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ABSTRACT This review paper provides an overview of the latest developments in artificial intelligence
(AI)-based antenna design and optimization for wireless communications. Machine learning (ML) and
deep learning (DL) algorithms are applied to antenna engineering to improve the efficiency of the design
and optimization processes. The review discusses the use of electromagnetic (EM) simulators such as
computer simulation technology (CST) and high-frequency structure simulator (HFSS) for ML and DL-
based antenna design, which also covers reinforcement learning (RL)-bases approaches. Various antenna
optimization methods including parallel optimization, single and multi-objective optimization, variable
fidelity optimization, multilayer ML-assisted optimization, and surrogate-based optimization are discussed.
The review also covers the AI-based antenna selection approaches for wireless applications. To support
the automation of antenna engineering, the data generation technique with computational electromagnetics
software is described and some useful datasets are reported. The review concludes that ML/DL can enhance
antenna behavior prediction, reduce the number of simulations, improve computer efficiency, and speed up
the antenna design process.

INDEX TERMS Antenna optimization, antenna design, antenna selection, artificial intelligence, deep
learning, machine learning.

ACRONYMS
Abbr. Elaboration
ACLMS Augmented Complicated LMS.
ADS Advance Design System.
AI Artificial Intelligence.
ANN Artificial Neural Networks.
ARSM Adaptive Response Surface Method.
AS Antenna Selection.
BER Bit Error Rate.
BSPA Bone Shaped Patch Antenna.
CAD Computer-Aided Design.
CEM Computational Electromagnetics.
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CNN Convolutional Neural Network.
CST Computer Simulation Technology.
CSI Channel State Information.
D2D Device to Device.
DEA Differential Evolution Algorithm.
DLBAS DL-based Antenna Selection.
DNN Deep Neural Network.
DQN Deep Q Network.
DRA Dielectric Resonator Antenna.
DTR Decision Tree Regression, Regression Tree.
FDTD Finite Difference Time Domain.
FEM Finite Element Method.
FN, IN Forward Network, Inverse Network.
GPR Gaussian Process Regression.
GRSM Global Adaptive Response Surface Method.
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HFSS High-Frequency Structure Simulator.
IoT Internet of Things.
k-NN k- Nearest Neighbor.
LMS Least Mean Square.
LR Linear Regression.
LSTM Long Short-Term Memory.
MGSA Modified version of the Gravitational

Search Algorithm.
MISO Multiple Input Single Output.
MITH Maximum Input Tolerance Hypervolume.
ML, UL Machine Learning, Unsupervised Learning.
MLA Machine Learning Algorithm.
MLAO Machine Learning Assisted Optimization.
MLP Multilayer Perceptron.
MoM Methods of Moment.
M2M Machine to Machine.
m-MIMO massive-Multiple Input Multiple Output.
MOEA Multi-Objective Evolutionary Algorithms.
MS-CoML Multistage Collaborative Machine

Learning.
NLP Natural Language Processing.
NBAS Norm-Based Antenna Selection.
PSADEA Parallel Surrogate model-Assisted hybrid

Differential Evolution for Antenna.
PSO Particle Swarm Optimization.
RBF Radial Basis Function.
RSSI Received Signal Strength Indication.
SDR Software Defined Radio.
SBO Surrogate Based Optimization.
SINR Signal to Interference plus Noise Ratio.
SL, DL Supervised Learning, Deep Learning.
SNR Signal-to-Noise Ratio.
SNN Supervised softmax Neural Network.
SVM Support Vector Machine.
SVR Support Vector Regression.
TARC Total Active Reflection Coefficient.
VFO Variable Fidelity Optimization.

I. INTRODUCTION
Many cutting-edge technologies, such as the Internet of
Things (IoT) and artificial intelligence (AI), have changed
the way we live. The IoT has enhanced the Internet’s
capacity to improve commercial and industrial outcomes,
and consequently our living conditions [1]. In recent years,
IoT technologies such as machine-to-machine (M2M) or
device-to-device (D2D) communication have accelerated the
advancement of 5G/6G communications and beyond. For
a wireless communication system to operate at its most
efficient level, antenna design, optimization, and selection are
crucial. As a result, a proper antenna design is required for any
type of wireless communication, includingWiFi, cellular and
satellite communication. Computational electromagnetics
(CEM) model the interaction of electromagnetic fields with
antennas usingMaxwell’s equations [2]. The finite difference
time domain (FDTD), finite element method (FEM), and
methods of moments (MoM) are three numerical analysis

approaches widely used in antenna simulation and testing
[3], [4], [5]. Physical optics approximation is another well-
known antenna design technique. The majority of antenna
modeling works involves computer-based solutions of partial
differential equations with defined boundary conditions [6].
For constructing an antenna, commercial CEM soft-

ware like computer simulations technology (CST), integral
equation 3D (IE3D), Altair FEKO, high-frequency structure
simulator (HFSS), and advanced design systems (ADS) are
available. These software programs also lack a number
of critical capabilities. ADS, for example, cannot model
3D structures, IE3D cannot simulate structures with finite
features, and the execution time of HFSS and CST is
considerable and increases with the topology of the antenna
structure. As a result, adjusting the antenna parameters using
current tools is a complex and time-consuming operation.
An antenna cannot emit at its greatest capacity if it is
not properly optimized. Currently, researchers are aiming
to improve time-saving antenna design performance using
machine learning algorithms or deep learning algorithms
[7], [8]. Machine learning (ML) has enormous potential
in the domain of antenna design and antenna behavior
prediction because it allows for significant speeding up while
maintaining high accuracy. Figure 1 [9] depicts the link
between AI, ML, deep learning (DL), and artificial neural
networks (ANN). The quality, quantity, and accessibility of
data, which can be challenging to collect in some cases, are
critical to the success of ML systems. From the standpoint of
antenna design, this data must be gathered, because currently
there are not enough standard antenna datasets. The dataset
of antennas is accomplished by replicating the intended
antenna over a wide range of values with CEM simulation
software. Typically, the designer’s intuition plays a crucial
role in maximizing a model’s performance, especially when
using neural networks and selecting suitable architecture and
hyper-parameters [7], [9]. In this review, we investigate the
general concept of ML, how it is gradually used in the design
of various types of antennas for wireless communication,
and provide a summary of useful ML or DL algorithms
for antenna performance optimization. It guides antenna
researchers with little or no ML/DL knowledge who want to
employ the technology in their work as well as makes it easier
for readers to begin research on antenna design, performance
optimization, and antenna selection using ML or DL.

Various AI-based research projects are completed for
antenna design, optimization, and selection for next-
generation wireless communications. Some researchers stud-
ied ML and/or DL-based antenna design and optimization,
while others focused ML/DL-based antenna selection strate-
gies. To the best of our knowledge, AI-based antenna design,
optimization, and selection in a single survey work have not
yet been thoroughly investigated and reported. Furthermore,
the most difficult step in using the ML or DL concept is
to establish a consistent dataset based on an antenna’s input
and output variables. The issue of dataset inconsistency must
be addressed adequately so that researchers understand the
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FIGURE 1. Relationship between AI, ML, DL and ANN.

impact of antenna parameters and learn how to choose the
appropriate parameter values for successful antenna design,
optimization, and selection using ML and/or DL algorithms.

There are several review papers published in the literature
that discuss the application ofML/DL in antenna engineering,
however, they focus only on a narrow aspect and lack a
comprehensive review. On the contrary, this article covers all
three important aspects, namely, antenna design, optimization
and selection for optimal performance. The concepts of
ML and DL are reviewed in [10] for several types of
antenna design applications. Various antenna applications
such asmillimeter wave, body-centric, terahertz, satellite, and
beam shaping are studied based on ML and DL algorithms.
However, a detailed examination of antenna optimization
and selection approaches for ML and DL is out of scope
of this work. Another study [11] discusses ML-assisted
optimization (MLAO) approaches. Support vector machine
(SVM), Gaussian process regression (GPR), and ANN are
employed in this study to create a surrogate model for
efficient antenna design and sensitivity analysis. There is
no discussion of the method for creating accurate datasets
using CEM modeling or the idea of DL for antenna design,
optimization, and selection. In [12], various ML methods are
discussed that have the potential to predict antenna perfor-
mance characteristics including, resonance frequency, gain,
return loss, impedance, and bandwidth. Onlymicrostrip patch
antenna performance is predicted, and the model accuracy is
measured usingmean square error (MSE). Themean absolute
error (MAE) and variance score should be handled adequately
for a proper inquiry. Furthermore, the studies that use DL
models for antenna optimization and selection are not covered
in that survey work. The applications of AI in antenna design
and computational electromagnetics are reviewed in order
to assess the significance of ML or data-driven design in
[13]. This survey only discusses the AI-based antenna design
features, but does not cover ML and/or DL-based antenna
optimization and selection approaches. A survey work onML
for smart antennas is presented in [14]. The limitations of this
work are that it solely focuses on smart antennas in terms

of ML-based antenna design methodologies. Furthermore,
antenna optimization techniques such as surrogate-based
optimization and single and/or multi-objective optimiza-
tion are not covered. In [15], the selection of ML-based
antennas and frequency division duplexing multiple input
multiple output (MIMO) for multi antenna systems are
examined.

The work in [16] gives a survey on AI-based adaptive
antenna selection, which includes various ML/DL learning
methods. In [17], the DL-based antenna selection (DLBAS)
for MIMO software defined radio systems are presented,
and its performance is compared to the norm-based antenna
selection (NBAS). It can be noted that commercial antennas
that explicitly use ML or DL in their design or optimization
are not commonly available at the moment. The use of
ML/DL in the research of wireless communication antennas
is leading to the development of new techniques and architec-
tures. To increase antenna performance, reduce design times,
and improve wireless communication systems, researchers
are continually experimenting with novel methods. Hence,
an up-to-date review of ML and DL-based antenna design,
optimization and selection is highly useful.

The literature survey of this review work is conducted
using Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. All the pertinent
research papers are searched in the literature. The period of
five years is taken to be from 2018 to 2023. Papers written
in any other language are ignored, and only documents in
English are considered. Initially, ‘antenna design’, ‘antenna
optimization’, and ‘antenna selection’ based on ‘ML and
DL’ are used as the primary keywords for searching papers.
The two Boolean operators such as ‘OR’ and ‘AND’ are
used to identify the keywords. The papers are selected based
a number of factors about the articles, including the title,
keywords, abstract, and conclusion. From various reputed
sources, namely IEEE, Elsevier, Wiley, IET, MDPI, and
different web portals, a total of 3950 articles are identified.
Out of these 3950 articles, 3600 articles are manually omitted
because they are not relevant to the core topic of our research.
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FIGURE 2. Systematic review through PRISMA guideline.

In other words, they do not meet the prerequisites for
applying ML and DL in antenna engineering. The remaining
350 articles are given a full-text review before 141 of them
are chosen for the study and used as references in this paper.
Out of these 141 papers, 120 papers consider ML and DL
for antennas as those papers introduce various ML and/or
DL techniques as well as datasets and performance results.
The remaining 21 papers include research articles, review
papers and web portals and these are used for introductory
description. The PRISMA guideline for this survey work is
shown in Figure 2.

The main contributions of this survey work are summa-
rized as follows:
a) ML and DL-based antenna design procedures of the

existing research works are summarized, which also cover
RL-based approaches.

b) Various antenna optimization techniques that are suitable
for single and multi-objective performance optimization
are discussed in detail, with a particular focus on
surrogate-based optimization. Moreover, a list of useful
datasets on antenna engineering is provided to facilitate
readers to conduct research in this field.

c) A discussion is provided on the current ML and DL-based
approaches for antenna selection.

d) The current challenges of ML and DL use in antenna
engineering and guidance for future efforts to meet those
challenges are presented.

The remainder of the paper is structured as shown in Figure 3.
The overview of several ML and DL algorithms that can
be used for antenna engineering is provided in Section II,
and the design flow of an ML-based antenna is described
in Section III. Then, in Section IV, various strategies are
discussed, including ML approaches for antenna optimiza-
tion. Section V details ML and DL-based antenna selection.
Following that, Section VI presents issues with ML/DL-
based antenna design that must be resolved in the future. The
concluding remarks are listed in Section VII.

II. OVERVIEW OF ML/DL ALGORITHMS
ML and DL are the subsets of Artificial Intelligence (AI).
There are many ML and DL algorithms suitable for antenna
design or optimization or selection. The basic ML and DL
models are presented in Figure 4. Some of these algorithms
are discussed in the following sections.

A. SUPERVISED LEARNING (SL)
In a supervised learning model, the computer learns from
a labeled dataset in order to generate predicted responses
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FIGURE 3. Organization of this survey work.

FIGURE 4. The general architecture of (a) an ML model, (b) a DL model.

to new input. Regression and classification are two forms
of supervised learning techniques. In the classification task,
a model is trained using the learning algorithm on a set of
samples and their corresponding labels. Once trained, the
model should be able to classify any unseen data into one
of the labels. The regression algorithm’s goal is to discover
the mapping function that will transfer input variables (x) to
a continuous output variable (y). There are many supervised
learning algorithms proposed in the literature. Figure 5 shows
a categorization of supervised learning algorithms along
with their suitability for different applications. The graphical
representation of the classification and regression algorithm
of supervised learning is shown in Figure 6.

B. UNSUPERVISED LEARNING (UL)
An unsupervised learning algorithm uses an unlabeled dataset
to train themodel, attempting tomake sense of it by extracting
features, co-occurrence, and underlying patterns in the data.
In many cases, the labeling of data may not be available or
costly, and unsupervised learning overcomes this issue by
learning from data and classifying them without the use of

labels. Unsupervised learning is quite useful for detecting
patterns in data that are not visible using traditional methods.
Figure 7 depicts the clustering of the unsupervised learning
algorithms. Various unsupervised learning techniques and
their usage in multiple domains are Shown in Figure 8.

C. REINFORCEMENT LEARNING (RL)
Reinforcement learning (RL) is a sort ofML inwhich amodel
learns how to behave in a given environment by executing
actions and assessing the outcomes. RL method is shown
in Figure 9, while various types of RL and their suitable
application areas are shown in Figure 10.

D. ARTIFICIAL NEURAL NETWORKS
The ANNs are computational neural networks that are
capable of performing the same tasks mimicking the human
brain. Based on their learning characteristics, ANN may
be grouped into three types. These include the supervised
neural network, the unsupervised neural network, and the
reinforcement neural network. The block diagram of the
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FIGURE 5. Classification of supervised learning.

FIGURE 6. Classification and regression of supervised learning.

FIGURE 7. Clustering using unsupervised learning algorithm.

ANN model with interconnected nodes and weighted links
is shown in Figure 11.

E. DL ALGORITHM
DL is a sort of technology that models the neural network
of the brain. Connected layers are utilized to develop DL
algorithms. The input layer is the initial layer in DL, whereas

the output layer is the last layer. Hidden layers consist of
all the intermediate layers. The weight, bias, and activation
function all impact the signal strength transmitted to the
neuron in the subsequent layers. There are two learning stages
in DL. In the first stage, the input data are subjected to a
nonlinear transformation, and a statistical model is generated;
in the second stage, the model is enhanced via a mathematical

VOLUME 11, 2023 103895



N. Sarker et al.: Applications of ML and Deep Learning in Antenna Design, Optimization, and Selection

FIGURE 8. Classification of unsupervised learning.

FIGURE 9. Illustration of RL algorithm.

FIGURE 10. Classification of RL algorithms.

process known as derivative. These two procedures are
performed hundreds to thousands of times until the neural
network reaches an acceptable level of accuracy. This two-
phase method is repeated via iteration. The general schematic
of a DL model is already shown in Figure 4(b), now the
classification of DL is shown in Figure 12.

III. ML/DL-BASED ANTENNA DESIGN
To complete a task and to predict the future, ML follows
a flow chart as shown in Figure 13. It aids in improving
task performance and productivity. When presented with

new data, it incorporates learning and self-correction during
training. After a model is built, it goes through a testing
phase where the model is evaluated. On deployment, further
parameter tuning is possible for even better performance.

Multiple simulations of an antenna using CST, HFSS,
IE3D, Altair FEKO, Antenna Magus, and so on are used
to generate the required dataset for optimizing antenna
performance. Now, we discuss antenna design using different
simulators. An antenna can be designed in CAD FEKO
and the simulated results can then be observed in the
POST FEKO. An antenna can also be designed in FEKO
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TABLE 1. ML-based antenna design.

FIGURE 11. The basic block diagram of ANN model.

and connected with the Hyperstudy to produce a superior
output. The Altair Hyperstudy supports some advanced
ML algorithms such as the adaptive response surface
method (ARSM), global response surface method (GRSM),
sequential quadratic programming (SQP), method of feasible
directions (MFD), and genetic algorithm (GA). Based on
these learning algorithms, Hyperstudy provides the expected
design parameters such as antenna length, width, slot size,

or other desired design parameters to obtain acceptable
performance. The flow diagram of antenna design and
optimization using Altair FEKO and Hyperstudy is shown in
Figure 14.

A. ML-BASED ANTENNA DESIGN
ML algorithms are useful for antenna design. The antennas
are designed by researchers using EM simulation software,
and the antenna dimensions are adjusted through a process
of trial and error. This is a very time-consuming task due
to the large number of simulations required and sometimes
the estimated level of accuracy might not be achieved.
In this regard, many useful ML methods such multistage
collaborative machine learning method (MS-CoML), single
output GPR (SOGPR), multi-output GPR (MOGPR), SVR,
SVM,ANN.KNN,DTR,DFR and others are used by antenna
designers to solve the aforementioned bottleneck [18], [19],
[20]. Thus, ML can anticipate antenna behavior, increase
computing efficiency, decrease the number of simulations
needed, and speed up the antenna design process while
maintaining high accuracy, decreasing errors, and saving
time. In [9], ML is used to optimize the antenna parameter
and enhance evolutionary computation algorithms such as
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FIGURE 12. Classification of DL algorithms.

FIGURE 13. ML based antenna design flow diagram.

PSO and differential evolution (DE). PSO and DE algorithms
are used to design multiband patch and E-shaped antennas,
respectively. Both algorithms ensure a speedy design process
by removing unnecessary time-consuming EM simulations.
A beam shaped reflect array antenna based on the SVM is
presented in [21] where two sets of four parallel dipoles are
used and the reflection coefficient matrix is characterized
using SVM. In this work, SVM provides high accuracy
except for some discrepancies for low levels of the cross-
polar pattern due to the tolerances in the manufacturing and
measurement process.

Bayesian regularization as the neural network learning
process is used for designing planer inverted-F antenna
(PIFA) in [22]. An ML model is built to determine the
complex permittivity and permeability based on varying
particle radius and volume fraction. Moreover, a modified
magneto dielectric material is introduced for the antenna
substrate. Due to this artificial substrate, the proposed PIFA
antenna provides an acceptable performance [22]. An ANN
with a PSO-based learning model is used to design a
multiband patch antenna with higher bandwidth [23]. The
authors report a computer-aided design (CAD) tool that is
user-friendly and faster to design stacked patch antennas for
the X-Ku band. However, the work only considers estimating
the resonant frequencies and bandwidth, without focusing

on expected gain, directivity, efficiency and E-field/H-field
radiation pattern. A double T-shaped monopole antenna is
analyzed in [24] using ANN-based multilayer perception
(MLP). For this purpose, the sine-cosine algorithm (SCA)
and grey wolf optimizer (GWO) are used to train the ANN.
The proposed SCGWO MLP model is shown to be more
precise than MLP and KNN models to design and optimize a
double T-shaped monopole antenna. A novel surrogate model
with SADEA is proposed for antenna design and optimization
[25]. Compared to widely used DE and PSO, the SADEA
model improves the antenna efficiency and speeds up the
design process. In [26], Levenberg–Marquardt Algorithm
with ANN is used to design an elliptical printed dipole
antenna; however, only 24 data samples are created using EM
simulations. An ML approach to predict the dimension of the
rectangular microstrip patch antenna is depicted in [27].
To predict the optimized dimension DT, SVR, ANN and

random forest algorithms are employed. ML-based dual
antenna systems consisting of a four-element patch antenna
array and log periodic dual-dipole antenna are discussed in
[28]. A multi-objective genetic learning algorithm is used to
design and optimize the antenna dimension and performance
metrics such as side lobe, gain, standing wave ratio, and
return loss. Figure 15 shows the proposed dual antenna
systemwhile the overall volume is 500×143.66×8.175mm3.
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FIGURE 14. Antenna design and optimization using Altair FEKO and Hyperstudy.

FIGURE 15. The proposed dual antenna system in [28].

Using the proposed multi-objective ML model, the number
of side lobes and side lobe level is reduced which improves

the directionality. The multi-objective genetic algorithm is
used to overcome the limitations of a single-objective genetic
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FIGURE 16. MGSA-PSO algorithm-based DNN training procedure [30].

algorithm. The single-objective algorithm gives priority
to only one parameter, while the multi-objective learning
algorithm can optimize multiple parameters as objective
functions. One study [29] introduces an EM-driven and
ML-based multiband rectangular spiral-shaped microstrip
antenna. For modeling and optimizing the antenna, three
models: DTR, DFR and ANN are used. To analyze the
predicting accuracy, MSE is also calculated. Among these
models, DTR performs better than the other two. Table 1
shows the various ML techniques used in antenna design.

B. DL-BASED ANTENNA DESIGN
Deep neural network (DNN) is utilized mostly for image
processing, natural language processing (NLP), and speech
recognition. Due to the extensive demand for data capacity
in the field of wireless communications, such as radar com-
munication, satellite communication, telemedicine, MIMO
systems, and radio astronomy, researchers are now motivated
to improve algorithms that support large data capacities.
In this situation, the design of an efficient antenna for wireless
communications is a challenge. To construct an effective
antenna taking into account all the antenna properties,
neural networks (NN) may be employed [30]. Using EM
simulations, only 150 data samples are created by the authors
in [30] by varying antenna geometry and electrical properties.
The dataset is split into 135 and 15 for training and testing
the DNN model, respectively. The proposed DNN model
is suitable for resonant frequency prediction and also is a
suitable alternative for costly measurement and simulations.
Nowadays, researchers are exploiting many techniques to
design antennas based on the DNN. The k-nearest neighbor
(k-NN) concept is used for the DNN-based antenna design
because less training and testing data samples are required
[31]. The benefit of this method is that it can generate
important data samples during the training process ensuring
its high efficiency. Some advanced DL algorithms such as
deep CNN (DCNN), and deep recursive neural networks
(DRNN) may be applicable in the future for antenna design,
optimization, and radar image synthesis.

In [32] the radiation pattern of non-uniform linear arrays of
high superconducting microstrips antennas is modified based
on the radial basis function (RBF) NN. A total of 80 data

samples are used to train and test the model. The model per-
formance shows that the side lobe levels are acceptable and
useful for designing arrays with superconducting antennas.
An array antenna is proposed based on the backpropagation
NN, while a phased array antenna is introduced based on
Taguchi NN [33], [34]. Taguchi NN is easy to implement and
useful for optimizing electromagnetic applications because of
solving a high degree of complexity with a lesser number
of experiments [34]. Although ANN/DNN provides very
accurate results, the drawback is that there is no general rule
to define the architecture of NN [34]. The DNN is used in the
research of radiation pattern synthesis with a 4 × 1 array of
patch antenna with 0.28λ spacing (among the array elements)
[35]. The radiation pattern of an antenna is used as the
input for a DNN model, and the output is the amplitude
and phase of the antenna elements. The proposed DNN is
trained with a large number of radiation model samples and is
shown to be capable of synthesizing radiation patterns [35].
The measurement result of the bone-shaped patch antenna
(BSPA) operating in the frequency span of 28 GHz-38 GHz
is tested and verified with DNN-based results [30]. Figure 16
shows a hybrid approach that is adopted in that work that
combines the strengths of PSO and a modified version of
the gravitational search algorithm (MGSA-PSO) to improve
the framework and hyper-parameters of the DNN model
during the training phase. The MGSA-PSO algorithm is used
to train the model using a collection of input-output data
pairs [30]. For input-output generation, the input vector is
first formed for testing input samples, and the corresponding
output vector is generated when input is presented to the
neural networks [30]. Simulations with various shapes and
electrical characteristics are used to generate a dataset
containing the resonance frequency of 150 BSPAs [30]. The
data samples are divided into 135 and 15 samples for training
and testing the model, respectively. The reported DNN
model is utilized to predict the resonant frequencies with
the highest level of accuracy, making it a practical and cost-
effective substitute for expensive simulations and testing.
The beam-steering radiation pattern of the planned antenna
array is then applied using the DNN model [30]. A four-
layer DNN is used to design a metasurface unit cell antenna
at a resonance frequency of 5.8 GHz with a dimension of
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TABLE 2. DL-based antenna design.
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TABLE 2. (Continued.) DL-based antenna design.

TABLE 3. Summary of major works on RL-based antenna design.

λ /4 [36]. The target metasurfaces are implemented based
on the inverse network and data augmentation by a forward
network and a random search algorithm [36]. Using the
two DNNs (one inverse and one backward network), the
average transmittance of the unit cells is improved by
roughly 0.024 compared to the unit cells created using the
traditional technique. The DNN is very useful for antenna
impedance matching without any mathematical reasoning
of matching methods [37]. A traditional inverted-F antenna
is used for impedance matching with a gamma-matching
circuit composed of a series capacitor and a parallel capacitor.
The matching circuit’s element values are used to obtain
the antenna’s input impedance S11 magnitude for learning
purposes. A total of 66 validation samples and 377 training
samples altogether are collected [37]. The results indicate

that the reported DNN model is suitable for impedance
matching and resonant frequency prediction, even if the
antenna structure is physically complex. The summarized
results of DL based antenna are presented in Table 2.

C. RL- BASED ANTENNA DESIGN AND BEAMFORMING
In this section, the applications of RL in antenna design
and beamforming are presented. By integrating domain
knowledge-informed imitation learning (IL) with RL, the
authors in [40] offer a novel technique for automating antenna
design. Learning the RL process can be challenging and time-
consuming. This is avoided by employing IL to retrain the
decision-making network in the RL algorithm. IL with RL
uses domain knowledge to initialize the antenna settings. As a
result, the antenna design procedure is more expedited than
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TABLE 4. Summary of works on RL-based beamforming.

traditional RL using techniques such as deep deterministic
policy gradient (DDPG). RL and surrogate model based
fully automated 1 × 2 and 1 × 4 array antenna design
methodology is introduced in [41]. Advanced RL with DNN-
based surrogate model is also a powerful tool to boost the
efficiency of EM devices [41]. The double-layer rectangular
patch as a metamaterial unit may not be a good choice for
other types of antenna arrays. A specialized antenna known
as a cognitive antenna for intelligent spectrum sensing and
beam steering capability is presented in [42] and [43]. The
intelligent beam steering capability of the cognitive antenna
is achieved through deep reinforcement learning (DRL) or
the twin delayed deep deterministic policy gradient (TD3)
algorithm. DRL-based cognitive 1 × 8 planer antenna array
(CAA) and a 1 × 8 conformal phased array antenna show
satisfactory radiation performance for various beam scan
angles [42]. However, to achieve acceptable beam steering,
a deep-Q network is required to train and regulate the phase
distribution of the array antenna. The TD3 technique is a
revolutionary array optimization approach for stealthy CAAs
that combines the advantages of DL and RL [43]. Although
±500beam scanning around 6 GHz is obtained, the TD3
algorithm is computationally more complex compared to GA
and PSO.

DDPG, also known as deep RL algorithm [44], is used
to synthesise the pattern of the 1 × 17 conformal phased
array antenna (PAA). At 2 GHz, ±1500 beam scanning is
achieved. In the case of an array and MIMO antenna,
RL is a useful tool for beamforming. RL-based intelligent
beamforming capability for array antenna and mmWave
massive MIMO is presented in [45], [46] and [47]. The
efficient beamforming and optimal power usage techniques
can reduce co-channel interference, and improve the sum
rate capacity for mmWave mobile communications [45],
[46], [47]. However, the optimal beamforming for large
antenna arrays is a big challenge at the mmWave band.
To overcome this problem, deep Q-learning is reported
in [48] that maximizes the beamforming rate. The hybrid
beamforming for large antenna arrays is yet to be done
and needs to be explored in the future. DRL-based adaptive
beamforming technique is presented in [49] to prevent
malicious jamming when the expected signal is transmitted

by multiple antenna arrays. It is reported that anti-jamming
algorithms may prevent malicious attacks for large-scale
dual-polarized antenna arrays [49]. Summarized information
on RL-based antenna design and beamforming technique is
presented in Table 3 and Table 4, respectively.

The above discussion indicates that RL can help with
antenna design and beamforming techniques, improving
communication coverage and effectiveness.

D. DATASETS FOR ML/DL-BASED ANTENNA DESIGN
To apply ML/DL algorithms to predict any attributes or
design parameters, a valid dataset is mandatory. Various EM
simulation software such as CST, HFSS, FEKO, and IE3D
are useful tools for dataset generation. A brief description
of some of the available datasets used in ML/DL studies in
antenna engineering is presented in Table 5. It can be seen that
the datasets have different numbers of samples and attributes.

IV. ANTENNA OPTIMIZATION USING ML
This section discusses the application of ML in antenna
optimization. The term optimization refers to the process of
trying to identify a combination of inputs to an objective func-
tion that would either produce the highest possible function
evaluation or the lowest possible one. This challenging task
provides the foundation for a wide variety of ML algorithms,
including those for fitting logistic regression models and
those for training ANNs. The development of novel and
sophisticated electromagnetic devices that are competitive in
terms of performance, serviceability, and cost-effectiveness
is the objective of antenna optimization. Selecting suitable
objective functions, design variables, parameter values, and
constraint conditions are all part of this method. Traditional
methods of designing antennas are laborious and provide no
assurance that they will provide satisfactory outcomes. This
is due to the complexity of modern antennas in terms of their
topology and performance standards. Although experience-
based rules of thumb can be useful to antenna designers, they
are not always appropriate for use with relatively simple small
antenna structures, and adopting them can result in less-than-
ideal designs. As a direct consequence of this, optimizing a
multilayer, multiband sophisticated antenna is a process that
is not only difficult but also time-demanding. In most cases,
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TABLE 5. Summary of datasets for ML/DL-based antenna design.

the solution to the aforementioned bottleneck can be found in
procedures involving trial and error as well as the fine-tuning
of the properties of materials [54].

Another useful technique for optimizing an antenna is
sweeping multiple parameters at a time. However, it is
also a very lengthy process and there is no guarantee
for desired results. As a result, design automation through
optimization is necessary. Local and/or global numerical
optimization approaches are commonly used to improve
antenna performance through optimization [56]. Although
numerical optimization is superior to experience-driven
parameter sweeping, there are still certain obstacles to
overcome. A good initial or starting point is required in
local optimization technique, while in global optimization
technique, it is not mandatory [19]. However, in Global opti-
mization techniques, a large number of electromagnetic (EM)
simulations are required to achieve desired results. To over-
come the aforementioned limitations in traditional antenna
optimization methods, researchers are exploiting ML-based
antenna optimization. ML-assisted optimization (MLAO) for
antennas is gaining research interest. Multiple research works
are carried out to optimize antenna performance based on
MLAO. In [25], [55], [57], [58], [59], [60], [61], [62], and
[63] Gaussian process regression (GPR), surrogate-based
optimization (SBO), ANN, support vector machine (SVM),
and master-apprentice board learning system (MABLS) are

discussed. Different aspects of the current MLAO antenna
design methods can be categorized, such as whether they
are offline or online, local or global optimization, single or
multi-objective optimization, or parallel optimization [25],
[55], [57], [58], [59], [60]. The MLAO can be used for
antenna design not only in the optimization stage but also for
sensitivity analysis (SA) and resilient design [64], [65].

Although many optimizing techniques are available, the
following sections focus on parallel optimization, single
objective, multi-objective, and variable fidelity (VF) opti-
mization, where ML can assist in achieving the desired
objectives. The following subsections provide the details of
ML-based and surrogate-based optimization.

A. PARALLEL OPTIMIZATION
At present, parallel optimization or computation is a very
prominent method for sensitivity analysis, performance
analysis, and resilient design of an antenna. The CPU,
memory, and computational capabilities of the cloud can
be used to speed up the optimization method by including
parallel computation into the MLAO algorithms [55], [60].
In [55], a dielectric resonator antenna (DRA) and Yagi-
Uda antenna are designed using parallel surrogate model-
assisted hybrid differential evolution for antenna (PSADEA)
optimization using GPR. It compares the convergence trends
of PSADEA with sequential mode, parallel mode, SADEA,
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FIGURE 17. Flow diagram of the PSADEA method [55].

parallel differential evolution algorithm (DEA), and parallel
PSO. It reveals that PSADEA is much faster (about 20 times)
than the other optimization algorithms such as parallel
DEA, parallel PSO, and parallel surrogate model-aware
evolutionary search. Moreover, in terms of efficiency and
optimization capacity, the proposed method outperforms
conventional methods. In the future, PSADEA-based EM
simulation tools will be developed and the performance
of PSAEDA will be evaluated for high-order clusters. The
flow diagram of the PSADEA-based antenna design and
optimization is shown in Figure 17.

B. SINGLE OBJECTIVE OPTIMIZATION
A single-objective optimization issue is one in which the
goal is to identify the optimum solution for a single criterion
or metric, such as execution time or performance. Indeed,
single-objective optimization problems are frequently used to
mimic antenna optimization difficulties. In [56] the isotropic
gain is used as the single objective optimization example
of an antenna. Antenna optimization problems are typically
limited optimization problems. This is because antenna spec-
ifications are frequently represented mathematically as two
or more objective functions. In most constrained optimization
situations, a weighted sum of the constraints and the objective
is used to generate a penalty function, which then becomes
the single objective function value for the optimization. The
penalty technique [12] is a popular method for aggregating
various needs in antenna issues. In recent times, for single
objective or single constrained antenna optimization,multiple
SBO methods are introduced [66], [67], [68]. Many SBO
methods require a large number of training datasets to
obtain acceptable efficiency, i.e., multiple EM simulations are
needed to optimize the antenna efficiency. For this reason,
a good balance is needed between the SBO model and
antenna efficiency which is called SBO model management.
To properly address this challenge some other methods
are proposed. In [69] space mapping optimization and
trust region (TR) search-based SBO models are adopted.

A multi-stage optimization approach using large-scale sen-
sitivity analysis and local optimization routines can improve
the convergence speed, lower the dimensionality of the
search space, and optimize the initial point of the TR
gradient search [68], [69]. A class of SBO methods that
offer a good balance between the quality of the surrogate
modeling and the efficiency of the optimization are proposed
in [25], [55], and [62].

C. MULTI-OBJECTIVE OPTIMIZATION
The multi-objective optimization problem is a field of math-
ematics that deals with optimization problems containing
two or more objective functions that must be maximized
or minimized simultaneously. Multi-objective optimization,
which generates a set of non-dominant (Pareto) solutions
from which a compromise process design can be chosen,
has recently become an important tool for decision-making.
Much effort has been put into solving the actual industrial
challenges with numerous goals in mind. Recent studies
are focusing on multi-objective optimization techniques for
optimizing the results of an antenna [70], [71]. Based
on the multi-objective optimization techniques in [72] a
multiband planer antenna is optimized in terms of minimizing
reflection coefficient within multiple bands and antenna
dimension. Based on the decision-making process, multi-
objective optimization methods can be categorized into priori
and posteriori [70]. In priori methods, prior information
from the decision maker is required while posteriori methods
do not rely on prior information from the decision maker.
Alternatively, the posteriori methods generate several well-
representative best trade-off candidate solutions for a decision
maker to check on a Pareto front (PF). In [73], a large number
of EM simulations are required to optimize an antenna using
traditional multi-objective which consumes significant time.
Furthermore, when the designer preferences are strong and
just one final design solution is chosen and employed after a
successful run, the set of alternative design solutions created
by the Pareto front is typically redundant [74].

Many researchers are exploiting a number of solutions
to properly address the challenges [72], [74], [75], [76].
To minimize the computational complexity, offline surrogate
modeling, and backward propagation neural networks are
introduced in [72]. To easily find out the local optimum
and to obtain better convergence speed surrogate model
is employed in integration with hybrid real binary PSO
optimization algorithms that promote the capability of
global optimization [77]. An improved population set in
the optimization process is generated using the local search
method in one study [75], which is the main difference
from conventional optimization. The classic non-dominated
sorting approach [78] aswell as the farthest-candidatemethod
[33] are utilized to produce the improved population set
for successive iterations. Surrogate modeling and variable
fidelity EM models are proposed to reduce computational
complexity and accelerate the convergence of multi-objective
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FIGURE 18. Variable-fidelity optimization method.

optimization antennas [74], [76]. To serve this purpose,
gaussian interpolation process with standard multi-objective
optimization using MOEA is used in one research work [79].

D. VARIABLE-FIDELITY OPTIMIZATION
The variable-fidelity optimization (VFO), also known as
multi-fidelity optimization, is a technique for optimizing a
process by combining the benefits of high- and low-fidelity
models. The high-fidelity (HF) model ensures solution
precision, while the low-fidelity (LF) model saves time and
money. The VFO technique is shown in Figure 18. The
approximation management framework (AMF) algorithms
provide the mathematical robustness necessary for VFO [80].
In VFO, LF models are used to find out non-promising and
inexpensive solutions while accurate HF models are used to
filter out the promising solutions obtained by the LF model.
Based on the optimization framework, VFO models could be
surrogate and/or EM models [81], [82], [83]. To serve this
purpose, surrogate models and antenna or EM models are
incorporated into a single optimization framework to verify
fidelities or accuracies [84].

The primary challenge in ML-assisted VFO antenna opti-
mization models is to ensure efficient parameter extraction
from the LF design space to the HF design space. Several
research investigations are carried out to overcome this
limitation in [82], [84], [85], and [86]. Conjunctive use of
varying-fidelity models with data-driven surrogate models
is introduced [85] in which space reduction technique is
employed. In the space reduction method, LF EM model
design space is used to determine the lateral spread of the
solution, while a few HF EM models are used to validate
LF design space. A new technique is introduced in [82]
to enhance the speed of convergence of the VFO. In this
model, several coarse models with increasing discretization
levels are used. The coarse models are considered for the
iterative construction of a series of local surrogate models
through polynomial interpolation. The correlation between
the present surrogate model and the corresponding model is
essential for updating the size of the local region.

A multistage SBO technique with data mining and a
local search mechanism is suggested in [84] based on the
algorithmic framework in [87] to reliably address model
differences in multi-fidelity antenna optimization while

assuring high efficiency and better convergence speed.
In [88], a new VFO method is proposed to model the input
characteristics of an antenna based on domain confinement
and two-stage GPR surrogates. The high CPU cost of the
extensive simulations required by parametric optimization,
uncertainty quantification, or robust design processes is
the primary constraint in EM-driven antenna design. The
nested kriging (method of interpolation based on Gaussian
process governed by prior covariances) approach and two-
stage GPR are leveraged in this research work to mitigate the
bottleneck of the EM-driven robust antenna design. A low-
cost antenna modeling technique based on variable fidelity
EM simulations is proposed in [61]. The main advantage
of this technique is the limited number of HF data points
required to model an antenna accurately compared to the
conventional approximation technique. The computational
cost of this model is greatly reduced than the conventional
models without sacrificing the accuracy of the model.

E. MULTILAYER ML-ASSISTED OPTIMIZATION
In one research work [89], a series-fed microstrip antenna
array (SMAA) is proposed based on multilayer MLAO for
robust and efficient design. ML approaches are incorporated
into various stages of the robust design process, including
worst-case analysis (WCA), maximum input tolerance hyper-
volume (MITH) searching, and robust optimization, resulting
in a significant speed-up of the entire process. To assure
reliability, the WCA is performed using a genetic algorithm
based on a surrogate model mapping between design
parameters and performance. The MITH of the provided
design point is then determined with the use of an MLAO-
based framework. Following that, correlations between the
design parameters and the MITH are learned using the
training set generated by MITH searching. Surrogate models
for both performance and MITH are used in the robust
design, and these models are updated online using the ML-
MLAO technique. When the input tolerance is known, many
approaches such as worst-case analysis (WCA) [90], [91] are
presented to find the output tolerance. Innovative techniques
are developed to achieve efficient MITH searching and
resilient antenna design optimization; these range from
a global search algorithm combined with iterative input
tolerance hypervolume (ITH) shrinking [90] to a sampling
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TABLE 6. Summary of works on surrogate model-based antenna synthesis.
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strategy mixed with surrogate modeling [92]. However, these
techniques have some limitations such as the parameters
should be identified in advance and cannot be changed
during iterations. These limitations are solved in [89] using
multilayer MLAO with MITH searching that provides the
desired output.

F. SURROGATE-BASED OPTIMIZATION
This section introduces the most recently reported works
in antenna optimization based on surrogate models such as
pyramidal deep neural networks, fully automated regression
surrogates, and other related works. Surrogate modeling
is proposed as a solution to alleviate the computational
overhead of CPU-intensive EM simulations for tasks such
as parametric optimization and uncertainty quantification.
This model has gained popularity in the field of antenna
design and optimization to address the high cost associated
with electromagnetic simulations. The necessity for reliable
design of contemporary antenna structures using full-wave
electromagnetic analysis is presented in some studies [93],
[94]. The effectiveness of the surrogate technique compared
to traditional approaches is illustrated by two antenna
examples, and practical case studies involving antenna opti-
mization are investigated [93]. To achieve arbitrary antenna
shapes and effective optimization, one study [95] proposes an
ML-based generative method that enables automated antenna
design and optimization. The performance of the proposed
method in dual resonance antenna design is better than the
other competing algorithms. The limitation of this research
work is that only reflection coefficient is used to build the
model. To overcome this issue, the gain, efficiency, and
radiation pattern should be in consideration for more accurate
performance.

The 3-D reflectarrays which offer pencil-beam radiation
patterns based on the DL-based surrogate and inverse
surrogate models are reported in [96], [97], respectively.
Both techniques are useful to reduce the optimization cost
significantly and outperform benchmark techniques. In [96],
with only 500 data samples, the MAE is only about 5
(phase error), which is significantly (by a factor of 10)
lower than that for the ensemble learning model and other
conventional models. Inverse surrogate-based antenna design
and optimization is significantly faster (almost 200 times)
than the full wave-EM design approach [97]. DNN and/or
DL-based surrogate models are introduced in [41] and
[98] to automate the antenna design, aiming to relieve
human engineers, and enhance productivity. Constructing
a reliable data-driven surrogate model is difficult as it
requires a wide range of geometry and material parameters
for practical antenna design and optimization. To address
this limitation, a knowledge-based domain-constrained DL
surrogate model is used to design three microstrip antennas
with high efficiency and low cost [98]. Another popular
technique for antenna design and optimization is to integrate
the surrogate model with the PSO technique [99], [100].
ML-based surrogate-assisted PSO is used in [99] while

deep convolutional auto-encoder (DC-AE) based surrogate-
assisted PSO is used in [100]. Bothmethods provide desirable
results with a less number of EM simulations than the
conventional methods. The method proposed in [99] is
suitable for solving the synthesis problem of sequential
rotation feeding networks.

For a 2×2 microstrip array antenna, the surrogate-assisted
defected ground structure (DGS) can be used to reduce
coupling between the E- and H-planes by 10 dB at 2.45 GHz
[101]. To achieve this performance, ML is applied to find
the optimal performance of the DGS structure. However,
the envelop correlation coefficient has not increased consid-
erably, which is a limitation of this study. Multisurrogate-
assisted optimization framework for mmWave array antenna
at 28 GHz is proposed in [102]. The framework comprises
three stages for initial parameter optimization, side lobe level
(SLL) optimization, and beamforming-focused optimization
using an improved array factor formula and the space
mapping technique [99]. The proposed method is suitable for
reconfigurable antenna design and cognitive radio systems.
Moreover, the surrogate modeling approach is a very
promising technique for frequency reconfigurable antennas
and tolerance optimization of antenna structures [103], [104].
A summary of surrogate model-based antenna synthesis is
presented in Table 6.
In summary, surrogate models offer a useful tool for

speeding up the antenna optimization process by drastically
lowering the computing effort while maintaining acceptable
accuracy.

V. ML AND DL BASED ANTENNA SELECTION FOR
WIRELESS COMMUNICATION
Antenna selection (AS) is a signal processing technique
that reduces the hardware requirements of multi-antenna
systems significantly. AS can reduce the number of radio
frequency chains required by activating only a portion
of the available antennas in each transmission slot. The
computational complexity of the optimal AS, on the other
hand, grows exponentially with the size of the antenna array
[105]. One possible approach is to use intelligent learning
techniques to aid in this process. It is built around an
adjustable antenna that employs cognitive learning. It has
created the groundwork for adjusting signal strength to
improve wireless transmission efficiency [16].
Adaptive antennas, also known as smart antennas, are

antennas that use antenna array or beamforming technology
to improve antenna gain and other performance metrics
to improve signal-to-noise ratio (SNR). Furthermore, the
adaptive antenna’s radiation pattern can be dynamically
changed. The usage of adaptive antennas helps reduce
multipath fading concerns such as Rician and Rayleigh
fading. On the other hand, high SNR ensures higher data rates
on the basis of Shanonn’s channel capacity estimation. For
the m-element array antenna, this estimation can be modified
in a way so that the total SNR is divided evenly among
all the antennas [16]. Other advantages of smart antennas
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FIGURE 19. Intelligent antenna selection (AS) algorithms.

include increased signal strength, transmission efficiency,
enhanced security, and reduced multipath interference. Based
on the diversity, phased array, and beamforming, traditional
and intelligent techniques are employed to deploy adaptive
antennas in wireless networks.

According to recent research, intelligent systems like AI,
ML, and/or DL are widely utilized for AS in the modern
wireless arena. Typically, supervised learning, unsupervised
learning, and RL algorithms are utilized for this purpose.
Algorithms such as k-NN, DNN, CNN, SVM, NB, NN,MLP,
LSTM, GPR, SNN, ANN, SVR, decision tree (DT), deep Q
network (DQN), regression tree (RT), and others are utilized
for smart antenna selections. The adaptive AS and estimation
accuracy are highly dependent on the various signal data
and the proper learning algorithms. Correct feature data
extraction is unquestionably necessary for proper modeling
of AS selection. This feature data extraction is divided into
three categories. These are as follows: i) angle label, such
as the direction of arrival (DoA) or angle of arrival (AoA)
(ii) data packet or BER label; and iii) antenna element
count label. One research work [106] presents the DL and
greedy adaptation (GA) based antenna selection for MIMO
systems. In [105], authors investigate multi-label learning-
based antenna selection for massive-MIMO (m-MIMO).
Another study [17] discusses the DL-based AS (DLBAS)
algorithm for software-defined radio (SDR) MIMO systems.
DLBAS-aided MIMO-SDR system is constructed based on
three steps. Firstly, the MIMO-SDR communication system
is developed. Then, the DNN framework is adopted to
construct a DL decision server to assist the MIMO-SDR.
Finally, the DL decision is transformed into multithreading
to improve the resource utilization ratio. The DLBAS-
aided MIMO-SDR system equally performs with the NBAS
and outperforms compared to the MIMO-SDR system
without AS.

Some studies [107], [108] show the intelligent AS for
wireless communication based on ML and DL algorithms,
while [109] shows the DL-based cognitive radar antenna
selection technique. In [107], the performance of various
ML algorithms for AS is evaluated. The validation of
a learning system with realistic channels and an online
learning algorithm to track channels with time-varying
statistics are interesting areas that warrant further research.
In [108], DNN based AS-aided space-time shift keying
MIMO system is modeled. Experimental results show that
the proposed algorithms are better than kNN and extreme

gradient boosting in terms of bit error rate and channel
capacity. ML-based power allocation and AS for multiuser
MIMO systems is proposed in [110]. This study proposes
another interesting aspect which is joint antenna AS and
power allocation (JASPA). However, for real-time network
applications, JASPA has high complexity due to its double
iteration structure. To address this issue, learning-based
ASPA is proposed (L-ASPA) and simulation results reveal
that learning-based AS can greatly reduce the execution time
of JASPA while maintaining higher than 90% of the optimal
performance. For AS selection, the learning algorithms are
presented in Figure 19. The suitable ML or DL algorithms
for intelligent or adaptive antenna selections and the required
feature extraction techniques are presented in Table 7 and
Table 8.
There are three antenna selection schemes. These are

optimal antenna selection, suboptimal antenna selection, and
space-time modulation antenna selection scheme.

A. OPTIMAL AS SCHEME
In the optimal AS scheme, the transmit antenna at the
source and the receive antenna at the receiver are selected to
maximize the SNIR at the receiver which leads to improved
BER performance. One limitation of optimal AS is that
the exact CSI between a transmitter-to-receiver link and
transmitter-to-eavesdroppers link must be needed.

B. SUBOPTIMAL AS SCHEME
In suboptimal AS, the antenna is selected based on the
achievable secrecy rate between the transmitter to receiver
link, while the CSI of passive eavesdroppers is unavailable.
However, the secrecy performance of suboptimal AS is lower
compared to optimal AS.

C. SPACE TIME MODULATION SELECTION SCHEME
In this ASmethod, the space-time coding technique is used to
select the antennas when the CSI information of all the links
is unavailable. The antenna selection based on the space-time
modulation technique is more costly than the optimal and
suboptimal AS scheme. Because, in this AS technique, all the
available antennas are used.

VI. ML/DL-BASED ANTENNA DESIGN CHALLENGES
As we have discussed in the previous sections, extensive
research is being pursued that employs ML/DL algorithms
for antenna design, optimization and selection. Although
several advantages are realized as a result of the employment
of ML/DL, they do have significant limits. Future research
should focus on overcoming these challenges. Some of these
are as follows:

a) Creating a valid dataset is a difficult task because EM
simulation software such as CST, FEKO, and HFSS
takes a long time to run a single-element basic antenna.
Furthermore, if the antenna design is sophisticated, or if
the antenna is MIMO or array, the simulation time
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TABLE 7. Intelligent antenna selection techniques with algorithms.

TABLE 8. Algorithms for different label and feature data extraction.

increases significantly. ForML/DL-based antenna design,
a large dataset is necessary, and generating such a dataset
takes a long time. Moreover, a special type of antenna
design may require specific dataset relevant to that type
of antenna.

b) Choosing an appropriate ML/DL model to build and
optimize an antenna is a critical and difficult issue. Altair
Hyperstudy, for example, supports ARSM, GRSM, SQP,
MFD, and GA models to maximize antenna performance
built by Altair FEKO. However, determining which model
is the greatest fit and how many iterations are required to
get the necessary performance is not an easy issue.

c) In reality, various application areas require various types
of antennas. Additionally, various structures are added to
the ground plane and antenna patch to enhance antenna
performance. For instance, to accomplish multiband
operation, greater gain, and radiation efficiency, defected
ground structures (DGS) are employed in the ground
plane. Moreover, square, H, E, or circular-shaped slots are
created in the patch. Different datasets will be generated
while considering different antenna structures or antenna
types. The effectiveness of different ML/DL models
usually depends on datasets. Many large datasets have to
be generated for various antennas to find the appropriate

ML/DL model suitable for antenna design, optimization,
and selection.

d) The simulation results and experimentally measured
results may vary for an antenna. Moreover, the perfor-
mance of antennas in a real-life scenario may also be
different from that in a controlled environment. Hence, the
actual performance results of an antenna may vary from
the prediction results using the ML/DL model. Innovative
learning algorithms and model architecture need to be
designed to reduce this difference between the predicted
and actual antenna performance.

VII. CONCLUSION
This paper highlights the application of AI in the field
of antenna engineering. Various learning algorithms are
extensively discussed in this review work for antenna
design, optimization, and selection purposes. ML and DL-
based antenna design procedures using EM simulators such
as CST, HFSS, and FEKO are presented. Moreover, this
review article discusses various design optimization tech-
niques of the antenna, such as parallel optimization, single
and multi-objective optimization, variable fidelity optimiza-
tion, and multilayer ML-assisted optimization. Furthermore,
applications of ML/DL in different intelligent antenna
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selection techniques in wireless applications are described.
To automate the field of antenna engineering, adequate
dataset generation is a must. For this purpose, the complete
step-by-step procedure for data generation using FEKO is
presented. Moreover, the possible challenges of deploying AI
in antenna design, optimization, and selection are discussed
in this review. The findings of this review indicate that it
is possible to expedite the antenna design process through
the use of ML/DL while maintaining high accuracy level,
minimizingmistakes, and saving time.Moreover,ML/DL has
the potential to predict antenna behavior, improve computing
efficiency, and reduce the number of simulations required.
The results of this surveyworkwill be highly useful to readers
interested in exploring further research on the application
of ML/DL concepts in designing, optimizing, and selecting
antennas for wireless communications.
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