
Received 10 August 2023, accepted 10 September 2023, date of publication 20 September 2023,
date of current version 27 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3317283

Practical Simulation Budget Allocation for
Ranked Subset Partitioning
MOON GI SEOK 1, (Member, IEEE), AND SEON HAN CHOI 2,3, (Member, IEEE)
1Department of Computer Science and Engineering, Dongguk University, Seoul 04620, South Korea
2Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, South Korea
3Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, South Korea

Corresponding author: Seon Han Choi (seonhan.choi@ewha.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Korean Government [Ministry of
Science and ICT (MSIT)] under Grant 2022R1F1A1066267; in part by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) under the Artificial Intelligence Convergence Innovation Human Resources Development funded by the
Korean Government (MSIT) under Grant IITP-2023-RS-2023-00254592; in part by the Leaders in INdustry-University Cooperation
(LINC) 3.0 Project funded by the Korean Government [Ministry of Education] and NRF; and in part by the Technology Development
Program funded by the Korean Government [Ministry of Small and Medium-sized Enterprises and Startups (MSS)] under Grant
RS-2023-00259352.

ABSTRACT Stochastic simulation is a powerful tool for analyzing complex discrete-event dynamic systems;
however, it does not exhibit sufficient efficiency because of the requirement of numerous replicated simula-
tions for obtaining accurate analysis results. Ranking and selection (R&S) efficiently allocates a simulation
budget using ordinal optimization to correctly select alternatives of interest. Existing R&S methods focus
on selecting an optimal alternative or a subset of optimal alternatives. Based on a generalization of this
methodology, we propose an R&Smethod for partitioning k alternatives into n (2 ≤ n ≤ k) exclusive ranked
subsets, which is effective for job distribution and web search applications. The proposed method evaluates
if the observed simulation results for each alternative have sufficient precision to correctly distinguish
between the ranked subsets. It sequentially allocates a small portion of the budget based on the evaluation
results, gradually improving the precision tomaximize the efficiency. The superior efficiency of the proposed
method compared with that of the existing methods is demonstrated using various numerical experiments.
Furthermore, a practical problem that involves relocation-zone distribution in bicycle-sharing systems
demonstrates that the proposed method can be effectively applied in situations requiring high simulation
efficiencies, such as digital twins in complex systems.

INDEX TERMS Discreteevent dynamic system, stochastic simulation, ranking and selection, ranked subset.

I. INTRODUCTION
Stochastic simulation is a powerful tool for analyzing com-
plex discreteevent dynamic systems (DEDSs) such as trans-
portation [1], telecommunication [2], military [3], mining [4],
and cloud services [5], which rarely satisfy the strict assump-
tions required by analytic models [6]. However, in case of
stochastic simulation numerous simulation replications are
required to obtain accurate analysis results, which is a major
concern associated with its application [7] There are a finite
number (k) of alternatives, and each alternative is evalu-
ated using stochastic simulation. If our analysis goal is to

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

determine the optimal alternatives without obtaining their
exact simulation results, ranking and selection (R&S) is an
effective solution [8]
Using ordinal optimization [9], R&S efficiently allocates a

simulation budget (i.e., the number of simulation replications
that can be conducted in a given computing environment) to
k alternatives for correctly identifying their relative orders,
thereby selecting the optimal alternatives Thus far various
allocation methods in R&S have been developed, most of
which are variants of three basic methods [10]: the indiffer-
encezone [11], optimal computing budget allocation (OCBA)
[12], and expected value information methods [13]. The dif-
ferences among these methods lie in the way they define
the statistical evidence for correct selection using relative
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TABLE 1. Existing R&S studies classified according to the number of
ranked subsets.

orders and the way simulation replications are allocated to
strengthen this evidence. Wellorganized summaries of these
methods and their variants can be found in [14] and [15].
Furthermore, an uncertainty evaluation (UE) method [16]
based on statistical hypothesis testing has recently been pro-
posed, and several practical variants [17], [18], [19] have been
developed because of its high robustness to noise.

Most existing studies have focused on selecting one opti-
mal alternative or the top-m alternatives (i.e., an optimal
subset) [20], [21], [22]. From the perspective of partitioning,
these can be regarded as dividing k alternatives into two
exclusive ranked subsets; in this context, the subsets are
ranked such that the exact simulation results for all alterna-
tives in the higher-ranked subset are better than those for the
lower-ranked subset. Some methods partition a set of alter-
natives into three ranked subsets by simultaneously selecting
the best and worst alternatives [23], [24] or subsets [25], [26].
Notably, a few studies on complete ranking identification
[10], [27] present extreme cases in which k alternatives are
divided into k subsets. Table 1 summarizes the existing stud-
ies on R&S according to the number of partitioned subsets.

In practice, partitioning k alternatives into n ranked subsets
is often required where 3 < n < k In particular, this may
occur when jobs are distributed to n workers. For example,
consider a factory with five production lines. Each line can
produce the same product; however, each line has a differ-
ent defect rate owing to obsolescence. Ten production plans
that specify the products to be produced and their quanti-
ties are provided; the required production times are similar.
The effects of defects on each plan can be analyzed using
stochastic simulation [28]. If these ten plans are partitioned
into five ranked subsets where each subset comprises two
plans according to the analysis results, and the five subsets
are distributed to the five lines according to their defect rate
(i.e., the plans most affected by the defects are placed on the
line with the lowest defect rate), the production efficiency can
be improved.

Another example is the problem of relocationzone distribu-
tion in bicycle-sharing systems Consider that there are eight
relocation zones and that the amount of bicycle relocation
work for each zone varies. Four relocation trucks having dif-
ferent bicycleloading capacities are employed. The amount of
work required for each zone can be estimated using stochastic
simulation [29]. If the eight zones are partitioned into four
ranked subsets each comprising two zones according to the

estimation results, and these four subsets are distributed to
the four trucks according to their capacity (i.e., the zones
with the highest workload are assigned to the trucks with
the largest bicycle-loading capacity), the relocation efficiency
can be maximized. Although complete ranking identification
methods can be applied in both examples, they would be inef-
ficient because the number of subsets to be partitioned is less
than k and the ranking within each subset is not required to
be identifiedRanked subset partitioning is a notable challenge
in several web search applications [3], [31]. In addition, it is
critical in feature extraction, construction, and selection tasks
in machine learning and pattern recognition [32]
Despite this need, few studies on R&S have attempted

to partition k alternatives into generalized n ranked subsets.
Notably, Zhang et al. [32] proposed OCBA for subset rank-
ing (OCBAsr) based on OCBA. However, OCBAsr needs
to heuristically determine constants that can distinguish
between the ranked subsets during allocation. Moreover, the
performance of OCBAsr is highly sensitive to these constants.
Although OCBAsr is more efficient than the equal allocation
method, which allocates the same budget to all alternatives,
its simulation efficiency can be further improved. When
n = 2, OCBAsr reduces to OCBA for selecting the optimal
subset (OCBAm) [20]. However, OCBAm exhibits lower
efficiency than some recently proposed methods, such as
OCBAm+ [21], EOC-m [22], and UEm [17]. Recently, with
the increasing complexity of systems, the cost per simulation
replication has increased; thus, efficiency has become more
important in the application of simulations [10]. In particular,
digital twins, which are simulation models synchronized with
real systems, require high efficiencies for real-time system
control [33]. Therefore, developing a method that is more
efficient than OCBAsr is essential

This study proposes an R&S method for partitioning k
alternatives into n ranked subsets. The number of alternatives
in each subset may differ. Unlike OCBAsr, the proposed
method employed UE owing to its suitability for complex
practical problems because of its high robustness to noise
[16] Notably, UEm—a method based on UE for selecting an
optimal subset—exhibits superior efficiency over OCBAm,
implying that UE-based approach is adequate for developing
a more efficient method than OCBAsr. The proposed method
aims to maximize the probability of correctly selecting n
subsets (P {CSn}) within a limited number of simulation repli-
cations. We define the uncertainty using UE to evaluate if the
observed simulation results for each alternative are precise
enough to accurately distinguish between the ranked subsets.
The proposed method splits the given budget into a few sim-
ulation replications, sequentially allocates these replications
based on the uncertainty, and gradually improves insufficient
precision to maximize P {CSn} Our experimental results on
both the numerical and practical problems demonstrate the
high efficiency and utility of the proposed method.

The remainder of this paper is organized as follows.
In Section II, the problem is formulated. Our ranked sub-
set partitioning method is proposed in Section III. The
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TABLE 2. Basic notations.

experimental results are presented in Section IV, and the
conclusions are presented in Section V

II. PROBLEM FORMULATION
The basic notations used in this study are summarized in
Table 2.

As is common in the literature on R&S, it is assumed that
the stochastic simulation output follows a normal distribution
and is independent across alternatives and simulation replica-
tions. This is reasonable in practice because the output of a
DEDS simulation is typically determined as an average value
or a batch mean; therefore, the central limit theorem holds
[8]. To develop a practical method, we assume no prior infor-
mation about the output distribution before performing the
simulation. Additionally, to simplify the problem, we assume
that no two alternatives exhibit identical exact simulation
results (µi ̸= µj, ij ∈ 2, and i ̸= j). The case of two
alternatives exhibiting identical results is unusual in practice,
and without considering tolerance, an infinite number of sim-
ulation replications would be needed to confirm the equality,
which is impossible.

Our goal is to partition k alternatives into n ranked subsets:
S1, S2 . . . , Sn When low values are desired for the simulation
results, the uth ranked subset Su which comprises mu alterna-
tives is defined as follows:

Su =

xi ∈ 2

∣∣∣∣∣∣
u−1∑
j=1

mj < ri ≤
u∑
j=1

mj

 . (1)

Here, Su comprises alternatives for which the actual relative
rankings within 2 based on their exact simulation results are
between

∑u−1
j=1 mj + 1 and

∑u−1
j=1 mj + mu. According to the

definition presented in (1) the n ranked subsets are mutually
exclusive (S1

⋂
· · ·

⋂
Sn = φ), and their union (

⋃n
u=1 Su) is

equal to 2 (
∑n

u=1mu = k). The exact simulation results of
the alternatives in a ranked subset are better than those of all

the alternatives in the lower-ranked subsets (xi ∈ Su : µi <

∀µj, xj ∈ Su+1 ∪ · · · ∪ Sn).
The actual relative rankings of alternatives are essential to

distinguish between the n ranked subsets; however, no prior
information about them is provided. In practice, after simula-
tion replications are performed k alternatives are partitioned
into estimated n ranked subsets Ŝ1 . . . , Ŝn based on their
observed relative rankings. Similar to SuŜu, which comprises
mu alternatives is defined as follows:

Ŝu =

xi ∈ 2

∣∣∣∣∣∣
u−1∑
j=1

mj < r̂i ≤
u∑
j=1

mj

 . (2)

Because of the error in estimating the sample mean, the
observed rankings may differ from the actual rankings; thus,
Ŝu and Su may differ However, the sets are always of the
same size (

∥∥∥Ŝu∥∥∥ = ∥Su∥ = mu). If the simulation budget is
sufficient and many replications can be conducted for every
alternative such that its observed ranking is accurate, n ranked
subsets can be correctly selected. However, our objective is to
increase the simulation efficiency, which means that the lim-
ited number of replications must be appropriately allocated
to k alternatives, such that Ŝ1 = S1 Ŝ2 = S2 . . . , Ŝn = Sn.
Assuming that the simulation cost is the same for every repli-
cation across all alternatives, this objective can be formulated
as follows:

argmax
b1,...,bk

Pr

{
n⋂

u=1

Ŝu = Su

}
s.t.

k∑
i=1

bi = B and bi > 0.

(3)

Here, Pr
{⋂n

u=1 Ŝu = Su
}

indicates P {CSn} In the next

section, we propose an efficient R&S method to solve this
problem.

III. PROPOSED METHOD
The proposed method, like other R&S methods, divides a
given number of total simulation replications B into small
units and sequentially allocates the units to efficiently uti-
lize B [8]. In the sequential procedure, a small unit of B is
allocated for the alternatives using the observed simulation
results. To maximize P {CSn}, it is necessary to allocate this
small unit to the alternatives that most require further simula-
tion. The proposed method evaluates the uncertainty of each
alternative using statistical hypothesis testing and p-value and
allocates additional replications accordingly.

A. UNCERTAINTY EVALUATION
The actual relative rankings of the alternatives that are
required to select n ranked subsets are determined using the
relations between the exact simulation results. If the observed
relations based on the sample means are verified to be the
same as the actual relations, n ranked subsets can be accu-
rately selected. Statistical hypothesis testing can then be used
for the verification.
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For example, for two alternatives xi and xj, µ̂i and s2i and µ̂j
and s2j are obtained after bi and bj replications, respectively.
When the observed relation is µ̂i < µ̂j, µi < µj should be
considered the alternative hypothesis HA for the verification
and the opposite, which is µi ≥ µj should be considered the
null hypothesis H0:

H0 : µi ≥ µj,HA : µi < µj. (4)

For this test, the p-value, which represents the probabil-
ity of obtaining the current results or more extreme results
(which are unlikely to be obtained) under the assumption that
H0 is true, is calculated as follows:

δi<j = Pr {X < t} , where X ∼ tv

t =
(
µ̂i − µ̂j

)/√
s2i

/
bi + s2j

/
bj

v =


(
s2i

/
bi + s2j

/
bj

)2
(
s2i

/
bi

)2/
(bi − 1)+

(
s2j

/
bj

)2/(
bj − 1

)
 .

(5)

The p-value δi<j follows a t-distribution with ν degrees of
freedom; the standard normal distribution can be used instead
of a t distribution if the variance of the simulation output
distribution is known. As δi<j becomes closer to zero, the
observation of the current results under the assumption of
H0 being true becomes more difficult; thus, using the current
results, H0 is rejected and µi < µj is verified.

Meanwhile, the value of δi<j is equal to the posterior
probability thatµi < µj is false based on the observed results
under the assumption of no prior information This means
that the values are the same and not that the definitions are
the same. When a noninformative prior assumption is used,
the posterior distribution of µi follows a t-distribution with
µ̂i, s2i

/
bi, and bi − 1 degrees of freedom (Pr

{
µi

/
Di

}
∼

tbi−1
(
µ̂i, s2i

/
bi

)
, where Di denotes a set of observed sim-

ulation outputs for xi) [34]. Subsequently, the posterior
probability of µi < µj can be defined as follows:

Pr
{
µi < µj

/
Di,Dj

}
= Pr

{
X < t ′

}
, where X ∼ tν

t ′ =
(
µ̂j − µ̂i

)/√
s2i

/
bi + s2j

/
bj.

(6)

The degrees of freedom ν in (6) are the same as those in
(5). In both (5) and (6), the random variable X follows the
same t-distribution. Because t in (5) is equal to −t ′, δi<j has
the same value as 1− Pr

{
µi < µj

/
Di,Dj

}
; alternatively as

δi<j approaches zero, the posterior probability of µi < µj
approaches one. Thus, µi < µj is verified.
Within a statistical hypothesis testing framework, the

p-value can be used as an indicator to evaluate the observed
simulation results. A value close to zero indicates that the
results provide significant evidence for verifying the relation

established as the alternative hypothesis; alternatively the
precision of the results (si

/√
bi and sj

/√
bj) is sufficient to

statistically verify this relation. In contrast, a value close to
0.5 indicates that the results cannot be considered as signif-
icant evidence and that the level of precision is insufficient
for verification. A value of 0.5 is achieved when µ̂i = µ̂j;
this is the most uncertain case and in this case determining
whether µi < µj or µi > µj is difficult Thus, when the
p-value is close to 0.5, the precision of the results must be
increased by additional replications to ensure that the relation
set to HA can be verified. The uncertainty is defined using
this characteristic of the p-value for evaluating the observed
simulation results for each alternative [16].

To maximize P {CSn}, Ŝu should be equal to Su for every
u ∈ {1, . . . , n}According to (1), for an alternative xi included
in Ŝu, the following relations between xi and other alternatives
should be verified to statistically determine that xi ∈ Su:

xi ∈ Ŝu :


∀xb ∈

u−1⋃
j=1

Ŝj : µb < µi and

∀xw ∈
n⋃

j=u+1

Ŝj : µi < µw

⇒ xi ∈ Su. (7)

In other words, µi should be greater than the mean values
of the alternatives in Ŝ1 . . . , Ŝu−1 and it should be less than
the mean values of the alternatives in Ŝu+1 . . . , Ŝn. Each
k −mu relation can be verified through statistical hypothesis
testing, as presented in (5). For every test with the alternatives
in Ŝ1 . . . , Ŝu−1 the p-value δb<i is obtained, while δi<w is
obtained from every test with the alternatives in Ŝu+1 . . . , Ŝn
According to (2), no p-values are greater than 0.5. If every p
value equals zero, xi ∈ ôSu can be statistically determined
However, if even one p value is close to 0.5, xi ∈ ôSu is
uncertain because the relation corresponding this p-value is
not verified. Thus, the maximum value among these p-values
can be used as a representative for evaluating the observed
simulation results for xi to statistically determine xi ∈ Su.
This maximum value is defined as the uncertainty of xi:

ωi = max
(

δb(1)<i, . . . , δb(h)<i,

δi<w(l), . . . , δi<w(k)

)
, (8)

where

h =
∑u−1

j=1
mj and l =

∑u

j=1
mj + 1 = h+ mu + 1.

Here, the parentheses in the subscript of δb<i and δi<w indi-
cates the observed relative rankings of xb ∈

⋃u−1
j=1 Ŝj and

xw ∈
⋃n

j=u+1 Ŝj. For example, b (1) denotes the identifier of
the alternative for which the observed relative ranking is the
highest (r̂b(1) = 1)

The uncertainty ωi derived from the combination of
p-values indicates the degree to which the precision of µ̂i is
sufficient to determine xi ∈ Su A value close to zero indicates
sufficient precision, whereas a value close to 0.5 indicates
insufficient precision; thus, it is necessary to allocate addi-
tional replications to alternatives that have high uncertainty
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to improve their precision. Combining the p-values using
the maximal function rather than averaging or adding the
p-values is semantically appropriate as well as allows a
conservative allocation of additional replications using uncer-
tainty; in other words, every p-value is considered important.
This is a notable factor in increasing the simulation efficiency
in high-noise contexts. Furthermore the uncertainty is the
p-value; normalization is not needed.

According to (8), p-value calculations must be performed
k − mu times to evaluate the uncertainty of the xi in
Ŝu. Because one p-value is used to evaluate the uncer-
tainty of two alternatives, the number of computations that
are needed to evaluate the uncertainty of k alternatives
is halved. Nevertheless, this computational complexity is
derived as O

(
k2

)
, which is higher than the complexity

O (k) of OCBAsr. To reduce this high complexity, a simple
approximation is applied to (8) using the characteristics of
p-values.

As is shown in (6), δi<j is affected by the difference
between the sample means of the two alternatives (µ̂j − µ̂i).
When ωi in (8) is evaluated, the maximum value of δb<i is
very likely to be δb(h)<i, which is the p-value derived from
µb(h) < µi, because µ̂b(h) is the largest among the values
of the alternatives in Ŝ1 . . . , Ŝu−1 and is the closest value to
µ̂i. Similarly, the maximum value of δi<w is very likely to be
δi<w(l), which is the p-value derived fromµi < µw(l), because
µ̂w(l) is the smallest among the values of the alternatives in
Ŝu+1 . . . , Ŝn and is the closest value to µ̂i. Subsequently, ωi
in (8) can be approximated as follows:

ωi ≈ max
(
δb(h)<i, δi<w(l)

)
. (9)

This approximation introduces negligible error if all the
alternatives have similar variances in their simulation out-
puts. This approximation remains effective as the allocation
proceeds even if the variances are quite different, because
the effect of the variance on the p-value gradually becomes
negligible, as indicated in (6).When allocation begins, even if
δb(h)<i (or δi<w(l)) is not the maximum value of δb<i (or δi<w),
no considerable error is present in the uncertainty derived
using (6) as δb(h)<i (or δi<w(l)) is relatively large owing to
the small difference between µ̂b(h) (or µ̂w(l)) and µ̂i As a
result, this approximation does not considerably affect the UE
in (8). However, the complexity is reduced from O

(
k2

)
to

O (k) with the use of (9) because only two p-values need to
be calculated to evaluate the uncertainty of each alternative.
Furthermore, as presented in (1) the µi of xi included in Su
is greater than the maximum among those of all alternatives
in S1 . . . , Su−1 and is less than the minimum among those
of all alternatives in Su+1 . . . , Sn; thus, this approximation is
semantically appropriate.

Meanwhile, for the alternatives in Ŝ1, ωi is approximated
as δi<w(l) (∀xi ∈ Ŝ1 : ωi ≈ δi<w(l)) because xb(h) cannot be
determined for them. Similarly, for the alternatives in Ŝn, ωi
is approximated as δb(h)<i (∀xi ∈ Ŝn : ωi ≈ δb(h)<i) because
xw(l) cannot be determined for them.

B. ALLOCATION
When the uncertainty is evaluated using the observed sim-
ulation results for each alternative, alternatives with low
uncertainty have sufficient precision of their simulation
results compared to those of other alternatives to determine
their relative rankings. In contrast, alternatives with relatively
high uncertainty have insufficient precision of their simula-
tion results compared to those of other alternatives.

As ωi is a p-value, it does not represent the absolute pre-
cision of the simulation results of xi. Another alternative for
calculating this p-value (= ωi) is denoted by xj. The p-value
indicates if the relative precision of µ̂i is sufficient to verify
the relation between µi and µj when the precision of µ̂j is
considered. Accordingly, even when the absolute precision of
µ̂i is extremely high (i.e., si

/√
bi is close to zero), the p-value

may have a high value that is close to 0.5 if the precision of µ̂j
is quite low. In this case, these highωi values convey distorted
information.

However, this is not amajor problemwhen additional repli-
cations are allocated using uncertainty. The p-value between
xi and xj is considered at the same time when ωj and ωi are
evaluated; thus, if this p-value is set toωi, thenωj is equal to or
greater than ωi. In other words, xi and xj are assigned at least
the same number of additional replications according to their
evaluated uncertainty. In the extreme case mentioned above,
this allocation is not the best strategy that allocates more
replications to xj (because µ̂j has low absolute precision com-
pared to µ̂i). However, this allocation can always prevent the
worst case in whichmore replications are allocated to xi when
µ̂i has high absolute precision compared to µ̂j. Of course,
the best strategy may be more efficient than this allocation;
however, finding the best strategy would require additional
computation, and if the number of additional replications is
small, as is typical, the differential allocation between the two
alternatives may be meaningless. Herein, we do not consider
this uncertainty limitation because our goal is to develop a
practical simple method to solve the problem presented in (3).
Nevertheless, the proposed method exhibits higher efficiency
than the existing methods, as described in the experimental
results.

According to the meaning of uncertainty, it is necessary to
allocate additional replications to alternatives that have high
uncertainty. This is also supported by the posterior proba-
bility. According to the Fréchet inequality, which states that
the upper bound of the posterior probability that xi ∈ Ŝu is
included in Su is defined as (10), shown at the bottom of the
next page.

As previously mentioned, under the no prior information
assumption used in this study, Pr

{
µi < µj

/
Di,Dj

}
has the

same value as 1− δi<j; thus, we obtain the following:

xi ∈ Ŝu : Pr
{
xi ∈ Su

/⋃
j∈{1,...,k}

Dj

}
≤ min

(
1− δb(1)<i, . . . , 1− δb(h)<i,

1− δi<w(l), . . . , 1− δi<w(k)

)
VOLUME 11, 2023 104351
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= 1−max
(

δb(1)<i, . . . , δb(h)<i,

δi<w(l), . . . , δi<w(k)

)
. (11)

Applying the definition of uncertainty in (8), we obtain the
following:

xi ∈ Ŝu : 1− Pr
{
xi ∈ Su

/⋃
j∈{1,...,k}

Dj

}
≥ ωi. (12)

In other words, the lower bound of the posterior probability
that xi ∈ Ŝu is not included in Su has the same value as ωi A
high value of ωi means that the probability that the current
observed decision (i.e., xi ∈ Ŝu) is false is confirmed to be
high. In contrast, a low value ofωi implies that the probability
that xi ∈ Ŝu is false may be high or low. Subsequently,
if the simulation budget is limited, it is efficient to allocate
additional replications to alternatives for which the posterior
probability of being false is confirmed to be high (i.e., ωi is
high).

If the number of additional replications is limited, it is
evident that most of them should be allocated to alternatives
that have high uncertainty; however, a few additional repli-
cations should also be allocated to those alternatives having
low uncertainty to consider the type-I error contained in the
p-value. This type of error frequently occurs at the begin-
ning of a sequential allocation procedure in extremely noisy
contexts, where highly precise sample means are needed to
distinguish between the actual relative rankings owing to the
notable variation in the simulation output compared with the
small differences between the means of alternatives.

For example, suppose we partition k alternatives into two
ranked subsets, where the first set has one alternative (m1 =

1) and all other alternatives belong to the second set (m2 =

k − 1). The alternative in S1 is denoted as xb, with rb = 1.
In extremely noisy contexts, µ̂b may be highly biased after a
few replicated simulations. In this case, xb which belongs to
Ŝ2 has relatively low uncertainty owing to the large difference
between µ̂b and the sample mean of the alternative in Ŝ1; thus
no additional replications are allocated to xb. Accordingly,
the biased µ̂b cannot be updated and two ranked subsets
cannot be correctly selected (Ŝ1 ̸= S1 and Ŝ2 ̸= S2).
Although xb requires additional replications as soon as pos-
sible, it fails to receive allocated replications because of the
type-I error. If the sequential procedure continues, additional
replications may eventually be allocated to xb owing to its
increased uncertainty (i.e., the precision of µ̂b is relatively
low). However, many replications are inefficiently allocated
in the meantime To prevent this wastage in extremely noisy
contexts, one or two additional replications must be allocated
to alternatives that have relatively low uncertainty. This is
because, as in this example, their sample mean is highly
biased and the number of output samples is small Therefore,

even one additional output sample can considerably change
the sample mean

In summary, to increase P {CSn} using uncertainty, most of
additional replications should be allocated to alternatives that
have relatively high uncertainty However, a few additional
replications should be simultaneously allocated to alterna-
tives that have relatively low uncertainty. This strategy is
expressed in the following allocation policy [16]:

ai = (ωi)
C
/∑k

j=1

(
ωj

)C
·1, (13)

where ωi denotes the evaluated uncertainty of xi, ai denotes
the number of additional replications to be allocated to xi,
and 1 denotes the additional simulation budget (

∑k
i=1 ai =

1), which represents the small unit of B in the sequential
allocation procedure.

The parameter C is used to control this strategy. As the
value of C increases, additional replications are concentrated
on alternatives having relatively high uncertainty. However,
as the value of C decreases, alternatives that have a relatively
low uncertainty aremore likely to have additional replications
allocated to them. The optimal value of C for maximizing
P {CSn} is problem-specific. If the problem has a low level
of stochastic noise, the frequency of the type-I error is low;
thus, a high C value that allocates additional replications to
alternatives that have a relatively high uncertainty may be
effective. Conversely, for a high level of noise, a low C value
may effectively cope with type-I errors.

Herein, we set the default C value to one. Although this
value may not be optimal for all problems, as is described in
the next section, the proposedmethod with this default setting
exhibits superior efficiency over existing methods. Moreover,
the proposed method partitions k alternatives into n (3 <

n < k) ranked subsets by generalizing the existing R&S
studies that select between two, three, and k ranked subsets,
as presented in Table 1. Accordingly, in each special case,
the uncertainty evaluation of the proposed method in (8),
or the approximated version in (9), becomes identical to that
of the existing UE-based method designated for this special
case. For example, when n = 2 and m1 = 1, the problem
in (3) falls into the single optimal alternative selection and
the uncertainty evaluation in (8) becomes identical to that
of [16]. Similarly, when n = k and m∀u = 1, the problem
is the same as the complete ranking identification, and the
uncertainty evaluation in (9) becomes identical to that of [27].
Because the size of every subset is one, the approximation in
(9) becomes meaningless and (8) can be used instead. In the
existing methods for special cases [16], [17], [24], [26], and
[27], the value of C is empirically derived as one through a
simulation-based optimization of benchmarks or randomly

xi ∈ Ŝu : Pr
{
xi ∈ Su

/⋃
j∈{1,...,k}

Dj

}
≤ min

 Pr
{
µb(1) < µi

/
Db(1),Di

}
, . . . ,Pr

{
µb(h) < µi

/
Db(h),Di

}
,

Pr
{
µi < µw(l)

/
Di,Dw(l)

}
, . . . ,Pr

{
µi < µw(k)

/
Di,Dw(k)

}  . (10)
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Algorithm 1 Partitioning 2 (k Alternatives) Into n
(2 ≤ n ≤ k) Ranked Subsets, Each Comprising
mu∈{1,...,n} Alternatives (

∑n
u=1mu = k)

Input parameters: 2, n, {m1, . . . ,mn}, and B.
Control parameters: α, 1, and C (default setting is 1).
Output: Ŝ1, . . . , Ŝn.

Initialization:
1: for each xi ∈ 2 do:
2: simulate α times
3: set bi← α; calculate µ̂i and s2i
4: select Ŝ1, . . . , Ŝn using (2)
Loop:
5: while

∑k
i=1 bi < B do:

6: set 1← min
(
B−

∑k
i=1 bi, 1

)
7: for each xi ∈ 2: do:
8: evaluate ωi using (9)
9: for each xi ∈ 2 do:
10: calculate ai using (13)
11: simulate ai times
12: set bi← bi + round (ai)a; update µ̂i and s2i
13: select Ŝ1, . . . , Ŝn using (2)
14: return Ŝ1, . . . , Ŝn

aThe rounding error (1 −
∑k

i=1 round (ai)) is distributed to the alter-
natives that are allocated additional replications (at most ±1 for each
alternative).

generated problems. This consistency supports the default
setting of the proposed method.

Meanwhile, ai should be an integer when additional simu-
lations are conducted; however, ai is typically not an integer
according to (13) Thus, a conversion method should be
used when the proposed method is implemented. Fortunately,
owing to the advantage of the sequential procedure [8],
any reasonable approach that allows ai

/
aj to be similar to(

ωi
/
ωj

)C would not considerably change the efficiency of
the proposed method. Herein, a rounding function is used to
convert ai to an integer and the error (1 −

∑k
i=1 round (ai))

is distributed to the alternatives that are allocated additional
replications (at most ±1 for each alternative).

C. SEQUENTIAL PROCEDURE
As we previously mentioned, the proposed method divides
B into smaller units and sequentially allocates the units to
efficiently utilize B. Alternatively, it repeats 1) evaluating
the uncertainty using (9) based on the observed simulation
results, 2) allocating 1 using (13) based on the evalu-
ated uncertainty and 3) updating the simulation results.
Algorithm 1 presents this sequential allocation procedure

Algorithm 1 takes k alternatives, the number of ranked
subsets, the size of each subset, and the simulation budget
as input; it returns Ŝ1 . . . , Ŝn that are correctly selected to
be ∀u ∈ {1, . . . , n} : Ŝu = Su Algorithm 1 comprises
two phases: the initialization and the loop. In this study,

we assume that no prior information about the output distri-
bution of each alternative is provided before the simulation
is performed. Thus, to obtain the initial simulation results
for evaluating uncertainty, every alternative is simulated α

times during the initialization phase. Then, in the loop phase,
1 replications are iteratively allocated using the evaluated
uncertainty to gradually update the simulation results until
the remaining budget (B− kα) is depleted. Finally, Ŝ1 . . . , Ŝn
obtained from the observed simulation results are returned as
the output.

Algorithm 1 has three parameters that control the sequen-
tial allocation procedure: α, 1, and C (C is described in
the previous subsection). α denotes the number of initial
replications required by every alternative to obtain the ini-
tial simulation results. If the α value is too small, the initial
results may be poor, making the subsequent iterative alloca-
tions inefficient. Furthermore, a value of α that is too large
relative to B (i.e., close to B

/
k) reduces the efficiency of

the algorithm as it does not allow a sufficient number of
iterations in the loop phase. The literature suggests that α

values between 5 and 20 are appropriate [35]. However, when
the problem has a lot of noise and B is large, a larger value
of α than suggested may reduce the type-I error and increase
the algorithm efficiency. Meanwhile, 1 denotes the number
of additional replications to be distributed to the alternatives
using the uncertainty evaluated in each iteration of the loop
phase. If the 1 value is too small relative to that of k , the
efficiency of the algorithm may be reduced because a few
additional replications are allocated only to alternatives with
relatively high uncertainty. Furthermore, a value that is too
large relative to B hides the advantage of the sequential
allocation procedure. Empirical studies suggest that 1 values
between 0.5k and 0.05B are appropriate [16]. In extremely
noisy contexts, setting a large 1 value within the suggested
range may improve the algorithm efficiency by increasing
the possibility of allocating a few additional replications to
alternatives that have relatively low uncertainty.

IV. EXPERIMENTS
In this section, our experimental results for the numerical
and practical problems are presented to demonstrate the high
efficiency of the proposed method.

A. NUMERICAL PROBLEMS
The same numerical problems that were used to test OCBAsr
were used herein to evaluate the proposed method [32].
Table 3 presents the two types of stochastic numerical models
for these problems: equal variance (EV) and unequal variance
(UV). For each model, µi is equal to the index i. The EV
model has the same variance across all simulation outputs,
whereas the UV model has different variances. Furthermore,
there are two versions of each model. The high-noise ver-
sion has a higher noise level than the normal version owing
to reduction in the difference between the means of the
alternatives. The high-noise versions were not employed to
test OCBAsr; however, they are introduced in this study
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FIGURE 1. Convergence curves of P
{
CSn

}
against B for 16 numerical problems, where the shaded graphs correspond to the results for the high-noise

versions.

TABLE 3. Two stochastic models for numerical problems.

to demonstrate the practicality of the proposed method in
extremely noisy contexts

By combining these four stochastic models with the four
scenarios presented in Table 4, 16 numerical problems were
generated. The experimental results of the proposed method
for the extreme cases (e.g., n = 2 or n = k) can be found in
[16] (n = 2 and m1 = 1), [17] (n = 2 and m1 = m), and [27]
(n = k and m∀u = 1) For all 16 problems, Algorithm 1 was
compared with OCBAsr and the equal allocation method. For
OCBAsr, OCBAsrmp was used because it exhibited the best

TABLE 4. Four scenarios for numerical problems.

overall performance among the various versions of OCBAsr
presented in [32]. For both Algorithm 1 and OCBAsr, α and
1 were set to 20 and 50 respectively except in Scenario 4 (in
which 1 was set to 100 because k = 30). To compare the
efficiency of each method, P {CSn} was calculated according
to the simulation budget, as depicted in Fig. 1, where each
P {CSn} value was estimated in 10,000 independent experi-
ments. Table 5 shows the average budget required to achieve
0.99 P {CSn}.
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TABLE 5. Average simulation budget required to reach 0.99 P
{
CSn

}
for

16 numerical problems.

The experimental results show the superior efficiency of
Algorithm 1 over the other methods. In particular, when
the results of the normal and high-noise versions are com-
pared, the improvement in the efficiency of Algorithm 1
is more pronounced in the high-noise version. For exam-
ple, as presented in Table 5, in Scenario 2, the simulation
budget required by OCBAsr to reach 0.99 P {CSn} for the
EV model is approximately 1.51 times of that required by
Algorithm 1 but 2.05 times of the Algorithm 1 budget for the
EV(H) model. In Scenario 3, the OCBAsr budget for the UV
model is approximately 2.08 times of the Algorithm 1 budget
and 2.67 times of the Algorithm 1 budget for the UV(H)
model. In Scenario 4, Algorithm 1 achieved 0.99 P {CSn}
within 42,750 replications for the UV(H) model; however,
OCBAsr did not achieve this value even after allocating 105

replications.
This improved efficiency compared with that of OCBAsr

is owing to the fact that Algorithm 1 does not rely on heuristic
constants to select ranked subsets; however, the fundamental
reason is that Algorithm 1 considers the precision of the
observed simulation results during the allocation. Although
the allocation by OCBAsr considers the µ̂i and s2i values for
each xi based on the constants, the allocation by Algorithm 1
considers the value of bi as well. Thus, Algorithm 1 considers
µ̂i and the precision of µ̂i (s2i

/
bi) during the allocation,

as described in (6). If the µ̂i value for an alternative xi is
considerably biased after the initial simulation, OCBAsr does
not allocate additional replications to xi because of the poor
value of µ̂i. Subsequently, µ̂i and s2i are not updated and
the incorrect selections of Ŝ1 . . . , Ŝn continue. For example,
in the practical problem of the next subsection, alternative
that is misclassified in this way received only 21 replica-
tions on average after 23,000 replications were allocated
by OCBAsr; there was negligible additional allocation after
the initial allocation. On the other hand, as the sequential

allocation procedure continues, the precision of µ̂i that does
not receive additional replications becomes relatively lower
compared to that of the others. Thus, considering the preci-
sion, Algorithm 1 certainly allocates additional replications
to xi unlike OCBAsr so that incorrect selections are quickly
corrected. The likelihood of obtaining poor initial simulation
results increases with increasing noise. Algorithm 1, which
overcomes such situations well, is more efficient in high-
noise contexts.

The problem of poor initial results can be solved by
increasing the number of initial replications (α). However,
in practice, identifying the noise level associated with a prob-
lem is difficult before the simulations are performed; thus,
setting an unconditionally high α value may result in the
wastage of the simulation budget without any improvement in
the efficiency. Algorithm 1, which is relatively independent of
the accuracy of the initial results compared with OCBAsr and
which reliably and quickly corrects errors through additional
allocations using uncertainty, is more efficient and practi-
cal, as demonstrated by the results of the practical problem
described in the next subsection.

Meanwhile, in low-noise contexts, as a notable bias of µ̂i is
unlikely to happen, the allocation of Algorithm 1 considering
the precision of µ̂i may be redundant and may consume
more simulation budget compared to OCBAsr. However,
these increments may be inconsiderable because the budget
required to accurately select ranked subsets is small when the
noise level is low. Furthermore, the practical simulation mod-
els targeted by Algorithm 1 typically involve high stochastic
noise to reflect the high levels of uncertainty in complex
systems; thus, Algorithm 1 is still effective.

B. PRACTICAL PROBLEM—RELOCATIONZONE
DISTRIBUTION
Public bicycle-sharing systems (PBSSs) are an ecofriendly
means of transportation in many cities. A major operational
concern of PBSSs is the relocation of bicycles accumulated
in a specific area according to rental and return locations
[36]. Eoulling, the PBSS in Sejong City, which is the admin-
istrative capital of South Korea, is no exception. For the
efficient relocation of bicycles, as depicted in Fig. 2, the
Eoulling managers divide bicycle stations into 16 zones and
distribute the relocation task for each zone to five companies.
However, the companies have different relocation capabili-
ties. For example, company A can simultaneously perform
relocation work for four zones, but the efficiency of their
work per hour is low as most of the employees are beginners.
Conversely, company B can handle only two zones simulta-
neously, but its efficiency is high because of the availability
of skilled workers. Each zone requires a different amount of
relocation work to minimize the inconvenience to citizens.
Thus, given the capabilities of the five companies, if these
16 zones are partitioned into five ranked subsets according to
the workload and are then distributed to these companies, the
effectiveness of the relocation task can be maximized. The
workload of each zone can be evaluated using the stochastic
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FIGURE 2. Eoulling’s 16 relocation zones in Sejong City.

TABLE 6. Evaluated relocation workload for 16 relocation zones.

TABLE 7. Average simulation budget required to reach a specific P
{
CSn

}
in the practical problem.

simulation [29], and Table 6 presents the precisely evaluated
workload.

Algorithm 1 was employed to efficiently solve this practi-
cal simulation problem. In addition, OCBAsr and the equal
allocation method were applied to demonstrate the utility
and improved efficiency of Algorithm 1. Considering the
capabilities of the five companies, {m1, . . . ,m5} were set
to {4, 2, 4, 3, 3}. For both Algorithm 1 and OCBAsr, α and
1 were set to 20 and 50 respectively. As in the numerical
problems, P {CSn}was measured according to the simulation
budget, as depicted in Fig. 3, where every P {CSn} was esti-
mated over 10,000 independent experiments. Table 7 presents
the budgets required to achieve 0.90, 0.95, and 0.99 P {CSn}.
The experimental results, like the results of the previous

numerical problems, demonstrate the superior efficiency of
Algorithm 1. As shown in Table 6, the variance is greater
than the interval between the means of the alternatives. In this
high-noise practical problem OCBAsr required an enormous

FIGURE 3. Convergence curve of P
{
CSn

}
against B for the practical

problem.

budget to reach a high P {CSn} value and it did not converge
to the maximum P {CSn} after allocating 50,000 replications.
After 23,000 replications, the P {CSn} of OCBAsr was lower
than that of the equal allocation method, as depicted in Fig. 3.
As mentioned previously, this is because the biased µ̂i of
xi is not updated by OCBAsr after the initial simulation,
resulting in continuous incorrect selections of Ŝ1 . . . , Ŝn.
Among 10,000 experiments on a budget of 23,000, the aver-
age number of replications allocated to the misclassified
alternative was only 21.16 (approximately 0.092% of the
allocated budget) for 102 cases in which OCBAsr persisted
with an incorrect selection until the end; in other words, after
the initial allocation (α = 20), this alternative received little
additional replication over 454 sequential allocations of 1

because of its poor initial results. In contrast, Algorithm 1
reached 0.99 P {CSn} after allocating only 5,520 replications.
In addition, its P {CSn} converged to the maximum value
within 10,000 replications, as depicted in Fig. 3.
The simulation model [29] was synchronized with the

operational data collected from Eoulling in real time, and
the relocation workload was evaluated through simulations
of the synchronized model. Relocations were typically per-
formed in the morning, afternoon, and evening; thus, each
workload for these three times was evaluated using the model
synchronized with the data collected in the evening of the
previous day, morning, and afternoon, respectively. Within
approximately one hour after synchronization, the 16 zones
had to be distributed among the five companies according
to the simulation results before the relocation could begin.
Because the model simulates 260,000 citizens of Sejong City
as agents, the process is complex and expensive (requiring
approximately 0.5 s per replication on an i5-10400 2.9 GHz
CPU, with 16 GB RAM and CentOS 7). As presented in
Table 7, Algorithm 1 can accurately partition the 16 zones
into five ranked subsets using the simulation model within
one hour; however, the OCBAsr and equal allocation meth-
ods are time-consuming because of their low efficiencies
As such, Algorithm 1 is essential for increasing the simula-
tion efficiency in practical systems where digital twins are
employed.
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V. CONCLUSION
We proposed an R&S method that efficiently allocates a
simulation budget to partition k alternatives into n exclu-
sive ranked subsets when alternatives are evaluated using
a stochastic simulation model. To improve the simula-
tion efficiency for complex practical problems involving
high noise, the proposed method is based on UE that
has high robustness to noise. Using hypothesis testing and
p-value, the uncertainty was defined to evaluate if the
observed simulation results of each alternative had suffi-
cient precision to accurately select the ranked subsets. The
proposed method splits a given budget into a small num-
ber of simulation replications and sequentially allocates
them using the evaluated uncertainty for each alternative,
thereby gradually improving the insufficient precision to
maximize P {CSn} within the budget. Our numerical exper-
iments demonstrated the superior efficiency of the proposed
method compared with that of OCBAsr Notably, the superior-
ity was more pronounced in high-noise contexts. In addition,
the practical problem of relocation-zone distribution demon-
strated the utility of the proposed method in practical
scenarios.

Owing to its superior efficiency in high-noise contexts,
the proposed method is expected to be effective in situations
that require high simulation efficiency such as digital twins
for complex systems However, further studies to mitigate the
rather strict assumptions are needed to improve the prac-
ticality of the proposed method. First, this study assumes
that the stochastic simulation output follows a normal dis-
tribution; however, in reality, this may not be the case [37].
Moreover, in practice, an output distribution is typically
unknown; thus, it is necessary to generalize the proposed
method to the assumption of a general underlying distri-
bution. Second, this study did not consider the correlation
between alternatives. The proposed method, which is based
on the assumption of independence between alternatives,
is applicable even if the alternatives are correlated, but it
may be inefficient because it does not use this correlation
information. As the quantified correlation information (i.e.,
the covariance matrix) is typically unknown, the simula-
tion budget can be further reduced in practical scenarios if
correlation information is estimated and utilized during the
sequential allocation procedure Finally, a method for deter-
mining the optimal C value to maximize P {CSn} according
to the characteristics of the problem is left for future
research.
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