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ABSTRACT This article presents accurate, efficient and reliable small-signal model parameter extrac-
tion approaches applied to Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT). Firstly,
a scanning-based systematic model parameter extraction methodology is developed. Then, newly reported
Optimization Algorithms (OAs) namely Marine Predators Algorithm (MPA), Pelican Optimization
Algorithm (POA) and Tunicate Swarm Algorithm (TSA) in combination with direct extraction method
are utilized to develop hybrid model parameter extraction methodologies. Lastly, both the scanning-based
systematic and OA-based hybrid modelling procedures are thoroughly validated and demonstrated on a GaN
HEMT grown on diamond substrate to identify their pros and cons in distinct application settings. Moreover,
reliability, accuracy, convergence behavior, complexity and execution time of MPA-, POA- and TSA-based
hybrid extraction procedures are also discussed. We found that both classes of the approaches are able to
produce an excellent agreement between the measured and modelled S-parameters for a wide frequency
range up to 40 GHz. However, OA-based hybrid modelling procedures are more physically relevant.

INDEX TERMS GaNHEMT,marine predators algorithm (MPA), parameter extraction, pelican optimization
algorithm (POA), small-signal models (SSMs), tunicate swarm algorithm (TSA).

I. INTRODUCTION
Increased complexity and frequent innovations in latest wire-
less technologies have placed stringent requirements on the
design of Radio Frequency Power Amplifiers (RFPAs) [1],
[2]. Therefore, RFPAs should be meticulously designed to
meet the evolving needs of innovative applications such as
5G, 6G, satellite communication, radar systems, Internet of
Things (IoT) etc. [3], [4]. Gallium Nitride (GaN) High Elec-
tron Mobility Transistors (HEMTs) have been proven to be
the most suitable transistors technologies for the design and
innovation in RFPAs as these devices enable high output
powerwith low currents allowing the small peripheral devices
with low parasitic to operate at high frequencies with wide
bandwidth capability [5]. However, accurate Small-Signal
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and Large-Signal Models (SSMs and LSMs) of GaN HEMT
technology are extremely pertinent to realize this technology
in the design of RFPAs and millimeter wave (mmWave)
circuits [6], [7]. At this point, it is imperative to note that
the SSMs are the foundational benchmark of the noise mod-
els, LSMs, and eventual design of low-noise amplifiers and
RFPAs, therefore are considered essential [8], [9], [10], [11].
GaN-on-DiamondHEMT is a recently developed technology,
which is getting popularity as this device manifests lower
self-heating, thus renders better performance in contrast to its
counterpart GaN-on-SiC HEMT [12]. Moreover, the higher
thermal conductivity of diamond material with respect to SiC
and Si (4 to 5 times) makes it an ideal alternative especially
for the fabrication of high-power devices [12], [13].

Apparently, Small-Signal (SS) modelling approaches for
GaN devices can be divided into three main categories:
(a) physics-based modelling, which exploits the GaN
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HEMT’s physical structure and equations those elucidate its
operation [14], [15]; (b) behavioral modelling, that seeks
to formulate a mathematical description between the GaN
HEMT’s response and the input perturbations [16], [17], [18],
[19], [20], [21], [22] and (c) equivalent circuit-based mod-
elling, which utilizes a lumped equivalent electronic circuit,
whose parameters nearly depict GaN HEMT’s physical oper-
ating mechanism and are extracted using the experimental
data, thus regarded as an effective trade-off [23], [24], [25].
The main approaches to extract the SS Equivalent Circuit
Model (ECM) parameters of GaN HEMT device can be
bracketed in two categories. The first is known as direct
extraction technique, which employs the conventional ‘‘cold’’
approach, is simple, straightforward and less-complex [26],
[27], [28]. However, this approach does not cater for the
distributed capacitive effects, thus its accuracy significantly
diminishes at high operating frequency [28]. Furthermore,
the direct extraction techniques are also highly sensitive
to the measurement uncertainty [29]. The second approach
amalgamates direct technique with Optimization Algorithm
(OA)-driven extraction method, known as hybrid approach
and are generally accurate but requires more time and effort
to build and validate [29]. Nonetheless, an OA can render
excellent results for one category of problems and fails for
the other categories of problems as pointed by the no free
lunch theorem. Therefore, recently, various OA-based hybrid
extraction techniques have been reported to develop the SSMs
of GaN HEMTs devices [29], [30], [31], [32], [33], [34].

FIGURE 1. A general epitaxial structure of the DUT [35].

In this context, this paper explores and develops ini-
tially a scanning-based systematic and OA-based hybrid
SS model parameter extraction methodologies. Recently
reported Marine Predators Algorithm (MPA), Pelican Opti-
mization Algorithm (POA) and Tunicate Swarm Algorithm
(TSA) have been exploited to develop the hybrid approaches.
Both the scanning-based systematic and OA-based hybrid
approaches are applied on GaN-on-Diamond HEMT tech-
nology. Then, a thorough evaluation of the models devel-
oped using the scanning-based systematic and OA-based
hybrid approaches is carried out in terms of reliability of

the model parameters, physical relevance, execution time
(the time required to complete the scanning process and
running time of OAs for 50 iterations) and accuracy. Finally,
a rigorous examination of OA-based hybrid approaches is
also conducted using various metrics such as convergence of
the solutions, complexity, execution time etc. Summing up,
the major contributions of this paper with respect to others
presented in literature are: (i) the demonstration of MPA-,
POA- and TSA-based hybrid extraction methodologies for
GaN-on-Dimaond HEMTs; (ii) a detailed examination of,
at first, the scanning-based systematic and OA-based hybrid
approaches, and at last, MPA-, POA- and TSA-based hybrid
approaches in terms of simplicity of their implementations,
accuracy, reliability, execution time and convergence behav-
iors and (iii) demonstration and evaluations of these tech-
niques for the broad range of frequency (0.1 GHz to 40 GHz).

The next section spells out the details of the Device Under
Test (DUT) and the ECM. Sections III and IV demonstrate the
development and validation of the scanning-based systematic
andOA-based hybridmodel parameter extractionmethodolo-
gies, respectively. The results and discussion are provided in
Section V. Lastly, Section VI concludes the paper preceding
with references.

II. DETAILS OF THE DEVICE UNDER TEST AND
EQUIVALENT CIRCUIT MODEL
A. DETAILS OF THE DUT
A thorough discussion on physics and characterization of
the DUT is published in [12], [13], and [35]. Briefly, Fig. 1
demonstrates the epitaxial structure of the considered DUT.
The DUT is a GaN HEMT device grown on top of 500 μm
diamond substrate. The fabrication of the device involves
the growth of 1 nm AlN nucleation layer, 2 μm Fe-doped
GaN based buffer layer, GaN based channel layer, barrier
layer (20 nm AlGaN) and 2 nm GaN based Cap layer on
top of the substrate. The barrier layer has been doped with
0.3 nm Al concentration (Al-mole). Furthermore, electron
beam lithography has been used to realize the gate. The
device has been fabricated with the specification of gate-drain
spacing (Lgd), gate-source spacing (Lgs), gate finger width
(Wg), gate number (Ng) and gate length (L) of 2 μm, 1 μm,
125 μm, 4 and 0.25 μm, respectively.
AN5245Vector Network Analyzer (VNA) is employed for

the RF characterization of the DUT and outputs are recorded
in terms of real and imaginary S-parameters. Furthermore,
the measurement setup also includes two bias tees, bias
voltage source, RF wafer probe station, and a PC. Before
taking the measurements, the VNA is calibrated using the
line-reflect match technique with the help of calibration stan-
dard 104-783 from Cascade Microtech [13]. The device has
been characterized with respect to gate to source voltage
(VGS), drain to source voltage (VDS) and frequency (f), which
incorporates a wide-range of 0.1 GHz to 40 GHz. Likewise,
VGS and VDS incorporate wide-ranges, -3 V to 0 V and 0 V
to 30 V, respectively.
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B. SMALL-SIGNAL EQUIVALENT CIRCUIT MODEL
In this work, as depicted in Fig. 2, we are exploiting an
identical SSECM reported in [35]. Conventionally, ECM is
comprised of two disjointed parts: extrinsic part—contains
bias-independent model elements and intrinsic part—which
embodies bias-dependent model elements. In the adopted
SSECM: Cpga, Cpda, Cpgi and Cpdi account for parasitic
pad capacitances and inter-electrode or interconnections-
engendered capacitances, respectively. Parasitic inductances
and resistances induced from the metalization, distinct con-
tacts etc. are expressed with Lg, Ls, Ld and Rg, Rs, Rd,
respectively. Charging and discharging processes of the tran-
sistor are modelled with Cgs, Cgd, Ri and Rgd. Likewise, Gm,
Gds and τ characterize trans-, output-conductances and transit
time, respectively.

FIGURE 2. Small-signal equivalent circuit model adopted in this work.

FIGURE 3. Topology representing the low-frequency equivalent circuit
(≤ 1 GHz) of Cold-FET operation.

FIGURE 4. Topology representing ECM following deembedding of
capacitors under unbiased state.

III. THE SCANNING-BASED SYSTEMATIC MODEL
PARAMETER EXTRACTION METHODOLOGY
This work makes use of the similar scanning-based system-
atic modelling methodology reported in [35]. Fig. 6 eluci-
dates the methodology that has been implemented here to

FIGURE 5. T and π based equivalent circuits for the intrinsic part under
unbiased state for high frequency operation.

FIGURE 6. The utilized scanning-based systematic approach to extract the
model parameters.

extract the SSECM’s parameters that replicates the behav-
ior at pinch-off. To achieve this, initially, total capacitances
(Cgst, Cgdt and Cdst) are calculated at the Cold-FET pinch-
off condition (VGS = –3 V, VDS = 0 V). At this juncture, the
device has no channel current, therefore, SSECM topology
under low-frequency operation (≤ 1 GHz) can be represented
by the simplified capacitive network as depicted in Fig. 3.
For this network (see Fig. 3), Y-parameters can be written as
follows:

Im[Y11] = jω(Cpga + Cpgi + Cgs + Cgd) (1)

Im[Y12] = Im[Y21] = –jωCgd (2)

Im[Y22] = jω(Cpda + Cpdi + Cds + Cgd). (3)

From (1) to (3), total capacitances are extracted by
simple linear regression analysis (see Fig. 7), where
Cgst = Cpga + Cpgi + Cgs, Cgdt = Cgd and Cdst = Cpda + Cpdi +
Cds. Once total capacitances are determined, a systematic
search is carried out for Cpga and Cpgi. In this setting,
Cpga and Cpgi are assigned incremental values within the
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range of 0.01xCgst and Cgst with the step size of 0.02xCgst
and scanned. For allocated values of Cpga and Cpgi, other
capacitances are calculated (see (4) and (5)) with following
assumptions: Cpga = Cpda, Cgdt = Cgd, and Cds = 0 (which is
typically the case under pinch-off).

Cgs = Cgst – Cpga – Cpgi (4)

Cpdi = Cdst – Cpga. (5)

FIGURE 7. Simple linear regression analysis to extract total capacitances
at the Cold-FET pinch-off condition.

FIGURE 8. Extraction of parasitic inductances at the unbiased condition.

FIGURE 9. Extraction of parasitic resistances at the unbiased condition.

Then, unbiased measurement (VGS = 0 V and VDS = 0 V)
is utilized to extract parasitic inductances and resistances.
To realize this, firstly, Cpga and Cpda are deembedded and

parasitic inductances are extracted. Thereafter, inductances,
Cpgi and Cpdi values are deembedded and parasitic resis-
tances are extracted. Under this scenario, due the absence
of drain and gate currents, the effects of SSECM param-
eters namely Gm and τ can be ignored. SSECM topology
following deembedding of capacitors under unbiased state
is presented through Fig. 4. Moreover, at this point, it is
well-known that the formed channel will be symmetrically
depleted near the gate metallization. Therefore, we can
assume Cgs = Cgd = Cg and Ri = Rgd = Rch/2 [35]. Also,
the gate capacitance (Cg) avoids diode differential resis-
tances [34] at high frequency, and simultaneously channel
capacitance can be excluded [34]. Therefore, the intrin-
sic part of the transistor (see Fig. 4) can be expressed as
π-network and its corresponding T-network based equivalent
circuits (see Fig. 5) under unbiased state for high frequency
operation [35]. Consequently, we can write the Z-parameters
at the unbiased state using the T-network representation of the
intrinsic part by (6) to (8).

Z11 = (Rg + Rs + Rch/2) + jω(Lg + Ls) + 1/jω(Cg) (6)

Z12 = Z21 = Rs + Rch/2 + jωLs (7)

Z22 = (Rd + Rs + Rch) + jω(Ld + Ls). (8)

At this instance, the parasitic inductances and resistances
can be extracted from the slope of ωIm [Zij] verses ω2 (this
approach accounts the effects of Cpgi and Cpdi during the
extraction of parasitic inductances) and ωRe [Zij] verses ω2,
respectively (see Figs. 8 and 9). Here, Im [Zij] and Re [Zij]
are basically imaginary and real parts derived from (6) to (8),
respectively. Once the extrinsic elements’ values (parasitic
capacitances, inductances and resistances) are known, intrin-
sic elements are computed based on standard formulas [34]
using intrinsic Y-parameters following the deembedding of
extrinsic elements. S-parameters are then simulated using the
extracted model parameters and error between measured and
predicted S-parameters is computed as follows:

εab =
|Re(δSab,m)| + |Im(δSab,m)|

Wab
(9)

where, a, b = 1, 2, m = 1, 2, . . . , N and Wab is defined as
follows:

Wab = max[|Sab|], a, b = 1, 2; a ̸= b (10)

Wab = 1 + |Sab|, a = 1, 2. (11)

Here, N and δS represent number of data samples and the
deviation between the measured and predicted S-parameters,
respectively. Wab, weighting factor, de-emphasizes data cor-
responding to higher reflection coefficients owing to the
involved higher measurement uncertainty [35]. The above-
mentioned extraction procedure is repeated for each scanned
value of Cpga and Cpgi and corresponding model parameters
and error values are stored in a matrix (see the flow-chart
given in Fig. 6). The obtained results are sorted with respect
to error and the combination of Cpga and Cpgi, which gives
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FIGURE 10. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –3 V and VDS = 0 V; (right) VGS = –1 V and VDS = 10 V (using
the scanning-based systematic model parameter extraction
methodology).

FIGURE 11. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –2.5 V and VDS = 2.5 V; (right) VGS = 0 V and VDS = 5 V (using
the scanning-based systematic model parameter extraction
methodology).

TABLE 1. Obtained values of the SSECM parameters using the
scanning-based systematic model parameter extraction methodology.

the minimum error is selected. The validity of the mod-
elling scheme is verified at Cold-FET pinch-off condition,
(VGS = –1 V, VDS = 10 V) and (VGS = –2.5 V, VDS = 2.5 V).

The obtained values of model elements at these biasing
conditions are given in Table 1. Measured and predicted
S-parameters are also plotted at Cold-FET pinch-off condi-
tion, (VGS = –1 V, VDS = 10 V), (VGS = –2.5 V, VDS = 2.5 V)
and (VGS = 0 V, VDS = 5 V) as depicted through Figs. 10
and 11. We can observe from results that the developed
approach accurately simulates the measured characteristics
for extensive 0.1 GHz to 40 GHz frequency operation includ-
ing device physics related issues such as kink effect, RF-dc
dispersion effect, memory effect etc. in GaN device [36],
[37]. Furthermore, Figs. 12 and 13 demonstrate the intrinsic
elements’ behaviors with respect to frequency at (VGS = –1V,
VDS = 10 V) and (VGS = 0 V, VDS = 5 V). We can notice,
almost constant and frequency-independent behaviors of the
intrinsic elements for the whole frequency range, which val-
idate the accuracy of the model topology and the utilized
scanning-based systematic modelling approach. Further dis-
cussion on the results are given in the Section V.

FIGURE 12. Behavior of intrinsic parameters with respect to frequency at
VGS = –1 V and VDS = 10 V (using the scanning-based systematic model
parameter extraction methodology).

IV. OPTIMIZATION ALGORITHMS-BASED HYBRID
MODEL PARAMETER EXTRACTION METHODOLOGIES
This section reports reliable hybrid small-signal modelling
of the same 4 × 125 μm GaN-on-Diamond HEMT based on
MPA, POA and TSA optimization techniques.

A. MARINE PREDATORS ALGORITHM
MPA is a nature-inspired metaheuristic OA, which is mainly
motivated by predominant Lévy and Brownian foraging
movements in ocean predators and the precise engagement
rate policy found in biological interactions of predator and
prey. It acts according to rules that naturally govern these
movements in marine ecosystems. MPA employs Lévy flight
and Brownian motion in different application scenarios in
order to develop an efficient explorer-exploiter framework.
Based on the varying velocity ratio and emulation of the entire
life of predator and prey, the MPA optimization process can
be divided into three chief categories: (1) high velocity ratio;
(2) almost equal velocity ratio and (3) low velocity ratio,
which represent the states when predator is moving slower
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FIGURE 13. Behavior of intrinsic parameters with respect to frequency at
VGS = 0 V and VDS = 5 V (using the scanning-based systematic model
parameter extraction methodology).

FIGURE 14. General extraction procedure employed with MPA, POA and
TSA optimization algorithms.

than prey, same as prey and faster than prey, respectively.
Phase 1, high velocity ratio (v ≥ 10), represents exploration
of the MPA, where the algorithm simulates the predator’s
stillness. The mathematical model that simulates this phase
is given in (12).

While Iter <
1
3

MNOI

−−−−−→
stepsizei =

−→
R B ⊗

(
−−→
Elitei –

−→
R B ⊗

−−→
Preyi

)
−−→
Preyi =

−−→
Preyi + P.

−→
R ⊗

−−−−−→
stepsizei. (12)

FIGURE 15. Defined objective function and evaluation exploited by MPA,
POA and TSA optimization algorithms.

Here, i = 1, 2, . . . ., n. MNOI,
−−→
Elitei, P, R, RB, ⊗ and

RB ⊗
−−→
Preyi denote maximum number of iteration, values

corresponding to the Elite matrix, constant number equals
to 0.5, uniform random numbers between 0 to 1, Brownian
motion’s normal distribution, element-wise multiplications
and movement of the prey, respectively. The mathematical
models that simulates the phase 2, almost equal velocity
ratio (v ≈ 1), is given in (13). In this phase, prey moves
in Lévy (responsible for exploitation) and predator moves
in Brownian (responsible for exploration). The first half of
the populations responsible for exploitation, are represented
by (13).

While
1
3

MNOI < Iter <
2
3

MNOI

−−−−−→
stepsizei =

−→
R L ⊗

(
−−→
Elitei –

−→
R L⊗

−−→
Preyi

)
−−→
Preyi =

−−→
Preyi + P.

−→
R ⊗

−−−−−→
stepsizei. (13)

In (13), RL and RL ⊗
−−→
Preyi denote Lévy movement and

prey’s movement in Lévy manner. Likewise, the second half
of the populations responsible for exploration are represented
by (14), where, CF and RB ⊗

−−→
Elitei represent a parameter to

regulate the step size and predator’s movement in Brownian
fashion, respectively.

−−−−−→
stepsizei =

−→
R B ⊗

(
−→
R B ⊗

−−→
Elitei –

−−→
Preyi

)
−−→
Preyi =

−−→
Elitei + P.CF ⊗

−−−−−→
stepsizei. (14)

In the last phase, phase 3, low velocity ratio (v = 0.1) exhibits
exploitation ability of MPA, where predator is moving in
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Lévy manner as depicted in (15).

While Iter >
2
3

MNOI

−−−−−→
stepsizei =

−→
R L ⊗

(
−→
R L ⊗

−−→
Elitei –

−−→
Preyi

)
−−→
Preyi =

−−→
Elitei + P.CF ⊗

−−−−−→
stepsizei. (15)

Stagnation in local minimums is a major problem with opti-
mization techniques. MPA avoids this by simulating the eddy
formation and Fish Aggregating Devices (FADs) effects. The
mathematical representation of the same is given in (16),
where case 1 and case 2 are simulated if r ≤ FADs and if
r > FADs, respectively. The comprehensive details on MPA
is reported in [38].

−−→
Preyi =


−−→
Preyi + CF

[
−→
X min +

−→
R ⊗ (

−→
X max –

−→
X min)

]
. ⊗

−→
U

−−→
Preyi + [FADs(1 – r) + r]

(
−−−→
Preyr1 –

−−−→
Preyr2

)
(16)

As stated earlier, we exploited MPA to extract the SSECM
parameters for the same GaN-on-Diamond HEMT. The gen-
eral extraction procedure employed with OAs (MPA, POA
and TSA) to extract the parameters those best fit the measure-
ment behavior is shown in Fig. 14, whilst the optimization
function utilized by OAs is given in Fig. 15. The follow-
ing points summarize the each step taken to develop and
validate the MPA-based hybrid model parameter extraction
methodology:

FIGURE 16. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –3 V and VDS = 0 V; (right) VGS = –1 V and VDS = 10 V (using
the MPA-based hybrid approach).

Step 1: firstly, Cgst, Cgdt and Cdst are extracted at the Cold-
FET pinch-off condition using direct extraction technique
(see Section III) and lower and upper boundaries are defined
for the optimization variables Cpga, Cpgi, Cpda and Cpdi.
Step 2: MNOI, maximum number of search agents

(MNSA) and dimension are defined. It is imperative to
mention that these parameters are iteratively tuned for the
best performance. We found that MNOI as 50 and MNSA
as 2500 render the optimal performance. Then, the initial
search agents (prey) populations are initialized. To avoid any

FIGURE 17. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –2.5 V and VDS = 2.5 V; (right) VGS = 0 V and VDS = 5 V (using
the MPA-based hybrid approach).

TABLE 2. Obtained values of the SSECM parameters using the MPA-based
hybrid model parameter extraction methodology.

non-reliable value, we employed reliability conditions given
in (17).

Cpga + Cpgi < Cgst

Cpda + Cpdi < Cdst (17)

Step 3: parasitic inductances and resistances are extracted
using the unbiased measurement (see Section III).
Step 4: all the extrinsic model elements are deembedded

from the pinch-off S-parameters to extract the intrinsic ele-
ments (see Section III).
Step 5: using both extracted extrinsic and intrinsic model

elements, S-parameters are simulated after reversing the
deembedding process. Then, the error between the modelled
and measured S-parameters are calculated using the same
error function (see Section III) as given in (9-11). According
to the fittest solution, MPA sets up the Elite matrix.
Step 6: now, MPA updates its parameters based on the

Iteration Number (Iter). When the current Iter is less than
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one-third of MNOI (Iter < 1
3 MNOI), the prey is updated

based on the mathematical formula in (12). When the Iter
is between one-third and two-third of MNOI (1

3 MNOI <

Iter < 2
3 MNOI), then the first half of the population (prey) is

updated based on (13) and the other half is updated based
on (14). But if the Iter is greater than two-third of MNOI
(Iter > 2

3 MNOI), prey population is updated based on (15).
Thereafter, after completing the memory saving process it
updates the Elite matrix and apply FADs effects using (16).
Step 7: then, the entire process is repeated until the termi-

nation condition is met (MNOI = 50).
Step 8: lastly, the MPA-based hybrid extraction method-

ology is validated for the same test conditions as above-
mentioned (Cold-FET pinch-off condition, (VGS = –1 V,
VDS = 10 V) and (VGS = –2.5 V, VDS = 2.5 V). The obtained
values of SSECM’s elements corresponding to the mini-
mum error between modelled and measured S-parameters
are given in Table 2. Furthermore, simulation plots at the
same above conditions namely Cold-FET pinch-off con-
dition, (VGS = –1 V, VDS = 10 V), (VGS = –2.5 V,
VDS = 2.5 V) and (VGS = 0 V, VDS = 5 V) are shown
in Figs. 16 and 17. In addition, the behaviors of intrin-
sic elements with respect to frequency at (VGS = –1 V,
VDS = 10 V) and (VGS = 0 V, VDS = 5 V) are also plotted
(see Figs. 18 and 19). It is imperative from the results that the
SSECM developed usingMPA-based hybrid approach is able
to accurately mimic themeasurement data behavior including
the device physics related issues such as kink effect, RF-dc
dispersion effect, memory effect etc. [36], [37]. Reliability
and accuracy of the developed model is further verified by
near constant and frequency independent behaviors of the
intrinsic elements for the entire frequency range. More dis-
cussion on the results will be provided in Section V.

FIGURE 18. Behavior of intrinsic parameters with respect to frequency at
VGS = –1 V and VDS = 10 V (using the MPA-based hybrid approach).

B. PELICAN OPTIMIZATION ALGORITHM
POA is a nature-inspired OA that simulates the hunting
behavior of pelicans. Each pelican acts as a candidate solution
in POA, population-based algorithm [39]. To update the can-
didate solutions, POA exploits the simulation of the hunting
behavior in two stages:

FIGURE 19. Behavior of intrinsic parameters with respect to frequency at
VGS = 0 V and VDS = 5 V (using the MPA-based hybrid approach).

1) the movement of pelicans towards the prey (exploration
phase)

2) pelicans’ winging behavior on the water surface
(exploitation phase)

In POA, the first phase is simulated as (18), where xP1
i,j ,

I (responsible for exploration), pj and Fp represent updated
position of ith pelican in the jth dimension, random number
as either 1 or 2, prey’s location in jth dimension and value of
objective function, respectively.

xP1
i,j =

{
xi,j + rand.(pj – I.xi,j), Fp < Fi.
xi,j + rand.(xi,j – pj), else

(18)

FIGURE 20. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –3 V and VDS = 0 V; (right) VGS = –1 V and VDS = 10 V (using
the POA-based hybrid approach).

The second phase, which enables the POA to have better
exploitation ability is mathematically represented as (19),
where xP2

i,j ,R,R.(1– t
MNOI )—mainly responsible for exploita-

tion, and t denote updated position of ith pelican in the
jth dimension, constant number (R = 2), nearby area around
xi,j and current iteration, respectively. POA updates the posi-
tions of each member according to stages 1 and 2 and repeats
this process until the termination condition is met.

xP2
i,j = xi,j + R.

(
1 –

t
MNOI

)
.(2.rand – 1).xi,j. (19)

As stated earlier, POA is used to develop the SSECM for the
same GaN-on-Diamond HEMT device. The steps taken to
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FIGURE 21. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –2.5 V and VDS = 2.5 V; (right) VGS = 0 V and VDS = 5 V (using
the POA-based hybrid approach).

develop and validate the POA-based hybrid model parameter
extraction methodology are given below:
Step 1: we followed the same step 1 of MPA.
Step 2: using the same procedure of MPA, we set MNOI

andMNSA equals to 50 and 2500, respectively. Then, we ini-
tialized the initial position of pelicans and used the same
reliability conditions (see (17)) to filter out the non-reliable
values.
Step 3: Parasitic inductances, resistances, intrinsic ele-

ments, and objective function are calculated according to the
same steps (see MPA’s steps 3, 4 and 5).
Step 4: to get to the next iteration, as explained earlier, posi-

tions of pelicans are updated using two-stage formation—
pelicans’ movement towards prey and winging behavior
according to (18)-(19).
Step 5: Similar to MPA, POA stops when the termination

condition is met (MNOI = 50).
Step 6: at last, POA-based hybrid extraction procedure

is validated for the same test conditions as of MPA-based
procedure. The results are demonstrated using the Table 3
and Figs. 20 and 21. We found that the POA-based hybrid
extraction method provide exactly same results and intrinsic
parameters’ behaviors with respect to frequency as of MPA-
based hybrid approach. Further details are given in Section V.

C. TUNICATE SWARM ALGORITHM
TSA is a metaheuristic OA, which simulates the tunicates’
jet propulsion and swarm behaviors, through out the naviga-
tion and foraging process [40]. To employ the jet propulsion
behavior, tunicates exploit three basic principles—1) conflict
management between search agents; 2) their motion in the
direction of best neighbour and 3) convergence in the direc-
tion of best search agent. These principles are mathematically
modelled in TSA as follows: to evade the conflicts between
the search agents, a variable

−→
A , to account for new posi-

tion of the search agent is proposed, where
−→
A =

−→
G /

−→
M .

−→
G , which is basically gravity, is defined as follows:

−→
G =

c2 + c3 –
−→
F , where

−→
F signifies the horizontal movement

of water flow in the ocean and represented as:
−→
F = 2.c1.

c1, c2 and c3 are randomly defined between 0 to 1 and

TABLE 3. Obtained values of the SSECM parameters using the POA-based
hybrid model parameter extraction methodology.

−→
M imitates the social forces among the search agents and
expressed as:

−→
M = [Pmin + c1.(Pmax – Pmin)]. Importantly,

the variations in the parameters
−→
A ,

−→
G and

−→
F enable the

TSA to have better exploration and exploitation. To model
the second principle, the search agents while trying to shun
the conflicts among them, move towards in the direction of
best neighbor. Mathematically, it can be modelled as follows:
−→
PD = |

−→
FS – rand.

−−→
Pp(x)|, where

−→
PD, x,

−→
FS,

−−→
Pp(x) and rand

represent distance between tunicate and food source, current
iteration, food source’s current position, tunicate’s current
position and random number between [0, 1], respectively. The
third principle is mathematically represented using (20).

−−→
Pp(x) =

{ −→
FS +

−→
A .

−→
PD, if rand ≥ 0.5.

−→
FS –

−→
A .

−→
PD, if rand < 0.5

(20)

As explained earlier, TSA also incorporates the swarm behav-
ior. To mathematically emulate this behavior, TSA utilizes
first two optimal best solutions. TSA arranges the positions of
other search agents using the first two optimal best solutions
as given in (21).

−−−−−→
Pp(x + 1) =

−−→
Pp(x) +

−−−−−−→
Pp(x + 1).

2 + c1
(21)

Again, the following points summarize the each step taken
to develop and validate the TSA-based hybrid model param-
eter extraction methodology:
Step 1: step 1 of TSA-based hybrid approach is same as

of step 1 of MPA and POA.
Step 2: MNOI and MNSA are set to 50 and 2500,

respectively. Then, the tunicates’ population is initialized and
and the same reliability conditions are employed (see (17)).
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FIGURE 22. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –3 V and VDS = 0 V; (right) VGS = –1 V and VDS = 10 V (using
the TSA-based hybrid approach).

FIGURE 23. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –2.5 V and VDS = 2.5 V; (right) VGS = 0 V and VDS = 5 V (using
the TSA-based hybrid approach).

TABLE 4. Obtained values of the SSECM parameters using the TSA-based
hybrid model parameter extraction methodology.

Step 3: using the same procedure of MPA and POA, par-
asitic inductances, parasitic resistances, intrinsic parameters
and objective function are computed (see MPA’s steps 3,
4 and 5), and the best search agent is identified.

FIGURE 24. Behavior of intrinsic parameters with respect to frequency at
VGS = –1 V and VDS = 10 V (using the TSA-based hybrid approach).

FIGURE 25. Behavior of intrinsic parameters with respect to frequency at
VGS = 0 V and VDS = 5 V (using the TSA-based hybrid approach).

Step 4: search agents’ positions are updated according
to (21).
Step 5: again fitness value is calculated based on updated

positions and if found to be better than the previous best,
−−→
Pp(x) is updated.
Step 6: similar to others, the algorithm stops when MNOI

becomes greater than 50 (termination criteria).
Step 7: the TSA-based hybrid approach is validated for

the same test conditions as of MPA or POA. The results
are depicted using Table 4 and Figs. 22 and 23. Further-
more, Figs. 24 and 25 demonstrate the intrinsic parameters’
behaviors versus frequency. It can be clearly noticed from
the results that the TSA-based hybrid extraction procedure is
accurate, reliable and robust, and like MPA- and POA-based
approaches mimics the measurement data behavior of the
DUT including the device physics related issues such as kink
effect, RF-dc dispersion effect, memory effect etc. [36], [37].
An in-depth discussion on the results are given in Section V.

V. RESULTS AND DISCUSSION
All the models presented in this paper are developed in
MATLAB using the computer which specifications are as fol-
lows: Processor-Intel(R) Xeon(R) W-2135 CPU @3.70GHz;
Installed RAM-128 GB; Windows Edition-Windows 10
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TABLE 5. Evaluation of MPA-, POA- and TSA-based hybrid model
parameter extraction methodologies.

FIGURE 26. Convergence behavior of MPA, POA and TSA optimization
algorithms.

FIGURE 27. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –4 V and VDS = 0 V; (right) VGS = –3 V and VDS = 0 V (using the
scanning-based systematic model parameter extraction methodology).

FIGURE 28. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –4 V and VDS = 0 V; (right) VGS = –3 V and VDS = 0 V (using
the MPA-based hybrid approach).

Enterprise and Version-21H2. Initially, we developed
a scanning-based systematic extraction procedure, and
assumed Cpga = Cpda. This technique took 7.03 seconds

TABLE 6. Obtained values of the SSECM parameters using the
scanning-based systematic model parameter extraction methodology.

TABLE 7. Obtained values of the SSECM parameters using the MPA-based
hybrid model parameter extraction methodology.

(execution time) to complete the scanning process. Then,
to avoid this assumption we developed optimization-based
hybrid extraction methodologies. Finally, a detailed eval-
uation of MPA-, POA- and TSA-based hybrid extraction
methodologies on various metrics is demonstrated in Table 5.
From this table, we can easily extract out that MPA, POA and
TSA techniques have the same hyperparameters and run for
the same number of iterations (MNOI = 50). Furthermore,
we can also notice that TSA took the least execution time
for 50 iterations whereas MPA and POA took almost similar

VOLUME 11, 2023 106843



S. Husain et al.: Accurate, Efficient and Reliable SS Modeling Approaches for GaN HEMTs

FIGURE 29. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –4 V and VDS = 0 V; (right) VGS = –3 V and VDS = 0 V (using
the POA-based hybrid approach).

TABLE 8. Obtained values of the SSECM parameters using the POA-based
hybrid model parameter extraction methodology.

FIGURE 30. Simulated (lines) and measured (symbols) S-parameters at
(left) VGS = –4 V and VDS = 0 V; (right) VGS = –3 V and VDS = 0 V (using
the TSA-based hybrid approach).

execution time. TheMATLAB implementation of all the OAs
are simple and they produce equal accuracy at Cold-FET
pinch-off condition. Furthermore, their convergence behavior
is depicted through Fig. 26. In addition, based on the results,
we can easily notice that both scanning-based systematic and
OA-based hybrid modelling approaches accurately depict the
behavior of the DUT at various operating conditions and

TABLE 9. Obtained values of the SSECM parameters using the TSA-based
hybrid model parameter extraction methodology.

OA-based approaches give similar error values at the testing
conditions.

To extend the experimental validation of the above men-
tioned modelling schemes, the proposed extraction proce-
dures are also validated on GaN-on-Diamond HEMTs of
geometries 2× 100 μm and 2× 125 μm. The obtained values
of the SSECM parameters for both the devices at cold-pinch-
off conditions ((VGS = –4 V, VDS = 0 V) and (VGS = –3 V,
VDS = 0 V) for 2 × 100 μm and 2 × 125 μm, respectively),
are given in Tables 6-9. Furthermore, the simulation plots at
the same cold-pinch-off conditions are also depicted through
Figs. 27- 30. As expected both scanning-based systematic
and OA-based hybrid modelling approaches have been able
to accurately depict the behavior for whole frequency range.
From the tabulated results (see Tables 6-9), we can notice
that the pad capacitances (Cpga and Cpda) have comparable
values, which reflects symmetrical pad contacts of the devices
coplanar structure. The inter-electrode capacitances (Cpgi and
Cpdi) are proportional to the gate-width especially the number
of fingers. Similarly, it can also be observed that the intrin-
sic capacitances are directly related to the total gate-width,
as expected. Likewise, the developed models have also been
able to reproduce the effects of change in device configu-
rations (such as total gate-width, number of fingers etc.) as
reflected thorough the values of the parasitic inductances (Lg,
Ls and Ld) and resistances (Rg, Rs and Rd).

At last, based on the results and above discussion, we can
make the following inferences:

• The scanning-based systematic model parameter extrac-
tion methodology is easy to build, produces almost
similar accuracy as optimization-based hybrid extrac-
tion and renders excellent trade-off between accuracy
and execution time. However, some assumptions are
needed to develop the SSECM using this approach,
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which limit its physical relevance, reliability of the
model parameters and generalization over the various
transistor technologies

• MPA-, POA- and TSA-based hybrid model param-
eter extraction methodologies produce very accurate
and reliable SSECMs and the obtained model parame-
ters’ values are in perfect consonance with the device
structure. The proposed OA-based hybrid modelling
approaches have provided almost similar values of
SSECM parameters and corresponding errors. MAT-
LAB implementation of all optimization techniques is
easy. However, in terms of the execution time, TSA
is the fastest among all. MPA- and POA-based hybrid
extraction approaches have almost similar performance
in terms of execution time, accuracy and easiness to
build the models. Moreover, as OAs-based approaches
in this paper do not require assumptions, they can be
applied on various microwave transistor technologies

VI. CONCLUSION
A scanning-based systematic and OA-based hybrid mod-
elling approaches, those accurately and efficiently model
the small-signal behavior of GaN-on-Diamond HEMT are
developed. Newly reportedMPA, POA and TSA optimization
techniques are employed to develop the hybrid models. We
have successfully verified that the scanning-based systematic
approach is able to emulate the behavior of the DUT for the
whole frequency range with less execution time but requires
certain assumptions, which restricts its reliability and broader
applicability. Conversely, OA-based hybrid approaches pro-
duce very accurate, general and more physically relevant
SSECMs but at the cost of increased execution time and
efforts. Moreover, we also identified that the accuracy, com-
plexity and number of tunable parameters of MPA, POA
and TSA empowered hybrid approaches are very similar.
However, MPA and POA require more execution time than
TSA.
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