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ABSTRACT Despite increases in qubit count and connectivity in quantum annealers, a quantum speedup has
yet to be observed for problems of practical significance. In order to further improve annealer performance,
some researchers focus on tuning annealer parameters, such as the annealing schedule. In this work, we focus
on pausing, an annealing schedule modification that has been shown to improve the probability of solving
an optimization problem by orders of magnitude. However, a challenge associated with pausing is selecting
an appropriate pause location, as pausing is only effective in problem-dependent regions and ineffective
elsewhere. Moreover, there is little advice on how to determine where pausing is effective. Thus, pausing
effectively is difficult and often inaccessible to the majority of users. To address these issues, we propose a
data-driven method that leverages machine learning to predict optimal pause locations. First, we construct
a dataset consisting of optimization problems and their corresponding optimal pause locations. The optimal
pause locations are determined using spin-vector Monte Carlo, a method known to yield results similar to
quantum annealing. Next, we train a convolutional neural network on this dataset, demonstrating its ability to
distinguish between problem types and accurately predict the optimal pause location. Finally, we evaluate the
model on multiple types of optimization problems. Our results show that the pause locations predicted by our
method improve solution quality for all selected problem types. Additionally, our model can be pre-trained
and easily distributed, making the power of pausing accessible to users unfamiliar with annealing schedule
modifications.

INDEX TERMS Annealing schedule, convolutional neural network, machine learning, Monte Carlo
simulation, pausing, quantum annealing, thermalization.

I. INTRODUCTION
Quantum annealing (QA) is a quantum-inspired heuristic
algorithm designed to solve optimization problems in the
form of the Ising model [1]. By leveraging quantum
fluctuations, QA has the potential to explore the solution
space of a problemmore efficiently than classical algorithms.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

Commercially available annealers produced by D-Wave have
a sufficient number of qubits to solve optimization problems
of nontrivial size and have prompted comparisons with classi-
cal solvers in the search for quantum speedup [2]. Evaluations
demonstrating the superiority of QA over classical methods
typically only arise under specific conditions. For instance,
results may indicate that QA outperforms certain selected
classical algorithms such as simulated annealing, but does
not necessarily outperform the algorithms that exhibit the
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best performance for the target problem [3]. While simulated
annealing is often compared to QA due to its ease of
use and similar characteristics, it is important to note that
other solvers, including complete search solvers, may exhibit
superior performance and may be more suitable for making a
practical comparison [4]. Additionally, an advantage with QA
can be shown when specially crafted problems are selected
for the evaluation [5]. These problems are usually designed
to have properties that challenge classical solvers while
providing an advantage to quantum solvers. However, such
problems do not necessarily resemble typical optimization
problems, and thus conclusions drawn from evaluations on
these problems may not apply when solving other real-world
problems [6].
One tunable annealing parameter that significantly affects

results is the annealing schedule. Increasing the anneal time
is a simple adjustment to the standard forward annealing
schedule that is generally expected to improve solution
quality by reducing diabatic transitions [3]. Alternatively,
more advanced schedules, such as those that include a
pause or perform reverse annealing, may offer even greater
improvements in performance [7], [8]. However, these types
of schedules are more complex as they introduce additional
variables, such as pause location and pause duration for
schedules with a pause, and initial state and reversal location
for reverse annealing. Consequently, extra care must be taken
when creating these types of schedules, as only a small subset
of configuration values results in an improvement in solution
quality.

For annealing schedules with a mid-anneal pause, there
is little advice on choosing the pause location, which is
the primary variable responsible for whether a pause will
improve performance [8]. This is evident in many works
that investigate the effects of pausing, where authors often
employ a grid-search approach and evaluate schedules with
pauses placed at predetermined intervals within a given
range of pause locations [8], [9]. The primary downside
of this approach is that it requires a significant amount of
annealer access time. Based on the observation that problems
belonging to the same problem class may share optimal
pause locations, a method was proposed that reduces the
amount of annealer access time required when solving many
related problems [10]. However, the method still has a high
initial cost and needs to be repeated for problems that are
sufficiently different.

The scarcity of literature on pause location selection and
current methods used in related works shows that there is
room for improving pause location selection methods. In this
work, we propose a method to address the issues associated
with selecting a pause location. Our proposal includes two
key components. First, we utilize a variant of the spin-vector
Monte Carlo (SVMC) method to simulate QA and determine
the optimal pause location for an optimization problem.
The primary benefit of this approach is that no annealer
access time is required to find the optimal pause location.
An additional benefit of our proposal is that no knowledge

of the solution to the problem is required, as we determine
the optimal pause location from the cost function of the
target problem. In the second component, we train a neural
network capable of predicting the optimal pause location.
The advantage of using a neural network is that once trained,
predictions are produced on the order of tens of milliseconds,
offering a significant speedup over a grid search utilizing
quantum hardware. Moreover, the weights of the trained
model can be easily distributed, granting users unfamiliar
with modifying annealing schedules the opportunity to use
pausing to improve their results. Our results demonstrate the
effectiveness of our proposal in accurately predicting optimal
pause locations that yield improvements in various metrics,
including energy reduction, the probability of solving a
problem, and the fraction of problems solved.

The rest of this paper is organized as follows: In Section II,
we review QA, pausing, and the method we use to simulate
QA. Next, in Section III, we discuss in detail our proposed
method. Section IV contains various details about our
evaluation, including parameters for our simulations and
model, types of problems and parameters used to generate
unique instances, annealing parameters, and metrics used to
evaluate the effectiveness of our proposal. Our results and
discussion are presented in Section V. Finally, we draw our
conclusions in Section VI.

II. BACKGROUND
A. QUANTUM ANNEALING
Quantum annealing solves optimization problems whose
solutions can be encoded as the ground state, or min-
imal energy state, of the classical Ising model in the
form of

HIsing(σ ) =

N∑
i=1

hiσi +
N∑
i=1

N∑
j=i+1

Ji,jσiσj, (1)

where the local biases hi and coupling terms Ji,j define the
optimization problem, N is the number of variables, and
σi ∈ {−1, 1} are the spin values for each variable. After being
programmed on the annealer, the system evolves under the
time-dependent quantum Hamiltonian

H (s) = A(s)HD + B(s)HP, (2)

where HD is the transverse field driver Hamiltonian HD =

−
∑N

i=1 σ xi providing quantum fluctuations, HP is the prob-
lem Hamiltonian HP =

∑N
i=1 hiσ

z
i +

∑N
i=1

∑N
j=i+1 Ji,jσ

z
i σ

z
j

obtained by replacing spins in (1) with the σ z Pauli
matrix, and A(s) and B(s) are functions determining the
strengths of HD and HP, respectively. These functions
depend on the annealing schedule parameter s ∈ [0, 1].
In the case of the standard forward anneal, an example
of which is shown in Fig. 1, s is given by s = t/ta,
where t is time and ta is the annealing time. However,
s can also take different forms depending on the desired
schedule.
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FIGURE 1. (left) Annealing schedules for a 1 µs forward anneal and the same schedule with a 1 µs pause at s = 0.5. (right) Corresponding
A(s) and B(s) for the two schedules.

B. PAUSING
By adjusting the rate of change of s with respect to t ,
a wide range of unique forward annealing schedules can be
generated. A pause is introduced when this rate is set to zero
for a period of time, causing s to remain constant. Forward
annealing schedules that incorporate a single mid-anneal
pause can be characterized by two parameters: the pause
location sp ∈ [0, 1], indicating the point in the schedule
where the pause starts, and the pause duration tp, representing
the length of the pause. Fig. 1 shows an example schedule
containing a pause in which ta = 1 µs, sp = 0.5, and
tp = 1 µs.

Marshall et al. [8] conducted a study on the effects of
pausing in D-Wave annealers and demonstrated that pausing
can lead to orders of magnitude enhancement in Psolve,
the probability of finding the ground state or solving an
optimization problem. However, their results also showed
that pauses are only effective within an instance-dependent
region. Outside this region, pausing provided no advantage
over forward annealing schedules without a pause. Therefore,
the time allocated to ineffective pauses could be better utilized
by performing more anneals without pauses. These results
emphasize the importance of properly placing pauses to
efficiently utilize annealing time.

The theory behind why pausing improves results is also
provided by Marshall et al. [8], which we briefly summarize
here. Early in the anneal, HD dominates and the system is
expected to be in its instantaneous ground state. In the middle
of the anneal, the system approaches theminimumgap, which
is where the energy difference between the ground state and
the next lowest energy state is smallest. In and around this
region, there will be population loss from low energy states to
higher energy states. Shortly after the minimum gap, a pause
can be placed to increase population in lower energy states
through thermalization. Finally, late in the anneal, dynamics
are frozen and significant population transfer does not occur.

Various works have expanded upon the theory and further
investigated pausing [10], [11], [12], [13].

C. SVMC
Proposed by Shin et al. [14], SVMC is a classical model that
has been shown to produce output similar to that of D-
Wave annealers. SVMC uses a model consisting of rotors
represented by angles θi ∈ [0, π] to represent qubits and has
a Hamiltonian in the form of

H (s) = −A(s)
N∑
i=1

sin θi

+ B(s)

 N∑
i=1

hi cos θi +

N∑
i=1

N∑
j=i+1

Ji,j cos θi cos θj

 .

(3)

The model starts in an initial configuration, and evolves
over time. At each timestep, or sweep, random new angles
are proposed, and current angles are updated in Metropolis-
Hastings style. Albash and Marshall [15] observe that this
model fails to capture the effect of freeze-out [16], which
can be described as a point late in the anneal when the
transverse field strength is weak and after which no system
dynamics occur. They propose spin-vector Monte Carlo with
transverse-field-dependent updates (SVMC TF), a modified
version of SVMC that attempts to replicate freeze-out.
In this modified version, angle proposals are no longer
completely random, but are instead selected from a range
around current angles. The relative strength of the transverse
field determines the size of the range, which is given by
[θi − min{1, A(s)/B(s)}π, θi + min{1, A(s)/B(s)}π]. Early
in the anneal this range is large, and angle proposals in
SVMC TF may resemble those in SVMC. However, as the
anneal progresses and the transverse field strength decreases,
angle proposals will be closer to the current angle values.
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Albash and Marshall demonstrate that their modification
captures the effects of freeze-out and furthermore, produce
results that resemble the output of annealing with a mid-
anneal pause.

III. PAUSE LOCATION PREDICTION METHOD
A. MOTIVATIONS
In this work, we address four issues associated with selecting
a pause location. These issues include practicality, the amount
of knowledge about a problem necessary to use the method,
run time, and ease of use and reproducibility.

First, the primary goal of this work is creating a method to
select a pause location that improves annealing performance,
as few works focus on determining where a pause should
be placed. Existing approaches either provide guidelines that
are not tailored to specific problem instances, or propose
methods that are inefficient when solving multiple different
types of problems [10], [12]. Additionally, other works
investigating pausing find optimal pause locations in ways
that can be considered inaccessible for general users of
QA. For example, a grid search of pause locations is often
employed to determine the effectiveness of pausing at various
locations [9], [11]. However, such an approach requires
a substantial amount of annealer access time for a single
problem instance, and would be costly and impractical to
perform for multiple instances. Another example is inferring
the optimal pause location from the minimum gap of a
problem [8]. Calculating the minimum gap is accomplished
through exact diagonalization of the Hamiltonian, a process
that is intractable for problems with more than a few tens of
variables. Our proposal avoids being impractical as it predicts
pause locations that improve performance, makes predictions
tailored to specific problem instances, and requires no
annealer access time.

The second issue that we address is determining the
efficacy of a pause, which typically involves knowledge of
the optimal configuration for a problem instance [8]. Given
that a common goal when using QA for optimization is to
find the optimal configuration for a problem, knowledge of
that configuration pre-annealing is counterintuitive. For this
reason, we do not assume that the optimal configuration is
known.

The third issue that we address is the time in which the
optimal pause location can be found. We develop a method
that predicts pause locations without any significant delay,
such as the time required for a grid search using QA or
simulations of QA. Estimates of these times are provided
in Table 1. A QA grid-search approach, such as the one
performed in [10], can be performed in a few minutes.
Most of this time is annealer access time, while a small
amount comes from other factors, such as queueing and
network overhead. The estimate for SVMC TF simulations
of QA comes from experiments using our own single core
implementation of the algorithm in this work. It is important
to note that our implementation is not optimal in terms of

TABLE 1. Approximate timescales for determining optimal pause
locations.

FIGURE 2. A diagram depicting our method. First, SVMC TF simulations
are used to estimate the optimal pause location for an optimization
problem. Next, a CNN is trained on pairs of optimization problems and
their optimal pause locations. After training, the model that provides the
most accurate predictions is saved for future use.

execution time, and that while speedups can be achieved
through code optimization, parallelization, or accelerators,
we do not expect simulations to require less time than QA.

The final issue that we address relates to reproducibility
and the ease at which a method can be distributed and
used. Our method will be self-contained, easily distributable,
and not require users to have special hardware for intense
computations or other data that may not be publicly available.

B. PROPOSAL
In this work, we present a method for finding optimal
pause locations that consists of two primary components:
simulating QA to determine optimal pause locations and
applyingmachine learning to predict optimal pause locations.
An overview of our method is shown in Fig. 2. First,
we use SVMC TF to simulate QA with a pause and
determine the optimal pause location for a problem instance.
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The motivation behind using SVMC TF is that it is a
classical simulation of QA, and it has been shown to be
able to simulate the effects of pausing. We repeat the
simulation process many times to build a dataset compris-
ing problem instances and their simulated optimal pause
locations. Next, the dataset is used to train a convolutional
neural network (CNN) to quickly predict optimal pause
locations. CNNs have shown exceptional performance on
tasks involving input data with spatial relationships. In QA,
spatial relationships can be found in the coupling termswhose
value and sign encode a relationship between variables,
making CNNs a natural choice for our input data. After
training, the model can be distributed in the form of model
weights.

In the first component of our method, we use SVMC TF
to create a dataset consisting of pairs of problem instances
and their optimal pause locations. The first step in this
component is formulating optimization problems as their
Ising equivalent, in the form given in (1). Each type of
problem will have a unique formulation process, and some
examples can be found in [17]. The output of problem
formulation is the weights of an Ising model, which can
be represented by an N × N matrix with the local biases
h on the diagonal and the coupling terms J in the off-
diagonal elements. Following formulation, the next steps
adjust the instance to be identical to what would be solved
on the annealer, but are not always necessary depending on
the specific instance. One adjustment that may be required
is called embedding [18]. Embedding refers to the process
in which an instance is mapped to qubits on the annealer.
Due to the limited physical connectivity of the annealer,
a single variablemay bemapped tomore than one qubit. After
embedding, the instance may also need to be rescaled to fit
within the supported bias and coupler ranges of the annealer,
which may vary by annealer generation. In addition to these
adjustments, SVMC TF must also be configured to match a
specific annealer. The values necessary for this configuration
are A(s), B(s), and the temperature of the annealer, all of
which are provided by D-Wave [19].
After the problem instance has been prepared and

SVMC TF configured, SVMC TF simulations can be run to
obtain spin configurations for the problem instance. These
spin configurations correspond to the embedded problem
instance, and as such must be further processed, or unembed-
ded, in order to obtain a configuration for the unembedded
problem instance. To determine the effectiveness of a pause,
many works typically perform unembedding and calculate
Psolve. However, calculating Psolve requires knowledge of
the ground state or solution of an optimization problem,
which may not be known in realistic applications of QA.
Thus, to increase the applicability of our method, we do
not use Psolve to measure the benefit of pausing at a
location and instead use the energy associated with embedded
spin configuration output from an SVMC TF simulation.
To determine the optimal pause location for a problem, many
SVMC TF simulations are repeated at each pause location,

and the pause location that minimizes the average energy of
the embedded samples is selected.

The second component of our method is a CNN that will
learn the relationship between problem instances and their
optimal pause locations. The input to the CNN is the same
matrix of weights prepared for SVMC TF. After passing
the weights as input through convolutional layers, a fully
connected layer is used to transform the learned features
into a pause location. The model is then trained to minimize
loss, as calculated by the mean squared error (MSE) between
the simulated and predicted optimal pause locations. During
training, themodel weightsminimizing loss represent the best
model and can be saved for future use.

Our proposal addresses several gaps in current research and
offers advantages over simple methods, such as grid search,
for finding optimal pause locations. One advantage of our
proposal is that no annealer access time is used in determining
the optimal pause location, as SVMC TF is a purely classical
algorithm. Another advantage of our proposal is that it does
not require knowledge of the optimal configuration for a
problem because it measures the efficacy of a pause by
changes in energy. A third advantage of ourmethod is the time
in which predictions can be made. The inference time of a
CNN, or the time it takes to produce output from input values,
can be accomplished in tens of ms [20], which is significantly
faster than either approach in Table 1. A final advantage of
our method is the trained model is easy to use and readily
distributable in the form of model weights, allowing a wide
range of users to benefit from pausing.

IV. EVALUATION SETUP
In this section, we present the specific details of our evalua-
tion, including the problem types in our dataset, parameters
for SVMC TF simulations and the CNN, QA parameters, and
evaluation metrics.

A. PROBLEM TYPES
To evaluate our proposal, we select four types of problems.
The first problem type we include is the Sherrington
Kirkpatrick (SK) model [21], a model consisting of random
coupling terms that is commonly used in evaluations of QA.
We generate instances with no local fields and coupling
terms randomly sampled from a normal distribution with
a mean of 0 and a standard deviation of 1. The second
problem type we use is the subset sum problem (SSP),
which seeks to determine whether there exists a subset of a
random set of integers that sums up to a target value [10].
Generated instances use integers sampled uniformly from
the range [1, 50], and set the target sum to be half of the
sum of the set of integers. The third and fourth problem
types we use are based on the not-all-equal 3-satisfiability
(NAE3SAT) problem, anNP-complete variation of the classic
3-satisfiability problem [22]. We differentiate between these
final two problem types by their clause to variable ratio,
a parameter that sets the total number of clauses to be satisfied
in an instance to be a multiple of the number of variables.
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In the third type, the clause to variable ratio is set to 1,
while in the fourth type the clause to variable ratio is set
to 2. These types are labeled NAE3SAT-1 and NAE3SAT-
2, respectively. All problem instances contain 50 variables,
however, the number of qubits used may be higher due to
embedding.

B. SVMC TF AND CNN PARAMETERS
All of the problem instances in this work will require
embedding for QA. Hence, we carry out an identical
embedding procedure prior to SVMC TF simulations. Two
of the problem types used in this work, the SK and SSP, are
represented by fully connected graphs and can use the same
embedding. This embedding, called a clique embedding,
is found using software provided by D-Wave [23]. The other
two problem types, the NAE3SAT-1 and NAE3SAT-2, are
not fully connected. Because connectivity varies by problem
instance, an embedding that works for one instance may
not work for others. Thus, we generate one embedding per
instance using a heuristic embedding method [18]. After
embeddings have been generated and problem instances have
been embedded, 1,000 spin samples are generated using
SVMC TF. Each simulation run of SVMC TF consists of
20,000 sweeps, half of which are pause sweeps for whichA(s)
and B(s) are held constant at the designated pause location.
This specific number of sweeps was selected to match a 2 µs
schedule containing a 1 µs pause, based on the values in [15].
Pause locations are selected at intervals of 0.01 in the range
[0.3, 0.7].

The CNN used in this work follows patterns common in
other popular CNN architectures [24], [25]. The network
consists of five convolutional layers each having 128 filters
and a kernel size of 3×3. Each convolutional layer is followed
by a single max pooling layer with a kernel size of 2. The final
layer in the model is a fully connected layer that produces a
single value. The rectified linear unit activation function is
used after each convolutional layer, and we apply the sigmoid
function to the output of the fully connected layer to ensure
the output falls within the range [0, 1]. Since the arrangement
of layers in our CNN expects input of a certain size, we zero-
pad all input weight matrices to the size of our largest input.
The dataset we use consists of 1,000 problems of each of
the problem types introduced in Section IV-A for a total
of 4,000 problems. Before training, we partition the dataset
into training and validation sets using an 80-20 split, while
maintaining the balance of problem types in each set. The
model is trained on the training set, and the validation set is
used to monitor performance and determine the set of weights
resulting in the lowest MSE.

C. QA PARAMETERS
We use QA to determine the effectiveness of an annealing
schedule with a pause at a location predicted by our method.
The baseline that we compare our proposal with is a standard
forward annealing schedule. We generate 100 additional

instances per problem type for this comparison, ensuring
instances are not identical to those used to train our
CNN. An identical approach to embedding as detailed in
Section IV-B is employed, and the same embedding is used
for both the baseline and our proposal. We set ta = 1 µs for
all anneals, and anneals with a pause are assigned a pause
duration of tp = 1 µs. Each problem is annealed 10,000 times
with 50 gauge transformations, a process used to reduce the
effects of hardware biases on our results [11]. Lastly, during
the unembedding process, we discard samples that contain
inconsistent values. Specifically, if the qubits representing a
single logical variable take multiple values, often referred to
as a broken chain, the entire sample is discarded. When all
qubits representing a logical variable take the same value,
the logical variable is assigned that value. All anneals are
executed on the D-Wave Advantage system [26].

D. METRICS
In this work, we use fourmetrics to evaluate our proposal. The
first metric is the average energy of the unembedded samples
returned from the annealer. This value represents the quality
of a solution, and lower value is better. The second metric
is Psolve, representing the likelihood that a correct solution is
returned for a single anneal, and can be calculated as

Psolve =
number of optimal configuration

number of anneals
. (4)

Calculating Psolve requires knowledge of the optimal solution
for each problem instance, which we calculate using classical
solvers. The third metric is the fraction of instances solved,
calculated as

Fsolve =
number of Psolve > 0
number of instances

. (5)

The final metric is time-to-solution (TTS) with 99% proba-
bility, given by

TTS =
log(1 − 0.99)
log(1 − Psolve)

· tt, (6)

where the total annealing time tt = ta for a schedule with no
pause, or tt = ta + tp for a schedule with a pause.

E. COMPARISON WITH OTHER WORK
Reference [10] is one work that proposes a specific method
for determining optimal pause locations. Their method uses
a grid-search approach to find the optimal pause location for
multiple instances, as measured by Psolve. After determining
the optimal pause locations for multiple instances, the
method selects an optimal pause location for an entire class
of problems. This method proves to be effective for the
SSP, which is used in their evaluation. For the purpose of
comparison against a known effective method, we reproduce
their approach, which we refer to as class-wise profiling
(CWP), in our evaluation. As CWP was only originally
evaluated on the SSP, we reproduce CWP for the SSP only.
In our reproduction of their method, we generate 30 problem
instances for the grid search process, and use QA parameters
defined in Section IV-C.
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FIGURE 3. Distributions of SVMC TF and QA optimal pause locations for
the SSP.

V. EVALUATION RESULTS
We present our results in this section, discussing the
implementation of our method in Sections V-A and V-B,
and focusing on the impact of our method on the annealing
process in Section V-C.

A. SVMC TF SIMULATIONS
We first assess how closely the output of SVMC TF matches
the output of QA. Specifically, we compare the optimal pause
locations obtained using SVMC TF with those obtained by
reproducing the CWP method from [10] with QA. Fig. 3
shows boxplots of the optimal pause locations corresponding
to each method. This figure shows that the true optimal pause
location is generally earlier in the anneal than what would
be found using SVMC TF, and may suggest that tuning the
numbers of anneal and pause sweeps may be beneficial [15].
While this may limit the peak effectiveness of our method,
pauses are effective in the area surrounding the optimal pause
location, and a benefit from pausing is still expected.

Next, we analyze the optimal pause locations within
our dataset. The distribution of optimal pause locations
from SVMC TF simulations for the problem types used
in our evaluation is depicted in Figure 4, which illustrates
the relationship between problem type and optimal pause
location. Distinct regions are observed for the optimal pause
locations of different problem types, including problem types
that are similar but generated with different parameters,
as is the case with the NAE3SAT. Additionally, the figure
shows unimodal distributions for each problem type, but
when combined into one dataset, a multimodal distribution
is observed. This indicates that a model must be able
to differentiate between different types of problems to
accurately predict the optimal pause location.

B. CNN TRAINING
We also investigate how well our CNN is able to learn to
predict the optimal pause locations in our dataset based on

FIGURE 4. Distribution of optimal pause locations from SVMC TF
simulations.

TABLE 2. Mean squared error comparison.

its lowest MSE. A simple baseline for prediction would be
a method that predicts the mean optimal pause location of
the training dataset. Such a method is similar to the one
used in [10], and may work well for datasets consisting of
one type of problem. However, as our dataset consists of
multiple types of problems, we expect this method to result
in a relatively high MSE, especially when considering the
distribution shown in Fig. 4. A second baseline that would
be more appropriate would be to predict the class-wise mean
optimal pause location, assuming the problem classes are
known at prediction time. This method can achieve a lower
MSE as the optimal pause locations for a single class occur
in a range that is smaller than that of the entire dataset.
We show the performance of these two baseline methods,
as well as our trained CNN, in Table 2. The data show that our
trained CNNhas the lowestMSE. This indicates that the CNN
is able to learn both features that can distinguish between
problem types, and features that make problem instances
unique.

C. QA EVALUATION
In this section, we analyze how well our proposal works
when applied to a quantum annealer. We compare schedules
with pauses at locations determined by our proposal with a
baseline schedule containing no pause. For the SSP, we also
show results for CWP [10].

We first investigate the impact of the various methods
on energy. Our results are shown in Fig. 5, which contains
boxplots of themean energies for each problem instance. This

VOLUME 11, 2023 104291



M. Zielewski et al.: Efficient Pause Location Prediction Using QA Simulations and Machine Learning

FIGURE 5. Distribution of the mean energy of configurations for each method and problem type.

FIGURE 6. Mean Psolve for each method and problem type. Higher is better.

figure shows that switching from the baseline schedule to
one created with our proposal results in a downward shift
in the energy distribution. In a practical setting, this shift
results in solutions that are of higher quality or are closer to
optimal. Additionally, this shift is observed for all problem
types, indicating that the optimal pause location found using
SVMC TF is effective despite the differences observed in
Fig. 3.

Next, we show the impact onPsolve in Fig. 6. Improvements
in Psolve are shown for all problems when using the proposed
method. For the SSP, CWP achieves the highest Psolve,
likely because the pause location it predicts is closer to the
true optimal pause location for each instance. As previously
mentioned, the performance of our method can be brought
closer to the performance of the method in [10] through
further tuning of the number of sweeps performed in each
SVMC TF run.

The fraction of instances solved by each method is shown
in Fig. 7. The proposed method increases the number of
instances solved for the SSP, SK, and NAE3SAT-2. As the
baseline method already solves all NAE3SAT-1 instances,
no further improvement is possible. As with the results for
Psolve, CWP improves upon both the baseline method and the
proposal, for SSP instances.

Finally, we examine how TTS is impacted by our method.
The calculation for TTS given in (6) applies when Psolve > 0.
However, many of the instances in our evaluation are not
solved by QA, and thus have invalid values for TTS. In these
cases, for the calculation of TTS only, we set Psolve = 10−4

and tt = 2 µs. This modification is made for both the baseline
and proposed methods, in order for a fairer comparison. The
total TTS for all instances is shown in Fig. 8. For every
type of problem, the proposed schedule results in a higher,
or worse, TTS compared to the baseline. These results can be
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FIGURE 7. The fraction of instance solved at least once. Higher is better.

FIGURE 8. The sum of TTS values for each problem type. Lower is better.

explained by Fig. 6 and the duration of the pause; the relative
increase in Psolve over the baseline is not great enough to
offset the additional time spent pausing. While the proposal
does not improve upon the baseline, CWP does, for the SSP.
That method results in a reduction in TTS, similar what was
observed in the original work.

In summary, we showed that our proposal achieves
improvements in solution quality as measured by energy,
Psolve, and the fraction of instances solved. These improve-
ments are evidence that our method is effective and suc-
cessfully identifies the region in which pauses are effective
for each instance. However, one metric that our method
did not show any improvement in is TTS. This can be
attributed to a slight discrepancy between the predicted pause
location and the true optimal pause location for a problem
instance, resulting in limits on the maximum performance
improvement. To remedy this, further investigation into the
number of SVMC TF sweeps used to approximate a specific

annealing time is required. Ultimately, these results show that
while ourmethodworks effectively, modifying the simulation
component of our method may further improve results.

VI. CONCLUSION AND FUTURE WORK
In this work, we identified a need within the QA community
to find a method that determines the optimal pause location
in an instance-wise fashion, without requiring any annealer
access time, and in a user-friendly way. We then proposed
a method in which we use SVMC TF simulations to train a
CNN to predict optimal pause locations. Our results show
that SVMC TF is suitable as a simulator of QA, and our
model successfully learns features that are predictive of
the optimal pause location. Moreover, the evaluation of our
proposal shows its effectiveness. Our proposal results in
an improvement in solution quality, Psolve, and the fraction
of instances solved. We expect that more complex neural
network architectures and implementations of SVMC TF
that are fine-tuned to specific annealers will further boost
the performance of our method, and potentially result in an
improvement in TTS.

While our results do show the effectiveness of our
proposal, they also show there is room for improvement. The
discrepancy between SVMC TF optimal pause locations and
those of QA indicate that SVMC TF is not a perfect simulator
for QA. Investigating this is one potential future direction.
We expect that tuning the approximation of sweeps to µs will
be useful in improving the performance of our method. It will
also be useful to determine if the optimal approximation for a
specific annealing duration is consistent across problem types
and annealers. Another area of interest is determining if there
are any modifications that can be made to the core algorithm,
such as the modification made to SVMC in SVMC TF, that
result in more accurate simulations of QA. One such example
can be random longitudinal field noise, which was shown in
[27] to be necessary to accurately model the dynamics of QA.

Another potential future direction involves methods for
predicting the optimal pause location. Our evaluation shows
that a CNN can learn to accurately predict optimal pause
locations. This indicates that the CNN is learning features
that are useful for prediction, however, it is not clear what
the specific features are. Applying techniques that can
help visualize or interpret the features learned by a model
or encoded in the weights of a model will be useful in
determining the features that have an effect on the optimal
pause location. Alternatively, evaluating simpler and more
interpretable models, such as linear regression, may also help
to understand what impacts the optimal pause location.
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