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ABSTRACT Silhouette and pose are two common features to extract the descriptive and unique patterns of
a person’s gait, and good performance has been already achieved driven by the deep learning techniques.
However, some issues still exist, the silhouette is known to be sensitive to the changes of the appearance while
pose is not so discriminative as silhouette even though it is considered as being more robust. Therefore, it is
advantageous to fuse the two features into one model to achieve both the accuracy as well as the robustnesss.
In this paper, we propose a simple yet effective fusion model to combine both the features, where the two
features are first scaled by normalisation and then combined by the Compact Bilinear Pooling to model
the higher order and fine-grained information. The superiority of the proposed method is verified through
experiments on benchmark datasets CASIA-B, OUMVLP, and SOTON-small. In CASIA-B, we achieved
SOTA results with an average of 96.9% rank-1 accuracy. In addition, cross data experiments are conducted

to demonstrate the robustness of our method.

INDEX TERMS Gait recognition, pattern recognition, multi-modal, deep learning.

I. INTRODUCTION

Gait referring to a person’s walking pattern is commonly
used for human identification. It has an advantage over other
biometric traits, such as face, iris, and fingerprint as it can be
collected from a distance with less intrusion. Due to these
advantages, gait has wide-ranging applications in society,
including forensic identification, social security and health
monitor [1], [2], [3]. However, two main challenges for using
gait as an identification technique are its sensitivity to extra-
neous factors and limited discriminative ability. Specifically,
factors such as appearance and clothing style may introduce
bias into the gait feature, and the coarse grained nature of gait
features limit their ability to distinguish between individuals.
To tackle these problems, different modalities of gait features
like RGB image, mesh, optical flow, depth image silhouette,
and skeleton have been developed [4].

Among the modalities, silhouette and skeleton are the
most commonly used body representations in recent gait
recognition literature. Silhouette is the human body mask
by removing the background, which can be obtained by
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FIGURE 1. The silhouette and pose for gait recognition from CASIA-B [5].

background subtraction [6] or deep learning based segmen-
tation methods [7]. The silhouette-based feature is usually
extracted by Convolution Neural Network (CNN) [8], [9],
[10]. Silhouette by nature contains more person extrinsic
information, such as the contour of the hairstyle and the
clothing. These person extrinsic information can be useful
for better identity recognition in certain scenarios while at
the same time, the variation of it could easily lead to mis-
classification. On the other hand, skeleton based gait feature
is generated by modeling the inner body topology. The
skeleton is obtained by pose estimation algorithms, such as
HRNet [11], and OpenPose [12]. Some promising results
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have been obtained by Graph Convolution Network (GCN)
[13], [14]. Skeleton based methods are generally more robust
to the appearance variations than those based on silhouettes
since the model only consider the inner body structure. The
accuracy of the pose based models are usually lower than the
silhouette based ones. One reason might be that silhouette
contains more human related information which CNN models
can utilise for identification.

From the above analysis, it can be seen that the two
representations are complementary. The silhouette focuses
on the body shape and neglects the inner body structure; on
the contrary, the skeleton preserves the inner body structure
while ignores the body shape. Therefore, their combination is
expected to improve the representation ability of gait. In this
paper, we propose a simple yet effective fusion network
to exploit both the advantage of skeletons and silhouettes.
Unlike other fusion methods, which combine the features
through simple concatenation, we focus on constructing
reasonable fusion method to exploit the strength of both
features through Bilinear Pooling (BP). BP can be considered
as a linear projection on the tensor product space of two
vectors, which covers the interactions of each dimension
of the vector. Thus, it can represent rich and fine-grained
multimodal information [15], and has been shown to exceed
the performance of attention based models for multi-modal
fusion tasks [15], [16]. In addition, to avoid the computational
complexity due to the curse of dimension, we apply a
Compact Bilinear Pooling (CBP) method [17] which retains
full representation of the two features as much as possible at a
low dimension. In addition, our method has another effective
design which is scale normalization. Since the extracted pose
and silhouette features are obtained through different models,
the distances between each feature may be incomparable due
to scale differences. To ensure the effectiveness of the fusion
mechanism, it is critical that the features are normalized to
the same scale.

The effectiveness of the proposed method is verified by
experiments, e.g. it outperforms the SOTA on CASIA-B,
and gets very competitive results on OUMVLP. Furthermore,
cross data experiments are also conducted to further confirm
the robustness of our method. The contribution of this paper
is summarized as follows,

« A simple and effective fusion method is proposed where
CBP and scale normalization are adopted for better
accuracy.

o Our method achieves competitively high performance
on open benchmark data CASIA-B, OUMVLP and
SOTON-small. Meanwhile promising results are also
achieved on cross data experiments, which shows the
robustness of our method.

Il. RELATED WORK

According to the survey [4], the development on gait
recognition goes through three stages. The earliest phase
started in the early 1990s [18], mainly exploring the
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feasibility of human recognition at distances. The methods
achieve reasonable performance on small-scale datasets [19],
[20]. The second stage research contains more details into
consideration. It can be classified according to the inputs
into two categories: appearance-based methods which exploit
the surface profile of the subject and model-based methods
which depend on the modeling of the underlying human body
structure. The third stage research leverages the deep learning
method which extracts the temporal spatial information of the
gait through large amount of data [4].

For appearance-based methods, before the wide applica-
tion of the deep learning, the temporal dimension in a video
sequence is usually depressed by averaging the silhouettes
over a walking cycle into a gait energy image (GEI) [21],
[22], [23], [24]. Due to the computational efficiency and the
effectiveness, the methods are widely applied. However, the
compression of the temporal information hinders the further
improvement of the accuracy, and thus deep learning methods
are utilised to model the spatial and temporal information in
fine level. The first deep model with significant improvement
on the standard benchmark dataset CASIA-B is GaitSet
[9], which explores the spatial information by 2DCNN and
models the temporal information as unordered set. GaitPart
[10] enhanced GaitSet by extracting the local part information
of the silhouette and the temporal information accordingly
instead of taking the temporal information as an unordered
set. Another set-based gait sequence silhouette approach
utilizes a Set Residual Network (SRN) [25], which can
effectively integrate silhouette and set information to extract
more discriminate features. GaitGL [8] integrates the global
and local information at the same time to further enrich the
spatial representation. In addition CSTL [26] models the
temporal information by introducing multi-scale temporal
relations and obtains the spatial representation by selecting
the most discriminate parts among the whole sequence.
The above mentioned models CSTL and GaitGL employ
3DCNN to model spatial-temporal information, and Local3D
model also shares the similar merit. Other models, such as
LSTM [27] is also employed in combination with 2DCNN
to extract the temporal and spatial information respectively.
To enhance the temporal representation ability, the temporal
representation, a multi-scale model [28] is proposed where
the small-temporal-scale branch is used to model slow
changes, while the larger-temporal-scale one is designed to
grasp the rapid gait changes. Recent development seen a
lot new ideas emerging, for instance, instead of extracting
the spatial-temporal information, Gaithop [29] focuses on
the channel information by switching channel of different
frames. In addition, an end-to-end model is proposed by
GaitEdge [30] which combines the silhouette extraction
and the gait recognition model into one pipeline and
achieves significant improvement over the separate pipeline.
To address the view change problem, [31] incorporates
view information explicitly through ‘View projection matrix
selection’, allowing the model to include view information in
the final expression.
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For model-based methods, the features are usually
extracted by leveraging the prior knowledge of human
body. For example, the length of the stride and cadence
are used as learning features [32], [33]. There are also
works modeling gait motion as Fourier series and trans-
forming the pattern into spectral space for recognition [34].
Other handcrafted features [35], [36], [37] are developed
to represent the structural and dynamic characteristics of
pedestrians. However, the handcrafted features can only
provide limited representations, and thus, the deep learnings
are also actively studied in the model-based area. On one
hand, accurate pose estimation algorithms, such as HR-
Net [11], and OpenPose [12], serve as the foundation for
pose estimation; on the other hand, the graph convolution
network (GCN) [14] provides a basic tool to describe the
pose structure. ST-GCN [14] combines GCN and CNN to
model the spatial and temporal information respectively.
Classic two stream framework is adopted in [38] to extract
the pose pattern, where the second order information is
modeled by adaptive GCN. GaitGraph [13] enhances the
structure of the model by adding residual connections and
bottleneck blocks to achieve better performance. In addition,
Multi-scale Gait Graph (MSGG) network is proposed by
[39], leveraging on the inherent hierarchical structure of
the body joints. A gait recognition system, HEATGait [40],
is proposed to improve the performance of existing multi-
scale graph convolutions by using an efficient hop-extraction
technique to alleviate weight bias issues. Utilizing spatial-
temporal graph convolution layers (ST-GCN), Gait-D [41]
is designed to improve the performance of gait recognition
by eliminating the redundant information using canonical
polyadic decomposition (CPD). Besides, attention scheme
is introduced recently. In GaitMixer [42], self-attention
mixer is used to learn spatial information and large-kernel
convolution mixer to extract temporal information. While in
[43], a multi-stream strategy is proposed to simultaneously
model joint, bone, and motion dynamics using GCN with
channel-wise attention. The proposed strategy merges part-
level information by capturing features from the skeleton
graph and its subgraphs concurrently.

In summary, for both types of methods, the up-to-date
mainstream are deep learning due to the superior perfor-
mance. Regarding to deep learning, both methods extract
temporal and spatial information, and in terms of spatial
modeling, they employ both local and global information. For
comparison, model-based methods directly use the human
skeleton to describe the gait, without any other information.
Therefore, these methods tend to be robust and computational
efficient. Appearance-based models extract features from the
contour of the subject, which can capture more direct human
related information, such as the hairstyle and the shape of the
clothes. Meanwhile, the input is easy to be affected by the
variance of the appearance of the subject, and thus lead to
wrong classification. These characters make the two features
complementary to each other.
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Fusion methods The multi-modal methods can utilise
the properties of different inputs and hence achieve better
results than single modal ones. The fusion procedure can be
characterised into sensor level, feature level, opinion level
and decision level according to the fusion stage, and it is
believed that the earlier fusion will yield better results [44].
However, the research on multi-modal fusion method for
gait recognition is limited as far as we know. BiFusion
model [39] and two-branch model [45] are proposed to
combine silhouette and pose features, where two stream
architecture is applied in both methods. These works focus
on designing complicated pose models by introducing multi-
scale as well as attention techniques, while only adopting
simple concatenation as the fusion method. Besides silhouette
and pose, a pioneer work [46] explores the usage of 3D
feature, 3D meshes, and combines the 3D meshes with
the silhouette by matrix multiplication for gait recognition.
In addition, TransGait [47] utilizes transformer structure
to receive silhouette and heatmap as feature inputs and
combine the different features at an early stage to capture
more complex interaction of the two features. Howeyver, this
model requires frame level alignment for the two inputs
which could be hard since different features are collected
with different sensors and thus might not be easy to make
exact alignment. The mmGaitSet [48] combines silhouette
with pose heatmap through both intra-modal and the inter-
modal fusion. The intra-modal fusion method integrates low-
level structural features with high-level semantic features,
which results in increased discrimination of single modality
features. Meanwhile, the inter-modal fusion method aggre-
gates complementary information from different modalities,
thereby enhancing the overall pedestrian gait representation.
Another fusion model [49] is designed to combine silhouette
from CNN and human model information, s.t. joints, limbs,
and static joint distances from a fully connected deep-layer
structure.

The research suggested that most of the fusion models
focus on developing more representative single modal models
with little focus on reasonable fusion methods [39], [45].
Differently, our method focuses on constructing reasonable
fusion method which aligns the different embeddings to
make the final fusion to yield better accuracy. Besides,
the architecture of our method is flexible in that our
fusion method can be applied to any single modal feature
extractor.

ill. OUR METHOD

The overall structure of the fusion model is explained in
Figure 2. First, the silhouette and pose are fed into the
corresponding feature extractors. Then the distribution of the
features are scaled to the same magnitude by applying our
normalisation technique. Then the normalised features go
through the CBP layer to obtain the higher order and fine-
grained representation of the gait.
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GaitGL and GaitGraph are adopted in our case to extract
silhouette and pose features, since they are representative
and achieve high accuracy over several bench mark datasets.
It is worth noticing that, the feature extractors can be any
other models, such as ST-Graph for pose features and Gaitset,
Gaitpart for silhouette features.

In the subsections, the feature extractors, GaitGraph and
GaitGL are first explained briefly, and then the main part
of fusion method, CBP, along with some other application
details are presented.

A. FEATURE EXTRACTOR

GaitGraph, which employs GCN, outperforms other GCN-
based models, while GaitGL, outperforms most other gait
recognition models. Besides delivering strong performance,
their architectures are classic. GaitGraph employs GCN
which is a popular method for modeling pose, and the main-
stream approach for silhouette-based models involves using
CNN with temporal-spatial modeling and local and global
spatial feature mining. These architectures are classical and
representative, and they have served as inspiration for other
recent models, such as CSTL. In the following, we explain
the two feature extractors briefly.

GaitGL is a silhouette based gait recognition model which
achieves high performance on CASIA-B and OUMVLP
datasets [8] due to two main advantages. First, GaitGL
preserves the temporal information by the Local Temporal
Aggregation operation, and in addition, it considers not only
the global but also the local features. The local feature is
constructed by dividing the silhouette into horizontal stripes
to model different body parts, leading to a final [m, d]
dimensional feature with m the number of the horizontal
stripes and d the dimension of features.

GaitGraph utilises GCN [14] to extract the spatial infor-
mation from the pose/skeleton of the gait sequences. The
topology of the skeleton is naturally modeled as a graph,
defined as G = (V, E), where V is the set of vertices and
E is the set of edges. Two vertices are adjacent if they are
connected in the skeleton, and such relation of the V is
formulated by the adjacency matrix A, where A;; = 1 if
vertex v; and v; are connected, and A;; = 0 other wise.
As an analogy to CNN, the convolution on graph operates
on the adjacency vertices, and the k" order GCN is defined
as follows,

k _1 _1
Jour =0 A PAGA  fiuW)),
j=1

where f;, is the input feature, f,,, is the output feature,

J
A;j = [] Ais the j order adjacent matrix, A, is the diagonal
—0
degreel matrix for A; and W is learnable weight parameters.
In addition, bottleneck structure is applied in GaitGraph to
down size the features and the residual learning is applied for

stable training.
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B. THE FUSION METHOD

Instead of direct concatenation or summation, we apply BP
to learn the fused representation [50]. Let X; and X, be the
silhouette and pose gait feature obtained from GaitGL and
GaitGraph respectively, where X; € R"*% | and Xy € R%
with m being the number of the parts of the silhouette features,
and di, d; the feature dimension of the silhouette and pose.
The fused feature through bilinear pooling becomes

Xe = WX, ® X,)
= WX, (DXp(1), X,(DXp(2), . ..., Xs(d)X,p(d)]”,

where W e RAO*%d with ds the dimension of the
fused feature. As we can see, BP can be considered as a
linear transform on X; ® X, € RA*4 with ® being the
tensor product. Thus, with BP, the second order interaction
of every dimension of the feature can be modeled, and
the resulting representation contains rich and fine-grained
information [15].

However, the dimension of the W grows quadratically as
the dimension of the underlying feature grows. Therefore, the
method is not practical unless a more compact expression is
constructed, and the problem is addressed by CBP [17]. For
CBP, the count sketch projection ¢(.) is applied to project
X; ® X, to a lower dimensional space. In addition, ¢(.) is
featured by the property of converting outer product into
convolution operation, that is, the count sketch of the outer
product of two features can be expressed as convolution of
both count sketches projections: p(X;®X),, b, v) = ¢(X;, h)*
¢(X,, v), where * refers to the convolution, and h, v are two
parameter vectors [51]. To further reduce the computational
complexity, the fast Fourier transformation (FFT) is adopted
to realize heavy convolution by light point-wise product [51],
as follows:

(X5, h) * p(X,,, v)
= FFT~ Y (FFT(¢(X;, h)) © FFT(¢(X,, v))),

where © denotes the pointwise product. With the combina-
tion of count sketch projection and FFT, the fused feature
through CBP can be represented as:

X = WX, ® X,) ~ W ($(Xs ® X, b, v))
= W (§(Xs. ) % $(X, ¥))
W (FFT’I(FFT(cﬁ(XS, h)) © FFT(¢(X,, v)))) ’

and X/w¢ e R%. While applying CBP, it is a common
practice to add one more dimension to the feature to make
CBP represent not only the second order interactions but
also the first order ones. Specifically, the input features are
augmented from X, and X; to [1, X,,] and [1, X;] respectively.

Given the GaitGraph and GaitGL as the feature extractors,
the resulting feature dimensions do not match. The dimension
of silhouette feature is [m, d1] due to the partition of a
silhouette into m horizontal strides, but pose feature is a
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FIGURE 2. The algorithm of our fusion model.
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d>-dimensional vector. For this issue, each of the m local
parts of the silhouette feature is concatenated with the same
pose feature, and this can be thought of as the combination of
global and local information, i.e. the pose feature represents
holistic information while silhouette stride feature is local.
Therefore the final dimension of the fused feature is [m, d3].

The distance of different features are samples from
different distributions which might not be comparable (e.g.
one is O(1) and the other one is O(100)). The difference
between the magnitude of the distances of different features
would make the fusion algorithm hard to train. To make the
distance of each feature comparable, we divide the feature by
the maximum of the distance of the corresponding feature.
This is more effective than the L, normalisation of the
feature (a more common way of normalisation), since the
normalised feature does not guarantee comparable distances
between different features which affect the performance
directly. The maximum of the distance can be approximated
by the sample maximum of the distance from the pre-trained
feature extractors. Our idea can be considered as distribution
alignment which is a common technique applied in multi-
modal models. Usually, these features can be coordinated
through structure constraint [52], such as WSABIE [53] and
canonical correlation analysis [54].

After normalisation, the features are also weighted
by trainable parameter vector a as af © [I,X,] and
1 -’ o [1,X,] to adjust the importance of different
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features where © refers to the pointwise multiplication and
each element of & is within [0, 1].

IV. EXPERIMENT

Three widely used benchmark gait datasets are adopted
for experiments, i.e., CASIA-B [5], OUMVLP [55], and
SOTON-small [56]. With these datasets, the proposed fusion
method is compared with the SOTA methods, besides, cross
data experiments are conducted to verify the robustness of our
method. At last, ablation studies are presented to illustrate the
contribution of different techniques.

A. DATASET

CASIA-B [5] is composed by walking sequences of 124 sub-
jects, with 10 sequences per subject, i.e., 6 of normal walking
status (NM), 2 of bag carrying status (BG), and 2 of clothes
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changing status (CL). Each walking sequence is captured
from 11 different angles from 0° to 180° with the uniform
interval of 18°. Following the standard of the community
[39], [45], we take the first 74 subjects as the training set
and the remaining 24 subjects as the test set. In the test, the
first four NM sequences are taken as the gallery while the
remaining ones are used as the probe.

OUMVLP [55] is a large public gait dataset released
by Osaka University. The dataset consists 10,307 subjects
with a wide coverage of ages (from 2 to 87). There are
in total 14 angles, ranging from 0° to 90°, and 180° to
270°, with uniform interval of 15°. Each view includes
2 walking sequences (#00-01). Following the test protocol of
OUMVLP [55], the dataset are devided into training set with
5153 subjects and test set with 5154 subjects. sequences #01
are kept in the gallery and sequences #00 are regarded as the
probe.

SOTON-small [56], as part of the DARPA funded pro-
gramme, is released by the University of Southampton. It con-
tains 10 subjects of 14 versatile walking scenarios, including
walking in different clothes(CL), bag carrying(BG), different
speed(SP) and normal walking scenario(NM). Each walking
scenario has four different views: a is Normal track, d is
Oblique track, e is Normal, elevated view of track, f is Frontal
view of track. The first 6 subjects are taken as the training set,
and the remaining four subjects are the test set. Only normal
walking scenario is the gallery and the remaining scenarios
are the probe.

B. EXPERIMENTS SETTING

Silhouette gait feature is obtained by GaitGL model, where
the silhouette images are resized into 64 x 64 [8], and
the length of the gait sequence is dataset dependant, i.e.
30 frames for OUMVLP and 60 for CASIA-B and SOTON-
small. Since the silhouette images of Sonton-small are not
provided officially, we extracted them by using DeepLabV3
[7]. GaitGraph model is adopted to get the pose based gait
feature. For CASIA-B and SOTON-small datasets, the poses
are estimated by HRNet [11], while for OUMVLP dataset
the officially provided pose information, which is claimed
to be extracted by AlphaPose [57], is directly adopted. After
pose estimation, each joint is described by two attributes,
i.e., 2D coordinate and the estimation confidence. Besides,
several data augmentation schemes are applied to pose such
as random noise and flip. The final dimension of the fused
feature is 128 for CASIA-B and SOTON-small, and 256 for
OUMVLP.

1) LOSS

To build the model, different loss functions are imposed
separately on the silhouette feature, pose feature, as well
as the fused feature. The triplet loss (TL) is employed to
supervise the fused feature, with the margin being set as
0.2. The loss for the silhouette branch follows the setting
of GaitGL [8], which includes cross-entropy loss (CE) and
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TABLE 1. Parameter numbers of gait models.

CASIA-B OUMVLP  Sonton-small
GaitGL 3.09667M  95.62045M 2.54781M
OpenGait 0.31352M  0.76528M 0.31352M
Our method 3.41032M  96.38573M 2.86146M

triplet loss. Also, the margin threshold for triplet loss is set
to 0.2. For the pose feature, supervised contrastive loss(SC)
is adopted with the temperature being 0.01. The final loss are
the weighted sum of the three losses, and the weight values
are empirically setto be 1, 0.2, and 0.1 in our implementation.

Loss = OlTquse + B(CEgi + TLgi) + VSCpose-

2) OPTIMIZER

The optimization strategy for fusion model applies a multi
learning rate strategy. In our implementation, both the GaitGL
and GaitGraph model are firstly pre-trained as in [8] and
[13], and are then fine tuned in our fusion framework, where
Adam scheme is adopted for optimization with the learning
rate being le~©. The learning rate for the fusion parameters
are le 3.

3) CALCULATING RESOURCES

The experiments are conducted on two GPUs of NVIDIA
RTX A6000. Since pretrained models for the feature extrac-
tors are applied, the new parameters needed to be trained
from the beginning are very few. Therefore the fusion model
converges fast. We also provided analysis on the number of
parameters in Table 1, and we can see that the magnitude of
our fusion model is of the same order of the GaitGL. Since
the fusion part is kept as simple as possible, the parameters
does not see a significant increase.

C. EXPERIMENTS RESULT

We compare the accuracy of the proposed fusion method
with single modality models, including pose based models:
GaitGraph [13] and GaitMixer [42], and silhouette based
models: GaitSet [9], GaitPart [10], GaitGL [8], CSTL [26],
and Gait-D [41]. Two fusion methods BiFusion [39] and
TwoBranches [45] are also included as benchmarks. Firstly,
the experimental results within single dataset are presented,
that is, both the training and test data come from the same
dataset. Then, cross-dataset experiments are conducted to
verify the robustness of our method, that is, the model
is trained by one dataset while tested on another dataset.
In all experiments, the top one accuracy after excluding the
identical view is used as the evaluation metric.

1) NORMAL WALKING

The experimental results on CASIA-B, OUMVLP and
SOTON-small is tabulated in Table 2, Table 3, and Table 4.
It can be seen that our result is significantly better than that
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TABLE 2. Experiment results on CASIA-B.

Prob  Models 0° 18°  36° 54° 72°  90° 108° 126° 144° 162° 180° Mean
Gaitgraph 853 885 910 925 872 865 884 892 &9 89 819 877
GaitGL 96.0 983 99.0 979 969 954 970 989 993 988 940 974

NM  GaitSet 90.8 979 994 969 936 91.7 950 978 989 968 858 950
GaitPart 941 986 993 985 940 923 959 984 992 978 904 962
GaitMixer 944 949 946 963 953 963 953 947 953 947 922 949
CSTL 972 990 992 981 962 955 977 987 992 989 965 978
Bifusion 980 991 995 993 987 975 985 991 996 995 96.8 98.7
TwoBranch 97 979 984 983 972 973 982 984 983 981 96 97.7
Ours 989 993 992 984 983 973 98 99 994 995 98.1 98.8
Gaitgraph 75.8 7677 759 76.1 714 739 780 747 754 754 692 748
GaitGL 926 96.6 968 955 935 893 922 965 982 969 915 945

BG GaitSet 83.8 912 918 888 833 810 841 9.0 922 944 790 872
GaitPart 89.1 948 967 951 883 849 8.0 935 961 938 858 915
GaitMixer 835 856 838.1 89.7 852 874 840 847 846 870 814 856
CSTL 91.7 965 970 954 909 880 915 958 970 955 903 93.6
Bifusion 958 979 982 976 944 916 939 966 985 983 931 96.0
TwoBranch 919 946 964 943 944 0916 941 954 955 939 895 938
Ours 97.6 98 97.8 984 975 963 971 98 984 987 963 978
Gaitgraph 69.6 66.1 688 672 645 620 695 656 657 66.1 643 66.3
GaitGL 76.6  90.0 903 87.1 845 790 841 870 873 844 695 83.6

CL GaitSet 614 754 807 773 721 701 715 735 735 684 500 704
GaitPart 707 855 869 833 771 725 769 822 838 802 665 787
GaitMixer 812 836 823 835 845 848 869 89 870 8.7 8l6 845
CSTL 78.1 894 916 866 821 799 818 863 887 86.6 753 842
Bifusion 88.7 939 956 938 914 894 923 938 942 937 862 921
TwoBranch 874 96 97 946 94 90.1 915 941 938 926 8385 927
Ours 914 959 97 958 943 934 943 959 949 953 90.6 948

TABLE 3. Experiment results on OUMVLP.

Prob  Models 0° 15° 30° 45° 60° 75° 90° 180°  195° 210° 225° 240° 255° 270° Mean
Gaitgraph 583 712 742 758 748 726 68 533 611 562 72 71.1 682 633 67.1
GaitGL 849 902 91.1 0915 91.1 908 903 885 886 903 904 89.6 895 888 897

NM  GaitSet 79.3 879 90.0 90.1 88.0 887 87.7 8138 86.5 80.0 892 872 876 862 871
GaitPart 82.6 889 908 910 89.7 899 895 8.2 8.1 9.0 90.1 8.0 8.1 832 837
CSTL 87.1 91.0 915 0918 90.6 908 906 894 902 905 90.7 89.8 900 894 90.2
Bifusion 86.2 90.6 913 9156 91 90.8 905 878 895 904 907 90 89.8 893 899
Gait-D [59] 843 92.6 90.6 92.1 90.5 913 921 876 904 926 913 922 945 923 91
Ours 887 916 917 918 919 913 911 905 90.1 90.7 91 91 90.4 90 90.8

of the single modal methods on normal case (NM) which is
considered as an easy one. Comparing to other single modal
models, our fusion method achieved significant increase for
CASIA-B and OUMVLP. Even comparing to other fusion
methods, we still achieved 1% increase on CASIA-B. The
SOTON-small dataset has seen a even larger increase for the
NM case of our fusion method, with around 6% increase.

2) VIEW CHANGE

The view changes caused much interference for the practical
application of gait recognition. Our fusion model shows
potential to make gait recognition more robust to view
changes. Firstly, regarding to the CASIA-B and OUMVLP
datasets, the average accuracy of the fusion model varies
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around 2 % at different angles from Table 2 and Table 3.
However, for other models, the performance at different
angles fluctuates significantly. For the fusion models, taking
the BG case of CASIA-B as an example, the performance
of Bifusion ranges from 93.1 to 98.2, while the performance
of TwoBranch ranges from 89.5 to 96.4. For OUMVLP, the
fluctuation of Bifusion ranges from 86.2 to 91.56, and even
for Gait-D, the performance fluctuates up to about 10 %.
For the Sonton-small Table 4, due to the relatively coarse
angle classification, the performance at each angle varies
significantly. However, the performance of our fusion model
is relatively stable which is about 10 % for all the cases.
However, the performance gap for single modal models can
vary by up to 20 %.

102629



IEEE Access

Y. Zhao et al.: Effective Fusion Method on Silhouette and Pose for Gait Recognition

TABLE 4. Experiment results on Sonton-small.

Prob  Models a' d e F

Gaitgraph  90.7 91.6 90.1 83.3 88.9
NM  GaitGL 98.85 99.54 98.85 6082 895
Ours 98.24 9952 98.97 86.76 95.87
Gaitgraph ~ 89.1 87.8 85.6 82.2 86.2
BG GaitGL 99.07 99.79 97.52 7152 91977
Ours 99.69 9990 98.59 9190 97.52
Gaitgraph  41.1 35.6 344 496 40.2
CL GaitGL 91.77 8734 92.61 6624 84.493
Ours 86.88 84.37 90.89 79.96 85.52
Gaitgraph  93.9 91.1 91.7 85.4 90.6
Sp GaitGL 90.11 9398 88.60 72.47 86.29
Ours 9333 96.54 9129 86.88 92.01

Mean

3) BAG CARRYING AND CLOTHES CHANGES

In practical scenarios of gait recognition, subjects often carry
backpacks or change clothes, which can cause interference
to the accuracy of recognition. For CASIA-B, our fusion
model exhibits only a 1 % decrease in performance in the BG
case and demonstrates stable performance compared to single
modal models Table 2. The reason behind this improvement is
the incorporation of a pose-based model that directly models
the human structure and provides robustness against bag
carrying interference. Similarly, our fusion model provides
relatively stable performance in scenarios where people
change clothes, with only a 4 % decrease in performance in
the CL case compared to the NM case. In contrast, single
modal models exhibit inferior performance in the CL case,
such as a 20 % decrease in performance for GaitGL compared
to the NM case and a 14 % decrease in performance. On the
SOTON-small dataset Table 3, the challenging nature of the
CL case is fully exemplified, where Gaitgraph exhibits only
40 % average performance. However, our fusion model can
still provide a 1 % performance improvement compared to
GaitGL.

4) SPEED CHANGES

In practical scenarios, subjects may walk at different speeds,
which can also affect the performance of our models. Regard-
ing to the SOTON-small dataset from Table 4, we made
an interesting observation that GaitGraph exhibits higher
average performance than GaitGL. In this scenario, the pose-
based model demonstrates robustness advantages, especially
in the F (frontal) view, where the performance difference
between the two models is significant, with 72.47 vs 85.4.
Our fusion model shows a significant advantage in the F view,
improving the performance to 92.

From the above analysis, it is evident that gait recognition
in real-world applications can be influenced by various
factors. Single modal models expose significant performance
fluctuations. In addition, there is no one feature which
has overwhelming dominance in all scenarios. Therefore,
it is necessary to use fusion models to deal with complex
scenarios in practical applications.

102630

TABLE 5. Cross data experiment: trained by OUMVLP, tested on CASIA-B.

((a)) Cross data experiment: trained by CASIA-B, tested
on SOTON-small

Model of CASIA-B NM BG CL SP

GaitGL 7141 6471 40.05 51.23
GaitGraph 5342 5254 3558 52.58
Ours 75.14 7496 44.15 69.36

((b)) Cross data experiment: trained by OUMVLP, tested
on CASIA-B

Model of OUMVLP NM BG CL

GaitGL 71.66 61.36 25.83
GaitGraph 3532 22.87 13.08
Ours 73.7 64 27.8

5) CROSS-DATA

To further verify the robustness and the generalization ability
for our fusion method, two cross-data experiments are
conducted. In these experiments, the training and test data are
from different datasets, more specifically, the model is trained
by OUMVLP \ CASIA-B data while tested on CASIA-B \
SOTON-small. From Table 5, steady accuracy improvement
is exhibited by our fusion method. In the first experiment,
the accuracy on CASIA-B is improved by around 2% for
all the cases. For SOTON-small, significant improvement
is obtained by our fusion method on the hard cases, e.g.
10% boost for bag carrying (BG) and speed changing (SP)
conditions.

Even comparing to other fusion methods, our methods
show advantages over other fusion methods. For CASIA-B,
our methods are higher than the other methods by around 2%
and 1% increment over OUMVLP dataset. The two methods
focus on designing more representative single modal models
with little focus on the fusion step, where they took simple
summation or concatenation as the final representations. But,
our method focuses on aligning two spaces so that the fusion
method can take effect. As the results shown, the fusion
methods by combining two complementary features can
achieve high recognition accuracy, and also shows robustness
against view changes and clothes changes. The robustness are
very good features when making applications.

Our approach has significant improvements compared to
other fusion methods. For instance, in CASIA-B’s BG case,
our method achieved 2% improvement, while on OUMVLP,
there was a 1% increase. Different from other fusion methods
focusing on designing complex single feature, our method
works towards ensuring comparability between different
features through feature normalisation technique, that is
normalised each feature by its maximum of the distance. This
allows both features to effectively exploit their advantages.

D. FUSION APPROACH COMPARISON

This article adopts the CBP fusion method, and to verify
the effectiveness of our fusion method, we also conducted
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experiments on other fusion methods. Table 8 shows that
using the concatenation method has advantages compared to
directly adding, with an improvement of 0.1% to 1% on the
average level of the three datasets. This is probably because
concatenation increases the dimensions of the embedding,
thereby enhancing the expressive ability of the representation.
However, compared with CBP, the CBP method demonstrates
superior fusion capabilities. On the OUMVLP dataset,
we achieved a 0.4 % improvement. Especially in the CASIA-
B CL case, we achieved a 2 % improvement. In the
SOTON-small dataset, we also achieved an improvement in
average performance. CBP not only include the first order
information but also the second order interaction of the two
features, and thus has superiority in extracting more detailed
interaction of two features.

E. HYPERPARAMETER

Our fusion method contains a hyperparameter d3 as the
final dimension of the CBP, and d3 is positive related to
the accuracy theoretically. We conduct experiments to test
the effects of the different choice of d3 on CASIA-B. From
Table 6, it can be seen that smaller ds, e.g. 64, leads to
lower accuracy whereas the degrade is limited to 0.3%.
As d3 increases, the accuracy becomes insensitive, that is, the
accuracy is very similar when d3 being 128 and 256.

F. ABLATION STUDY

Our method contains two steps, one is normalisation and
the other is fusion by CBP. When we fuse the two features,
an important parameter is o where the importance of the two
features are weighted. In order to study the effect of each
step, we design ablation experiments regarding the effects
of normalisation, and parameter o using CASIA-B as an
example.

1) NORMALISATION

We compare the accuracy with and without normalisation in
order to study the effect of normalisation in a quantitative
way. To eliminate the influence of the specific fusion method,
the experiments are conducted on both concatenation and
CBP fusion methods. From Table 7, we can see that the
accuracy for CL case drops significantly without normalisa-
tion for both CBP and concatenation fusion approach. The
performance degrade for the other two cases is smaller and the
average accuracy drop is around 1%. With this result, it can be
concluded that proper normalization is a key scheme toward
better fusion result.

2) WEIGHT PARAMETER

a, controlling the importance of different features, is also
important to obtain high accuracy for our fusion method.
Thus, we conduct experiments to compare the accuracy
difference with or without parameter a. The experiment is
also conducted for concatenation and CBP fusion methods
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TABLE 6. Hyperparameter d3 experiments on CASIA-B.

ds NM BG CL Avg

64 98.54 96.9 94.27  96.6
128  98.8 97.8 94.8 96.89
256 9855 97.52 9455 96.87

TABLE 7. Ablation experiments on CASIA-B.

Fusion approach N!  W? NM BG CL Avg

4 4 98.69 97.11 9276 96.1
Concat X v 9791 9621 9156 9522
4 X 9734 9485 9128 94.49
v v 98.8 97.8 94.8 96.89
CBP X v 9842 9639 93.1 95.62
4 X 9726 9489 91.66 94.61

! N': normalisation module
2 W: weight parameter module

TABLE 8. Experiment results on different fusion methods.

Dataset Status Add Concat CBP
NM 9859  98.69  98.8
CASIA-B BG 9721  97.11  97.8
CL 9247 9276  94.8
OUMVLP NM 9022 9041 908
NM 95.63 9558  95.87
CL 8556 8596  85.52
SOTON-small g~ 9481 9576  97.52
SP 9127 9194 9291

for a solid verification. As suggested by Table 7, for both
fusion approach, the average drop is around 2% by deleting
the wright parameter «. For CBP fusion approach, the CL
case sees a significant accuracy drop of around 3%, and for
concatenation approach, the BG case is affected most with an
accuracy decline of 2%.

In summary, both normalisation and weight parameter
o contribute to the high accuracy of the fusion method.
In addition, it is worth noticing that, in both cases, the
CBP fusion approach outperforms the concatenation fusion
approach which also exhibits the advantages of the CBP
method as a fusion approach.

V. CONCLUSION

In this paper, a fusion model is proposed to combine the
strength of both the silhouette and pose for gait recognition.
Our method focuses on constructing a reasonable way to
combine the two features, instead of designing complicated
but cumbersome single feature models as most fusion
methods do [39], [45]. Although GaitGL and GaitGraph are
the chosen feature extractors in our paper, generally, the
feature extractor can be any model. Hence, in comparison
to other fusion methods [39], [45], our method is very
flexible. Extensive experiments are conducted on CASIA-B,
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OUMVLP and SOTON-small to show the effectiveness of
our method. In addition, our method is more robust to
view changes, bag carrying, clothes changes and speed
changes. These factors affect the real world gait recognition
significantly, and thus, our method shows great potential in
real world application. Besides, cross-data experiments are
also conducted to further prove the robustness. Despite the
promising performance of our model, we intend to further fit
more effective single modal models into our fusion models,
such as 3DCNN [58] and multi scale pose model [39].
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