMOTION
Activities Precision  Recall Fl-score Specificity
OD1 1.00 0.83 0.91 1.00
OD2 0.70 0.54 0.61 0.97
CD1 0.60 0.86 0.71 0.96
CD2 0.90 0.60 0.72 0.99
OF 0.60 0.86 0.71 0.96
CF 0.80 1.00 0.89 0.98
ODW 0.70 0.64 0.67 0.97
CDW 0.50 0.71 0.58 0.96
ODR1 0.80 0.80 0.80 0.98
CDRI1 0.70 0.87 0.77 0.97
ODR2 0.60 0.75 0.67 0.96
CDR2 0.90 0.82 0.86 0.99
ODR3 0.70 0.78 0.74 0.97
CDR3 0.80 0.57 0.66 0.98
CT 0.90 0.82 0.86 0.98
DC 0.80 0.80 0.80 0.98
TS 0.50 0.71 0.59 0.96
Mean 0.73 0.76 0.73 0.97

models having skeleton modeling confidence values between
0 and 1 [27]. Fig. 11 depicts the confidence levels achieved
in [45] and the proposed HLR model over Opportunity++-.
Fig. 12 displays the comparison by extracting confidence lev-
els from [49] and the proposed HLR model on CMU-MMAC.
The yellow dots in both Fig. 11 and 12 represent the higher
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TABLE 7. Performance metrics of HMM classifier for high- and

atomic-level locomotion in CMU-MMAC datasets.

Locomotion HMM
HIGH-LEVEL LOCOMOTION

Activities Precision Recall Fl-score Specificity
Stand still 0.50 0.62 0.55 0.92
Walk 0.60 0.60 0.60 0.93
Sit 0.80 0.73 0.76 0.96
Turn 0.70 0.87 0.77 0.95
Bend 0.60 0.86 0.71 0.93
Kneel 0.90 0.82 0.86 0.98
Stand up 0.70 0.58 0.63 0.95
Sit up 0.60 0.75 0.67 0.93
Sit down 1.00 0.67 0.80 1.00
Mean 0.71 0.72 0.70 0.95

ATOMIC-LEVEL LOCOMOTION

Activities Precision Recall Fl-score Specificity
Close 0.60 0.86 0.71 0.92
Clean 0.50 0.71 0.59 0.90
Open 0.80 0.61 0.69 0.95
Fill 1.00 0.56 0.72 1.00
Put 0.60 0.75 0.67 0.92
Stir 0.70 0.70 0.70 0.94
Shake 0.80 0.89 0.84 0.95
Other 0.50 0.62 0.55 0.90
Mean 0.69 0.71 0.68 0.93

confidence levels achieved by the proposed HLR model, and
the blue cylinders indicate the confidence levels achieved in
conventional methods [45], [50].

V. DOMAIN-SPECIFIC ONTOLOGY OF HLR SYSTEM

Ontology is a representation of a context-aware system using
is-a relationships between different modules of the system
along with their set of relations [56], [57], [58], [59]. There
are types of ontologies, such as top-level ontology [60],
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general ontology [61], and domain-specific ontology [62],
[63], [64]. For the proposed HLR system, Fig. 13 shows
an overview of domain-specific ontology for Locomotion-
Prediction system. This ontology presents the overview of
proposed HLR system in terms of physical and actual imple-
mentation for real-life projects.

VI. CONCLUSION

In summary, an HLR model based on human locomotor
activity is proposed in this study. A combination of physical,
ambient, and vision-based sensors is used to recognize appli-
cations. The acquired data are preprocessed through unique
techniques and then segmented. Further, humans are human
locomotion, which is important in many real-time detected
via skeleton modeling and patterns are detected in the form of
dynamic and static categories. The features are extracted from
multiple stochastic extraction methods and fused. Moreover,
a GA is used as the feature optimization technique. The
optimized features are further fed to an RNN for classification
into high- and atomic-level locomotor activities.

The proposed model can be implemented for real-time
applications such as gait analysis, animal motion detection,
exergaming, robot learning, disease recognition, and edu-
cational purposes. However, it still needs improvement in
pattern identification and vision-based data preprocessing.
The classification results also showed different divergences in
values that caused the misclassification of several locomotion
activities.
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