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ABSTRACT The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift in
the automobile industry, replacing conventional diesel and gasoline-powered vehicles. The Battery Manage-
ment System is crucial in these electric vehicles and also essential for renewable energy storage systems. This
review paper focuses on batteries and addresses concerns, difficulties, and solutions associated with them.
It explores key technologies of Battery Management System, including battery modeling, state estimation,
and battery charging. A thorough analysis of numerous battery models, including electric, thermal, and
electro-thermal models, is provided in the article. Additionally, it surveys battery state estimations for a
charge and health. Furthermore, the different battery charging approaches and optimization methods are
discussed. The Battery Management System performs a wide range of tasks, including as monitoring voltage
and current, estimating charge and discharge, equalizing and protecting the battery, managing temperature
conditions, andmanaging battery data. It also looks at various cell balancing circuit types, current and voltage
stressors, control reliability, power loss, efficiency, as well as their advantages and disadvantages. The paper
also discusses research gaps in battery management systems.

INDEX TERMS Electric vehicle, battery management, battery modelling, state of charge, state of health,
cell balancing, battery thermal management system.

I. INTRODUCTION
The effects of fossil fuel depletion on the ecosystem have
increased the urgency to transition to renewable energy
sources and alternative transportation technologies. The
excessive extraction and utilization of fossil fuels result in
the generation of significant quantities of CO2 and other
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greenhouse gas emissions (GHGE). Utilizing renewable
energy sources and electrifying the transportation sector,
as shown in Fig.1, can reduce the GHGE by up to 40%.
Renewable energy, such as solar, wind, wave, and tidal power
provides a greener, more sustainable alternative to fossil fuels
[1]. However, the intermittent nature of these energy sources
poses a challenge to maintaining a consistent and reliable
power supply. To tackle this challenge, energy storage sys-
tems (ESSs) are utilized to store surplus energy generated
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FIGURE 1. Vehicle CO2 emission levels.

FIGURE 2. A standard electric vehicle.

from renewable sources during peak production periods and
release it to the grid during high demand or when renewable
energy generation is low.

The ESSs play a crucial part in boosting the viability
and stabilizing the power grid of the widespread adoption
of renewable energy sources. EV (shown in Fig.2) and
hybrid electric vehicles (HEVs) have gained popularity as
potential replacements for automobiles powered by inter-
nal combustion engines, offering numerous benefits such as
reduced greenhouse gas emissions, decreased air pollution,
and improved energy efficiency.

EVs and HEVs are powered by batteries, which offer
features include high energy density, low environmental
impact, and durable performance. The wider adoption of EVs
depends on advancements in battery technology. Efforts are
beingmade to enhance energy storage capacity, reduce charg-
ing times, and lower costs. Currently, Lithium-ion (Li-ion)
batteries are the most prevalent type used in EVs due to their
favorable characteristics, but researchers are also exploring
other battery chemistries as shown in Fig.3.

This concept allows EVs not only to consume energy but
also to function as energy storage systems, actively engaging

FIGURE 3. Schematic diagram of Li-ion cell.

with the electrical grid. During periods of low demand or high
renewable energy generation, EVs can supply stored electric-
ity back to the grid, thereby assisting in balancing supply
and demand and promoting grid stability. Fig. 4 demon-
strates the worldwide battery industry’s explosive expansion,
projecting a surpass of 2500 GWh within the next decade
[119]. Fig. 4 (b) showcases the increasing demand for bat-
teries across different applications and regions, with electric
mobility being a major driving force behind the growth
of the modern battery industry. The popularity of electric
and alternative fuel vehicles is accelerating the research and
development of battery materials and automotive technology,
which supports smart mobility. China has made plans to
meet its peak emissions before 2030, in keeping with the
global goal of achieving carbon neutrality. To make electric
vehicles comparable to fossil fuel vehicles, Li-ion Batteries
(LIBs) are expected to come to an energy density goal of
approximately 500 Wh kg−1 for EV applications. Numerous
electric car models have made extensive use of both Li-ion
batteries and nickel-metal hydride (Ni-MH) batteries [3].
The popularity of Li-ion batteries stems from their improved
reliability, power density, energy density, and efficiency [4].
Additionally, the decreasing manufacturing costs of Li-ion
batteries have contributed significantly to their widespread
commercialization, enabling their adoption across multiple
industries. Efficient battery management is crucial to ensure
safe use, increase driving range, improve power management
techniques, lengthen battery life, and lower costs. Batter-
ies require specific attention in electric vehicle applications.
Overcharging, over discharging, or other improper activi-
ties can pose serious safety threats to the batteries, hasten
their ageing process, and potentially result in fire or explo-
sion accidents [5]. Battery systems in electric vehicles not
only power the electric motor but also different electrical
components. These vehicles often operate under complex
conditions characterized by frequent acceleration and decel-
eration, and human charging behavior can be unpredictable.
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FIGURE 4. Global battery industry. (a) Growth. (b) Demands by applications.
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Additionally, because the battery is an electrochemical sys-
tem, state determination is quite challenging due to the battery
high nonlinearity and time-varying characteristics [6]. There-
fore, creating precise and dependable BMS technologies is
still a challenging effort to guarantee that batteries and the
associated energy systems operate in a secure manner and
function to the best of their abilities. This paper aims to
give detailed review is Focuses on a Battery management
system and key technologies for BMS in Section.II. The
typical batteries used in EV are reviewed in Section.III.
Discussed Various types of Battery Modelling the typical
batteries used in EV in Section.IV. Various SOC estimation
Techniques are discussed for Battery Cell and Battery Pack
in Section V. Comprehensive review of Various Battery SOH
estimation in Section.VI. Several Important andConventional
battery charging Strategies are covered, along with the related
optimization techniques in Section VII. Focuses on various
cell balancing topologies has been recommended in recent
years in Section VIII. It provides and overview of the most
recent advance in LIB thermal management for high charge/
discharge cycles in Section VIII. The problems with BMS are
discussed. the viewpoint of BMS improvement is examined
in Section IX. A summary of the viewpoints of the current
study and the Suggested future research activity of BMS is
Provided in Section.X. Finally, the conclusion of the paper is
summarized in Section XI.

II. BATTERY MANAGEMENT SYSTEM
The state of charge (SOC), state of health (SOH), state
of energy (SOE), state of power (SOP), and state of life
(SOL) are just a few examples of estimations covered by
battery management technologies (SOL). Among these, SOC
and SOH monitoring are particularly crucial as they serve
as the foundation for enhancing reliability and ensuring
safety. A software and hardware device called a BMS is
intended to control batteries and optimize their performance
[7], as depicted in Fig. 6.
The BMS software serves as the central component of

the system, responsible for controlling hardware operations
and analyzing sensor data to make informed decisions.
Online data processing plays a critical role in detecting most
faults, and intelligent data analysis is necessary to provide
timely battery malfunction warnings. Data collection is of
paramount importance to identify potential issues before they
manifest as faults. Hardware components within the BMS,
such as sensors, make it easier to measure battery voltage
and current. The general block diagram of a BMS is illus-
trated in Fig. 7. A BMS comprises various functional units,
including cell voltage balancing, temperature monitoring,
current sensing, and communication interfaces. Cell voltage
balancing guarantees that each battery pack’s individual cells
are are maintained at consistent voltage levels, maximizing
the overall pack performance and extending its lifespan.
Temperature monitoring is crucial for preventing overheating
and managing thermal conditions within the battery. Current
sensing enables accurate measurement and monitoring of

the battery electric current is going in and out. Communi-
cation interfaces facilitate the information transfer between
external devices and the BMS such as the vehicle’s control
system or a battery management network. To protect the
battery from potentially harmful circumstances, the BMS also
includes safety functions including over-current protection,
over-voltage protection, and under-voltage protection. Fur-
thermore, TheBMS is in charge ofmanaging the charging and
discharging procedures, ensuring they are carried out within
safe and optimal parameters.

In the market, there exist various types of integrated BMS
chips that offer different functionalities. These chips are
designed to perform specific tasks within the BMS architec-
ture. Some of the common functional components found in
BMS chips are a fuel gauge monitor, a cut-off field effect
transistor, a cell voltagemonitor, a state machine, temperature
monitors, and a real-time clock [8]. The organization and
integration of these components can vary depending on the
specific BMS chip. BMS chips can range from simpler ana-
log front ends with microcontrollers capable of monitoring
and balancing to fully integrated solutions that can oper-
ate autonomously. The level of integration and complexity
depending on the applications needs the desired functionality
of the BMS. In EVs, Different types of actuators, controllers,
and sensors can be included in BMS. These components
work together to ensure the safe and wide range of actuators,
controllers, and sensors can be used with BMS. The BMS
also performs accurate monitoring of battery parameters,
providing valuable information for battery health assessment,
state of charge estimation, and overall battery performance
optimization [9]. In terms of hardware architecture, there are
three basic types of topologies that are frequently employed
in BMS: modular architectures, centralized systems, and dis-
tributed systems. BMS can also be categorized according
to the particular features they have [10]. These ideas offer
a comprehensive framework with fundamental functionality
for BMS design. Within the battery pack, various sensors are
strategically placed to collect data at the monitoring layer
[11]. All of the battery pack’s elements and the vehicle control
processor are connected to the BMS. Safety has always been a
top priority for BMS. The suggested BMS designs, however,
use more sensors than the safety circuits now in use, allow-
ing for improvements like accurate warnings and controls
to prevent overcharging, over discharging, and overheating.
A system of sensors is necessary to track and quantify bat-
tery properties such cell voltage, current, and temperature.
However, the practical viability of these measurements is
hindered by space limitations and the cost of devices. As a
result, accurate measurements of current, temperature, and
voltage are crucial to improving state tracking capabilities in
practical applications. Based on these data, SOC, SOH, State
estimations were been obtained. Also the surface tempera-
ture is measured to attain the thermal characteristic and the
impact of temperature with the battery SOC and SOH were
obtained. Along with this the battery joint state estimation
has been measured using the above two data. This joint state
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FIGURE 5. Organization of the review article.

estimation is a important measure for the battery to effectively
manage and operate the battery and increases the battery
life span in different types of applications such as electric

vehicles, renewable energy storage, and so on. These attained
parameters has been used for defining the charging behavior,
fault monitoring, fault/abnormal detection, predictive control
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FIGURE 6. Overview of the BMS hardware and software components.

and fault diagnosis. The various steps like, obtaining the
appropriate data, modeling, data collection, and data storage
as shown as a block diagram in Fig.8.

One part of the system that controls the charge-discharge
cycle is the charge controller. A variable resistor could be
needed to maintain cell balance or check internal resis-
tance. Cell balancing management, which aims to balance
the battery pack’s cells and accurately gauge the battery
health, is one of the most crucial design factors. BMS
subsystems must communicate internally because they are
independent modules. A Controller Area Network (CAN)
bus is used as the main means of communication within the
BMS for the transfer of data. By implementing intelligent
batteries with embedded microchips that can communicate
with users and chargers, more information can be obtained.
In order to increase connection between the battery and
charger, radio and communication technologies are also being
rapidly included into charging systems. Because temperature
variations can have an impact on cell imbalance, depend-
ability, and performance, a thermal management module is
required. Reduced temperature differences between cells are
critical, ensuring they operate under appropriate temperature
conditions to maintain optimal performance and longevity.
Different sensors, actuators, controllers, and signal lines are
all included in BMS. Its main job is to make sure that the
battery stored energy is used safely and optimally while giv-
ing the car’s energy management system reliable information
about the battery condition. In the sample circuit depicted
in Fig.6 [112], Using the gating signal that is received from
the control circuit as a starting point, the primary goal is
to measure current, voltage, and temperature. The control
circuit utilizes advanced algorithms to estimate the SOC,
SOH, SOP, and SOL of the batteries. These estimates are
obtained from measurements of battery current, voltage, and
temperature, which are converted from analog signals. The
resulting information is then sent to the vehicle controller,
giving key deciding elements for the management and distri-
bution of power in vehicles [12], [13], [14]. The functionality
of a BMS can be categorized as follows [15]:

1. Protection: This entails preventing the battery from
being damaged by high temperatures, overcharging,
overcurrent, and short circuits.

2. In the field of ‘‘high-voltage control and sensing,’’
tasks including measuring temperature, voltage, cur-
rent, thermal management, contactor control, pre-charge
functionality, and ground-fault detection are included.

3. Diagnostics: The SOL estimate, SOH estimation, and
abuse detection functions of the BMS are used to assess
the battery overall health and condition.

4. Performance Management: This encompasses tasks
such as power-limit computation, cell balancing or
equalization, and SOC estimation, which is crucial for
optimizing battery performance.

5. Interface: The BMS facilitates data recording, report-
ing, communications, and range estimation, allowing
for effective communication and integration with other
vehicle systems.

By fulfilling these functions, the BMS ensures the battery sys-
tem’s effectiveness, dependability, and safety while providing
essential information for the management and utilization of
vehicular energy

III. BATTERY TYPES IN EV
Various types of batteries can be utilized as the power EV
applications as given in Fig. 9. The BMS consists of multiple
functional modules. In this study, popular battery types and
key BMS technologies are analysed and condensed. Accord-
ing to their capacity for charging, batteries can be divided
into two general categories: primary batteries and secondary
batteries. Secondary batteries can be recharged following the
discharge process, however primary batteries can only be
used once after being entirely depleted. Secondary batteries
with a high cycle life, a low power density, a low energy
loss, and sufficient safety levels are required for EV and
HEV applications. Some commonly used battery types in
EVs include Li-ion, lead acid, nickel-cadmium (NiCd), and
NiMH, among others and the evolution of the batteries with
respect to its timeline is shown in Fig. 10. Key details for
these well-liked battery types are presented in Table 2. This
clearly demonstrates that Li-ion batteries exhibit significant
advantages over other types, in terms of their longer cycle
life, which is essential for ensuring long service life in EVs
(typically 6-10 years) [3]. Additionally, Li-ion batteries are
made of environmentally acceptable components, don’t emit
any hazardous gases, and provide a high level of safety.
As a result, Li-ion batteries are now the most widely used
kind of EV power. Lithium-based batteries have the high-
est cell potential and the lowest reduction potential when
compared to other elements as given Table 3. Lithium is
one of the single-charged ions with one of the smallest
ionic radii, making it the third-lightest element in terms of
mass. These qualities allow Li-based batteries to attain high
power density, gravimetric capacity, and volumetric capacity
[16]. The Li-ion battery exhibits an energy density range of
200-250 Wh/kg and boasts a high columbic efficiency of
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FIGURE 7. Battery management system functional block diagram.

FIGURE 8. Key technologies of BMS.

nearly 100% [17]. It is also free from memory effect. Due to
its superior energy and power density compared to lead-acid
and Ni-Cd batteries, lithium-ion batteries are now the pre-
ferred choice. It is widely utilised in many different products,
such as electric automobiles, power equipment, and portable
gadgets [18], [19], [20]. Li-ion battery development is ongo-
ing with the goal of increasing their cycle life and safety
in both normal and abusive situations [21], and overall per-
formance characteristics. In the pursuit of higher energy
density for electric vehicles, researchers have explored

alternative electrochemical energy storage systems. One such
technology is the lithium-sulfur (Li-S) battery, which offers
advantages for instance, increased energy density, enhanced
security, a larger operational temperature range, and maybe
lower prices due to the abundance of sulfur. These factors
make Li-S batteries a promising option for EV applications
[22]. Energy density and specific energy of various batteries
at cell level is shown in Fig. 11. However, widespread com-
mercialization of lithium-sulfur technology has not yet been
achieved due to certain limitations. These excessive discharge
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FIGURE 9. Classification of electrochemical energy storage sources.

current, self-discharge, poor cycle life and capacity decline
brought on by cycling, low columbic efficiency, uncontrolled
dendrite development, and other factors.

A. BATTERY TECHNOLOGIES BEYOND LITHIUM
Extensive research has been done on battery technologies
other than lithium as LIBs get close to their natural limits in
terms of specific energy and energy density. Three different
battery types have developed as alternative technologies in
recent decades:

1) 3.1.1 METAL/AIR BATTERIES
Anodes made of metal and cathodes made of air are
used in metal/air batteries. The energy capacities of these
batteries are primarily determined by the anode capac-
ity and the handling process. Despite this limitation, they
offer exceptionally high energy density and specific energy,
with maximum values of 400 and 600 Wh/L, respectively.
Zinc/air, aluminum/air, iron/air, magnesium/air, calcium/air,
and lithium/air batteries are only a few examples of the
several kinds of metal/air batteries that are available. These
batteries can be classified as primary (non-rechargeable),
electrically rechargeable, or mechanically rechargeable.
Among them, mechanically rechargeable batteries provide
the convenience of refueling and recycling.

2) SODIUM-BETA BATTERIES
High energy density is a well-known characteristic of
sodium-beta batteries, although researchers have successfully

developed only two technologies in this field. These include
sodium/sulfur (Na/S) batteries and sodium/metal chloride
(Na/MCl2) batteries. These batteries must function at high
temperatures between 270 and 350 ◦C in order to achieve the
necessary ionic conductivity.

3) SODIUM/METAL CHLORIDE (NA/MCL2) BATTERY
Na/MCl2 batteries use transition metal chloride as the cath-
ode material. In particular, Na/FeCl2 and Na/NiCl2 batteries
aremade using iron chloride and nickel chloride, respectively.
Among these, the Na/FeCl2 battery has undergone more
significant development compared to the Na/NiCl2 battery.
The Na/NiCl2 battery offers several advantages, including
increased power density, a wider working temperature range,
and less corrosion of metallic elements.

4) SODIUM/SULFUR BATTERY
The Na/S battery uses beta-alumina ceramic electrolyte,
sodium anode, and sulphur cathode. However, the perfor-
mance of Na/S batteries tends to decline as the internal
resistance increases, which is further exacerbated by deeper
discharges. In recent research, there has been exploration into
room-temperature Na/S batteries that demonstrate robust and
consistent cycling performance [115], [116].

IV. BATTERY MODELLING
The core of BMS design is building an accurate battery
model, which is essential for estimating the battery status.
Battery models vary in terms of accuracy and complexity,

105768 VOLUME 11, 2023



R. Ranjith Kumar et al.: Advances in Batteries, Battery Modeling, Battery Management System

TABLE 1. Nomenclature. TABLE 1. (Continued.) Nomenclature.

with three primary categories: battery electric models, battery
thermal models, and battery coupled models, as illustrated in
Fig. 12.

A. BATTERY ELECTRIC MODEL
The models that need batteries include electrochemical mod-
els [23], [24], [25], [26], [27], equivalent circuit models [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], and data-driven models [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63], [64].

1) ELECTROCHEMICAL MODEL (EM)
Electrochemical models describe battery behavior by uti-
lizing partial differential equations that consider electrolyte
concentration, electrode size, and electrochemical processes
within the battery. While electrochemical models provide
precise battery parameters, they require significant computa-
tional power and time to solve multiple equations pertaining
to the battery current, temperature, electrolyte concentration,
solid concentration, open circuit potential, over potential,
and electrolyte potential, and more. Implementing them
in real-time applications is challenging. Researchers have
proposed various approaches to address these challenges.
Doyle et al. [24] introduced a Pseudo-2-D (P2D) elec-
trochemical model, however because there are so many
nonlinear equations, it takes longer to simulate and It reduces
the effectiveness of its computation for BMS applications.
Domenico et al. [25] developed a reduced-order electrochem-
ical model by instead of taking into account its dispersion
throughout the electrodes, averaging the solid electrolyte
concentration, enabling real-time implementation on board
buses. However, parameter identification remains a difficult
task. Ahmed et al. [26], [27] employed a SOC estimation
and genetic algorithms are used to identify parameters, but
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TABLE 2. Key details of batteries used in EV [1].

FIGURE 10. Milestones and foresight of battery Technologies.

the model’s accuracy is compromised due to assumptions
made to reduce its order. Han et al. [28] provided a rough
model that keeps track of the diffusion process and how
electrolyte concentration is distributed inside the battery.
Zou et al. [29] A reduced-order model based on singular
perturbation and averaging theory was presented for Li-ion
battery SOC estimation and discharging capacity forecasting.
Thismodel simplification approach is applicable to all battery
types. However, building a high-fidelity model that takes
into account age, capacity fading, and temperature increases
complexity while also improving accuracy. Table 4 com-
pares various electrochemical battery model types in a brief
manner.

2) EQUIVALENT CIRCUIT MODEL (ECM)
The electrical activity of the battery is modeled by the ECM
using electrical elements including voltage sources, resistors,

and capacitors. A high-value capacitor [25] or a regulated
voltage source serves as ECM representation of the battery
Open Circuit Voltage (OCV), a vital metric for state esti-
mation approaches [26]. The Rint model, Thevenin model,
PNGV model, and GNL-model are examples of analogous
circuit models that are frequently employed, as illustrated in
Fig. 13. The Rint model, which represents the battery as a
voltage source with series resistance, is the simplest basic
ECM [28]. However, this simple model is not capable of
accurately capturing the specific characteristics of batteries
used in EVs. To enhance the representation of battery dynam-
ics, the Rint model is extended by incorporating a single
Resistance-Capacitance (RC) parallel network, resulting in
the widely used Thevenin model [29]. The dynamic behavior
of batteries is well captured by the Thevenin model. The
Partnership for a NewGeneration of Vehicles (PNGV)model,
or FreedomCar model a modified variation of the Thevenin
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TABLE 3. Li-ion battery types [66].

TABLE 4. Comparison of various electrochemical models of battery.

FIGURE 11. Energy density and specific energy of various batteries at cell
level.

model, includes a fictive capacitor to account for variations
in OCV [31], [32]. The PNGV model consists of OCV,
polarization resistance, a capacitor, an imaginary capacitor,
and an ohmic resistance [33]. While the PNGV model is

suitable for low SOC areas, it may not accurately represent
high SOC regions. Resistance-Capacitance (RC) network-
based models are among the several ECM models explored
in the literature that have found widespread use for online
applications.

These models include the one RC network ECM [34],
[35], two RC network ECM [36], [37], [38], and three RC
network ECM [39], [40]. Table 5 lists the model equations
and parameters in accordance with circuit theory. The two
RC network model is one of them. It is particularly notable
for its high accuracy in predicting the relationship between
input current and output voltage (I-V), as well as the charg-
ing and discharging times of the battery. Since batteries
are nonlinear systems, their dynamics vary under different
operating conditions such as SOC, temperature, and charg-
ing/discharging rates. Therefore, parameterizing the model
becomes an ‘‘identification problem’’ or ‘‘optimization prob-
lem’’ to fit the model to measured data [41], [42]. The SOC,
temperature, and charge-discharge rate of the battery must all
be taken into account when updating the model parameters
because the ECM circuit parts do not accurately reflect bat-
teries physically.
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TABLE 5. Models of various RC network-based equivalent circuits [23].

3) DATA DRIVEN MODEL (DDM)
Data-drivenmodels (DDMs) offer a more efficient alternative
to ECM and EM models, with the ability to approximate
highly nonlinear battery characteristics. DDMs rely on data
and computational intelligence to describe battery behav-
ior, without the need for prior understanding of the battery
internal structure. Various types of DDMs, such as Artificial
Neural Network (ANN) [43], Adaptive Neuro-Fuzzy Infer-
ence Systems (ANFIS) [44], Deep Neural Network (DNN)
[45], and Support Vector Machine (SVM) [46], [47], [48],
have been employed for battery modeling, as shown in
Fig. 20. DDMs have several advantages, particularly in sit-
uations where [49]:
1. The controlled system has no known global mathematical

model.
2. Unknown is the controlled system entire global mathemat-

ical model.
3. Building a mathematical model to depict the controlled

system with an undetermined structure while it is in oper-
ation is not practical.

4. The Regulated System’s Mechanism model has too many
parameters, is overly complicated, or is difficult to study
and create using conventional methods.

In these cases, a data-driven control approach, facilitated by
DDMs, can provide significant benefits by accurately captur-
ing the behavior of the system without relying on a known
mathematical model as given in Table 6. Modeling batteries
accurately is challenging using traditional methods like ECM
and EIM internal chemical processes and hazy environmental
operating conditions. Black-box models, on the other hand,
offer benefits like parallel distributed processing, high com-
putation rates, fault tolerance, and the capacity to adapt to
deal with this complexity by utilizing the nonlinear connec-
tion of input data for training. Fuzzy systems’ subjectivity
and flexibility are combined with neural networks’ capacity
for learning in ANFIS [45]. The inherent multiple-model
structure of the T-S fuzzy model allows it to manage the
nonlinear dynamics of batteries. Black-box models, on the
other hand, produce accurate results. Rule-based modeling,
however, has accuracy that varies with the number of rules
at the cost of increased computational complexity and lim-
ited interpretability. SVM, on the other hand, uses a small
number of samples with the kernel trick to describe system
dynamics [46].

Although SVM has a simpler design than ANN, it requires
solving a Costly optimization in terms of computing problem
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TABLE 6. Comparison of DDM of battery.
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TABLE 6. (Continued.) Comparison of DDM of battery.

FIGURE 12. Types of battery modelling.

to determine kernel parameters. The RBF kernel is commonly
used due to its strong generalization capability [50]. How-
ever, SVM struggles with handling large amounts of data,
making SOC estimation and It might be difficult to estimate
SOH for battery packs. SVM, ANN, DNN techniques use
machine learning algorithms to forecast nonlinear parameters
and estimate battery SOC based on statistical data. Among
these, DNN outperforms ANN and SVM [45]. DDM neces-
sitates intensive calculations for real-time understanding of
battery properties by means of training and data-acquisition

FIGURE 13. The following Li-ion battery models are: (a) Rint model
(b) Thevenin model (c) PNGV model (d) GNL-model.

procedures. In all the aforementioned methods, data prepro-
cessing and noise removal are essential. The computational
complexity associated with DDMs can pose obstacles in
economic applications. Data collection is vital for developing
accurate DDMs, as these models require a large amount of
training data. As batteries are increasingly deployed across
various applications, their degradation rates vary under differ-
ent operating conditions, necessitating application-specific
data for accurate battery modeling [51]. To mitigate the time
and cost associated with data collection, researchers can uti-
lize publicly available data instead of conducting extensive
experiments. To increase accuracy while lowering complex-
ity, care should be taken when choosing the right model,
model parameter type, and parameter identification proce-
dure. Table 7 provides a performance comparison of different
battery models, highlighting their strengths and weaknesses.
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Overall, both accuracy and simplicity are critical considera-
tions when selecting a battery model for BMS design.

B. BATTERY THERMAL MODEL
Due to its large impact on battery performance and lifes-
pan, thermal behavior, in particular temperature, is a vital
component of EV BMS. To accurately represent the thermal
behavior of batteries, a variety of models have been cre-
ated, including heat transfer models, heat generation models,
reduced-order thermal models, and data-driven models. The
distribution of elements including activation, concentration,
and ohmic losses, which vary within the battery, are taken into
consideration by different methodologies used by heat pro-
duction models to characterise heat generation in batteries.
Abada et al. [67] presented a thermal model for the thermal
management system of a Li-ion battery pack, based on the
energy balance between heat generation and heat dissipa-
tion. The thermal model can be represented by the following
equation:

d
dt
Qaccu = ρCp

∂T
∂t

=
d
dt
Qgen −

d
dt
Qdis (1)

In this equation ρ,Cp, t , and T are the cell den-
sity, heat capacity, time and cell temperature respectively.
In addition, Qgen,Qaccu, and Qdis are the accumulated
heat, generated heat, and dissipated heat, respectively.
Qgen encompasses the heat produced by chemical reac-
tions that is both reversible and irreversible. Qdis includes
heat-transferring processes like conduction, convection,
and radiation, The electrochemical-thermal model and the
electro-thermal model were developed on the basis of this
thermal model as summarized in Table 8. [68], [69]. They
take into account things like chemical processes, ion mobility
in the solid electrolyte interphase (SEI), over potentiation at
the reaction surface, Ohmic loss in electrodes, and entropy
during charging and discharging when analyzing the ther-
mal behaviour of batteries. Table 9 lists the symbols and
characteristics related to the electrochemical-thermal model.
The electrochemical-thermal model provides a comprehen-
sive understanding of battery operation by considering both
electrochemical and thermal aspects. However, one drawback
of this model is its high computational burden, which arises
from the large number of equations required to accurately
predict battery temperature.

C. BATTERY COUPLED ELECTRO-THERMAL MODEL
There have been several coupled electro-thermal models
established to capture the strong coupling between battery
electric and thermal behaviors. These models allow for
the simultaneous consideration of battery electric param-
eters (e.g., voltage, current, SOC) and thermal parame-
ters and behaviours Shown in Fig.14. (e.g., surface and
internal temperature). There have been several developed
linked electro-thermal models have been proposed in the
literature to achieve this coupling [68], [69], [70]. For
instance, Goutam et al. [71] established a three-dimensional

FIGURE 14. Schematic view of Li-ion battery pack.

electro-thermal model that determines heat generation and
calculates battery SOC. A three-dimensional temperature dis-
tribution model plus a two-dimensional potential distribution
model make up this model. By utilizing this coupled model,
battery SOC and temperature distribution can be effectively
determined under both constant and dynamic currents.

In another study [72], a Batteries with three distinct
cathode materials were used to validate a simplified low-
temperature electro-thermal model. This reduced model
demonstrates sufficient accuracy and enables the develop-
ment onUnder low-temperature circumstances, quick heating
and optimal charging techniques. Basu et al. [73] used a
linked three-dimensional electro-thermalmodel to investigate
the impacts of various battery operations, such as coolant flow
rate and discharge current, on battery temperature. Through
the analysis of this coupled model, it was observed that
contact resistance plays a vital role in determining battery
temperature.

In another study [72], a Batteries with three distinct
cathode materials were used to validate a simplified low-
temperature electro-thermal model. This reduced model
demonstrates sufficient accuracy and enables the develop-
ment onUnder low-temperature circumstances, quick heating
and optimal charging techniques. Basu et al. [73] used a
linked three-dimensional electro-thermalmodel to investigate
the impacts of various battery operations, such as coolant flow
rate and discharge current, on battery temperature. Through
the analysis of this coupled model, it was observed that
contact resistance plays a vital role in determining battery
temperature.

V. STATE OF CHARGE
Battery charging requires careful consideration and effec-
tive measures to ensure a smooth and efficient process. The
SOC is a crucial factor in battery operation, representing the
level of charge relative to the battery capacity as shown in
Fig. 15. comparable to a fuel gauge in a gasoline-powered
car, SOC indicates the remaining amount of energy in a bat-
tery to power an EVs. Various critical performance aspects,
such as range and fuel economy, heavily depend on SOC.
SOC is typically expressed as a percentage (0% = empty;
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TABLE 7. Comparison of various battery models.

TABLE 8. Comparison of electrochemical-thermal model and the electro-thermal model.

100% = full) and is commonly used to define a battery
current status while it is in operation.

SOC% = 100 ×
(Q0 + Q)
Qmax

(2)

The SOC calculation can be performed using Equation (2),
where Q0 (mAh) is the battery initial charge. Q (mAh) is
the quantity of electricity delivered by or supplied to the
battery. it is negative during the discharge and positive during
the charge. Qmax (mAh) is the maximum charge that can be
stored in the battery. The determination of battery SOC is
a fundamental aspect of BMS. Accurate and reliable SOC
estimation is crucial for vehicle energy management and the
optimal design of control systems. To achieve real-time SOC
estimation, numerous methods have been proposed. To pro-
vide a more detailed comparison of these methods, they can
be categorized into four groups, as illustrated in Fig. 16.
Battery SOC estimate is an essential component of battery

management systems, and fusion models and algorithms may

greatly improve SOC prediction accuracy by merging data
from many sources. Here are a few fusion models and meth-
ods that are frequently employed for estimating battery SOC:

• Extended Kalman Filter (EKF): The EKF is a Kalman
filter modification created to handle nonlinear systems.
By integrating voltage and current data with a bat-
tery model that accounts for the nonlinear relationship
between SOC and battery voltage, it is frequently used
to estimate battery SOC.

• Particle Filter (PF): Both nonlinearities and uncertainties
are handled by PFs. They operate by converting the SOC
into particles and changing their weights in accordance
with voltage and current readings. When dealing with
complicated battery behavior and shifting operating cir-
cumstances, PFs are very helpful.

• Recursive Least Squares (RLS) with Adaptive Gain:
RLS algorithms can use voltage and current observa-
tions to estimate battery characteristics and SOC in an

105776 VOLUME 11, 2023



R. Ranjith Kumar et al.: Advances in Batteries, Battery Modeling, Battery Management System

TABLE 9. Electrochemical thermal model parameters and symbols.

FIGURE 15. Charging and discharging process of battery.

adaptive manner. RLS is capable of coping with fluc-
tuations in battery behavior by gradually modifying the
estimate gain.

FIGURE 16. Classification of the SOC estimation methods.

• Model-Based Adaptive Filters: These filters use adap-
tive algorithms to combine a battery model with in-
the-moment data, modifying the model’s parameters to
reflect actual battery performance. The accuracy of the
long-term SOC estimate is improved by this method.

• Neural Networks and Deep Learning: Current and volt-
age data can be combined over time using recurrent
neural networks (RNNs) and long short-term memory
(LSTM) networks to calculate SOC. These networks are
capable of complicated connection learning and battery
condition adaptation.

• Multiple Model Estimation (MME): Each battery model
or estimating technique that MME combines is suited
for a particular set of operating conditions. Based on the
present operational condition, the most suitable model is
chosen.

• Unscented Kalman Filter (UKF): The UKF is an EKF
substitute that employs a deterministic sampling method
to capture the real statistical moments of the battery
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model’s nonlinearities. Compared to the EKF, it can
offer a more precise SOC estimation.

• Fuzzy Logic: Fuzzy logic enables nonlinearity and
uncertainty to be included into SOC estimate. In order to
provide an accurate SOC estimate, it can integrate volt-
age, current, temperature, and other sensor information.

• Ensemble Methods: Ensemble approaches can deliver a
more reliable and accurate SOC calculation by merging
different estimating techniques, such as EKF, UKF, and
neural networks, especially when dealing with shifting
operating circumstances.

• Hybrid Approaches: In order to accurately estimate
SOC, hybrid models integrate physics-based and data-
driven methodologies, utilizing both battery models and
real-time observations.

The selection of a fusion model or algorithm is influenced by
a number of variables, including the precision of the avail-
able measurements, the complexity of the battery’s behavior,
available computing power, and the required level of accu-
racy. Battery SOC estimate may be made more accurate and
trustworthy by information fusion, which is crucial for the
dependable and safe functioning of battery systems.

A. LOOKUP TABLE BASED METHOD
The SOC of batteries has a direct correlation with their
extrinsic identifying characteristics, such as impedance and
OCV. The relationship between SOC and OCV has been
plotted in Fig. 17. Therefore, by measuring these parameters
and utilizing a look-up table that establishes the relationships
between SOC and one or more parameters, to estimate the
SOC of batteries [74], [75]. For example, the SOC of the
battery can be determined by the knowledge of OCV. This
approach is commonly used in battery management tech-
nologies for SOC estimation. However, obtaining precise
real-time measurements of OCV is challenging because it
requires disconnecting the power source and allowing the
battery to rest for an extended period. Additionally, measure-
ment relying on battery impedance on specific measurement
devices, making it impractical for use in operating EVs.
Instead, impedance measurement is more suitable for labora-
tory environments where accurate and controlled testing can
be conducted.

B. AMPERE-HOUR INTEGRAL METHOD
By directly measuring the battery voltage and current, the
SOC can be determined. One commonly used method is
the Ampere-hour (Ah) method, which estimates the battery
state by integrating the charging and discharging currents.
This method is straightforward and computationally efficient
[76]. However, there are some challenges associated with
the Ah method in Dynamic applications. Accurately measur-
ing the initial SOC is challenging, because SOC estimation
is constrained by things like the battery unknown begin-
ning capacity, its self-discharge rate, and the reduction in
battery capacity. Typically, Peukert’s impact and coulombic

FIGURE 17. LiFePo4 OCV-SOC relationship.

efficiency are taken into consideration in the estimation per-
formed using the Ah technique. The equation to calculate
battery SOC using the Ampere-hour method is presented in
Eq. (3)

SOC(k) = SOC(K0) +

∫ k
K0

ηI (t)dt

Cn
(3)

where, η stands for the efficiency of battery charging or
discharging, SOC (k0) is known initial SOC, I(t) is the cur-
rent value which is positive for charging and negative for
discharging, Cn stands for the battery nominal capacity. The
Ah method has several drawbacks that need to be addressed.

Firstly, it has to be aware of the battery initial SOC, which
may not always be readily available. Secondly, there are
inherent measurement errors in the battery current because to
sporadic disruptions like noise and temperature drift, which
can affect the accuracy of the SOC estimation. Lastly, the
value of Q, which represents the capacity of the battery, may
need to be recalibrated due to variations in the battery age
and operating circumstances. When all of these conditions
are present, the Ah method’s accuracy may suffer. Therefore,
it is more suitable to use the Ah method in conjunction with
other supporting techniques, such as model-based methods,
to increase the SOC estimation’s precision and dependability.

C. MODEL BASED ESTIMATION METHODS
The Model-Based Estimation methods for SOC can be
broadly classified into three types: Electrochemical method
(EM), Equivalent Circuit Model (ECM), and Electrochemical
Impedance Model (EIM). These methods involve express-
ing battery models as nonlinear state equations and utilizing
state estimation algorithms and adaptive filters to infer the
internal state of the batteries. Various algorithms, such as
Kalman Filter (KF) [77], [78], [79], Extended Kalman Fil-
ter (EKF) [80], [81], [82], [83], Unscented Kalman Filter
(UKF) [84], [85], [86], [87], [88], Fading Kalman Filter
(FKF) [89], Cubature Kalman Filter [90], [91], [92], Parti-
cle Filter [93], H∞ observer method [94], [95], Adaptive
Extended Kalman Filter (AEKF) [96], [97], [98], and Adap-
tive Unscented Kalman Filter (AUKF) [99], [100], [101],
[102], are commonly employed in thesemethods. The general
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FIGURE 18. A general Block Diagram of model based SOC estimation
method.

block diagram of the model based SOC estimation method is
shown in Fig. 18.
Kalman Filter is an optimal estimator widely used for lin-

ear systems. KF for nonlinear systems necessitates intricate
computations. Plett developed the EKF approach specifically
for nonlinear battery model SOC estimation. Although EKF
addresses nonlinearities, it suffers from linearization errors
and increased computational effort and the flowchart of EKF
method is shown in Fig.19. UKF, on the other hand, can
provide accurate results for highly nonlinear models by elim-
inating linearization errors. However, it involves Cholesky
factorizations and sigma point selection, which impact per-
formance. EKF incorporates a fading concept to correct
modeling errors but demands more computational power.
Filter parameters like noise covariance matrices significantly
influence estimation accuracy and convergence rate. KF algo-
rithms struggle with non-Gaussian noises. Accurate estimate
is achieved by the development of AUKF algorithms, which
automatically update noise covariance matrices. However,
they come with increased computational time and complex-
ity. The H∞ observer method is another suitable approach
but shares similar issues as KF-based methods, including
dependence on gain for accuracy and convergence rate.
KF algorithms possess self-correcting capabilities, making
them suitable for estimating the situation of quickly shifting
systems with accurate models. However, challenges persist,
such as handling initial SOC errors. Therefore, KF algo-
rithms should be employed alongside other techniques to
enhance estimation accuracy and reliability in practical
applications.

D. DATA-DRIVEN BASED ESTIMATION METHODS
The black-box model method is an effective approach for
solving nonlinear problems in battery modeling and state
estimation, providing high prediction accuracy. The Data-
Driven Model, explained in detail in Section. IV, utilizes
methods for modeling nonlinear statistical data that are prac-
tical for capturing complex relationships and patterns in the
data [91]. For instance, neural networks have been employed
to develop SOC estimators, with inputs including current,
temperature, battery SOC, and voltage as the output layer.
This method has demonstrated high computational accuracy.

Various algorithms can be utilized for black-box modeling,
such as fuzzy controllers [92], [93], support vector machines
[94], [95], neural networks [96], [97], [98], [99], [100], [101],
[102], [103], [104], [105], [106], and combinations thereof
[111]. These algorithms, however, are quite sensitive to the
parameters, and incorrect parameter selection may lead to
non-convergence if the training data does not adequately
cover the operating conditions. ANNs [99], [100], [101],
[102], [103], [104] have gained popularity for validating
complex nonlinear models due to their self-learning capabili-
ties. Although ANNs heavily rely on training with collective
information, they offer computational efficiency at a lower
cost. However, overlearning poses a challenge with ANN
models. A summary of SOC estimation using different com-
binations of methods is provided in Table 10 and Table 11.
It is clear from the table that the Ah method is Simple and
It is clear from the table that inexpensive, but unsuited to
real-time applications. Adaptive filter and observer methods
offer high accuracy and are suitable for real-time appli-
cations, but they suffer from computational complexity,
configuration effort, and implementation challenges. Data-
Driven Model (DDM) complexity, making them suitable for
real-time applications with lower computational complexity.
The block diagram of the DDM is shown in Fig.20. However,
successful implementation of DDM methods requires appro-
priate model selection, hyper parameter tuning algorithms,
proper training algorithms, and extensive data collection and
normalization.

E. SOC ESTIMATION FOR BATTERY PACK
The use of battery packs, consisting of multiple connected
cells, introduces challenges in accurately estimating the
SOC due to variations in individual cell performance and
non-uniform characteristics within the pack [109]. While the
capacity and SOC of a single cell can be measured through
discharge testing, these measurements are not directly appli-
cable to battery packs. The complexity, time-varying, nonlin-
ear, and non-uniform properties of battery packs make it chal-
lenging to assess capacity and SOC accurately. By calculating
the SOC of a battery pack, one can determine the internal
condition of a complicated hybrid-connected battery system.
Accurate SOC estimates for battery packs have been sought
after, and these efforts can be categorized into three types:

1) CELL CALCULATION BASED METHODS
The ‘‘Big cell’’ method determines the SOC by treating
the battery pack as a single cell and using the voltage and
current of the pack. However, this method overlooks the
inconsistencies in cell performance, compromising the safety
of the battery pack. The ‘‘Short board effect’’ method uses the
extreme cell (with the lowest or highest voltage) to estimate
the SOC of the battery pack. While this method improves
safety, it reduces energy utilization within the desired oper-
ating range of the battery pack (30% - 80% SOC). The
‘‘One by one’’ calculation approach determines the SOC
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FIGURE 19. Flow diagram of EKF.

FIGURE 20. Data-driven model [237], [238].

for each individual cell before calculating the battery pack’s
total SOC. Although this method offers accurate estimations,
it incurs high computational costs and is unfit for real-time
applications in electric cars. The flowchart of the cell filtering
method is shown in Fig. 21.

2) SCREENING PROCESS BASED METHODS
These methods involve selecting battery cells with similar
characteristics (capacity, resistance, etc.) building a battery

pack. Due to the pack’s good consistency, the SOC of a
single cell is then utilized to represent the SOC of the com-
plete battery pack. A second-level screening process can be
employed to select suitable cells for packaging the battery
pack, ensuring better consistency among the cells.

3) BIAS CORRECTION METHODS
In this procedure, a notional model of the battery pack is
constructed before a bias-correction technique is used to
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TABLE 10. SOC estimation using neural network.

FIGURE 21. Cell filtering approach Procedure.

determine the discrepancies between the nominal model and
the actual battery cells. The revised model is used to do the
SOC estimation, which determines the SOC of the battery
pack by calculating the SOC of each individual cell. [110].

Cell SOC, discharge/charge rate, and the maximum achiev-
able capacity differential between the cell and the average
value of the battery pack are all functions of the uncertainty
factor in the equation.

Uj
t = Uoc − UD1− . . . −UDn − iLRi+δ

(
Cj
rate, z

j, 1Qj
)
(4)

where 1Qj between cell j and average value of battery pack,
uncertainty δ is the function of cell, -zj,maximum avail-
able capacity difference, discharge/charge rate -C j

rate, cell
SOC. the j is denote the cell number in battery pack. This
method reduces computational costs and improves real-time
performance. It shows promise for SOC estimation in With
their time-varying, nonlinear, and uneven features, battery
packs. However, if the number of battery cells in an electric
vehicle is large, Costs associated with computing must be
significantly reduced. In summary, accurately estimating the
SOC of battery packs is challenging due to variations in
cell performance and non-uniform characteristics within the
pack. Different methods, such as cell calculation, screen-
ing processes, and bias correction, have been proposed to
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TABLE 11. SOC estimation at different combinations.

address this issue, each with its own advantages and consider-
ations in terms of computational cost, accuracy, and real-time
applicability.

VI. STATE OF HEALTH
It is crucial to distinguish between two ideas: battery health
state and remaining useful life prediction. The battery cycle
life is the maximum number of cycles a battery can with-
stand given its kind, construction, and the manufacturer’s
recommended usage. The SOH compares the health and per-
formance of a used battery to a brand new battery of the same
type [209]. SOH is determined by calculating the ratio of
the current actual capacity QC of the battery to its nominal
capacity Qn, as shown in Equation 5.

SOH = QC
/
Qn (5)

SOH is a subjective metric that has been defined differently
by many studies by taking into account various quantitative
battery performance metrics, including current, resistance,
voltage, self-discharge rate, temperature, stress, and strain.
Although SOH depends on these parameters, it is a compares
a used battery performance and health to those of a brand-new
battery of the same type. Temperature also plays a significant
role in battery performance as shown in Fig. 23, where the
cycle life of a cell is optimal when The operating temperature
is kept between 15◦C and 45◦C. When the temperature falls

below a certain level, the cycle life gradually goes below
15◦C or exceeds 45◦C. Further temperature increase leads to
a sharp decrease in cycle life due to thermal runaway [210],
[211], [212].

SOH estimation does not have a fixed definition, and each
battery manufacturer establishes their own criteria. A num-
ber of battery properties, including capacity and internal
resistance, can be used to compute SOH. However, rather
than being a precise measurement, it is an evaluation and
judgement. Some factors that determine how well Li-ion
batteries perform over time include the phase shift of the
electrode material, electrode dynamic performance, elec-
trolyte breakdown state, and the creation of SEI films [210],
[211], [212]. Battery aging is characterized by irreversible
changes in electrolyte characteristics, anode and cathode
properties, and alterations in battery component structures as
shown in Fig. 22. Aging can be categorized as cycle aging,
due to periods of battery use and calendar aging that take
place while batteries are stored. Changes in capacity, internal
resistance, and power fade are indicators of aging and are
closely related to the estimation of SOH [214]. The choice
of the most suitable parameter for SOH estimation depends
on the specific circumstances and the changes observed in
the external actions of the battery, such as a reduction in
rated capacity or an increase in temperature brought on by
internal modifications like corrosion the relationship between
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FIGURE 22. Lithium-ion battery aging.

FIGURE 23. Li-ion battery lifecycle vs ◦C diagram.

cycle life and cell operating temperature, highlighting the
optimal range between 15◦C and 45◦C. Operating below
15◦C or above 45◦C gradually decreases cycle life, while
further temperature increases lead to a sharp decline due to
thermal runaway as shown in Fig. 23. Fig. 24 illustrates the
Li-ion batteries typically function within a certain current and
voltage range. According to the battery nominal capacity, the
x-axis shows the current (C-rate), while the y-axis represents
the voltage (V). Positive current values indicate the discharge
process, while negative current values correspond to charging
or regenerative processes.

Critical thresholds, depicted as gray zones, are defined
based on the specific Li-ion battery type [215]. When the
voltage rises over the maximum defined charging voltage or
falls below the stated cut-off discharge voltage, these thresh-
olds prohibit overcharging and over-discharging, respec-
tively. Operating within the acceptable voltage range is cru-
cial for battery longevity, as any overcharge or Overcharging

FIGURE 24. Li-ion battery lifecycle vs temperature diagram.

can hasten deterioration and reduce battery life. The battery
degradation rate, nevertheless, varies depending on the rate
of charge or discharge, which is impacted by stress factors,
and it is not constant within the permissible range. The dis-
charge rate is dynamic and directly influenced by operating
conditions such as route slope, vehicle weight, speed, and
acceleration. A threshold is frequently established by EV
designers to restrict the maximum discharge current rate. The
charge rate is fairly stable during the charging procedure.
Though it can speed up battery charging, a higher pace may
also shorten battery life [216]. Therefore, designers strive to
strike a balance between the charging rate and its impact on
battery life, which influences the available charging rate in
charging stations (e.g., level 1 and level 2) [217]. The BMS
regulates the charging rate to ensure optimal charging. The
process of charging batteries is further temperature-sensitive.
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FIGURE 25. (a) Current-temperature SOA zone, (b) voltage temperature
SOA zone.

Operate within the safe operating area (SOA) advised by the
manufacturer to ensure battery safety [218].

The SOA may need to be adjusted based on battery aging
and environmental conditions, as battery function deterio-
rates due to factors like resistance and capacity degradation,
as shown in Fig. 25.
Furthermore, predicting the highest possible instantaneous

power capacity becomes important as ESSs are utilized to
meet higher power demands. As a battery state indicator,
State of Function (SOF) is utilized to determine the maxi-
mal instantaneous output capability and guarantee operating
within the SOA [219]. Causes, impacts, and outcomes of
the drop in li-ion batteries with respect to health and battery
life is given in Table 12 Various approaches are employed
for battery state estimation, which can be categorized into
three main methods, as shown in Fig. 26. Internal resis-
tance, impedance, and capacity are the three basic parameters
used to estimate battery SOH. While internal resistance and
impedance show the battery ability to deliver power, capacity
displays how much energy it can hold. In contrast to EVs,
where battery energy ismore important, power capability is of
higher significance in hybrid applications. Due to ageing fac-
tors, these signs vary over the battery lifespan. By comparing
the actual indicator value (capacity, impedance, or resistance)
with its original value, SOH can be computed. Two different
approaches, experimental and adaptive methods, can be used
to predict these changes. Experimental methods involve stor-
ing the using battery cycling data history and newly acquired
knowledge to determine SOH. By considering the impact of
key parameters on battery lifespan, it becomes possible to
estimate the SOH of the battery. This estimation process
necessitates a thorough understanding of the relationship
between battery cell operation and degradation, which can be
obtained through physical analysis or by evaluating extensive
datasets that combine operation history and SOH testing of

the battery cell. Such insights enable a more accurate estima-
tion of SOH and contribute to the overall understanding of
battery performance and longevity. Various SOH estimation
methods are given in Figure 26.

A. ESTIMATION EXPERIMENTAL METHODS
1) MEASUREMENT OF BATTERY INTERNAL RESISTANCE
A battery internal resistance, which controls the voltage drop
during current flow, is a key factor in determining its SOH.
This parameter is significantly affected by aging and degra-
dation, with an increase in value indicating a decrease in
battery SOH. Consequently, the internal resistance is fre-
quently utilized as a robust indicator for estimating battery
SOH. Several researchers have investigated techniques to
measure this internal resistance, with the most prevalent
method known as current pulse [220], [221]. This method
applies Ohm’s Law by measuring the voltage drop across the
battery for a specified current and then employs the following
formula [222]:

Rb (SOC,T) =
OCV (SOC,T) − Vbat(SOC,T)

Ipulse
(6)

where Rb represents the internal resistance of the battery,
OCV the open circuit voltage, Vbat the voltage, and Ipulse the
current applied. This technique is frequently used in labora-
tories to accurately describe the internal resistance behaviour
of batteries under various operating situations. This method
is better suited for stationary and laboratory applications due
to its time-consuming nature, which necessitates allowing
the battery to relax and attain equilibrium first, which takes
around an hour.

2) BATTERY INTERNAL IMPEDANCE MEASUREMENT
An indication of battery SOH is known to be a battery internal
impedance, which includes both internal resistance and reac-
tance. It has been observed and substantiated that a battery
internal impedance tends to rise with time, making it a valu-
able SOH indicator. The most commonly employed method
for measuring impedance is Electrochemical Impedance
Spectroscopy (EIS) [223], [224]. EIS is a non-destructive
method that determines an electrical system’s impedance by
running a sinusoidal AC current through it and gauging the
voltage response. The impedance is measured across a range
of frequencies. One notable advantage of this method is its
ability to accurately identify the aging phenomena occur-
ring within the battery. In a specific study [225], the author
employed EIS to investigate two key aging phenomena in
batteries: the movement of lithium ions through the Charge
transport at the positive electrode and the SEI layer.

3) BATTERY ENERGY LEVEL
The fundamental aspect of capacity shows the total energy
storage capacity of a battery. With aging, this capacity is
known to decrease. Therefore, one of the most reliable tech-
niques for calculating the battery SOH is by experimentally
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FIGURE 26. Various SOH estimation methods.

TABLE 12. Causes, impacts, and outcomes of the drop in Li-ion batteries.

measuring the fading capacity over time. In a study conducted
by the author [226], multiple charging/discharging cycles
were performed on a Li-ion battery until it reached its End
of Life (EoL). The objective was to examine the relation-
ship between the battery charging capacity and its voltage
at different levels of degradation (cycle numbers). Another
study [227] focused on estimating battery capacity through
experimental testing conducted under varying temperature
conditions, ranging from 25◦C to 40◦C, with the battery
subjected to 800 cycles. The offline data obtained from The
development of an online SOH estimate method was then
done through experimentation. The battery is tested up to
its EoL using these experimental procedures, but it should
be emphasized that they can only be used offline in lab
circumstances.

B. MODEL BASED METHODS
1) DATA FITTING
Resistance measurement is a valuable data acquisition
method for estimating the SOH of a battery. To achieve a
detailed fitting of internal resistance (IR), a characteristic
map is proposed, which calculates the IR at various SOC

levels and temperatures. The utilization of a data map is
necessary for accurate long-term predictions and because the
calculation of a reliable IR value may require some time.
However, a drawback of this approach is that each map needs
to be parameterized for individual cell references. In [40],
Using the idea of a severity factor map, a strategy based on
a weighted ampere-hour throughput model of the battery is
introduced. Within this framework, the investigation focuses
on two primary factors that contribute to battery life reduc-
tion: DOD and temperature.

2) COULOMB COUNTING
Another commonly used technique for estimating SOH is
Ah method. This method entails keeping note of the number
of Ah that are charged or discharged as the battery is being
charged or discharged. The battery’s remaining capacity can
be calculated by tracking the transferred Ah [229]. The esti-
mation of SOH is calculated using Equation (7), the measured
capacity Qnom and the maximum available capacity Qmax .

SOH =
Qmax
Qnom

(7)
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However, the Ah counting method has some drawbacks.
It requires a high capacity for storing the counted Ah, which
can be time-consuming. Additionally, the method is sensitive
to precision due to the accumulation of errors over time. The
coulomb countingmethod is still popular due to its simplicity,
despite these drawbacks and its minimal dependency on other
parameters such as Depth of Discharge (DOD), temperature
or C-rate which often have a stronger impact on other estima-
tion methods.

3) PARITY-RELATION METHOD
This method is used to assess and compare the effectiveness
of batteries, allowing for the assessment of their desired
functionality, as demonstrated in [230]. This method involves
analyzing the battery dynamics during cranking using a bat-
tery model. The analysis reveals that the residual integrates
information about the State of Health (SOH) provided by both
battery resistance and voltage loss, thus improving diagnostic
and prognostic capabilities. To observe the battery ohmic
behaviour and voltage loss during engine cranking, signifi-
cant real-world car cranking data was analysed., which serves
as the basis for developing the battery model. Subsequently,
The development of an integrated battery SOH monitoring
technique based on parity relations. The parity relation is
intended to describe how well-functioning batteries behave
during engine cranking, allowing for a comprehensive evalu-
ation of the battery performance and its SOH.

4) PROBABILISTIC METHOD
Probabilistic algorithms are utilized in certain methods to
estimate the SOH of batteries. In [231], An integrated battery
SOH monitoring technique based on parity relations is cre-
ated. The parity relation is intended to describe the behaviour
of batteries that are in good condition. This technique, which
is based on classical probability theory, works by estimat-
ing the likelihood that the same voltage value would be
observed more than once along the discharge curves of fresh
and used batteries. Two peaks can be seen by calculating
this likelihood, which shows the battery’s propensity to age.
The peak’s elevation reflects the frequency of measurements
with the same voltage value in a row. An algorithm is then
employed to estimate the capacity by contrasting the volume
of data with an identical voltage value. Using a generated
look-up table, the algorithm can estimate the capacity of the
battery cell based on partial charge or discharge tests. One
significant Benefit of this method is the time saved through
the use of partial charge and discharge tests. Additionally,
the algorithm is designed to be straightforward and can be
implemented within a BMS, making it easily applicable in
practical scenarios.

C. ADAPTIVE MODEL BASED METHODS
1) KALMAN FILTERS
An adaptive filtering approach commonly used for estimating
battery SOH is the application of Kalman filters. As discussed

in detail in Section. V, Kalman filters have been employed in
[232] for battery state and parameter estimation. Specifically,
the battery internal resistance is estimated, allowing for accu-
rate prediction of the SOH.

2) OBSERVER
In order to estimate SOH, observers have also been used as
an adaptive identification technique. A sliding mode observer
is used in [233] to calculate the SOH and SOC of a Li-ion
battery. The technique exhibits good accuracy and resistance
to modelling error and temperature changes.

3) LEAST SQUARE-BASED FILTERS
Another widely used approach in adaptive filtering is the use
of Least Square-based algorithms, as discussed in [234] and
[235]. RLS algorithms, in particular, have gained attention
due to their simple implementation and accuracy. These algo-
rithms allow accurate estimation of battery metrics that are
directly related to battery states, like the internal resistance for
SOH and the OCV for SOC. The identification process and
state estimation are investigated in [236], emphasizing the
importance of the battery model. Furthermore, an improved
RLS-based algorithm called Multi Adaptive Forgetting Fac-
tors RLS (MAFFRLS) is presented in [235], which optimizes
the forgetting factor through Particle Swarm Optimization
(PSO) for enhanced parameter estimation accuracy.

4) DATA DRIVEN MODEL
As discussed in Section.V, data-driven models are also uti-
lized for battery SOH estimation. In [237], Support Vector
Regression (SVR) is employed to estimate the Remaining
RUL of the battery. The estimated RUL is then considered in
the energy management strategy of a Fuel Cell Hybrid EVs.
The prognostic process is conducted on-board the vehicle
using laboratory-measured data. Additionally, an improved
Neural Network algorithm based on an innovative single-
layer feed-forward Neural Network is presented in [238],
[257], and [258]. This algorithm outperforms traditional
Back-Propagation Neural Network (BPNN) in terms of oper-
ational speed and estimation accuracy. However, it requires a
substantial amount of training data under various operating
conditions. The merits and demerits of these methods are
given in Table 13, Table 14, Table 15 and Table 16.

VII. CHARGING AND DISCHARGING OF A BATTERY
When a battery’s energy is depleted, its terminal voltage falls
below the cut-off voltage, or its SOC reaches 20% or less
the process of discharging it should end. At that point, the
battery needs to be recharged. The charging performance of
different battery types is provided in Table 17. It is crucial
to avoid incorrect operations such as excessive-discharging,
excessive-charging, or improper charging, as these can signif-
icantly accelerate battery degradation. While Li-ion batteries
generally exhibit stable performance, they have a limited
cycle life under high-temperature conditions and should
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TABLE 13. Experimental based methods.

TABLE 14. Adaptive model based methods.

TABLE 15. Data-driven model based methods methods.

not be charged below freezing temperatures. By accurately
estimating battery SOC, SOH appropriate charging strategies
can be developed to effectively charge the battery from its
initial state to the desired SOC target. These charging tech-
niques also help to prevent overheating, lengthen battery life,
and increase overall capacity use. Various types of batteries
and its charging methods are given in Table 18.

A. TRADITIONAL BATTERY CHARGING APPROACH
Various battery charging methods have been employed,
including Constant Current Charging (CC), Multi-Step Con-
stant Current Charging (MCC), Constant Voltage Charging

(CV), Boost Charging (BC), Constant Current Constant
Voltage Charging (CCCV), Constant Trickle Charging (CTC)
and Pulse Charging (PC) as shown in Fig. 27. The constant
trickle charging method is a straightforward and affordable
approach, ensuring safety during the charging process. How-
ever, it has the drawback of being time-consuming, requiring
over 10 hours to fully charge the battery, which has led to it
being referred to as an ‘Overnight Charger’ [117].
In order to minimize charging duration, the Constant CC

method has been implemented. By increasing the charging
current, faster charging times can be achieved. However, this
approach requires additional control circuitry to accurately
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TABLE 16. Qualitative comparison of the SOH estimation methods.

TABLE 17. Charging performance of various batteries.

identify the charging status, and when the battery is fully
charged, stop the charging process. It’s important to note that
higher charging currents can lead to capacity loss and reduced
battery lifespan because they have a detrimental impact on
the ion concentration between the electrodes. On the other
hand, CV charging involves initially providing current to the
battery to reach its nominal voltage, followed by supplying
the necessary current to maintain a constant voltage at that
level. The accuracy of setting this voltage is crucial, as high
voltage levels can decrease the battery lifespan, while low
voltage settings may result in incomplete charging. Addition-
ally, rapid changes in current during CV charging can lead
to increased temperature. To address these considerations,
the CCCV charging method has been introduced, combining

TABLE 18. Various battery types and its charging performance.

FIGURE 27. Traditional charging approaches for battery.

elements of both CC and CV charging. It has become the
preferred and widely used method for fast charging Li-ion
batteries [118]. Under the CCCV method, the charging
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FIGURE 28. CC-CV charging approach.

FIGURE 29. MCC charging approach.

process begins in the CC mode, when the battery is fed a
continuous current until the terminal voltage approaches the
nominal value as shown in Fig. 28.

Then, the charging mode switches to CV, where a constant
voltage is applied until the battery current reaches its lower
limit. However, it’s worth noting that the CV mode prolongs
the overall charging time, typically taking approximately
three times longer than the CC mode. This extended dura-
tion is a trade-off for ensuring proper charging and avoiding
potential issues. To reduce charging time and manage tem-
perature rise, theMCCmethod has been developed. However,
one challenge with this approach is determining the appropri-
ate constant current value for each charging step, which can
be problematic.

To address the challenges associated with the MCC charg-
ing method, various soft computing algorithms have been
employed as shown in Fig. 29 to determine optimal values
for each charging step. Algorithms such as the ant-colony
algorithm [119], Taguchi method [120], genetic algorithm
[124], [125], particle swarm optimization [121], [122], [123],
dynamic programming algorithm [126], and multi-objective
biogeography-based optimization [127], [128] have been
utilized for this purpose. These algorithms help optimize
the charging process and minimize capacity loss caused

by electrolyte decomposition during switching at different
current rates. To further improve charging efficiency and
reduce charging time, the MCCCV method [129], [130] has
been introduced. To prevent capacity loss and guarantee full
charge, it combines brief intervals of constant voltage charg-
ing with the MCC technique. BC is another recommended
method for reducing charging time. It involves applying a
high voltage to the battery for a short duration (5 to 10 min-
utes) known as the boost period. The battery receives a
substantial quantity of charge quickly during this boost time.
Afterward, the standard CCCV approach is employed with a
lower constant current value. However, it’s important to note
that BC requires the battery to be fully discharged before
starting the charging process, making it less suitable for
real-time applications in electric vehicles. PC is a validated
method for fast and efficient charging. However, one draw-
back of PC is the challenge of selecting the correct charge
pulse [131], [132]. Instead of using a square wave, a modified
version of PC makes use of a sinusoidal wave. In order to
maximize the charging current, both types of PC techniques
require a charging frequency that is optimal. Table.16 pro-
vides a summary of the advantages and disadvantages of these
charging methods.

B. OPTIMIZATION OF BATTERY CHARGING APPROACH
Fast charging of Li-ion batteries presents a challenge for
electric vehicle manufacturers, as it leads to rapid tempera-
ture increases and accelerated battery degradation. Therefore,
the development of optimal charging strategies has become
crucial in addressing these issues in EV applications. The
initial state of charge, charge and discharge current rates,
temperature rise, depth of discharge, cycle times, charging
strategy, overcharge, over-discharge, and more have a signifi-
cant impact on the Li-ion battery charge curve. Consequently,
there are multiple constraints to consider when developing
an optimal charging strategy, such as charging duration,
temperature increase, current flow, energy loss, charging
effectiveness, level of charge, condition of health, charging
voltage threshold, capacity and power fade, ageing impacts,
capacity utilisation, and impedance increase. Fig. 30 provides
an illustration of some constraints involved in developing an
optimal charging strategy.

1) CCCV CHARGING OPTIMIZATION
One approach to optimize Li-ion battery charging is the
CCCV method. Numerous studies have focused on improv-
ing the CC-CV charging approach. For instance, in [133],
an optimised using a cycle control algorithmwith a zero com-
putational approach, producing precise and smooth charging.
Reference [134] presents a closed-form approach that uti-
lizes a cost function considering charging time, energy loss,
and temperature rise to search for the optimal charging
strategy for Li-ion batteries. Reference [135] introduces
a controller that enhances Li-ion battery performance by
replacing the general CV mode with two modes: Sense
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FIGURE 30. Limitations for creating the best charging plan.

and charge, enabling faster charging trajectories. Reference
[136] introduces a battery charging cost function that con-
siders temperature increase, particularly inside the battery,
energy loss, and charging time. These competing goals
are balanced using the teaching-learning-based optimization
(TLBO) method to get the ideal CC-CV pattern. In [127],
a model-based strategy using multi-objective biogeography-
based optimization (M-BBO) is proposed to optimize the
CC-CV charging pattern for Li-ion battery management.
With specified current regions to effectively balance these
goals, this method enables appropriate trade-offs between
charging speed, energy conversion efficiency, and tempera-
ture variance. Reference [138] demonstrates a user-cell aware
charging method that increases the capacity of a charged
Li-ion battery. This strategy extends the standard CC-CV
approach, starting with CC charging until a predefined volt-
age is reached, followed by charging, until the current reaches
the cutoff threshold, a different predetermined voltage will
be used. The use of phase-locked loop (PLL) control [139]
improves the performance of CC-CV charging. Additionally,
[140] introduces a current-pumped battery charger (CPBC)
based on PLL CC-CV to enhance Li-ion battery charging
performance, resulting in improved battery capacity and
efficiency. Overall, these research efforts aim to develop opti-
mized CC-CV charging strategies for Li-ion batteries, taking
into account elements like battery capacity use, charging
time, energy efficiency, and temperature rise.

2) MCC CHARGING OPTIMIZATION
The optimization of Multi-Step Constant Current (MCC)
charging poses a significant challenge, particularly in deter-
mining the number of current stages and their corresponding
rates in theMCCprofile. Fuzzy logic technology has emerged
as a popular approach for improving MCC charging perfor-
mance. In [140] and [141], a Charging quality variables, such
as charging time and normalized discharged capacity, are
transformed using fuzzy logic controller into a single fuzzy
dual-response performance index. This approach enables the
optimization of a five-stage MCC charging pattern, resulting

FIGURE 31. Enhanced strategy to the CC-CV/MCC charging.

in improved charging efficiency. Similarly, [142] and [143]
employ fuzzy logic control to manage the weights within
the Li-ion charging process’ fitness function, allowing for
the optimization of optimal MCC charging patterns using the
PSO algorithm.. Fig 31 provides a summary of the improve-
ments made to the CC- CV/MCC charging approach based
on the designed fuzzy-logic fitness function.

Another successful way for locating the ideal MCC charge
pattern is the Taguchi-based method. In [144], a Taguchi-
based approach is presented to accelerate charging speed
and prolong cycle life for Li-ion batteries. Using the con-
secutive orthogonal array technique, It is optimized to use a
five-stage MCC charging pattern. Additionally, [145] com-
bines the Taguchi approach To manage battery temperature
variance, charging speed, and energy conversion efficiency,
a four-stage MCC charging strategy is suggested using
SOC estimates. To improve MCC charging performance,
other technologies such ant colony systems, function-based
approaches, and model-based approaches have also been
used. For instance, [146] introduces an MCC charging
approach with varying weights based on an internal-DC-
resistance model for each level, aiming to balance the
conflicts between charging speed and energy loss. Reference
[147] presents a unique approach that utilizes an equivalent
circuit model for Li-ion batteries to search for the optimal
MCC charging pattern. This approach considers both three

105790 VOLUME 11, 2023



R. Ranjith Kumar et al.: Advances in Batteries, Battery Modeling, Battery Management System

and five CC stages to improve charging speed and efficiency.
In summary, The total number of CC stages and the current
values assigned to each stage establish the charging goals of
the whole MCC charging process, including charging speed,
energy loss, and capacity utilisation. Since MCC charging
does not require voltage regulation, its implementation costs
are lower. Fig. 31 illustrates how the CC-CV/MCC charging
strategy has been enhanced [3].

C. SMART CHARGING
Concurrent EV charging can raise the overall demand for
electricity. Without the installation of a smart charging sys-
tem, there is a high risk that demand will increase when all
owners of vehicles connect their EVs at the same time, usually
after their final journey of the day upon coming home. This
abrupt rise in demand may cause a huge peak load, which
would impose a great deal of strain on the grid at bothmedium
and low voltage levels. Within the distributed infrastructure,
the right charging strategies must be used in order to guaran-
tee a balanced and consistent load profile [248]. The interplay
between the smart grid and EVs is depicted in Fig. 32, demon-
strating how these two systems can cooperate to overcome
the problems caused by simultaneous EV charging. The grid
may optimise and control the charging process based on vari-
ables including energy consumption, grid stability, and user
preferences by implementing smart charging and Wireless
Charging strategies [249], [250], [251], [252].
With the help of this dynamic strategy, the grid can manage

EV charging more effectively and equally distribute the load,
reducing stress on the system during peak usage. An easier
integration of EV charging with the current power grid is
made possible by the deployment of smart charging solutions
within the context of a distributed infrastructure. In order to
prevent problems with peak loads and grid stress, the smart
grid and EVs work together to manage charging demand
intelligently. Includes a comparison of smart charging, rapid
charging, and traditional charging in Table 19. Smart charging
is more suited for routine daily charging scenarios and long-
term battery preservation since it places a greater emphasis on
optimization, grid stability, and battery health. On the other
side, quick charging, while it may be more convenient and
extend range when travelling or in an emergency, may be
more expensive and strain the battery.

VIII. CELL BALANCING
Battery Energy Storage Systems (BESS) are increasingly
being utilized in EVs applications due to their numerous
advantageous characteristics. These include rapid demand
response, installation flexibility, and short construction time
[148]. Consequently, BESS supports the management of volt-
age and frequency, black-start capability, standing reserve,
integration of renewable energy, peak shaving, load level-
ling, and improvement of power quality in the electrical
power system. To achieve the required power, BESS cells
are integrated in series or parallel configurations. As a result,
SOC imbalance among the cells is a common occurrence in

FIGURE 32. Various cell balancing topologies.

BESS, which can be caused by internal or external factors.
Cell imbalances are caused by manufacturing flaws, self-
discharge rates, internal impedance, and changes in charge
storage volume. Additionally, unequal distribution of charg-
ing and discharging cycles in an unequal cell string can lead
to temperature increases in a BESS [149], [150], [151], [152].
Over the past few decades, numerous cell-balancing topolo-
gies have been developed, which can be broadly divided into
two categories: active balancing and passive balancing. These
categories are determined by the utilization of energy storage
elements (ES elements) and themethods employed for energy
balancing, as depicted in Fig. 33.

A. PASSIVE CELL BALANCING
Shunt resistors are used during passive cell balancing to
release surplus energy as heat., thereby equalizing the power
among cells. In this dissipative cell balancing topology, the
excess power of higher cells is reduced until their power
matches that of the lower cells. This approach offers advan-
tages such as cost-effectiveness, simplicity, and compactness.
However, it also has some drawbacks, including heat dissi-
pation, energy losses, and a longer cell balancing process.
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TABLE 19. Smart charge comparison with fast charging and traditional charging.

Shunting resistors are commonly employed for passive cell
balancing [153], [154].

B. ACTIVE CELL BALANCING
Comparing active cell balancing to passive cell balanc-
ing techniques, active cell balancing has shown to perform
better. It involves the transfer of excess energy between
BESS cells using components such as capacitors, converters,
transformers, and inductors, rather than relying on shunt
resistors. Through this approach, cells with excessive energy
transfer their surplus to cells with lower energy levels, effec-
tively achieving cell balance without wasting energy. This
active balancing topology is not limited by the specific chem-
ical properties of the cells, making it applicable to various
battery technologies. Major advantages of active cell bal-
ancing include high efficiency and fast balancing speed.
However, it should be noted that the implementation of active
cell balancing can be complex and costly. Active cell bal-
ancing is further classified into three categories based on the
active elements utilized: capacitors, converters, or inductors
and transformers [155], [156].

1) CELL BALANCING BASED ON CAPACITOR
It transferring energy between adjacent cells. This process
involves shifting energy from cells with higher energy levels
to cells with lower energy levels. However, there are some
drawbacks associated with capacitor-based balancing. One
disadvantage is the energy loss that occurs during the charg-
ing of the capacitors. Additionally, there may be a delay
in achieving cell balance due to the time required for the
energy transfer process. Switched capacitors are commonly
employed in various configurations, including single tiered,

double-tiered, and multiple capacitors [157], to facilitate the
cell balancing process.

2) CELL BALANCING BASED ON A TRANSFORMER OR
INDUCTOR
Transformers or inductors are utilized in achieving cell
balance by transferring energy between cell modules or
individual cells. This transfer of energy allows for rapid
attainment of cell equilibrium. However, this method has
a drawback that requires the inclusion of filter capac-
itors across each cell. This requirement adds to the
overall cost and frequency considerations associated with
the transformer. Different variations of this approach
include single-winding transformers, multi-winding trans-
formers, multiple inductors, and single/multi-inductor
configurations [158], [159].

3) CELL BALANCING BASED ON A CONVERTER
Convertor-based cell balancing has gained significant trac-
tion due to its ability to effectively control the entire
balancing process. However, cost and complexity are still
significant challenges associated with this approach. In this
method, a standard or modified DC-DC converter, such
as a buck converter, boost converter, buck-boost converter,
flyback converter, resonant converter, full-bridge converter,
cuk converter, or PWM converter, is employed for the bal-
ancing operation [160], [161].

4) COMPARATIVE ANALYSIS
Table 20 provides a comparison of balancing speed,
charge/discharge capabilities, and primary components
required for balancing and cell application. Passive cell
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FIGURE 33. Various cell balancing topologies.

balancing is suitable for applications with low power con-
sumption as it involves minimal resistance for continuous
operation. Additionally, passive cell balancing is cost-
effective. On the other hand, active cell balancing offers
greater energy savings and can handle higher power loads
compared to passive cell balancing. Full-bridge converters,
if used appropriately, can address two key challenges faced by
BESS, namely DC/AC power conversion and cell balancing.
They also offer the advantage of fast balancing speed. During
the charging or discharging process, the cell with lower
energy is prioritized over the cell with higher energy, ensuring
efficient energy management [162].

IX. BATTERY THERMAL MANAGEMENT SYSTEM (BTMS)
To keep batteries in a battery pack from overheating, a num-
ber of pieces of hardware, software, and other elements
collaborate effectively. Among these, the BTMS plays a cru-
cial role in maintaining a constant temperature for batteries
and battery modules. The effectiveness of the BTMS directly
affects the lifespan of batteries and ensures their thermal
safety. Since batteries are used in diverse applications and

environments, the BTMS must be designed to adapt to differ-
ent working and ambient conditions. Extreme temperatures,
whether high or low, can negatively impact battery perfor-
mance, and thus, appropriate cooling or heating methods
should be implemented. However, improper design of heat-
ing/cooling techniques may lead to temperature variations
and non-uniformity within the battery pack, compromising
temperature stability, safety, and battery life. Therefore, the
development of an efficient BTMS is essential to address
these challenges and maintain temperature uniformity in the
battery pack. A well-designed BTMS also facilitates the dis-
tribution of temperature throughout the battery pack, while
ensuring factors such as weight, compactness, reliability,
cost-effectiveness, and feasibility for automotive applica-
tions. External BTMS solutions utilize air or liquid to cool
the battery cells, without modifying the materials of the
batteries themselves. These external BTMS options include
active BTMS (such as thermoelectric, liquid, and air-based
BTMS) that use energy to cool the batteries while in use,
as well as passive BTMS that employ phase change materials
(PCMs) and heat pipes to cool the batteries without power
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TABLE 20. Comparison of various cell-balancing topologies [152], [153], [154], [155], [156], [157], [158], [159], [160], [161], [162].
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TABLE 20. (Continued.) Comparison of various cell-balancing topologies [152], [153], [154], [155], [156], [157], [158], [159], [160], [161], [162].

consumption. PCMs can be categorized into composite-PCM
BTMS and pure-PCM BTMS. Numerous research organi-
zations have reported on various BTMS for batteries. It is

significant to note that more aggressive thermal control is
necessary due to the fast charging’s growing charge rates.
However, existing external battery management systems
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often struggle to performwell under fast-charging conditions.
In some electric vehicles, the heat-transfer coefficient of
forced convection is relatively low, hindering the achievement
of extreme fast-charging (XFC). Additionally, the radiator
may not be sufficient in warmer climates where ethylene
glycol is used as a coolant, hence some EVs have a sepa-
rate vapour compression refrigerant (VCR) system to lower
the coolant temperature below ambient and increase cool-
ing. However, this design may lead to increased pumping
power consumption. To address these challenges and achieve
rapid heat dissipation, future advancements may involve an
integrated two-phase cooling system for the battery pack.
Although installing such a system would be expensive and
time-consuming, its promise for efficient cooling makes it
a worthwhile endeavor. Consequently, to meet the demands
of fast charging and XFC, a comprehensive and adaptive
advanced BTMS is necessary to ensure temperature unifor-
mity and efficient heatmanagement. Fig. 34 illustrates several
thermal management methods.

A. THERMAL RUNAWAY (TR)
Thermal runaway in batteries is typically characterized by the
progression of temperature and peak heat release. It involves
three steps: abnormal heat generation, initiation of fire
and explosion, which correspond to specific temperature
thresholds. The events leading to thermal runaway can be
categorized into two paths: internal and external. The internal
path relates to thermal failures occurring inside the cells due
to chemical reactions, while the external path involves the
smoke, and eruption/fire observed outside the cells [173]. The
complete sequence of thermal runaway events is illustrated in
Fig. 35. In the internal pathway, the SEI’s breakdown causes
the cells’ temperature to rise, which causes aberrant heat
generation (step 1). The temperature continues to rise until
it reaches the triggering level due to ongoing degradation
and regeneration of the SEI (step 2). This can be primarily
caused by three factors: internal short-circuits due to sepa-
rator damage, Release of oxygen from the cathode and the
development of active lithium on the anode surface, particu-
larly while charging quickly. These elements may cause the
cell temperature to increase to 280◦C from 60◦C. At higher
temperatures (beyond 660◦C), redox reactions intensify, lead-
ing to gas formation and rupture of active elements in the
current collector [174]. This, in turn, increases tempera-
ture and pressure, initiating venting. As the temperature and
pressure continue to rise (exceeding 1200◦C), electrolyte
components undergo continuous combustion and venting,
ultimately resulting in a severe explosion. The sequences in
the exterior path begin with swelling and progress through
venting initiation, forceful venting, and explosion. Solvents
inside the cell gasifywhen temperatures rise over their boiling
points as a result of abnormal temperature rise brought on
by short circuits, oxygen escape, or lithium plating, which
causes battery swelling. When the pressure exceeds its limit,
the high temperature causes a variety of compounds inside

the cell to boil, starting the first step of venting. Dark smoke
and a small amount of fire are produced as a result. Continu-
ous solvent boiling causes re-combustion inside the cell and
ferocious gaseous electrolyte venting [175]. The temperature
and pressure continue to rise unabated, culminating in an
explosion. Exothermic reactions occur successively during
thermal runaway, and the heat and gas generated during this
process can cause the battery to catch fire or explode. Several
factors can contribute to thermal runaway, excessive tempera-
tures, overcharging, short circuits, and battery damage caused
by physical forces. The SOC of the battery also affects its
susceptibility to overheating and thermal runaway. Research
indicates that higher SOC levels increase the likelihood of
thermal runaway, particularly for new batteries [176]. How-
ever, the SOC has the temperature at which thermal runaway
occurs is unaffected significantly in older batteries. Prevent-
ing thermal runaway currently relies on a limited number
of technologies, such as incorporating inhibitors into battery
materials. Nevertheless, there is There is no quick and easy
way to stop battery deterioration in hot environments. The
development of an efficient BTMS is considered the most
effective approach to prevent thermal runaway [177]. A well-
designed BTMS enables better control of battery thermal
behavior by operating the batteries within safe temperature
ranges and ensuring uniform heat distribution throughout the
battery pack. This helps to slow down the occurrence of
thermal runaway.

LiFePo4 and NCM (Lithium Nickel, Cobalt, and Man-
ganese) batteries were studied at various SOCs in a study
by Wang et al [178]. The results indicated that batteries
with a higher SOC are more susceptible to overheating and
thermal runaway. Specifically, For fresh batteries, the SOC
increases as the temperature at which thermal runaway starts
to occur falls. However, with older batteries, the SOC has
little to no impact on the temperature at which thermal
runaway occurs [179]. Currently, there are limited technolo-
gies available to prevent thermal runaway. One approach is
to incorporate inhibitors into battery materials [180]. How-
ever, there is no straightforward and effective way to avoid
battery damage in hot environments. The development of
an efficient BTMS emerges as the most effective solution
for preventing thermal runaway. By implementing a well-
designed BTMS, it becomes feasible to exercise more control
over the thermal behaviour of the battery. Keeping batteries
at a safe temperature and making sure the battery pack is
evenly heated can help slow down the occurrence of thermal
runaway [181].

B. LOW-TEMPERATURE HEATING METHODS IN EV
THERMAL MANAGEMENT
In regions with cold climates, maintaining optimal bat-
tery performance and efficiency becomes even more
critical for electric vehicles. Cold temperatures can have
a negative impact on battery capacity, internal resistance,
and overall energy output. To address these challenges,
EV manufacturers and researchers have explored various
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FIGURE 34. Classification of BTMS.

FIGURE 35. Sequence of events during thermal runaway.
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FIGURE 36. Sequence of events during thermal runaway.

low-temperature heating methods as part of their thermal
management strategies:

1) BATTERY PRE-HEATING
Pre-heating the battery before driving helps improve its effi-
ciency and performance in cold conditions. By using resistive
heating elements integrated into the battery pack, manufac-
turers can raise the battery’s temperature to an optimal range
before the vehicle starts moving.

2) CABIN AND BATTERY THERMAL COUPLING
Some EVs utilize waste heat generated by the powertrain or
battery to warm the cabin and battery pack. This approach is
energy-efficient as it uses existing heat sources to maintain
suitable temperatures.

3) THERMAL INSULATION
Implementing better thermal insulation for the battery pack
and critical components helps reduce heat loss to the envi-
ronment. This can prevent the battery from getting too cold
during extended periods of inactivity.

4) ACTIVE THERMAL MANAGEMENT
equipped with active thermal management systems use ded-
icated heating circuits that circulate a warm coolant through
the battery pack, power electronics, and cabin heaters. This
method ensures a consistent and controlled temperature
across key components.

5) HEAT PUMP SYSTEMS BATTERY PRE-HEATING
Some EVs incorporate heat pump systems that can extract
heat from the external environment, even in very cold
conditions, and transfer it to the cabin and battery. This
method is energy-efficient and effective in maintaining suit-
able temperatures.

6) INTELLIGENT ENERGY MANAGEMENT BATTERY
PRE-HEATING
By analyzing weather forecasts and trip plans, EVs can
intelligently adjust their thermal management strategies. For

example, the vehicle can initiate battery pre-heating before a
trip in cold weather.

7) CHALLENGES AND CONSIDERATIONS
While low-temperature heating methods offer several bene-
fits for EVs in cold climates, there are challenges to consider:
Energy Consumption: Some heating methods can consume

a significant amount of energy, which might impact the vehi-
cle’s driving range. Balancing heating needs with energy
efficiency is crucial.
System Integration: Implementing these methods requires

close integration with the vehicle’s electrical and thermal
systems, which can be complex and require advanced control
algorithms.
Component Durability: Heating elements and systems

should be designed for long-term reliability and durability,
considering the stress of temperature cycling.

Incorporating low-temperature heating methods into EV
thermal management is vital for ensuring optimal battery per-
formance, extending battery life, and providing a comfortable
driving experience in cold climates. Manufacturers continue
to research and develop innovative solutions to strike the
right balance between energy efficiency and effective thermal
management.

X. ISSUES, CHALLENGES AND ITS RECOMMENDATION
A. ISSUES AND CHALLENGES
1) ISSUES WITH DATA VARIETY, ABUNDANCE, AND
INTEGRITY
The amount and variety of data that are accessible have a
significant impact on how well advanced algorithms per-
form in battery models. However, acquiring a substantial
and diverse dataset can be a time-consuming process, lead-
ing to increased computational complexity and the potential
risk of overfitting [43]. To maintain data integrity, fixed
charge/discharge patterns and controlled temperature settings
are employed in the data bank. Nevertheless, laboratory
battery test benches are prone to issues such as limited
accuracy, high levels of noise, and electromagnetic interfer-
ence (EMI). As a result, it is crucial to evaluate the BMS
under various real-world scenarios to ensure its reliability and
performance.

2) SELECTION AND OPTIMIZATION OF PARAMETERS FOR
INTELLIGENT ALGORITHMS
The framework, input features, training approaches and
hyperparameter choice all affect how well intelligent algo-
rithms function. Achieving optimal performance through
proper design and hyperparameter tuning can be challenging,
often leading to issues such as data underfitting or overfit-
ting [93]. Selecting the right structure and hyperparameters
for intelligent algorithms typically involves time-consuming
trial-and-error methods, which can be tiring for people. Both
intelligent approaches and various control methods require
optimization. However, the convergence rates and execution
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times of optimization methods differ, and success rates of
achieving desired outcomes.

3) BATTERY CHARGER AND DISCHARGING ISSUE
The absence of universal battery chargers poses a challenge
for BMS. Existing custom battery chargers are often designed
for specific purposes and tend to be bulkier, resulting in
more electrical clutter and waste for the environment. Deal-
ing with the diverse range of batteries in use becomes a
concern for battery charger designers. Additionally, handling
damaged or aged batteries requires the use of safe-discharge
methods to mitigate potential risks. Batteries immersed in
electrolytes can generate hydrogen and oxygen gases, neces-
sitating proper ventilation to prevent explosions. The use of
resistors for discharging batteries requires careful regulation
of current to prevent overheating [8].

4) EARLY DISCHARGE TERMINATION AND CELLS
DEGRADATION
The existence of a lower-capacity cell among the
series-connected cells can cause cell imbalance when all
of the battery cells in a pack have the same SOC at the
beginning. While the overall voltage of the pack may reach
a desired level, individual cell voltages will vary. The lower
cell’s voltage may increase to a dangerous level if its capacity
is less than 10%, increasing the chance of cell breakage
and raising safety issues. This auto-accelerating process of
cell breakdown presents challenges in managing the BMS.
In order to prevent further capacity reduction, the BMS may
terminate discharge early when a lower voltage threshold than
the pack’s designated threshold is reached by the cells in
the pack. The battery discharge duration can be improved
by avoiding the low-capacity cells, but the BMS must be
more sophisticated and expensive as a result. Additionally,
overcharging can also lead to potential hazards such as
detonation [8].

5) AGING AND MEMORY EFFECT
Battery aging occurs as a result of internal resistance and
capacitance degradation, which is further accelerated by high
temperatures. Unfortunately, it is difficult to determine when
a battery is approaching the end of its lifespan until it abruptly
fails. To address this issue, a battery model that takes into
account aging factors is necessary. One particular effect of
repeated charge-discharge cycles is the memory effect, which
manifests as reduced memory capacity and potential cell
imbalances [195].

6) SECURITY AND POSSIBLE RISKS
During the cycling process, each individual cell within a
battery may exhibit different responses, leading to poten-
tial safety concerns. The performance of LIBs can also be
harmed by variables like temperature changes and outside
environmental factors. Leakage, insulation cracks, and short
circuits are a few problems that might result from battery

deterioration. Additional dangers can be introduced by open-
ing LIBs to the air or submerging them in water, such as
explosions, spontaneous combustion, and exothermic reac-
tions involving lithium ions and oxygen. These reactions
can be extremely dangerous and even fatal. The proximity
of highly reactive substances in batteries also poses risks.
Overheating or overcharging can lead to fires or explosions,
while exceeding the maximum voltage can result in the disso-
lution of the cathode, increasing the risks of heat generation
and short circuits. Excessively high voltages can also cause
decomposition of the electrolyte, posing significant harm
[196], [197].

7) SAFE AND EFFICIENT OPERATION
Loss of capacity in LIBs can result in extended operations.
To prevent overloading, a charging interruption is triggered
when a serially connected battery goes over the maximum
voltage of 4.35 V. Undercharged batteries, on the other hand,
tend to have a shorter lifespan. One of the challenges with
batteries is the absence of a well-defined safe working range,
as internal and external factors continually fluctuate. This
lack of a stable working range raises concerns regarding the
reliability and stability of individual battery cells. Addition-
ally, maintaining an optimal operational condition becomes
challenging, particularly requiring peripheral control units
inside the BMS, as a variety of events can greatly affect the
battery electrochemical characteristics [198].

8) BATTERY RECYCLING AND REUSE
The recycling of batteries is a pressing issue that requires
attention in order to manage the increasing volume of spent
LIBs effectively. Establishing a system for the collection and
recycling of batteries is crucial to mitigate environmental
concerns and enhance recycling possibilities. However, there
is a lack of a well-defined procedure that minimizes negative
environmental consequences. Another challenge for BMS
pertains to the reuse of batteries. BMS algorithms heavily rely
on battery characterizations conducted in laboratories, which
are only valid for a single instance. As batteries are used and
exposed to varying environmental conditions, their electro-
chemical properties change over time. Therefore, assuming
that old batteries possess the same characteristics as new ones
can be unsafe. Additionally, batteries contain metals such as
copper, aluminum, and cobalt. Given It would be unfortunate
if the mining for these battery-useful metals increased due
to their rising costs beneficial to explore options for reusing
these batteries. Currently, retired batteries in bulk are being
utilized for applications such as renewing ESS worldwide.
The BMS is essential for guaranteeing the safe operation of
second-life cycle batteries [198].

9) BATTERY DISPOSAL ISSUES
Proper disposal of certain types of spent batteries is crucial
due to their classification as hazardous waste. Incorrect dis-
posal of these LIBs can lead to explosions, environmental
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issues, and safety hazards. Moreover, there is a potential
for incurring cleanup expenses. The process of disposing of
batteries is intricate and includes fees for treatment, trans-
portation, and disposal as well as regulatory constraints.

10) MISCELLANEOUS ISSUES
Building a database of driving patterns and other relevant
information for EVs depends heavily on data logging func-
tionalities, however the BMS confronts many difficulties
in this area. However, the complexity, cost, weight, power
consumption, and difficulty in pressure regulation are inher-
ent drawbacks of BMS circuitry. A BMS has a constrained
number of data logging features available. The advance-
ment of EV technology necessitates a sophisticated BMS
that can effectively handle energy computation and ensure
safety in the presence of SOC imbalances in the Li-ion
battery pack. The evaluation and comparison of different
prognostic techniques have received less attention, result-
ing in lower efficiency compared to diagnostics. A portable
battery testing equipment is also required when employ-
ing battery modules made by different manufacturers to
assess these batteries. There are variety of solutions to these
problems and challenges are presented in the following
sections.

B. RECOMMENDATIONS
1) COMBINING WITH BIG DATA
The use of big data platforms, cloud computing, and cloud
storage platforms offers a chance to improve the precision
of intelligent algorithms. Implementing digital twins and
cloud-based BMS systems can solve data recording and com-
putational problems. These advancements enable real-time
training with improved precision and accuracy.

2) REUSE AND RECYCLING
Efforts should be directed towards researching battery reuse
as a means to conserve surplus energy while prioritizing
environmental sustainability. This approach also contributes
to the preservation of the Earth’s supply of Li-ion batteries
is constrained. Recycled batteries retain valuable energy, and
with Tesla Roadster’s battery alone consisting of 6831 cells,
proper recycling is essential to prevent significant waste.
Collaboration between governmental and non-governmental
organizations is crucial to develop cost-effective and envi-
ronmentally friendly technologies for recovering energy and
resources from old batteries. It is important to establish uni-
versal and consistent regulations for the disposal of used
LIBs, enabling the work of science and industry while
encouraging environmental protection.

3) IMPROVING LIBS CAPACITY AND CHARGING QUICKLY
The capacity of LIBs is influenced by various hidden fac-
tors such as vibrations, environmental conditions, operational
parameters, and technical variations, making accurate degra-
dation predictions challenging. To prolong the LIBs’ usable

lifetime, it becomes required to design new technologies.
Innovative abnormality detecting techniques and a variety
of driving types are required to enhance battery efficiency
and prediction accuracy. The widespread adoption of electric
vehicles has necessitated the need for an advanced battery
management system capable of preventing overcharging and
overheating during fast-charging processes. The BMS charg-
ing system’s objective should be to implement an efficient,
safe, and optimized charging strategy Wireless Charging
strategies [252], [253], [254], [255], [256].

4) LIFE CYCLE ANALYSIS AND THE IMPACT OF AGING
Additional study is required to determine how new materials
affect battery lifespan trends. LIBs should be designed using
materials that are abundant, cost-effective, non-toxic, and
easily recyclable. Through model simulations, it is possible
to improve the lifespan of battery packs by incorporating new
materials without compromising their steady-state perfor-
mance. This approachwill garner greater interest from battery
manufacturers while reducing the recycling burden and
disposal infrastructure. Understanding how ageing affects
LIB parameters is essential for accurately predicting the
SOH of batteries. The complex and interconnected dynam-
ics of battery aging necessitate the development of novel
approaches.

5) INSTALLATION RECOMMENDATIONS
Observing equipment ratings and labelling guidelines should
be strictly followed. When replacing equipment, compati-
bility with the existing setup must be ensured, preferably
verified by a third party to ensure product safety and
avoid any mistakes made by manufacturers or designers.
In cases where battery replacement is required, it is advis-
able to replace the entire battery bank rather than a few
individual batteries. It’s crucial to keep a safety logbook
and do routine BMS safety checks in order to comply
with new standards and make the necessary adjustments.
A tamper-proof BMS requires meticulous attention to hard-
ware and software manipulation, whereby the BMS notices
unusual behaviour or readings, the load or charger should be
immediately disconnected and reset.

6) NEW SENSOR-ON-CHIP
State estimate, defect forecasting, and health diagnostics all
largely rely on different battery characteristics, regardless of
the model or approach employed. Hence, it is important to
incorporate diverse sensors capable of capturing the required
parameters. The integration of different sensors into a sin-
gle chip, known as sensor-on-chip, represents a promising
direction to compact the BMS. Specifically, on-chip thermal
sensors can be mounted on or inside the battery, creating a
wireless sensor network for controlling surface and inside
temperatures. A more intelligent BMS for EV batteries is
anticipated to result from the advancement of sensor-on-chip
technology.
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XI. RESEARCH GAPS
A. JOINT ESTIMATION TECHNIQUE
Traditionally, battery states are treated independently, with a
majority of studies focusing on single-state estimation. How-
ever, limited research has been conducted on joint estimation,
where multiple states are considered simultaneously. While
joint estimation can yield satisfactory outcomes under par-
ticular circumstances, it has certain limitations, particularly
when dealing with the strong interdependencies among three
or more states in real-time applications [23]. Therefore, The
creation of an efficient BMS capable of accurately calculating
all the vital battery states is crucial, including the SOC, SOH,
SOP and SOE.

B. BATTERY PACK EQUALIZATION, UNIFORMITY AND
REUSE CRITERIA
The homogeneity criterion, which is normally taken into
account at the pre-manufacturing stage, was the main consid-
eration in the design of battery packs in this study. However,
it is crucial to recognize that the performance of designed
battery packs cannot be guaranteed solely based on this cri-
terion when they are in operation. Battery packs are used in
electric vehicle operations. often face challenges related to
cell imbalances, referred to as the equalization problem [199],
[200]. Additionally, after the lifespan of battery packs, they
are often left unused due to neglecting recycling and reuse
methods or a lack of awareness among potential buyers. One
potential solution is to gather these battery packs, recognise
and group cells that have remaining life, and then create fresh
battery packs from these clusters. Otherwise, the buildup of
wasted batteries can cause major disposal problems and have
a detrimental effect on the environment [201]. As a future
direction, the authors could consider creating a complete
design technique that incorporates the reuse, equalisation,
and uniformity criteria. Such an approach would be valuable
for creating robust battery pack designs capable of function-
ing effectively during the operation of vehicles.

C. REDESIGN, SETUP, LOCATION AND COMPONENTS OF
BATTERY PACK
A promising research avenue would involve redesigning
battery packs and their components to optimize space
utilization within vehicles, minimize vulnerability to crashes,
and facilitate easy dismantling, disassembly, and replacement
for efficient and user-friendly recycling [202], [203]. The
detailed exploration and study of topology design optimiza-
tion for electric vehicles, including integrated components
such as battery packs, could be of significant interest. Another
emerging area focuses on photovoltaic systems and batteries
working together and supercapacitors to enhance vehicle effi-
ciency, range, and energy storage, particularly in situations
where excess energy is generated from hybrid systems. For
instance, a microgrid EV charging station with a solar system,
wind power, and Li-ion battery storage can enable power
export when generation in the microgrid outpaces demand
and offer backup power during grid disruptions [204].

D. REDUCED SAFETY-RELATED ISSUES
Special attention should be given to environmental consid-
erations, particularly regarding safety concerns such cathode
failure, electrolyte failure, overcurrent, overvoltage, low
current, low voltage, and others, to prevent irreversible dam-
age to battery cells. Tomitigate such problems, the integration
and improvement of features like pressure vent controllers,
circuit interrupters, The BMSmay benefit from sophisticated
switching methods and a dependable thermal management
module. Furthermore, it is crucial to address the environ-
mental impact of materials like cobalt, nickel, and others
that are utilised in Li-ion batteries [205]. Extensive research
has demonstrated their contribution to global warming and
environmental toxicity.

E. INFORMATION AND ENERGY INTERNET FOR VEHICLES
EVs can share knowledge and energy to lessen their depen-
dency on local batteries and BMS. Vehicle-to-vehicle (V2V)
operations can be developed to establish a network for trans-
portation energy, which can be integrated into a vehicular
Internet of Things (IoT) to support collaborative autonomous
driving and advance transportation systems [206]. Operations
allowing the sharing of private data and energy packets from
EV batteries with energy routers are known as vehicle-to-
home (V2H), vehicle-to-grid (V2G) andV2V. This concept of
a vehicular information and energy internet (VIEI) for energy
and data sharing. This infrastructure also makes it easier
for several EVs and the larger internet to share processing
resources. EVs will be used for more than just transporta-
tion because to the fusion of artificial intelligence (AI) and
cloud computing (CC) technology. In order to embrace the
integration of information, energy, and humanity, both EV
batteries and their BMS will develop with new functionali-
ties [207], [208]. However, Keeping vehicle data and energy
secure and private in the VIEI presents new hurdles in fending
off hostile attackers. As a result, experts have looked into
potential strategies to increase the system’s security and pri-
vacy, including blockchain technology, CC, and AI [240].
These brand-new technologies will greatly contribute to
building a smarter VIEI.

F. VEHICLE-CLOUD COLLABORATIVE FAULT DIAGNOSIS
Vehicle-cloud collaborative fault diagnosis in the realm of
electric vehicles refers to the fusion of on-board vehicle
diagnostics with cloud-based analysis and support. This strat-
egy exploits EVs’ internet connectivity and cloud computing
resources to boost fault identification, issue resolution, and
maintenance strategies. It offers benefits to both users and
manufacturers: Real-Time Monitoring and Data Collection:
EVs employ a range of sensors to monitor diverse systems,
like batteries, motors, and power electronics. These sen-
sors continually gather performance and health data. Remote
Analysis and Predictive Maintenance: Vehicle data is sent to
the cloud, where advanced algorithms and machine learning
decipher it. This analysis can pre-emptively identify issues,
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leading to proactive maintenance and reduced downtime.
Enhanced User Experience: Vehicle owners receive early
alerts about potential problems or upkeep needs, enabling
efficient scheduling of maintenance visits and preventing
unexpected breakdowns. Efficient Service and Support: Ser-
vice centers remotely access real-time diagnostics from the
cloud, enabling accurate solutions without the vehicle’s phys-
ical presence. Data-Driven Improvements: Aggregated data
from multiple vehicles yield insights that aid manufactur-
ers in refining their products through informed design and
manufacturing enhancements. Challenges and Considera-
tions: Data Privacy and Security: Transferring vehicle data
to the cloud necessitates robust encryption and authentica-
tion mechanisms to safeguard sensitive data. Connectivity
Reliability: Poor network coverage can undermine internet-
dependent functionalities, urging manufacturers to ensure
essential operations remain unaffected. System Complexity:
Integrating cloud analysis and remote diagnostics requires
intricate software and communication protocols, demand-
ing reliability and compatibility with varied vehicle models.
In essence, vehicle-cloud collaborative fault diagnosis inno-
vatively augments EV maintenance, reliability, and user
experiences. By capitalizing on cloud computing and data
analysis, manufacturers and vehicle owners collaboratively
guarantee optimal EV performance while curtailing mainte-
nance costs and downtime.

XII. CONCLUSION
The BMS plays a pivotal role in the efficient operation of
BESS within EVs. This paper offers a comprehensive review
of critical BMS aspects, with a primary focus on battery mod-
eling, state estimation, and battery charging. The significance
of accurate batterymodeling and precise internal state estima-
tion cannot be overstated, as they provide invaluable insights
into operational conditions and enable the optimization of
charging strategies. Nevertheless, the road to fully realizing
the potential of BMS technology is not without its challenges,
particularly in terms of validating these systems under real-
world conditions. This paper identifies these challenges and
underscores the importance of addressing them to facilitate
the seamless integration of BMS into EVs. In light of this, the
paper outlines promising future directions for BMS advance-
ment. Foremost among these is the conception of a universal
BMS, a concept that holds the potential to standardize BMS
technology across various platforms and manufacturers. Fur-
thermore, the integration of improved predictive techniques
and hybridized intelligent algorithms emerges as a pathway
to enhance the accuracy of BMS operations. Concurrently,
the paper advocates for the development of effective proto-
type designs, an essential step toward translating theoretical
advancements into practical, reliable solutions. Another
intriguing avenue for BMS innovation lies in its virtualiza-
tion. By creating virtual BMS frameworks, researchers and
engineers can simulate a range of scenarios, facilitating more
thorough testing and validation. As the paper points out, such
virtualization could significantly expedite the refinement of

BMS technologies, thereby accelerating their adoption within
the EV industry. It is abundantly clear that surmounting
the current obstacles is imperative for the successful main-
stream integration of EVs. The insights and recommendations
presented in this research are of immense value to vehi-
cle engineers and EV manufacturers, guiding them towards
the development of safer, more efficient, and more reliable
BMS systems. Looking to the future, the paper underscores
the need for a dynamic, data-driven electro-thermal model.
This innovative model holds promise for real-time status
prediction, health diagnosis, and precise charging control.
By harnessing the power of such amodel, the EV industry can
move closer to achieving its goals of enhanced operational
efficiency, prolonged battery lifespan, and widespread EV
adoption. In essence, this paper not only encapsulates the
current state of BMS technology but also sets the stage for
its evolution. By addressing challenges, suggesting forward-
looking strategies, and highlighting the potential of novel
approaches, the research serves as a guiding light for the
ongoing development of BMS in the context of EVs.
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