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ABSTRACT This work extends a near feasibility threshold (NFT) based adaptive penalty function for
constrained multiobjective optimization. The NFT zone adjoining the feasible region is considered as good
one, where infeasible solutions are relatively less penalized. The modified penalty function, denoted by
TAP with five different settings of NFT is embedded in a renowned multiobjective evolutionary algorithm
based on decomposition, MOEA/D. This offers five constrained variants, namely CMOEA/D-TAP1 to
CMOEA/D-TAP5, of the base algorithm. These variants are tested onwell-known constrainedmultiobjective
benchmark test suits, the CTP series and the CF series. The proposed variants are compared with the four
best performing algorithms through HV (hyper volume) metric statistics for CTP series, and with seven
state-of-the-art algorithms through Wilcoxon rank sum test employed to mean values of both HV and IGD
(inverted generational distance) metrics for CF series. Simulation results reflect that overall performance of
the newly introduced variants is better than the competitors for the taken benchmark test suits.

INDEX TERMS Constrained optimization, penalty function methods, near feasibility threshold, multiob-
jective optimization based on decomposition.

I. INTRODUCTION
An optimization method looks for the best possible solu-
tion (s) that optimizes a given function (s) under bound
and/or functional constraints. Many researchers are drawn
to optimization because it has so many common real-world
applications that process or call for numerical data. It can be
classified as deterministic or stochastic optimization, uncon-
strained and constrained optimization, and single, multi,
or many objectives optimization. The majority of problems
in daily life contain two or more, frequently conflicting,
objectives. Such problems are known as multiobjective opti-
mization problems (MOPs). Certain bound, inequality, and
equality-type constraints frequently apply to MOP. The
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constrained multiobjective optimization problem (CMOP),
which is subject to some functional and bound constraints,
can be stated in generic form as follows [1]:

Minimize Obj(u) = (Obj1(u),Obj2(u), . . . ,Objm(u))T ;

Subject to Conj(u) ≥ 0, j = 1, 2, . . . , q;

ulk ≤ uk ≤ u
u
k , k = 1, 2 . . . , n; (1)

where u = (u1, . . . , un)T ∈ Rn is the vector of n decision
variables, Obji, i = 1, 2 . . . ,m represents the m objective
functions, Obj contains m objectives of the problem, Conj
reflects q number of inequality constraints of ‘‘greater equal
to type’’. Obji and Conj are linear or non-linear functions of
real variables, ulk and u

u
k are bound constraints for k

th variable
uk , where k = 1, . . . , n. Bound constraints constitute the
search space, S for a given problem. A solution belonging
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to the search space and satisfying all imposed constraints of
the problem (1) is nominated as a feasible solution; while a
solution that is not feasible is called as an infeasible solution.
For a given solution u ∈ S, the overall violation of the
constraints can be expressed as the sum of the individual
violations [2], [3]:

V (u) =
q∑
j=1

|min(Conj(u), 0)|. (2)

Clearly, V (u) = 0 means u is feasible; otherwise, it is
considered as infeasible.

The objectives of a CMOP may be competing or contra-
dictory to each other. For example in buying a car if cost and
comfort are taken as objectives then cost and comfort need
to be minimized and maximized, respectively. Likewise, for
an economist of certain sector/industry, the common objec-
tives are maximizing profit/benefit while minimizing loss
[2]. In the stated instances, the objectives are conflicting in
nature. Hence, the objectives frequently end up being at odds
in multiobective optimization. Therefore, it is difficult for a
single solution to concurrently optimize all the objectives.
In such cases, a group of tradeoff/compromise solutions are
discovered. Normally, the concept of Pareto-optimality [1],
[2], [3], [4] is employed to find the best tradeoffs among the
competing objectives.

A feasible vector u Pareto-dominates (means ‘‘be better
than’’) vector v, denoted as u ⪯ v, if u is as good as v in
all objectives and is strictly better in at least one objective.
More precisely, A feasible solution u∗ is Pareto-optimal to
problem (1) if there exists no feasible solution v such that
Obj(v) ⪯ Obj(u∗). Obj(u∗) is then called a Pareto-optimal
(objective) vector. When neither u nor v dominates the other,
u and v are referred to as nondominated decision vectors or
solutions. If no other decision vector in the decision space
outperforms u, then u is called Pareto optimal vector. The
Pareto Set (PS) is composed of all of these Pareto optimal
vectors, and its related image set, the Pareto Front (PF),
is made up of all of the Pareto optimal vectors in the objective
space.

Practical optimization problems are constrained multi-
objective in nature. For the solutions of these problems,
CMOEAs are often employed, which are combinations of
some constraint handling techniques and MOEAs. Penalty
function methods are frequently used by the researcher as
CHTs in constrained multiobjective optimization, since they
push the solutions from both feasible and infeasible regions
to the PS that consequently cover the PF. In this work, an NFT
based adaptive penalty (AP) with five settings is proposed as
CHTs. The suggested CHTs are integrated with MOEA/D-
DE that results in five constrained variants of the base
algorithm for solving CMOPs. The proposed constrained
algorithms are evaluated and compared with the state-of-the-
art algorithms for the two benchmark suits: the CTP series and
the CF series with the remark that the proposed algorithms
outperformed among the competing algorithms.

The following is the arrangement and composition of the
remaining portions of this paper: Section II is devoted to a sur-
vey of the literature, which briefly discusses several methods
with a focus on decomposition-based approaches and penalty
functionmethods for solving CMOPs. The proposed algorith-
mic framework is in Section III. The system specifications,
experimental set up and performance evaluation metrics are
detailed in Section IV. The experimental results, comparison,
and ranking of the proposed scheme with four well-known
CMOEAs and seven state-of-the-art algorithms are shown in
Section V for the CTP series and the CF series, respectively.
Section VI discusses the simulation results of the competing
algorithms. The paper is concluded in Section VII with a brief
summary of the findings and suggestions for further research.

II. LITERATURE REVIEW
In many real-life applications, the provided budget is often
fixed; therefore, its efficient utilization is always desirable.
In such situations, the employment of optimization schemes
is essential. Leading categories of the optimization methods
are traditional optimization techniques and evolutionary algo-
rithms (EAs) or evolutionary computation (EC) techniques.
Major limitations for traditional optimization methods that
necessarily to be held are continuity and differentiability
of the objective function (s) and subjected constraint (s).
However, for EAs the stated limitations are not compulsory.
EAs evolve over the course of time and do not remain static
[5]. Dynamic nature of EAs enables them to tackle complex
problems of every-day life where the fitness function (s)
composed of diverse search space like continuous, discrete,
and even discontinuous.

Mathematical modeling ofmost of the real-world problems
are closely connected with MOPs. To solve MOPs, multiob-
jective evolutionary algorithms (MOEAs) are adopted most
often [6]. In an MOEA, the goal is to optimize more than
one objectives simultaneously (which are usually conflicting
in nature or competing with each other). An MOEA can
generally provide the PS consisting of optimal solutions.
In broader sense, MOEAs can be classified into three cate-
gories which are mainly based on different survival/selection
schemes [7], [8]: The Pareto dominance based, Indicator
based and Decomposition based MOEAs.

In Pareto dominance based MOEAs, objective vectors are
checked component wise for domination and solutions are
divided into ranks. Highest/first rank is assigned to individ-
uals which are not dominated by any other member. Further,
the crowding distance concept is used to preserve diversity.
Through this approach, every and multiple Pareto optimal
solutions can be obtained in single run. However, its perfor-
mance is not too much significant on problems with more
than three objectives (many objectives problems). Further,
in this approach, the problem is tackled as vector optimiza-
tion. Examples of such MOEAs include but not limited to
NSGA [9], NSGA-II [10] and NSGA-III [11]. Some other
very famous MOEAs of this class are SPEA, SPEA-II [12],
[13], and PAES [14].
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In indicator based MOEAs, such as HypE [15] and IBEA
[16], performance indicator is used to evaluate and select
members in the population. Performance indicators are set
in such a way that they preserve Pareto dominance relation
and individuals that contributing more to the indicator are
selected. One issue with this approach is when PFs are degen-
erate (discontinuous) or irregular, then some individuals not
closer to the PF and having more contribution to the perfor-
mance indicator are selected. This type of behavior misleads
such MOEAs to converge to the PF [8], [15].

Finally, in decomposition based MOEAs, an MOP is con-
verted into a series of scalar optimization subproblems, where
each subproblem is a weighted aggregate of all the objec-
tives. In this class of MOEAs, uniformly distributed weights
are supplied to each subproblem, and these MOEAs solve
all the subproblems concurrently to get the desired PS/PF.
The most widely used decomposition-based MOEAs are
MOEA/D [4], MOEA/D-DE [17], and MOEA/D-DRA [18].
These MOEAs have high search ability for combinatorial
optimization [19], [20], high compatibility with local search
and less time complexity. Recently some advance versions
of MOEA/D are proposed like MOEA/D-APP [21] which
uses angle-based adaptive penalty schemewhich dynamically
adjusts penalty values for each vector during the evolu-
tionary process. MOEA/D-SCS [22] utilizes self-organizing
collaborative scheme to obtain best combination of DE oper-
ator, control parameters, and neighbourhood size. Currently
in MOEA/D-WVA [23], adaptive adjustment weight vector
scheme is employed in MOEA/D.

So far, many decomposition-based techniques have been
proposed but the weighted sum approach and the weighted
Tchebycheff approach are two commonly used weight-based
decomposition techniques [1].

In the following, we detail the weighted Tchebycheff tech-
nique. It is not much sensitive to the shape of PF. Also, it can
find the Pareto optimal solutions in both convex and non-
convex PFs. It can be defined as follows [1]:

Minimize gte(u|w, r∗) =
m

max
i=1
{wi|obji(u)− r∗i |}; (3)

Subject to u ∈ F ⊂ Rn
;

where r∗ = (r∗1 , . . . , r∗m)
T is the reference point, i.e., r∗i is

the minimum value of obji, w = (w1, . . . ,wm)T is a weight
vector with positive components such that

∑m
i=1 wi = 1, and

F is the region of all feasible solutions.
To solve CMOPs, MOEAs are extended to constrained

MOEAs (CMOEAs), where a CHT is combined with them
to tackle constraints. To handle constraints in single objective
optimization, interested readers are referred to [24]. Penalty
function methods are simple and widely used techniques
among other CHTs. The first penalty function method was
proposed in 1940 by Courant and Carroll, which is further
improved by Fiacco and McCormick [24]. In a penalty func-
tion method, a constrained optimization problem is converted
to the corresponding unconstrained optimization problem by
adding (in case of minimization) or subtracting (in case of

maximization) a penalty term to/from the objective function
of the given problem. The penalty term is normally equal to
the scaled amount of the constraints’ violations of a given
solution vector. The scaling factor is generally called penalty
factor/coefficient/parameter. The general form of the objec-
tive of a penalty function method is given below [24]:

Objp(u) = Obj(u)+
q∑
j=1

rj × |min(Conj(u), 0)|, (4)

where Objp is the new (expanded) objective function/fitness
function to be optimized and

∑p
j=1 rj × |min(Conj(u), 0)|

is the penalty term for u, where rj is the penalty parameter.
There are three commonly used mechanisms of penalty func-
tion methods [24]: static, dynamic and adaptive. In a static
penalty function method, constant values of rjs are employed.
In a dynamic penalty function method, rjs are updated with
generation/iteration counter. While, in an adaptive penalty
(AP) function method, rjs are updated based on the search
history. A major issue in penalty function methods is how
to set the penalty parameters/coefficients, rjs, since they are
problem depended. High values of rjs greatly penalize infea-
sible solutions. As a result, the search process converges to
local optima and stuck there. On the other hand, small values
of rjs less penalize infeasible solutions. Consequently, the
search focuses on exploring more the infeasible region and
might diverge. Hence, a common answer is to tune them as
per problem at hand, which is not desirable. The AP tech-
niques are promising, since they tune the penalty parameters
on the go while learning from the search history. This work
introduces an AP with the following details.

Smith and Tate [25] proposed a near feasibility threshold
(NFT ) based adaptive penalty function to address constrained
single objective optimization problem. In this work, the usage
of stated penalty is extended to solve CMOPs. Mathematical
formulation for it is given as follows:

gteap(u) = gte(u)+ (gtefeas − g
te
all)

(
V (u)
NFT

)k

, (5)

where gteap(u) is the penalized Tchebycheff value, g
te(u) is the

un-penalized Tchebycheff value, gteall is the overall foundmin-
imum Tchebycheff value irrespective of constraints and gtefeas
is the minimumTchebycheff value of feasible solutions of the
current population. However, if the current population does
not contain any feasible solution, then the Tchebycheff value
of the solution with minimum overall constraints’s violation
is assigned to gtefeas, k is the severity constant (a value of k =
2 is adopted which has been previously suggested by Coit
and Smith [26]), and NFT is the distance from the feasible
region where infeasible solutions are considered reasonable.
Infeasible solutions at NFT distance are normally allowed,
along with other feasible solutions, to propagate in the next
generation and produce offspring as compared to infeasible
solutions beyond NFT distance.

In case of all the solutions of running population become
feasible then gtefeas = gteall which reflects that g

te
feas − g

te
all = 0,
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and subsequently the penalty term becomes zeros. When
infeasible solutions come into consideration then gtefeas −
gteall > 0 indicates that penalty term affects the penalized
Tchebycheff value of infeasible solutions. If gteall and g

te
feas are

much different from each other, then the difference gtefeas−g
te
all

results in a large value. This results in severe penalties for
the infeasible solutions. Since NFT determines the infeasible
region to be explored well along with the feasible region,
a suitable value for it is desired. This work fully investigates
the sensitivity of the adaptive penalty function, Eq.(5) with
different settings of NFT which are presented as follows:

NFT1 = 3%× V (u), (6)

NFT2 = 5%× V (u), (7)

NFT3 = 7%× V (u), (8)

NFT4 =
NFT0
1+ µt

, (9)

NFT5 = Vmin + s(Vmax − Vmin), (10)

where V (u) is defined in Eq. (2),NFT0 represents mean of the
overall constraints’s violations of the solutions in the current
population, Vmin = Min{V (ui)}, Vmax = Max{V (ui)}, where
i = 1, 2, 3, · · · ,N (population size), µ = 0.2, s = 0.3, and
t is iteration counter. Main purpose of introducing various
settings for NFT is to examine its impact in the proposed
adaptive penalty platform.

III. PROPOSED ALGORITHMIC FRAMEWORK
In this work, the extended NFT based AP, Eq. (5) with
five different settings as given in Eqs.(6-10) is employed in
the framework of MOEA/D-DE for competing and selecting
solutions for next generations. This results in five differ-
ent constrained variants of MOEA/D-DE, namely CMOEA/
D-TAP1 to CMOEA/D-TAP5 associated to the definedNFTs,
respectively for solving CMOPs. In MOEA/D-DE new posi-
tion for current solution is generated based on the following
mathematical formulations:

v′ij =

{
utij + F(u

t
r1j − u

t
r2j), if r < pCR or Ir = j,

utij, otherwise,
(11)

where r ∈ (0, 1) is a uniformly randomly generated number,
Ir ∈ {1, 2, 3, · · · ,D} is randomoly drawn integer, r1 and
r2 are stochastically taken solutions from the population, and
F = 0.5 and pCR = 0.95 are two control parameters [27].

vij =

{
v′ij + σi × (uuij − u

l
ij), if rand < pm

v′ij, otherwise,
(12)

σi =

{
(2× rand)

1
η+1 − 1, if rand < 0.5

1− (2− 2× rand)
1

η+1 , otherwise,
(13)

where rand ∈ (0, 1) is a uniformly generated random num-
ber, uuij and u

u
ij are lower and upper bounds for jth variable of

ith solution, pm = 1/n (n = problem dimensionality) is the
probability of mutation, and η = 20 is the distribution index.
The pseudo code of newly designed variants is presented in

FIGURE 1. Schematic diagram of the proposed algorithm.

Algorithm 1; while the schematic diagram of the proposed
algorithm is displayed in Figure. 1.

IV. SYSTEM SPECIFICATIONS, EXPERIMENTAL SET UP
AND PERFORMANCE METRICS
A. SYSTEM SPECIFICATIONS
The computer system utilized for experiment execution has
Windows 10 installed, 8 GB of RAM, and an Intel(R)
Core(TM) i3-7100U CPU running at 2.40 GHz. Software
used for programming is MATLAB R2022b.

B. EXPERIMENTAL SET UP
For performance evaluation, well-known CMOPs series of
CTP and CF are selected. Since, the problems of CTP series
were not available in PlatEMO. So the codes of proposed
algorithms are developed separately in MATLAB to perform
experiments on the stated instances and obtained simulation
results are compared with four best performances. While for
CF series the codes of introduced variants are embedded into
the platform PlatEMO [28] and comparedwith seven state-of-
the-art algorithms. Details of the parameters’ settings adopted
during simulations are as follows:

1) PARAMETERS’ SETTINGS
• Population size for CTP series: N = 200;
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Algorithm 1 Pseudocode of the Proposed Algorithm
1: Inputs: Population Size = N , Max Function Evalua-

tions = maxFE , Neighbourhood Size = T , Maximal
number of neighbours = nr ;

2: Outputs:
3: Pareto Set: PS = {u1, . . . ,uN };
4: Pareto Front: PF = {Obj(u1), . . . ,Obj(uN )};
5: Set Function Evaluation counter= nFE ← 0;
6: Generate set of N weight vectors W ←

{w1,w2, . . . ,wN };
7: Find {wi1,wi2, . . . ,wiT } and I (i) = {i1, i2, . . . , iT }

according to the procedure defined in IV-B2 for each
solution;

8: Generate initial population {u1,u2, . . . ,uN} uniformly
randomly;

9: Evaluate each solution ui to find Obj(ui) and V (ui);
10: Increase nFE by N ;
11: Calculate reference vector r∗ = min{Obj(ui), i =

1, 2, · · · ,N };
12: while nFE < maxFE do
13: for i = 1 : N do
14: if rand < δ then
15: Extract the indices of neighboring parents NP

from I (i);
16: else
17: Extract the indices of neighboring parents NP

from {1, 2, 3, · · · ,N };
18: end if
19: Select randomly two indices r1 and r2 from respec-

tive NP;
20: Employ Eq. (11) to get v′i and clip it through bound-

ary conditions;
21: Use Eqs. (12-13) to get vi and clip it through bound-

ary conditions;
22: Evaluate vi to find Obj(vi) and V (vi);
23: Update r∗ = min{Obj(vi), r∗};
24: Calculate gte(vi|wl, r∗) and gte(uNP|wl, r∗)
25: Find gteap(vi|wl, r∗) and gteap(uNP|wl, r∗) according to

Eq. 5 with definedNFT rule of the proposed variant,
for NFT4 t = nFE

N ;
26: if any(gteap(vi|wl, r∗) < gteap(uNP|wl, r∗)) then
27: Find Indices = gteap(vi|wl, r∗) < gteap(uNP|wl, r∗);
28: ur = NP(Indices);
29: if length(ur ) > nr then
30: ur = randsample(ur , nr );
31: end if
32: Update PS and PF as u(ur ) = vi and

Obj(u(ur )) = Obj(vi)
33: end if
34: end for
35: Set nFE = nFE + N ;
36: end while
37: Get outputs PS and PF ;

• Population size for CF series: N = 600 for problems
with two objectives (CF1-CF7) and N = 1000 for
problems with three objectives (CF8-CF10);

• Neighbourhood size for both CTP series and CF series:
T = 0.1N ;

• Update number: nr = 0.01N ;
• Number of decision variables or problem dimensional-
ity: n = 2 for CTP series and n = 10 for CF series;

• Probability to update/replace solution in neighbourhood:
δ = 0.9;

• Probability to update/replace solution in whole popula-
tion is δ = 0.1;

• Maximal generations: MaxIt = 200 for CTP series,
MaxIt = 500 for two objectives CF series and MaxIt =
300 for three objectives CF series;

• Stopping Criteria: The algorithm stops after function
evaluation counter reaches to MaxFeval. MaxFeval =
40, 000 for CTP series and MaxFeval = 300, 000 for
CF series;

• Number of Runs: runs = 30 for both CTP series and CF
series;

2) WEIGHT VECTORS GENERATION
The following criteria is adopted to generate a set W of N
weight vectors [3], [29] for CTP series:

1) Initialize the setW of weight vectors with set
{(1, 0, . . . , 0, 0), (0, 1, . . . , 0, 0), . . . , (0, 0, . . . , 0, 1)}
and then uniformly and randomly generate a set W1 of
5000 weight vectors, where every component belongs
to the interval (0, 1);

2) Choose the vector inW1 with the largest distance toW .
Add it toW and delete it fromW1;

3) Repeat the Step 2 until the size ofW equals to N .
For CF series the weights vectors are generated as per the
internal settings of the used platform PlatEMO.

C. PERFORMANCE METRICS: HYPERVOLUME AND
INVERTED GENERATIONAL DISTANCE
This work uses the HV values statistics for comparison of
CTP series; while for CF series, both HV and IGD values
metric statistics are employed for performance evaluation of
the proposed algorithms. Details of the utilized matrices are
as follows:

1) HYPERVOLUME METRIC (HV)
The HV metric is used to evaluate the convergence and
diversity of the obtained approximate PF to the real PF .
It is defined as follows [30], [31]: Let P be the set of
non-inferior/non-dominated objective vectors which approx-
imates the real PF and R ∈ Rm is a reference point in the
objective space, then HV (R,P) is the Lebesgue measure of
the region in the objective space weakly dominated by P and
bounded above by point R, i.e.,

HV (R,P) = Volume(
|P|⋃
i=1

vi), (14)

where vi is the hypercube with ith element of P and R as
diagonal corners. The HV is calculated by taking the union
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of the volumes of all these hypercubes. For two different
approximating data sets to the real PF and with same refer-
ence point R, the one with greaterHV value determines better
approximation to real PF . In this work, R = (2, 20) for CTP6
and CTP8, and R = (2, 2) for other CTP series test instances,
CTP1-CTP5 and CTP7, are used.

2) INVERTED GENERATIONAL DISTANCE METRIC (IGD)
The IGD metric value of the two sets P∗ and P is defined as
follows [4]:

D(P∗,P) =

∑
p∈P∗ d(p,P)

|P∗|
,

where P∗ is the set of points sampled uniformly from the
real PF , while P is the set of approximated PF containing
non-dominated objective vectors that are obtained through
the proposed algorithm. Further, d(p,P) is the minimum
Euclidean distance between p and P. D(P∗,P) could deter-
mine the convergence and diversity of the algorithm provided
that P∗ is large enough to cover the real PF very well.

V. SIMULATION RESULTS, COMPARISON AND RANKING
OF ALGORITHMS
In this part, the simulation results of the suggested algo-
rithms, CMOEA/D-TAP1-CMOEA/D-TAP5, are compared
and ranked with the best-performances that are designed for
CTP and CF series.

A. COMPARISON FOR CTP SERIES
For performance evaluation, NSGA-II, IDEA, MOEA/
D-SR [29], where stochastic ranking [32], [33] as a CHT
is embedded into MOEA/D, MOEA/D-CDP [29], and
CMOEA/D-TAP1 to CMOEA/D-TAP5 are compared. Pro-
posed algorithms are run in MATLAB environment 30 times
independently for each of the CTP test instance; however,
the results of remaining algorithms are taken directly from
their respective papers. TABLE 1 displays the HV metric
values statistics: Best, Mean, and Standard Deviation (SD)
of the competitors. Based on these statistics, a Rank Point
(RP), which is equal to the relative position of an algorithm
in the competition is assigned for each CTP test instance and
is presented besides it in the parentheses. Figures 2-3 show
the convergence graphs of mean feasible ratio and mean HV
values, respectively of the contestants. Figures 4-5 and 6-7
demonstrate the best run and all runs PFs of each algorithm.

B. COMPARISON FOR CF SERIES
For CF series, following seven peer algorithms from the
literature are selected to evaluate the performances of the
proposed variants.

1) ANSGAIII
Adaptive Non-dominated Sorting Genetic Algorithm known
as ANSGAIII [34] is the extended constrainted version of
NSGAIII [11]. While NSGAIII is the modified form of

NSGAII [10] which was designed to solve unconstrained
Many (more than three) Objectives Optimization Problems
(MaOPs). Crowding distance selection scheme in NSGAII is
replaced in NSGAIII by adaptively updated reference points
mechanism to improve the diversity among the obtained
solutions. To solve CMOPs as well as CMaOPs, ANSGAIII
was proposed which uses constraint domination principle
(CDP) [35] as CHT and modified tournament selection in the
framework of NSGAIII.

2) BiCo
Bidirectional Coevolution CMOEA (BiCo) [36], a novel
CHT is used to solve CMOPs through evolving two pop-
ulations, namely main population and archive population.
Each of them pushes the solutions towards PF of CMOP
from feasible and infeasible sides, respectively. Main popu-
lation is updated using NSGAII and a variant of CDP; while
angle based selection scheme is designed to update archive
population.

3) CMOEAD
The algorithm CMOEAD [37] is the constrained version of
MOEAD. In MOEAD, selection operator compares parents
and offspring based on an aggregation function. However in
CMOEAD, two solutions are compared as: if both solutions
have overall constraint violation less than or equal to a vio-
lation threshold, then comparison is made based on objective
values (aggregation function values); otherwise, comparison
is made based on scaled constraint violations. The violation
threshold is obtained through adaptive setting of the feasibil-
ity ratio.

4) CAEAD
To balance convergence, diversity, feasibility and avoid trap-
ping in local optimal solutions, dual-population algorithm
based on alternative evolution and degeneration (CAEAD)
[38] uses dual populations (main and secondary) in two
stages. The first stage is the evolution stage and the second
stage is the degenerate stage. Initially, in the evolution stage,
secondary population is forced towards unconstrained PF
with the aim to get better convergence while avoiding to trap
in local optimal fronts. The main population, on the other
hand, focuses on feasibility. While in the second stage, both
populations converge towards constrained PF with maintain-
ing better diversity and coverage.

5) CCMO
Coevolutionary Constrained Multi-Objective Optimizer
(CCMO) framework [39] is mainly concerned to solve
CMOPs while using two populations which evolve sepa-
rately. The main population is associated with the original
CMOP and the other population is associated with a helper
problem which is comparatively easier to tackle. The second
population provides assistance to the first one to guide it
toward the PF of CMOP. Unlike other algorithms evolving
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TABLE 1. Comparison of algorithms for CTP series.

TABLE 2. Algorithms ranking using their total rank points.

multi populations, the interaction among the populations in
CCMO is very weak. Further, CCMO uses NSGAII together
with CDP as an optimizer.

6) CMOEA-MS
CMOEA-MS [40] uses multi stage strategy to get better
approximation of the constrained PF of CMOPs. This uses
two stages A and B during evolution. A predefined parameter
λ is used to decide which stage to be used. Each stage uses
different evaluation strategy. If the feasibility ratio of the

combined population is less than λ, then the population
undergos through stage A, where objective values and con-
straints’ violations are given same priority, else Stage B is
utilized which gives more priority to feasibility and this stage
is used to maintain a good diversity among the obtained
solutions.

7) ToP
Two-Phase (ToP) framework is proposed in [41]. Which
simultaneously addressing constraints in decision and
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FIGURE 2. Convergence plots of mean feasibility ratio of the proposed algorithms for CTP series.

FIGURE 3. Convergence plots of mean HV of the proposed algorithms for CTP series.

objective spaces of CMOPs. In the first phase, a CMOP is
converted into constrained single-objective problem to find
promising feasible region. Then, a specific CMOEA is used
to obtain final solutions.

The simulations for CF series are executed usingMATLAB
platform, namely, PlatEMO [28]. The MATLAB codes of
aforementioned seven algorithms used for comparisons are
available in PlatEMO; while codes of the proposed variants
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FIGURE 4. Best Run PF of the proposed algorithms for CTP1-CTP4.
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FIGURE 5. Best Run PF of the proposed algorithms for CTP5-CTP8.
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FIGURE 6. All Runs PF of the proposed algorithms for CTP1-CTP4.
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FIGURE 7. All Runs PF of the proposed algorithms for CTP5-CTP8.
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TABLE 3. Wilcoxon rank sum test results of proposed vs state-of-the-arts algorithms using IGD values.

are embedded in the platform so that all are dealt uniformly.
Common parameters, like number of population, function
evaluations, and runs were kept same for all algorithms;

however, the parameters associated with each algorithm uses
its default values as described in their original papers and
available in PlatEMO. Tables 3-4, display the comparison of
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TABLE 4. Wilcoxon rank sum test results of proposed vs state-of-the-arts algorithms using HV values.

each proposed variant vs state-of-the-art algorithms through
Wilcoxon rank sum test [42], [43] with the significance level
of 0.05 using mean IGD and HV values besides their standard
deviation of the executable runs. The test with stated statistics

is applied with same level of significance for mutual compar-
ison of the proposed algorithms and results are demonstrated
in Tables 5-6. Last row of each table shows the overall ranking
with ‘‘+/ − / ≈’’ notations, representing the performance
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TABLE 5. Wilcoxon rank sum test results of the proposed algorithms using IGD values.
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TABLE 6. Wilcoxon rank sum test results of the proposed algorithms using HV values.
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FIGURE 8. Convergence Plots of Mean Feasibility Ratio of the proposed algorithms for CF series.

FIGURE 9. Convergence Plots of Mean IGD of the proposed algorithms for CF series.

FIGURE 10. Convergence Plots of Mean HV of the proposed algorithms for CF series.

of an algorithm is better than, worse than and equivalent to
the algorithm to which it is compared. Figures 8-10 show
the convergence graphs of mean feasibility ratio and mean

HV values, respectively of the contestants. Figures 11-15 and
Figures 16-20 demonstrate the best run (based on IGD values)
and all runs PF, respectively of the contenders.
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FIGURE 11. Best Run PF of the compared algorithms for CF1-CF2.
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FIGURE 12. Best Run PF of the compared algorithms for CF3-CF4.
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FIGURE 13. Best Run PF of the compared algorithms for CF5-CF6.
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FIGURE 14. Best Run PF of the compared algorithms for CF7-CF8.
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FIGURE 15. Best Run PF of the compared algorithms for CF9-CF10.
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FIGURE 16. All Runs PF of the compared algorithms for CF1-CF2.
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FIGURE 17. All Runs PF of the compared algorithms for CF3-CF4.
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FIGURE 18. All Runs PF of the compared algorithms for CF5-CF6.
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FIGURE 19. All Runs PF of the compared algorithms for CF7-CF8.
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FIGURE 20. All Runs PF of the compared algorithms for CF8-CF10.
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VI. DISCUSSION
This work extends the usage of a single objective constrained
handling technique, threshold based adaptive penalty (TAP),
to solve CMOPs. TAP is NFT depended CHT; therefore,
various settings for it is also investigated during the cur-
rent work. For tackling CMOPs, TAP with various NFT
mechanisms are embedded into the framework of MOEA/
D-DE to propose five constrainedmultiobjective optimization
algorithms, namely CMOEA/D-TAP1 to CMOEA/D-TAP5.
For performance evaluation of the introduced algorithms, two
challenging suits, CTP series and CF series of CMOPs are
taken. For CTP series, the comparison is made with four
algorithms; while for CF series, seven recently developed
state-of-the-art algorithms are picked. The comparison spot-
ted the following points.

A. FOR CTP SERIES
• For CTP1, the best and the worst performances
are shown by MOEA/D-DE-CDP and MOEA/D-DE-
SR, respectively. Although, the proposed algorithms,
CMOEA/D-TAP1-TAP5 attained the same best value
as that of MOEA/D-DE-CDP, they remained in ranks
2-6 for mean and SD values, particularly CMOEA/
D-TAP3 was ranked second for this problem. It is
noted that NSGA-II and IDEA did not try to solve this
problem.

• For CTP2, MOEA/D-DE-CDP outperforms all compet-
ing algorithms in terms of the best, mean and SD values.
The second best value is achieved by CMOEA/D-
TAP2. Theworst value is obtained byMOEA/D-DE-SR.
The second best mean value is obtained by CMOEA/
D-TAP4. The second best SD value is achieved by
CMOEA/D-TAP3. While the worst mean and SD val-
ues are achieved by NSGA-II. Thus, on CTP2, the
MOEA/D-CDP performs better than all competing
algorithms, while NSGA-II and MOEA/D-SR perform
worse than other competitors.

• For CTP3, the best, mean and SD values are achieved
byMOEA/D-CDP, the second best HV value is achieved
by CMOEA/D-TAP3 and the worst value is obtained by
MOEA/D-SR. The second best mean value is achieved
by CMOEA/D-TAP5. The second best SD value is
obtained by CMOEA/D-TAP3. The worst values of
mean and SD are achieved by NSGA-II.

• For CTP4, the best, mean and SD values are achieved
again by MOEA/D-CDP, the second best value is
obtained by CMOEA/D-TAP3 and the worst value
is attained by NSGA-II. The second best mean value
is obtained by IDEA. The second best SD value is
obtained by MOEA/D-SR. The worst mean and SD
values are obtained by MOEA/D-SR.

• For CTP5, the best, mean and SD values are achieved
yet again by MOEA/D-CDP. The second best value is
achieved by CMOEA/D-TAP1 and the worst value is
attained by NSGA-II. The second best mean value
is achieved by CMOEA/D-TAP3 and the second best SD

value is obtained by CMOEA/D-TAP3. The worst mean
and SD values are obtained by MOEA/D-SR.

• For CTP6, the best value is obtained by NSGA-II. The
second best value is achieved by IDEA. While the worst
value is obtained by CMOEA/D-TAP2. The best mean
and SD values are obtained by CMOEA/D-TAP3 and
the second best mean and SD values are achieved by
CMOEA/D-TAP1. The worst mean and SD values are
attained again by NSGA-II.

• For CTP7, the best value is achieved by NSGA-II
and IDEA. The second best value is attained by
CMOEA/D-TAP1-CMOEA/D-TAP5. While the worst
value is achieved by MOEA/D-CDP. The best mean
value is achieved by CMOEA/D-TAP3 and CMOEA/
D-TAP5 and the second best mean value is attained by
CMOEA/D-TAP1-CMOEA/D-TAP2, while the worst
mean value is achieved by NSGA-II. The best SD value
is attained by MOEA/D-DE-CDP and the second best
SD value by CMOEA/D-TAP5, while the worst SD
value is obtained by IDEA.

• For CTP8, the best value is obtained by CMOEA/
D-TAP3. The second best value is achieved by
CMOEA/D-TAP2, while the worst value is attained
by IDEA. The best mean and SD values are attained by
CMOEA/D-TAP5. The second best mean and SD values
are achieved CMOEA/D-TAP3. The worst mean value is
attained by IDEA and the worst SD value is obtained by
NSGA-II.

Total Rank Points (TRPs) based on HVmetric statistics for
each algorithm on seven CTP test instances: CTP2-CTP8 are
displayed in TABLE 2. TRPs, which reflect an algorithm’s
overall effectiveness across all CTP test instances, are used
in this case to determine ranking. The algorithm with the
lowest value of TRPs is deemed to be the best performer, and
the algorithm with the highest value of TRPs is deemed to
be the worst performance. This table shows that CMOEA/
D-TAP3 is rated first with the smallest TRPs of 61, fol-
lowed by MOEA/D-DE-CDP with the second smallest TRPs
of 67, and NSGA-II with the highest TRPs of 159, which
is ranked ninth. As a result, the tested CTP test instances
show that CMOEA/D-TAP3 surpasses all other algorithms,
MOEA/D-DE-CDP performs second best, and NSGA-II per-
forms worst.

Figure 2 shows the convergence plots of feasible ratio (FR)
(the ratio of the number of feasible solutions to the total
number of solutions in the whole population) of the proposed
algorithm versus function evaluations for CTP series. It is
reflected from the plots that the proposed algorithms attain
an increase in FR values on most of the CTP series test
instances, except CTP3 where an initial increase then some
abrupt decrease and later on gradual increase with vibra-
tions in the FR values is observed as the function evaluation
increases.

Figure 3 depicts the convergence plots of HV of the pro-
posed algorithm versus function evaluations for CTP series.
It is observed that initially proposed algorithms attain rapid
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increase in HV values on all of the CTP series test instances,
but later on the convergence rate become slow down.

For each CTP problem, the PFs obtained from the best
runs of the suggested algorithm are shown in Figures 4-5.
The introduced variants are successful in obtaining the major-
ity of the pareto optimal solutions for all CTP problems
with the exception of CTP4, where the proposed algorithms,
CMOEA/D-TAP1, CMOEA/D-TAP3, and CMOEA/D-TAP5
are unable to get some optimal solutions.

Figures 6-7 shows the approximately calculated final PFs
of 30 runs of the suggested algorithm on each CTP series test
instance. With the exception of CTP4, where the proposed
algorithms, using CMOEA/D-TAP1 and CMOEA/D-TAP5
consistently misses certain optimal solutions throughout all
runs, it is clear from these figures that the proposed variants
converged towards the same region over the course of the
30 runs while preserving better diversity.

B. FOR CF SERIES
Seven state-of-the-art algorithms are brought into the compe-
tition with each proposed variant through the Wilcoxon Rank
Sum Test applied to their IGD and HV values. Results of the
test reflects the following remarks:

• Overall performance of CMOEA/D-TAP1, CMOEA/
D-TAP2, and CMOEA/D-TAP3 is better than seven
state-of-the-art algorithms based on the applied test to
their IGD values.

• Average performance of CMOEA/D-TAP4 is better than
six state-of-the-art algorithms, however, a tie is observed
with CCMO based on the applied test to their IGD
values.

• CMOEA/D-TAP5 performs better than five state-of-the-
art algorithms averagely based on the applied test to
their IGD values. It is equivalent to CMOEA-MS while
defeated by ToP.

• Overall performance of CMOEA/D-TAP1, CMOEA/
D-TAP2, CMOEA/D-TAP3, and CMOEA/D-TAP4 is
better than seven state-of-the-art algorithms based on the
applied test to their HV values.

• Average performance of CMOEA/D-TAP5 is better than
five state-of-the-art algorithms, a tie is notated with
CMOEA-MS, and it is succeeded by CCMO based on
the applied test to their HV values.

• It is also observed that in the seven state-of-the-
arts CCMO showed prominent performance; while
CMOEAD played badly in the competition.

• A comparison among the proposed algorithms in-lights
that CMOEA/D-TAP1 and CMOEA/D-TAP3 are equiv-
alent while CMOEA/D-TAP2 is slightly better than
these based on the applied test to their IGD and HV
values. So CMOEA/D-TAP2 is at first and CMOEA/
D-TAP5 is at last rank in the competition; while remain-
ing are in between these two.

For getting detailed information about the above discussion,
consultation of Tables 3-6 is recommended.

Figure 8 reflects: (i) on CF1, CF8, CF9, and CF10
CMOEA/D-TAP4 and CMOEA/D-TAP5 show inconsistence
convergence with zigzagging of FR (feasibility ratio) values
(ii) On CF10, the suggested algorithms converge to feasible
region after some time not abruptly like the remaining prob-
lems (ii) on CF3 the proposed algorithms get the maximum
feasibility from the start of the evolution (iv) On the remain-
ing instances, the algorithms converge to same FR values,
finally.

Figure 9 demonstrates: (i) on CF1, CMOEA/D-TAP5
displays unstable convergence of IGD values with some fluc-
tuations (ii) On CF10, CMOEA/D-TAP2-CMOEA/D-TAP4
are unable to achieve feasible solutions initially due to which
their IGD values are not defined, but later on, they show some
progress by gaining some convergence in IGD values (ii) for
remaining problems proposed variants show nearly similar
convergence of IGD values with minute variations.

Figure 10 exhibits: (i) on CF1 and CF8 CMOEA/D-TAP4
and CMOEA/D-TAP5 have uncertain and shaky HV progress
(ii) on CF10, initially CMOEA/D-TAP2-CMOEA/D-TAP4
don’t create feasible solutions, so their HV values are not
visible in the graphs, however ultimately, the proposed algo-
rithms gained feasibility and hence increase in HV values is
observed (iii) for CF2, CF6, and CF8 the introduced variants
present approximately uniform performance in the conver-
gence of HV values (iv) for the rest of the problems the
convergence of HV values are not uniform.

Figures 11-15 show the best approximation of the PFs
that were obtained by the competitors for each of the CF
series instances. Graphs reflect that (i) for CF1, CAEAD,
CMOEA/D-TAP1, CMOEA/D-TAP2, and CMOEA/D-TAP3
attain all the discrete optimal solutions, although, remaining
contestants converge but miss some portions or some of
their solution are away from the true PF; while CMOEA/
D-TAP5 showed huge deficiency in the coverage (ii) for
CF2, CAEAD and all proposed variants achieve good approx-
imations and spread of solutions to the true PF; however
some parts are untaught (iii) for CF3 the possession of
true PF of all contestants are not remarkable, but CMOEA/
D-TAP1, CMOEA/D-TAP2, and CMOEA/D-TAP5 showed
some success in the discussed perspective (iv) for CF4,
CMOEA/D-TAP2 and CMOEA/D-TAP3 almost cover the
true PF, CMOEA/D-TAP1 and CMOEA/D-TAP4 also dis-
played some performance while the rests do not reflect some
thing valuable comparatively (v) for CF5, all the proposed
algorithms demonstrate some performancewhile the progress
of the rests are negligible (vi) for CF6, the compared algo-
rithms show nearly equivalent role in covering the real PF;
however, CMOEA/D-TAP4 has winning status among these
(vii) for CF7, the performance of the proposed variants
are approximately same but CMOEA/D-TAP4 is the leader
while the rests are not worth considering (viii) for CF8,
CMOEA/D-TAP1, CMOEA/D-TAP2, and CMOEA/D-TAP3
outperformed, while the rests are followed by these in cover-
ing the true PF (ix) for CF9, all the contestants show good
performance but the proposed variants are prominent among

105210 VOLUME 11, 2023



A. M. Khan et al.: Near Feasibility Driven Adaptive Penalty Functions Embedded MOEA/D

these (x) for CF10, CMOEA/D-TAP1 and CMOEA/D-TAP5
showed class performance while the rests are not precious to
discuss.

Figures 16-20 demonstrate the plotting of final PFs
of all runs obtained by the contestants from simula-
tions. Graphs spotted that (i) for CF1 approximated PF of
CMOEA/D-TAP2 and CMOEA/D-TAP3 are prominent and
nearly equivalent and followed by CCMO and ToP; while
CMOEA/D-TAP5 played badly (ii) for CF2, ToP shows
peak performance and remaining covered the true PF with
same fashion; however, CMOEAD leaves some portion of
the true PF untouched (iii) for CF3, CMOEA/D-TAP1,
CMOEA/D-TAP3, CMOEA/D-TAP4, and CMOEA/D-TAP5
show similar performance in the covering of the true PF;
while ToP and CAEAD are unable to cover the true PF (iv) for
CF4, the proposed variants performed well, CMOEAD solu-
tion are far away from the true PF, and CAEAD doesn’t cover
the true PF in most places (v) for CF5, CMOEA/D-TAP1
and CMOEA/D-TAP4 cover the PF prominently, CMOEA/
D-TAP2, CMOEA/D-TAP3, and CMOEA/D-TAP5 also
show good performance; while remaining show nothing spe-
cial, amongst these CAEAD doesn’t bring even a single
solution to the visible range of the PF (vi) for CF6. the pro-
posed algorithms show nearly equivalent progress in covering
the true PF where CMOEA/D-TAP1 and CMOEA/D-TAP3
are outstanding; while CAEAD leaves uncover some portions
of the true PF (vii) for CF7, the performance of CMOEA/
D-TAP1 to CMOEA/D-TAP4 are approximately same but
CMOEA/D-TAP5 is behind these, while CAEAD performs
worst (viii) for CF8, CMOEA/D-TAP1, CMOEA/D-TAP2,
and CMOEA/D-TAP3 outperformed, the rest are followed by
these in the coverage of the true PF, while CMOEA-MS plays
worst among the contestants (ix) for CF9, all the contestants
show good performance but the proposed variants are out-
standing amongst these (x) for CF10, the proposed variants
show stupendous performances while the rests are not worth
considering comparatively.

VII. CONCLUSION AND FUTURE WORK
A. CONCLUSION
This study employed a modified adaptive penalty function
method to the promising decomposition-based multiobjec-
tive optimization evolutionary algorithm, MOEA/D to tackle
CMOPs. The modification is made based on extending the
usage of a near feasibility threshold (NFT) based adap-
tive penalty function technique to constrained multiobjective
optimization, which was initially employed for constrained
single-objective optimization. For complete investigation of
the suitable choice of NFT, five settings for it are tried,
which result in five variants of the proposed algorithm. For
performance evaluation, the constrained suits of CMOPs, the
CTP series and the CF series are employed. Comparison of
the introduced algorithms were made with four best perfor-
mances for CTP series and seven state-of-the-art algorithms
for CF series. Wilcoxon Rank Sum Test was applied to the

IGD and HV values of the contesting algorithms for measur-
ing the level of proximity. To determine the complete progress
of the suggested variants, convergence graphs of FR, IGD,
and HV values besides the best and all PFs are also displayed,
which reflect the following pints.

• CMOEA/D-TAP3 was ranked first with the least TRPs
of 61, followed by MOEA/D-DE-CDP with the second
smallest TRPs of 67, while NSGA-II was at bottom with
the highest TRPs of 159, for the instances of CTP series.
The results of the examined CTP test instances demon-
strate that the suggested algorithm CMOEA/D-TAP3
outperformed among the contesters,MOEA/D-DE-CDP
comes at second; while NSGA-II stands at last in the
CTP series competition.

• CMOEA/D-TAP1 and CMOEA/D-TAP2 achieved first
position as both of them outperformed among the com-
petitors, CMOEA/D-TAP3 attained second position as it
performs better the rest of the algorithms for CF series,
CMOEA/D-TAP4 and CCMO showed comparable per-
formance but better than CMOEA/D-TAP5; therefore,
CMOEA/D-TAP4 and CCMO both achieved third rank;
while CMOEA/D-TAP5 attained fourth rank for the CF
series problems comparison.

• Proposed variants have shown better performances on
most of the CTP and CF series problems that reflect the
effectiveness of the current research work.

B. FUTURE WORK
In future, this study will be extended in following directions:

• To evaluate the performance of proposed variants with
real-world problems and other newly designed suits to
measure their global impact.

• To employ the TAPs in the frameworks of other MOEAs
to check its adaptability.

• To enhance the suggested schemes through other set-
tings of penalty coefficient and NFT.
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