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ABSTRACT This paper presents an 8-element phased array system and proposes a novel beam control
method—namely, matrix-summethod—that can achieve beam steering and beam-width control. The system
architecture comprises an 8×8 phase matrix network and a 1-to-8 real number weighting network. The 1-to-
8 real number weighting network simultaneously supplies the required weighting value to all input ports of
the phase matrix network, enabling the adjustment of the phase difference and power ratio between adjacent
output signals and thereby generating the desired beam. According to the equations used to calculate the
weighting values, the matrix-sum method requires only real number weighting to achieve beam synthesis
with steering and tapering functions if used with a suitable phase matrix. Comparison results revealed that for
the same number of control bits, the proposed method system exhibited higher beam-steering accuracy and
system gain in different beam pattern cases than phased array systems that use conventional and vector-sum
phase shifters. The proposed phased array systemwas fabricated and experimentally investigated at 3.5 GHz.
The results indicated that it achieved fully controllable beam steering with a fine beam resolution of 1◦ steps.
Additionally, the system’s sum, difference, and tapering beam patterns were accurate compared with ideal
beam patterns.

INDEX TERMS Beamforming system, beam steering, beam tapering, phased array, sum and difference
beam patterns.

I. INTRODUCTION
Phased array system has become critical in various appli-
cations, including fifth-generation (5G), beyond 5G com-
munication, and radar. Its beamforming function improves
communication quality, spectral efficiency, and tracking
accuracy [1], [2], [3], [4], [5], [6], [7], [8], [9]. Additionally,
the electronic beam steering capability provides greater
advantages to current satellite communication (SATCOM)
systems (low earth orbit (LEO) and medium-earth orbit
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(MEO)) compared to previous mechanical solutions like
dishes mounted on motorized pedestals [10], [11], [12].

In a phased array system, precisely controlling the
amplitude and phase of the RF signal fed to each antenna
is essential for achieving the desired beam pattern; this is
because the accuracy of the phase and amplitude adjustments
governs the deviation and resolution of the beam angle [13],
[14], [15]. The flexibility of phase shifting and amplitude
weighting in an array determines the properties of the beam
patterns produced by the array, such as the beam angle
range, beam width, and beam type (e.g., sum or difference
beam pattern). Thus, a phased array system must be able to
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FIGURE 1. Concept of implementing the proposed phased array system
on a narrow beam transmitter.

accurately and effectively adjust the phase shift and amplitude
weighting.

In the architecture of phased array systems, conventional
phase shifters, including switched filter type [16], [17], [18],
[19], [20] and reflective type [21], [22], [23], [24], [25],
are typically used for phase control, while the amplitude
controllers, such as variable gain amplifiers and attenuators,
are used for amplitude control. Although this architecture
enables separate controlling of the phase and amplitude, the
resolution of conventional phase shifters considerably affects
the beam resolution [26]. For example, phased array systems
using conventional 6-bit controlled phase shifters can achieve
1.8◦ beam angle resolution when the beam angle is near 0◦.
However, this resolution deteriorates to over 3◦ as the beam
angle deviates to 90◦. This separate control necessitates more
calibration. In addition, magnitude control introduces phase
errors, and phase control results in magnitude errors, further
complicating the calibration procedure.

Vector-sum phase shifters [27], [28], [29], [30], [31]
are an alternative to conventional phase shifters and can
simultaneously control phases and amplitudes by weighting
the in-phase and quadrature-phase (IQ) signals, respectively.
Vector-sum phase shifters have a high resolution, high
accuracy, and wide bandwidth. Moreover, vector-sum phase
shifters require only a 4-bit amplitude controller to achieve
nearly the same beam resolution (1.8◦) as conventional phase
shifters with 6-bit controlled. However, a vector-sum phase
shifter includes at least one quadrature phase generator, one
power combiner, and one phase inverter, resulting in an
unavoidable 6 dB distribution loss. This unavoidable loss
leads to at least a 6 dB decrease in the overall system power
budget in a phased array system.

This paper proposes a novel phased array system that
uses the matrix-sum method to control the final relative
phase and amplitude of each array element. The matrix-sum
method enables the phased array system to achieve a higher
accurate beam steering within 1◦ beam angle resolution when
compared to systems using conventional or vector-sum phase

shifters with the same number of control bits. The weighting
network in the proposed architecture is realized using 1-to-2
tunable amplifiers, which avoid the distribution losses for
different beam cases. Fig. 1 illustrates the implemented
concept in a large-scale array transmitter utilizing the
proposed phased array system. The system comprises four
main parts (weighting network, phase matrix network, front-
end, and antenna); these parts can be fabricated using specific
processes to enhance performance and cost-effectiveness.
For example, the weighting network can be implemented
using the CMOS process, optimizing both area requirements
and power consumption. The phase matrix network and
antenna can be fabricated using the low-temperature co-fired
ceramic (LTCC) process, ensuring efficient heat dissipation.
Additionally, the front-end part can be realized using the
GaAs process to achieve higher output power. Because most
of the large-area passive parts in the proposed system can be
implemented using low-cost passive processes such as LTCC
process, the area of integrated circuits can be minimized.
References [32], [33], [34], and [35] depict that the realization
of high-frequency passive components and amplifiers are
commonly fabricated using LTCC and CMOS processes
(e.g., 65-nm CMOS), respectively. The proposed phased
array system is expected to be capable of implementing
the system at high frequencies, such as Ku or Ka-bands.
Because this work focuses on concept proving, a 3.5 GHz
8-element phased array system is opted and built to validate
and demonstrate the proposed matrix-sum method. The
system presents full beam control with the sum, difference
beam pattern, and beam tapering based on comprehensive
theoretical derivations.

The remainder of this paper is organized as follows.
Section II presents the matrix-sum method and circuit
design. Section III introduces the proposed tunable amplifier,
a crucial component of the weighting network. Section IV
presents a comparative analysis of the proposed phased array
system with two other systems in terms of beam angle
accuracy and system power budget. Section V describes the
experimental setup and presents the obtained results. Finally,
Section VI provides the conclusion.

II. MATRIX-SUM METHOD AND CIRCUIT DESIGN
The proposed matrix-sum method can be applied to both
the transmitting and receiving modes on the basis of the
reciprocity theorem. In this work, an 8-element phased array
with transmit mode is selected for demonstration.

Figs. 2 presents the circuit block diagrams of the
phased array systems using the matrix-sum method, vector-
sum phase shifters, and conventional phase shifters. The
proposed phased array system (Fig. 2(a)) comprises a
phase matrix network and a weighting network. The input
signal (SIN) is fed to the tunable amplifiers, where it is
amplified and re-arranged the power ratio at each input
signal (a1 to a8) of the phase matrix network to generate
the desired output signals (b9 to b16) for synthesizing
different beam patterns. Since the power ratio of each
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FIGURE 2. Block diagram of phased array systems using (a) the proposed matrix-sum method, (b) vector-sum phase shifters, and (c)
conventional phase shifters.

path can be adjusted, unnecessary distribution loss can be
avoided. Moreover, achieving higher system gain is relatively
straightforward because of the use of cascaded tunable
amplifiers.

In the phased array system using vector-sum phase shifters
(Fig. 2(b)), the input signal (SIN) is fed to the power divider
and distributed equally to vector-sum phase shifters to gen-
erate the desired output signals for synthesizing the different
cases of beam patterns. The architecture of the vector-sum
phase shifters involves an unavoidable distribution loss when
balancing the output power of each different output phase
case. Furthermore, in scenarios involving beam tapering, the

equal distribution of the signal to each path results in an
unavoidable loss.

In the phased array system (Fig. 2(c)) using conventional
phase shifters and magnitude controller (VGA) to form
beams. The input signal (SIN) is fed to the power divider; the
signal is then distributed equally to the conventional phase
shifters and to the VGAs for amplitude weighting in order to
generate the desired output signals for synthesizing different
beam patterns. Similar to the phased array system using
vector-sum phase shifters, the equally distributed to each path
results in an unavoidable loss in scenarios involving beam
tapering.
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In this proposed phased array (Fig. 2(a)), each input
signal of the phase matrix network simultaneously inputs to
the phase matrix network. The phase matrix is represented
based on the definition of generalized scattering matrix (S-
parameters), with a1 to a8 (incident power waves) being
the input signals and b9 to b16 (reflected power waves)
being the corresponding output signals [36]. In accordance
with the perfect matching condition, signals b1 to b8 and
a9 to a16 are all zero and the output signals (b9 to b16) are
linear combinations of the input signals (a1 to a8), and the
transmission coefficients from input ports to output ports are
the coefficients of the signals.

Mathematically, the phase matrix network performs the
multiplication of the matrix with the vector [a1, a2, . . . , a8]T

and outputs the signals [b9, b10, . . . , b16]T
b9
b10
...

b16

 = M


a1
a2
...

a8

 . (1)

When the target output signals have been determined, the
required input signals can be evaluated through an inverse
matrix operation 

a1
a2
...

a8

 = M−1


b9
b10
...

b16

 . (2)

The evaluated input signals [a1, a2, . . . , a8]T can then be
rewritten as

a1
a2
...

a8

 =


|a1|e−jθ1

|a2|e−jθ2
...

|a8|e−jθ8

 = e−jθ1


|a1|e−j(θ1−θ1)

|a2|e−j(θ2−θ1)

...

|a8|e−j(θ8−θ1)

 . (3)

For a given matrix M where |θn - θ1| = 0◦ or 180◦, n = 1–
8, the input signals [a1, a2, . . . , a8]T can be expressed as real
numbers

|a1|e−j(θ1−θ1)

|a2|e−j(θ2−θ1)

...

|a8|e−j(θ8−θ1)

 =


|a1|

(−1)i2 |a2|
...

(−1)i8 |a8|

 =


Ra1
Ra2
...

Ra8

 , (4)

where in is an index that represent whether any of a2–a8 is a
positive or negative real number, n = 2–8. If in = 0, |θn - θ1|
= 0◦, an is a positive real number. By contrast, if in = 1, |θn -
θ1| = 180◦, an is a negative real number.

Through (2)–(4), the input signal can be converted into a
real number signal multiplied by the normalized phase e−jθ1 ,

a1
a2
...

a8

 = e−jθ1


Ra1
Ra2
...

Ra8

 = M−1


b9
b10
...

b16

 . (5)

FIGURE 3. Block diagram of the 90◦ coupler.

Bymultiplying both sides of (1) by ejθ1 , (2) can be rewritten
as

ejθ1


b9
b10
...

b16

 = M


Ra1
Ra2
...

Ra8

 . (6)

Because ejθ1 is a constant, the pattern of the output signals
ejθ1 [b9, b10, . . . , b16]T is identical to that of the output signals
[b9, b10, . . . , b16]T. Moreover, because [Ra1 , Ra2 , . . . , Ra8 ]

T

are all real numbers, they can be generated by the circuit using
power division, magnitude weighting, and sign switching
functions. Similar to the benefits of vector-sum phase shifters,
the complex-number-operation functions (phase shifting)
are replaced by real-number-operation functions (magnitude
weighting and sign switching). For the response speed,
although the proposed method may need more computation
resources for establishing the beam table, it has the same
response time compared to the other twomethods as the beam
table established.

Notably, (6) is a special case. An arbitrary phase matrix
network (M ) does not have the property that the phase
difference between the evaluated input signals a1–a8 from
(2) are either 0◦ or 180◦. Therefore, it is crucial to find
a feasible phase matrix network. A feasible phase matrix
network is shown in Fig. 2(a). This 8 × 8 phase matrix
network comprises twelve 90◦ hybrid couplers. According to
the S-parameters of a 90◦ hybrid coupler (shown in Fig. 3)
[36], the relation between output signals (b3 and b4) and input
signals (a1 and a2) is derived as

b3 = a1S31 + a2S32
b4 = a1S41 + a2S42. (7)

Then phase matrix (M ) of a 90◦ hybrid coupler can be
derived according to (7) as follow

[
b3
b4

]
= M

[
a1
a2

]
=

1
√
2

[
ej0 e−j

π
2

e−j
π
2 ej0

] [
a1
a2

]
, (8)

Similarly, the phase matrix M of the 8 × 8 novel phase
matrix network can be derived by evaluating the S-parameters
and determining the relation between the output signals and
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the input signals

M = LPMN×e−jα

×



ej0 e−j
π
2 e−j

π
2 e−jπ e−j

π
2 e−jπ e−jπ ej

π
2

e−j
π
2 e−jπ e−jπ ej

π
2 ej0 e−j

π
2 e−j

π
2 e−jπ

e−j
π
2 e−jπ ej0 e−j

π
2 e−jπ ej

π
2 e−j

π
2 e−jπ

e−jπ ej
π
2 e−j

π
2 e−jπ e−j

π
2 e−jπ ej0 e−j

π
2

e−j
π
2 ej0 e−jπ e−j

π
2 e−jπ e−j

π
2 ej

π
2 e−jπ

e−jπ e−j
π
2 ej

π
2 e−jπ e−j

π
2 ej0 e−jπ e−j

π
2

e−jπ e−j
π
2 e−j

π
2 ej0 ej

π
2 e−jπ e−jπ e−j

π
2

ej
π
2 e−jπ e−jπ e−j

π
2 e−jπ e−j

π
2 e−j

π
2 ej0


,

(9)

where LPMN is the distribution and transmission loss. If all the
components are lossless, LPMN is equal to 1

√
2
cubed; that is,

1
√
8
. e−jα is the phase delay of the shortest path in the phase

matrix network if the phase network contains an additional
interconnection transmission line.

Suppose that the output is set to synthesize a sum (normal)
8-element antenna beam pattern with a given beam angle, the
related output signals b9–b16 can be expressed as

b9
b10
b11
b12
b13
b14
b15
b16


= k



e−j0φ

e−j1φ

e−j2φ

e−j3φ

e−j4φ

e−j5φ

e−j6φ

e−j7φ


, (10)

where k represents the amplitude of the output signals b9-b16
and φ is calculated using the beam angle (θd )

φ =
2πdsin θd

λ
, (11)

where d is the antenna spacing and is assumed to be half
wavelength in general.

Applying (2), (9), (10), and (11) can yield the input signals
a1–a8 as follows

a1 = |a1|e−jθ1 =
k·ejα

8LPMN
(A1 + jB1)

A1 = 1 + sinφ + sin 2φ − cos 3φ

+ sin 4φ − cos 5φ − cos 6φ − sin 7φ

B1 = cosφ + cos 2φ + sin 3φ

+ cos 4φ + sin 5φ + sin 6φ − cos 7φ (12)

a2 = |a2|e−jθ2 =
k·ejα

8LPMN
(A2 + jB2)

A2 = − cosφ − cos 2φ − sin 3φ

+ cos 4φ + sin 5φ + sin 6φ − cos 7φ

B2 = 1 + sinφ + sin 2φ − cos 3φ

− sin 4φ + cos 5φ + cos 6φ + sin 7φ (13)

a3 = |a3|e−jθ3 =
k·ejα

8LPMN
(A3 + jB3)

A3 = − cosφ + cos 2φ + sin 3φ

− cos 4φ − sin 5φ + sin 6φ − cos 7φ

B3 = 1 + sinφ − sin 2φ + cos 3φ

+ sin 4φ − cos 5φ + cos 6φ + sin 7φ (14)

a4 = |a4|e−jθ4 =
k·ejα

8LPMN
(A4 + jB4)

A4 = −1 − sinφ + sin 2φ − cos 3φ

+ sin 4φ − cos 5φ + cos 6φ + sin 7φ

B4 = − cosφ + cos 2φ + sin 3φ

+ cos 4φ + sin 5φ − sin 6φ + cos 7φ (15)

a5 = |a5|e−jθ5 =
k·ejα

8LPMN
(A5 + jB5)

A5 = cosφ − cos 2φ + sin 3φ

− cos 4φ + sin 5φ − sin 6φ − cos 7φ

B5 = 1 − sinφ + sin 2φ + cos 3φ

+ sin 4φ + cos 5φ − cos 6φ + sin 7φ (16)

a6 = |a6|e−jθ6 =
k·ejα

8LPMN
(A6 + jB6)

A6 = −1 + sinφ − sin 2φ − cos 3φ

+ sin 4φ + cos 5φ − cos 6φ + sin 7φ

B6 = cosφ − cos 2φ + sin 3φ

+ cos 4φ − sin 5φ + sin 6φ + cos 7φ (17)

a7 = |a7|e−jθ7 =
k·ejα

8LPMN
(A7 + jB7)

A7 = −1 + sinφ + sin 2φ + cos 3φ

− sin 4φ − cos 5φ − cos 6φ + sin 7φ

B7 = cosφ + cos 2φ − sin 3φ

− cos 4φ + sin 5φ + sin 6φ + cos 7φ (18)

a8 = |a8|e−jθ8 =
k·ejα

8LPMN
(A8 + jB8)

A8 = − cosφ − cos 2φ + sin 3φ

− cos 4φ + sin 5φ + sin 6φ + cos 7φ

B8 = −1 + sinφ + sin 2φ + cos 3φ

+ sin 4φ + cos 5φ + cos 6φ − sin 7φ (19)

The phase difference between any pair of a1 to a8 is 0◦

or 180◦. This can be verified by treating the complex values
Am+ jBm, An+ jBn as two vectors (Am,Bm) and (An,Bn) on a
2D Cartesian coordinate system and evaluating the absolute
value of the cross products of these two vectors

|(Am,Bm) × (An,Bn)| = |(BmAn) − (AmBn)|, (20)

wherem, n= 1–8 andm ̸= n. If |(Am,Bm)× (An,Bn)| is zero,
the relative phase difference between any of the calculated
a1–a8 is either 0◦ or 180◦.
(12) to (19) and (20) indicate that, for a given φ, a solution

(a1–a8) exists and are all real numbers. These findings suggest
that the output signals of the proposed 8 × 8 phase matrix
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FIGURE 4. Proposed tunable amplifier: (a) schematic diagram and (b)
equivalent circuit of the BJT used in the architecture.

network can synthesize a specified phase difference with only
real number weightings.

This proposed method can not only form sum beam
patterns but also form difference beam patterns and variable
beam-width patterns. For the difference beam pattern, the
output signals b9–b16 are defined as

b9
b10
b11
b12
b13
b14
b15
b16


= k



1 × e−j0φ

1 × e−j1φ

1 × e−j2φ

1 × e−j3φ

−1 × e−j4φ

−1 × e−j5φ

−1 × e−j6φ

−1 × e−j7φ


. (21)

Furthermore, for the sum pattern with variable beam-
width, the output signals b9–b16 can be defined by
non-uniform weighting as

b9
b10
b11
b12
b13
b14
b15
b16


= k



m1 × e−j0φ

m2 × e−j1φ

m3 × e−j2φ

m4 × e−j3φ

m4 × e−j4φ

m3 × e−j5φ

m2 × e−j6φ

m1 × e−j7φ


, (22)

where m1–m4 are the ratios of the magnitudes. It is
noteworthy that reducing the antenna weights (m1 and
m2) towards the side positions leads to increased beam-
width, akin to synthesizing the beam with fewer antennas.
On the basis of the derived steps ((12)–(19)), the required
weighting can be determined and verified to be a set of real
numbers. The detailed derivations are provided in Appendix.
Experiment examples of the sum (10), difference (21), and
variable beam-with (22) patterns are presented in Section V.

III. TUNABLE AMPLIFIER
The schematic of the proposed 1-to-2 tunable amplifier is
shown in Fig. 4(a). Two bipolar junction transistors (BJT),
labeled as BJTA and BJTB, are biased using large capacitors
(Cb) and resistors (Rbb). The value of Cb and Rbb is large
enough to ensure that these components function only as a
biasing network and can be omitted in the RF small-signal
analysis. The base currents (IbA and IbB) can be controlled
independently. The input nodes of the twoBJTs are connected
at node A. An input matching network is applied to match the
impedance of the shunted BJTs to the system impedance. Two
identical output matching networks are applied to the output
ports of BJTs to match the output impedance of the BJTs to
the system impedance (Z0). The output matching networks
provide the biasing currents (IcA and IcB) of the BJTs.
Fig. 4(b) shows the small-signal equivalent circuit of BJT

used for this analysis. The capacitance effects are equivalent
to Ci and Co at the base and collector nodes, respectively.
Considering the input resistance (rπ ), output resistance (r0),
and current gain (β), the gain of a BJT with conjugate
matched source/load impedance (GBJT,M) can be derived as

GBJT,M = −
β

2

√
r0
rπ

. (23)

On the basis of the relationship between the parameters and
the bias (rπ = βVT/Ic, Ic = βIb), GBJT,M can be derived as

GBJT,M = −
1
2

√
βr0
VT

√
Ic. (24)

A small-signal model of the proposed 1-to-2 tunable
amplifier is illustrated in Fig. 5. This model indicates that the
input resonated capacitance can be merged into input/output
matching networks as source/load networks because the input
node of the two BJTs (i.e., BJTA and BJTB) are shunt
connected. Thus, the circuit is simplified as two current
control sources connected with one source network and
two load networks. S21,M and S31,M can be derived as
follows, respectively, under simultaneous conjugatematching
conditions

S21,M = −
β

2

√
r0

rπA//rπB

rπB
rπA + rπB

= −
1
2

√
βr0
VT

IcA
√
IcA + IcB

, (25)

S31,M = −
β

2

√
r0

rπA//rπB

rπA
rπA + rπB

= −
1
2

√
βr0
VT

IcB
√
IcA + IcB

. (26)

According to (25) and (26), the ratio between S21,M and
S31,M can be obtained as the ratio of IcA and IcB as

S31,M
S21,M

=
IcB
IcA

. (27)
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FIGURE 5. Small-signal model of the proposed 1-to-2 tunable amplifier.

FIGURE 6. Beam angle error comparison with a beam angle step of 1◦.

Regarding the matching condition, r0 of the BJT does
not change significantly in this work. Therefore, the output
matching condition does not change during the tuning IcA and
IcB. For the input matching condition, the input admittance
Yin must be considered because the input admittance is related
to the biasing condition as

Yin = YinA + YinB =
1

rπA//rπB
=

IcA + IcB
βVT

. (28)

According to (28), the summation of IcA and IcB deter-
mines the input admittance. Since the matching networks are
fixed during the tuning of S31,M and S21,M , IcA + IcB must
be selected to have low reflection coefficients.

IV. DISCUSSION OF BEAM ANGLE ACCURACY AND
SYSTEM POWER BUDGET
This section discusses two important benefits of the phased
array system: beam angle accuracy and system power budget.
All discussions are under the same calculated situation of
components that have the same total gain, loss, and zero phase
and amplitude error.

FIGURE 7. Simplified schematic of (a) the tunable amplifier and (b) single
BJT.

A. BEAM ANGLE ACCURACY
The phased array systems illustrated in Figs. 2 are digitally
controlled; thus, the control step of phase and amplitude
will impact the synthesized pattern. In this study, the beam
angle accuracy was determined by calculating the difference
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FIGURE 8. Optimal results of the proposed tunable amplifier: (a) power
discrepancy and (b) input reflection coefficients.

FIGURE 9. Conventional 1-to-2 magnitude controller.

between the beam angle produced by each of the phased array
systems in Figs. 2 with that produced by the phased array
systems ideally calculated with the output signal phase φ in
(11). In this analysis, the passive components (90◦ couplers,
switchable phase inverters, and power combiner/dividers) are
assumed to be ideal components; thus, the calculated beam
angle errors were those caused by only the control resolution.
In this case, a 7-bit control resolution was selected. For a fair
comparison, the weighting for both vector-sum phase shifters
and the proposed method was a 1-bit phase inverter and a 6-
bit amplitude controller with the smallest amplitude step of
0.5 dB. The beam angle errors for the three methods were
calculated among the commonly used beam angle range of
−60◦ to 60◦ with a 1◦ step and the results are displayed in
Fig. 6.

These results demonstrated that the phased array system
with the conventional phase shifters has the highest beam
angle error (0.8◦), whereas the phased array system with the
proposed method has the lowest beam angle error (0.2◦).
Hence, the array system with the proposed method can
achieve more accurate beam angles than the other two
systems, suggesting that it could achieve the same beam

accuracy as other methods with fewer control bits. Therefore,
the proposed method offers advantages in system design for
the same beam angle accuracy.

B. SYSTEM POWER BUDGET
Because a phased array system is a 1-to-N network, the
S-parameters of one transverse path (SMN, M ̸= N ) cannot
represent the power budget of the system. Therefore, the
system power budget is determined by the total power of the
signals in the reference planes in this work. According to
Fig. 2(a), the proposed system contains six reference planes.
The input signal SIN is injected to Plane 1, and the weighting
network distributes and weights the input signal SIN as a1–
a8 on Plane 5; these weighted signals are redistributed by
the phase matrix network as the output signals (b9–b16) to
Plane 6. If the phase inverters are assumed to be lossless, the
total power into Plane 4 is equal to the total power into Plane
5. Because the phase matrix network is ideally lossless and
passive, the power conservation property between the input
(a1–a8) and output signals (b9–b16) is valid

8∑
n=1

|an|2 =

16∑
n=9

|bn|2. (29)

Therefore, the system power budget is dominated by
the 1-to-2 tunable amplifiers (Tunable Amplifier I, Tunable
Amplifier II, and Tunable Amplifier III). According to (25)
and (26), the ratio between the input and output power can be
evaluated as

|S21,M |
2
+ |S31,M |

2
=

1
4

βr0
VT

IcA2
+ IcB2

IcA + IcB
. (30)

The sum of IcA and IcB, as well as that of IcA2 and
IcB2 determine the output power. During the tuning of
weights, (28) and (30) must be considered to optimize the
performance of the tunable amplifiers for the system power
budget.

Figs. 7 presents a simplified schematic of the proposed
tunable amplifier and a single BJT. Because the reactance of
BJTs will be resonated withmatching networks, the reactance
can be disregarded in this discussion. In Fig. 7(a), the source
impedance of the tunable amplifier is set to Zs. rπA and rπB
are functions of IcA and IcB, respectively. By introducing the
collector current (IC) of a BJT in (24), (30) can be rewrite as

1
4

βr0
VT

IcA2
+ IcB2

IcA + IcB
=

1
4

βr0(IcA + IcB)
VT

IcA2
+ IcB2

(IcA + IcB)2

=
1
4

βr0IC
VT

IcA + IcB
IC

[(
IcA

IcA + IcB
)2

+ (1 − (
IcA

IcA + IcB
)2)]. (31)

Let factor (R) be the ratio of IcA to IcA+IcB, and the factor
(F) be the ratio of IcA + IcB to IC. Accordingly, the ratio
between the total output power and the input power can be
evaluated as

|S21,M |
2
+ |S31,M |

2
=

1
4

βr0IC
VT

F((R2) + (1 − R)2). (32)
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TABLE 1. System loss comparison of the 8-element phased array
topology that uses three different methods with different cases.

As indicated in (27), the ratio between |S21,M | and |S31,M |

can be controlled by changing the ratio between IcA and IcB.
Therefore, the factor F also changes with the ratio. However,
the total output power of the two ports must not be changed
when changing F . According to (32), F must be adjusted
with respect to R to maintain the total power. To ensure that
|S21,M |

2
+|S31,M |

2 is unchanged, F can be selected as follow

F = d/(R2
+ (1 − R)2)), (33)

where d is a tuning factor of F. However, the input admittance
will change while tuning F (28). Therefore, the source
impedance Zs must be adjusted to ensure that the input
reflection coefficient is smaller than -10 dB. Adjusting d and
Zs can yield an optimal solution that meets the approximate
condition

|S21,M |
2
+ |S31,M |

2
≃ |GBJT,M|

2. (34)

Herein, we consider two cases: in the first case, Zs =

0.5rπ0, d = 1; in the second case, Zs = 0.67rπ0, d = 1.009.
In the first case, both |S21,M |

2
+ |S31,M |

2 and the reflection
coefficient can be optimized if the power is equally split (R
= 0.5). However, if the power ratio is not equally split and
R is close to 0 or 1, the input impedance is not matched to
the source impedance. Thus, the output power is degraded.
Therefore, in the second case, Zs and d are fine-tuned to
achieve a balance between the variance of output power and
the performance of the reflection coefficient, respectively.
Figs. 8 indicates that the transmission coefficient in the first
case degraded such that there is 0.95 dB loss while R is close
to 0 or 1. In the second case, the output power is maintained
in the range of ±0.1 dB while R is between 0.05 to 0.95.
Therefore, by setting Zs and d to the second case, the tunable
amplifier can be considered equivalent to an ideal power
divider with power conservation properties and an amplifier
with a maximum S21.
A conventional tunable amplifier can be realized using a 1-

to-2 passive power divider and VGAs, as shown in Fig. 9. Let
the maximum S21 of the VGA be S21,max. The maximum gain
from the input port to each output port is then S21,max

√
2

because

S21 and S31 of a passive power divider are ideally 1
√
2
.

If an incident power wave (1ej0) is input to port 1 of the
power divider, the output signals of OutputA and OutputB

ports are S21A√
2

and S21B√
2
, respectively. If both VGAs are

operated at maximum gain, the total output power is |
S21A√

2
|
2
+

|
S21B√

2
|
2

= |
S21,maxej0

√
2

|
2

+ |
S21,maxej0

√
2

|
2

= |S21,max|
2. In other

words, the input power is equally split and amplified with a
gain of S21,max. However, if one of the amplifiers is set to zero

gain (S21 = 0), the total power becomes |
S21,maxej0

√
2

|
2

+ 0 =

|S21,max|
2

2 . In view of power conservation, half of the power is
lost in the power divider. Therefore, in a conventional tunable
amplifier, power loss is inevitable due to varying weighting
factors. In the most extreme case, the total power will have a
3 dB loss. A conventional 8-way tunable amplifier has a 1-to-
8 power divider; therefore, the maximum power loss is 9 dB.
Specifically, the system power budget of the proposed system
can be improved by 9 dB by using the proposed tunable
amplifier instead of the conventional tunable amplifier.

To fully discuss the comparison of the power budgets
of the systems in Figs. 2, two scenarios are considered
for discussion. The first scenario involves equal signal
magnitudes at each output port (B1–B8) for beam steering;
the second scenario has set the output signals to have
different magnitudes for beam-width control. For simplicity,
the connections of the components can be assumed to be
perfectly matched, and the loss of the passive components
(power divider/combiners, switchable phase inverters, 90◦

couplers, and conventional phase shifters) can be assumed to
be equal to zero.

In the first scenario, the total power on the output plane
(Plane 6) of the proposed system (Fig. 2(a)) is equal to the
total output power of the tunable amplifier III on Plane 4; this
is because the phase matrix network and phase inverters are
assumed to be lossless. For the tunable amplifier designed
according to (33), the total power is identical to the input
power of SIN in a three-stage amplifier

16∑
n=9

|bn|2 =

8∑
n=1

|an|2 = |GBJT,M|
2
|GBJT,M|

2
|GBJT,M|

2
|SIN|

2.

(35)

For the phased array using vector-sum phase shifters
(Fig. 2(b)), the power input to Plane 1 is identical to the total
power output from Plane 4. The output power of the phased
array can be expressed as

8∑
n=1

|Bn|2 = |GVSPS,M|
2
|SIN|

2, (36)

where GVSPS,M is the gain of the vector-sum phase shifter and
can be expressed as

GVSPS,M =
1

√
2
(Ga + jGb)

1
√
2
, (37)

where Ga and Gb are the gain of the VGA and the phase
inverter. Ga and Gb must be tuned to synthesize the desired
phase shift. If one of Ga or Gb is zero and the other amplifier

VOLUME 11, 2023 103385



Y.-T. Lin et al.: High-Accuracy, High-Gain Phased Array

FIGURE 10. Proposed 8 × 8 phase matrix network: (a) circuit photograph of the fabricated prototype, (b) measured transmission coefficient, and (c)
normalized phase delay.

is set to be the maximum gain of a VGA (GVGA,M), the gain
of a vector-sum phase shifter can be derived as

|GVSPS,M|
2

=
1
2
|GVGA,M|

2 1
2

=
1
4
|GVGA,M|

2, (38)

and the output power of the phased array can be derived as

16∑
n=9

|bn|2 =
1
4
|GVGA,M|

2
|SIN|

2. (39)

For the phased array using conventional phase shifters
(Fig. 2(c)), because the conventional phase shifter is assumed
to be lossless, the total output power of the phased array can
be expressed as

16∑
n=9

|bn|2 = |GVGA,M|
2
|SIN|

2. (40)

By observing (35), (39), and (40), the proposed phased
array system has the highest total power.

Select the VGA to be the same stage number of the tunable
amplifier in these two phased array systems (|GVGA,M| =

|GBJT,M||GBJT,M||GBJT,M|). The total power of the phased
array system in Fig. 2(c) can then be equal to that of the
proposed phased array system. However, the phased array
system using vector-sum phase shifter (Fig. 2(b)) still has an
unavoidable 1/4 power loss (6 dB).

For the second scenario, in which output signals have
different magnitudes for beam-width control, the proposed
phased array system can simultaneously control the ampli-
tude and phase at each output port on Plane 6; therefore, the
total power relationship between the output and input signals
is unchanged, as indicated in (35). For the other phased array
systems (Figs. 2(b) and (c)), the input signal(SIN) is equally
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FIGURE 11. Proposed 1-to-2 tunable amplifier: (a) circuit photograph of
the fabricated prototype and (b) normalized power sum measurements at
different R settings (power differences of 0.5 dB per step) at 3.5 GHz.

FIGURE 12. Proposed switchable phase inverter: (a) circuit photograph of
the fabricated prototype and (b) measured magnitudes and phases of two
states.

distributed to Plane 4, assuming each channel has a different
gain setting to final Plane 6 (Fig. 2(b)) and Plane8 (Fig. 2(c)),
the total output power can be derived as

16∑
n=9

|bn|2 = (
8∑

n=1

(
1
2
)3|GCH,n|

2)|SIN|
2

=
1
8
(

8∑
n=1

|GCH,n|
2)|SIN|

2,

(41)

FIGURE 13. Proposed 8-element phased array system circuit photo.

where GCH,n is the final output gain of each channel of
the phased array system using conventional phase shifters
(GVGA,n) or using vector-sum phase shifters (GVSPS,n).
Because the channels have unequal power, the total power

in (42) is lower than that in (35). For example, the ratio of the
final output gain of each channel is (0:0:1:1:1:1:0:0); only
four terms contribute to the total output power

16∑
n=9

|bn|2 =
1
8
(

6∑
n=3

|GCH,n|
2)|SIN|

2
=

1
2
|GCH,M|

2
|SIN|

2,

(42)

where GCH,M is the maximum gain of each channel.
According to (42), the output power of the second scenario

will be at least 1/2 (-3 dB) lower than that in the first scenario.
For the system using vector-sum phase shifters, GCH,M is
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FIGURE 14. Beam steering ability of the proposed 8-element phased array system: (a) calculated beam steering of the 8-element antenna pattern
with 10◦ step and (b) fine beam steering with 1◦ step based on the measured S-parameters data.

FIGURE 15. Calculated results of gain and beam angle error of proposed
8-element phased array system based on the measured S-parameters.

equal to GVSPS,M. As shown in (38), the power decreases
by 1/4 (-6 dB), resulting in a total output power reduction of
1/8 (-9 dB). For the system using conventional phase shifters,
GCH,M = GVGA,M. As indicated in (40), the power does not
decrease; thus, the total output power is 1/2 (-3 dB) lower.

To summarize, Table 1 shows the system loss comparison
of three different phased array systems with two scenarios,
beam steering (Case1 and Case2) and beam-width control
(Case3 and Case4). The table reveals that the proposed
method can achieve the least system loss among the three
systems in each case, indicating its ability to deliver a
higher system gain. The proposed phased array system also
offers the advantage of an improved power budget because
it can generate unequal output signals without wasting
power.

V. EXPERIMENTAL RESULTS
To demonstrate the proposed phased array system, this
study implemented a 3.5 GHz phased array system. The
components were fabricated on FR-4 printed circuit boards
(εr = 4.2, tan δ = 0.02, and thickness = 0.8 mm).

A. 8 × 8 PHASE MATRIX NETWORK
Figs. 10 depicts the circuit photograph and measured electri-
cal responses of the proposed 8 × 8 phase matrix network.
The network was constructed using couplers, crossover
circuits, and delay lines. The couplers and crossover cir-
cuits are essential components for wideband performance.
Thus, second-order branch line couplers were chosen and
the crossover circuits were implemented using the mode
conversion technique between microstrip lines and coplanar
waveguide lines. The delay lines in the 8 × 8 phase matrix
networkwere applied to indicate the equal phase delay to each
cascade coupler.

The measured transmission coefficients of S-parameters
between the input ports (port 1 to port 8) and output ports
(port 9 to port 16) are presented in Figs. 10(b) and (c). In the
frequency range of 3.1–3.9 GHz, the average loss with added
back the 9 dB theoretical distribution loss is 4 dB, and the
amplitude imbalance between each transmission coefficient
is ±1.7 dB. The maximum phase error of the normalized
phase delay from the input port (Port 1 to Port 8) to the output
port (Port 9 to Port 16) is ±10.6◦.

B. 1-TO-2 TUNABLE AMPLIFIER AND INVERTER
The circuit photo of the 1-to-2 tunable amplifier is depicted
in Fig. 11(a). The BJTA&B used in the 1-to-2 tunable
amplifier was the commercial component (BFU630F, NXP
Semiconductors). Data regarding the measured normalized
power sum ((|S21|2+|S31|2)/G2

max) under different R settings
(power difference of 0.5 dB per step) are presented in
Fig. 11(b). The control voltage (VbbA and VbbB) ranged
from 2 V to 0 V per 0.03 V step, which is similar to the
same amount of adjustment as a 6-bit control. At 3.5 GHz, the
maximum power difference error is 0.2 dB, and the maximum
power sum imbalance is 0.3 dB with less than 30 mW power
consumption. It is worth mentioning that the 1-to-2 tunable
amplifier can be continually fine-tuned and the error of power
sum and differences can be minimized.
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FIGURE 16. Normalized sum beam patterns compare with the ideal sum beam pattern. The direction is aimed at (a) 0◦, (b)30◦, and (c)−60◦.

FIGURE 17. Normalized difference beam patterns compare with the ideal difference beam pattern. The direction is aimed at (a) 0◦, (b)30◦, and
(c)−60◦.

FIGURE 18. Normalized beam tapering patterns compare with the ideal beam patterns at 0◦. The power ratio to eight antenna is (a) 0.8/ 0.8/
1.0/ 1.0/ 1.0/ 1.0/ 0.8/ 0.8 (b)0.2/ 0.2/ 1.0/ 1.0/ 1.0/ 1.0/ 0.2/ 0.2 (c)0.0/ 0.0/ 1.0/ 1.0/ 1.0/ 1.0/ 0.0/ 0.0.

The circuit photo of the inverter is displayed in
Fig. 12(a); the inverter comprised a commercial balun
(4400BL15A0100E, Johanson Technology) and switch
(F2976NEGK8, Integrated Device Technology, Inc.). The
results regarding the measured magnitude and phase for
States 1 and 2 are illustrated in Fig. 12(b). Over the frequency
range of 3.1-3.9 GHz, the maximum magnitude difference is
0.8 dB and a maximum phase deviation is 11.2◦ (from 180◦)
can be observed.

C. SYSTEM PERFORMANCES
The beam patterns generated by the proposed system were
calculated with the array factors (

∑16
n=9

bn
SIN

ej2πdsinθd/λ)
which were determined from the measured S-parameters and
the half-wavelength antenna spacing. It was equivalent to the
phased array with a 0 dBi antenna element. The system gains
were based on the transmission coefficients of S-parameters
(bn/SIN) and the peak value of the array factors.

As displayed in Fig. 13, the proposed 8 × 8 phase matrix
network and weighting network 1-to-2 tunable amplifiers and
phase inverters) were configured to realize the proposed 8-
element phased array system and to validate the proposed
matrix-sum method for beam steering and beam-width
control.

Figs. 14 and 15 present the beam steering capabilities
and performances of the proposed 8-element antenna array.
As illustrated in Fig. 14(a), the beam steering performance of
the system was evaluated in a range of−60◦ to 60◦ in steps of
10◦. In Fig. 14(b), the beam steering accuracy of the proposed
system has been demonstrated by selecting and displaying
beam angles from−51◦ to−49◦,−1◦ to 1◦, and 29◦ to 31◦ in
beam angle steps of 1◦. The beam angle deviation and system
gains are shown in Fig. 15. The beam angle error is less than
0.7◦, and the average system gain is 25.1 dB. These results
indicate that when errors from the phase matrix network lead
to (2) not being satisfied, the proposed method has the ability
to utilize the weighting network to adjust the corresponding
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TABLE 2. Comparison table of the 8-element phased array topology that uses three different methods with the same control bit.

weights and synthesize the acceptable output beams if the
errors do not dominate the performance of the phase matrix.

To clearly illustrate the difference between calculated and
ideal beams in different cases, three cases with different
beam patterns are chosen. The dashed lines in the figures
indicate the ideal beam patterns including sum, difference,
and tapering patterns, which were generated by an 8-element
phased array antenna with no amplitude or phase error. The
red arrow indicates the setting of the desired beam angle.

As shown in Figs. 16, the discrepancy in the beam angle is
less than 0.5◦, and for the first side lobe level error is less than
3 dB. For the difference pattern in Figs. 17, the discrepancy
of the null angle is less than 0.3◦, and the peak-to-null ratio
is larger than 18 dB. The results of beam-width control
with non-linear output weighting are shown in Figs. 18. The
discrepancy of the beam angle is less than 0.8◦, and the half-
power beam-width error is less than 1.6◦.
Table 2 presents a comparative analysis of the system

performance among three 8-element phased array systems
employing different beam control methods. Since this work
focuses on proving the proposed concept, only the perfor-
mance dominated with the system topologies was considered.
The comparison revealed that the proposed method had the
highest beam angle accuracy and lowest system loss in each
case and the gain of the proposed system outperforms the
two alternative methods when employing the same gain
components (G1 = G2 = G3).

VI. CONCLUSION
An 8-element phased array system with a novel beam
control method, namely, matrix-sum method, capable of
beam steering and beam-width control, has been presented
and successfully demonstrated. The proposed phased array
system comprises a novel 8 × 8 phase matrix network
and a weighting network. Based on validations, it has been
established that when utilized with an appropriate phase
matrix network, the weighting network requires only real
number weightings that can achieve different beam cases.
Compared with traditional phased array systems that use
conventional phase shifters and amplitude controllers or
vector-sum phase shifters, the proposed system was noted
to achieve the highest beam angle accuracy (beam angle
error less than 0.2◦) for the same number of control bits
for the weighting network; it could also achieve the lowest

system loss (ideally, 0 dB loss) for various beam cases.
Moreover, the proposed architecture utilizes a series gain
approach, resulting in the highest gain output with the same
gain components. The proposed phased array successfully
demonstrates ±60◦ beam steering range and beam accuracy
in 1◦ beam steps. The system gain flatness is less than
±0.5 dB within the entire steering range and the average
system gain of the fabricated system, calculated by measured
S-parameters data, is 25.1 dB at 3.5 GHz. Compare with ideal
beam pattern with different beam cases. The side lobe level
is higher than 10 dB for the sum pattern and the peak-to-
null ratio is larger than 18 dB for the difference pattern. The
results for the beam-width control function are also similar to
the ideal beam pattern. The proposed system has undergone
comprehensive mathematical verification and has shown
promising results in implementation on an eight-element
antenna array system.

APPENDIX
A. DIFFERENCE BEAM PATTERN
The weighting value for an excited difference pattern can
be determined as follows: The output signals (b9–b16) are
defined as in (21), and φ is calculated from the null-point
angle θn

φ =
2πdsin θn

λ
, (43)

subsequently, using (2), (9), (21), and (43), we can derive the
input signal a1–a8 as

a1 = |a1|e−jθ1 =
k·ejα

8LPMN
(A1 + jB1)

A1 = 1 + sinφ + sin 2φ − cos 3φ

− sin 4φ + cos 5φ + cos 6φ + sin 7φ

B1 = cosφ + cos 2φ + sin 3φ

− cos 4φ − sin 5φ − sin 6φ + cos 7φ (44)

a2 = |a2|e−jθ2 =
k·ejα

8LPMN
(A2 + jB2)

A2 = − cosφ − cos 2φ − sin 3φ

− cos 4φ − sin 5φ − sin 6φ + cos 7φ

B2 = 1 + sinφ + sin 2φ − cos 3φ

+ sin 4φ − cos 5φ − cos 6φ − sin 7φ (45)
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a3 = |a3|e−jθ3 =
k·ejα

8LPMN
(A3 + jB3)

A3 = − cosφ + cos 2φ + sin 3φ

+ cos 4φ + sin 5φ − sin 6φ + cos 7φ

B3 = 1 + sinφ − sin 2φ + cos 3φ

− sin 4φ + cos 5φ − cos 6φ − sin 7φ (46)

a4 = |a4|e−jθ4 =
k·ejα

8LPMN
(A4 + jB4)

A4 = −1 − sinφ + sin 2φ − cos 3φ

− sin 4φ + cos 5φ − cos 6φ − sin 7φ

B4 = − cosφ + cos 2φ + sin 3φ

− cos 4φ − sin 5φ + sin 6φ − cos 7φ (47)

a5 = |a5|e−jθ5 =
k·ejα

8LPMN
(A5 + jB5)

A5 = cosφ − cos 2φ + sin 3φ

+ cos 4φ − sin 5φ + sin 6φ + cos 7φ

B5 = 1 − sinφ + sin 2φ + cos 3φ

− sin 4φ − cos 5φ + cos 6φ − sin 7φ (48)

a6 = |a6|e−jθ6 =
k·ejα

8LPMN
(A6 + jB6)

A6 = −1 + sinφ − sin 2φ − cos 3φ

− sin 4φ − cos 5φ + cos 6φ − sin 7φ

B6 = cosφ − cos 2φ + sin 3φ

− cos 4φ + sin 5φ − sin 6φ − cos 7φ (49)

a7 = |a7|e−jθ7 =
k·ejα

8LPMN
(A7 + jB7)

A7 = −1 + sinφ + sin 2φ + cos 3φ

+ sin 4φ + cos 5φ + cos 6φ − sin 7φ

B7 = cosφ + cos 2φ − sin 3φ

+ cos 4φ − sin 5φ − sin 6φ − cos 7φ (50)

a8 = |a8|e−jθ8 =
k·ejα

8LPMN
(A8 + jB8)

A8 = − cosφ − cos 2φ + sin 3φ

+ cos 4φ − sin 5φ − sin 6φ − cos 7φ

B8 = −1 + sinφ + sin 2φ + cos 3φ

− sin 4φ − cos 5φ − cos 6φ + sin 7φ (51)

After substituting the new a1–a8 and b9–b16 into (20),
|(Am,Bm)− (An,Bn)| is zero. This result shows that the phase
difference between a1–a8 can only be either 0◦ or 180◦.

B. BEAM-WIDTH CONTROL
For an excited beam-width control pattern with nonlinear
weighting, (2), (9), (11), and (22) can be used to derive the
input signal a1–a8 as

a1 = |a1|e−jθ1 =
k·ejα

8LPMN
(A1 + jB1)

A1 = m1 + m2 sinφ + m3 sin 2φ − m4 cos 3φ

+ m4 sin 4φ − m3 cos 5φ − m2 cos 6φ

− m1 sin 7φ

B1 = m2 cosφ + m3 cos 2φ + m4 sin 3φ

+ m4 cos 4φ + m3 sin 5φ + m2 sin 6φ

− m1 cos 7φ (52)

a2 = |a2|e−jθ2 =
k·ejα

8LPMN
(A2 + jB2)

A2 = −m2 cosφ − m3 cos 2φ − m4 sin 3φ

+ m4 cos 4φ + m3 sin 5φ + m2 sin 6φ

− m1 cos 7φ

B2 = m1 + m2 sinφ + m3 sin 2φ − m4 cos 3φ

− m4 sin 4φ + m3 cos 5φ + m2 cos 6φ

+ m1 sin 7φ (53)

a3 = |a3|e−jθ3 =
k·ejα

8LPMN
(A3 + jB3)

A3 = −m2 cosφ + m3 cos 2φ + m4 sin 3φ

− m4 cos 4φ − m3 sin 5φ + m2 sin 6φ

− m1 cos 7φ

B3 = m1 + m2 sinφ − m3 sin 2φ + m4 cos 3φ

+ m4 sin 4φ − m3 cos 5φ + m2 cos 6φ

+ m1 sin 7φ (54)

a4 = |a4|e−jθ4 =
k·ejα

8LPMN
(A4 + jB4)

A4 = −m1 − m2 sinφ + m3 sin 2φ − m4 cos 3φ

+ m4 sin 4φ − m3 cos 5φ + m2 cos 6φ

+ m1 sin 7φ

B4 = −m2 cosφ + m3 cos 2φ + m4 sin 3φ

+ m4 cos 4φ + m3 sin 5φ − m2 sin 6φ

+ m1 cos 7φ (55)

a5 = |a5|e−jθ5 =
k·ejα

8LPMN
(A5 + jB5)

A5 = m2 cosφ − m3 cos 2φ + m4 sin 3φ

− m4 cos 4φ + m3 sin 5φ − m2 sin 6φ

− m1 cos 7φ

B5 = m1 − m2 sinφ + m3 sin 2φ + m4 cos 3φ

+ m4 sin 4φ + m3 cos 5φ − m2 cos 6φ

+ m1 sin 7φ (56)

a6 = |a6|e−jθ6 =
k·ejα

8LPMN
(A6 + jB6)

A6 = −m1 + m2 sinφ − m3 sin 2φ − m4 cos 3φ

+ m4 sin 4φ + m3 cos 5φ − m2 cos 6φ

+ m1 sin 7φ

B6 = m2 cosφ − m3 cos 2φ + m4 sin 3φ

+ m4 cos 4φ − m3 sin 5φ + m2 sin 6φ

+ m1 cos 7φ (57)
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a7 = |a7|e−jθ7 =
k·ejα

8LPMN
(A7 + jB7)

A7 = −m1 + m2 sinφ + m3 sin 2φ + m4 cos 3φ

− m4 sin 4φ − m3 cos 5φ − m2 cos 6φ

+ m1 sin 7φ

B7 = m2 cosφ + m3 cos 2φ − m4 sin 3φ

− m4 cos 4φ + m3 sin 5φ + m2 sin 6φ

+ m1 cos 7φ (58)

a8 = |a8|e−jθ8 =
k·ejα

8LPMN
(A8 + jB8)

A8 = −m2 cosφ − m3cos2φ + m4 sin 3φ

− m4 cos 4φ + m3 sin 5φ + m2 sin 6φ

+ m1 cos 7φ

B8 = −m1 + m2 sinφ + m3 sin 2φ + m4 cos 3φ

+ m4 sin 4φ + m3 cos 5φ + m2 cos 6φ

− m1 sin 7φ (59)

After substituting the new a1–a8 and b9–b16 into (20),
|(Am,Bm)− (An,Bn)| is zero. This result shows that the phase
difference between a1–a8 only be 0◦ or 180◦.
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